
Jo S, Jeong Y, Lee S. GPU-driven scalable parser for OBJ models. JOURNAL OF COMPUTER SCIENCE AND TECHNO-

LOGY 33(2): 417–428 Mar. 2018. DOI 10.1007/s11390-018-1827-2

GPU-Driven Scalable Parser for OBJ Models

Sunghun Jo, Yuna Jeong, and Sungkil Lee∗, Member, ACM

Department of Software, Sungkyunkwan University, Suwon 16419, Korea

E-mail: {shjo, jeongyuna, sungkil}@skku.edu

Received January 2, 2017; revised July 19, 2017.

Abstract This paper presents a scalable parser framework using graphics processing units (GPUs) for massive text-based

files. Specifically, our solution is designed to efficiently parse Wavefront OBJ models texts of which specify 3D geometries

and their topology. Our work bases its scalability and efficiency on chunk-based processing. The entire parsing problem is

subdivided into subproblems the chunk of which can be processed independently and merged seamlessly. The within-chunk

processing is made highly parallel, leveraged by GPUs. Our approach thereby overcomes the bottlenecks of the existing OBJ

parsers. Experiments performed to assess the performance of our system showed that our solutions significantly outperform

the existing CPU-based solutions and GPU-based solutions as well.

Keywords 3D model, Wavefront OBJ, parser, GPU

1 Introduction

In computer graphics and its associated areas, 3D

scene information such as geometry, topology, hierar-

chical layouts, and surface appearance, often requires to

be represented in an interchangeable format for many

applications (such as 3D viewers, modelers, and render-

ers), which can be typically stored in files. There are

numerous file formats for this purpose. Similar to other

areas, it is also common to use two types of file for-

mats, binary and text-based specifications. The binary

specification is easier to directly load, thereby faster to

load, but often less flexible for further editing and ex-

tensions. The text-based ones are more flexible in the

expression and extensions, and thus, more common in

practice. However, it is generally slow to load such for-

mats, because they require to be additionally parsed to

be loadable in the computer memory.

One of the most common text-based 3D file formats

is the object (OBJ) file format, which was originally

developed by Wavefront Technologies 1○ (now merged

with Alias/Autodesk). Its specification is relatively

simple. It uses tags or commands to distinguish diffe-

rent geometric elements (e.g., “v”, “vt”, “vn”, and “f”

for vertex positions, texture coordinates, normals, and

faces, respectively). Such elements are well mapped to

the majority of geometric and visual applications, but

as indicated already, the format is not directly loadable

to the memory and incompatible with particular appli-

cations due to its text-based nature.

As the computing power of both CPUs and GPUs

improves, sizes of 3D models become increasingly

larger. Their text-based specifications are much worse

in loading speed and storage effectiveness. Existing

CPU-based parsers[1] cannot handle such large 3D mod-

els well. Typical loading time takes up to a few sec-

onds for small files, but such large data may take up to

dozens of minutes, impeding their use in interactive ap-

plications. Parallel parsers may help, but the serial na-

ture and the inter-element dependency of the OBJ for-

mat make the parallelization difficult. This inspired us

to explore how to efficiently parallelize an OBJ parser.

Regular Paper

This work was supported in part by the Mid-career and Global Frontier (on Human-centered Interaction for Coexistence) Re-
search and Development Programs through the National Research Foundation (NRF) under Grant Nos. 2015R1A2A2A01003783 and
2012M3A6A3055695, the Information Technology Research Center (ITRC) Program under Grant No. IITP-2017-2016-0-00312 super-
vised by the Institute for Information and Communications Technology Promotion (IITP), funded by the Korea Government (Ministry
of Science, ICT (Information and Communications Technologies) and Future Planning), and Faculty Research Fund, Sungkyunkwan
University, 2011.

∗Corresponding Author
1○http://www.fileformat.info/format/wavefrontobj/egff.htm, Jul. 2015.

©2018 Springer Science +Business Media, LLC & Science Press, China



418 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

Apart from OBJ parsers, general text processing has

been already utilizing parallel processing. The early

approach uses multi-core CPUs[2], but recent ones use

GPUs. GPUs utilize massive (up to thousands of) cores

for parallel processing[3-4]. Their values for text pro-

cessing have been already identified in many areas such

as extensible markup languages (XMLs)[5], natural lan-

guage processing[6], and the structured query language

(SQL) processing[7].

The first GPU-based OBJ parser was presented by

Possemiers and Lee in their seminal work[8]. They pro-

posed how to utilize GPUs for parallel loading of OBJ

files. The linefeeds, which are atomic units for subse-

quent steps, are found in initialization. Then, elemen-

tary attributes are found in parallel, and then vertices

are packed and sorted, followed by the parallel indexing

of faces. All the steps are made parallel using NVIDIA

Compute Unified Device Architecture (CUDA) 2○ and

Thrust library 3○. The work by Possemiers and Lee

attained impressive speedup (up to 6x∼8x) compared

with the existing CPU implementations. Nevertheless,

we observed further room for higher performance, with

which we deal in this work.

This paper presents a scalable and efficient frame-

work for GPU-based parallel OBJ parsing. Our solu-

tion is partially similar to the previous work[8] in the

structure of within-chunk processing. However, our so-

lution is entirely chunk-based, which is designed for out-

of-core processing to significantly improve the scala-

bility to larger models. Chunks in our work are un-

organized and split by an arbitrary memory size. This

brings about additional challenges in chunk-based pro-

cessing and integration, which we solve in this work. To

integrate chunk-based processing well in our framework,

we propose additional optimization schemes, including

tag-based line splitting and table-based parallel vertex

buffer indexing.

To be more precise, our work is distinguished from

the previous GPU-based OBJ parser[8] for what follows.

First, ours better handles chunks, which is scalable to

out-of-core data and also avoids the redundant mem-

ory copies. While the previous work used chunks only

for file reading, our work uses chunks for the entire

pipeline. Second, our solution delimits the line in the

OBJ file by the first characters (tag) instead of the last

characters (e.g., linefeeds). This avoids an additional

operation for trimming comments. Third, in the vertex

buffer indexing, our solution performs sorting on the

basis of chunks instead of the entire vertices. Also, we

use an integer-based key for sorting instead of vertex

values. Typically, the GPU sorting has super-linear-

time complexity, and thus this strategy significantly

improves the performance, making a great difference

with the previous work.

The major contributions of our work include:

• a scalable chunk-based scheme for OBJ parsers;

• a tag-based efficient line splitting scheme;

• a table-based efficient vertex buffer indexing

scheme.

2 Related Work and Preliminary Background

We first briefly review previous studies on gene-

ral text file parsers, and then explain the specification

of the OBJ file format and previous attempts for its

parsers.

2.1 Parallel Text Parsers

Text parsers are one of the crucial components for

many applications. The applications start data pro-

cessing from file parsing, and the speed of parsers is

highly relevant to overall performance in the presence

of frequent accesses to external documents. With the

advent of big data and very large datasets, high-speed

text processing has been of growing interest, in particu-

lar for parallel processing.

Major applications of parallel text processing in-

clude XML parsing, natural language parsing, and SQL

query processing in databases. The most basic form of

parallel processing starts from the utilization of mul-

tiple CPU cores[2,9-10]. Commonly, these applications

first do pre-parsing to understand the structure of doc-

uments, and parse individual lines/chunks in parallel.

Another mainstream on acceleration has attempted

with SIMD (single-instruction multiple-data) capabili-

ties of modern CPUs, such as a bit stream based parsing

scheme[11].

To gain more speedup, parallel text/grammar pro-

cessing has been directed to GPUs, inspired by many

successful examples of GPU-based data processing.

The effectiveness of GPU-based text processing has

been proven to great extents, including XML processing

(query optimization[5] and X3D parsing[12]), SQL query

processing[7], and natural language processing[13-14].

To resolve real-world issues of applying GPU processing

to applications, many studies have been also dedicated

2○http://docs.nvidia.com/cuda/, Dec. 2016.
3○Hoberock J, Bell N. Thrust, 2014. http://thrust.github.io/, Jan. 2018.



Sunghun Jo et al.: GPU-Driven Scalable Parser for OBJ Models 419

to improvements of the load balancing between multi-

core CPUs and GPUs[5-6], and dense-to-sparse problem

transformation[15].

2.2 Wavefront OBJ File Format

The OBJ file format uses tags to specify geomet-

ric elements in a 3D model. “v” tag defines 3D po-

sition of a vertex. 2D texture coordinates and 3D

normals are specified by “vn” and “vt”, respectively.

“f” tag defines face elements with respect to integer

indices/references to the previously defined vertex at-

tribute lists; the starting index is 1 instead of 0. ‘#’

tags indicate comments. Fig.1 shows a simple OBJ file

that specifies four vertex positions, four texture coordi-

nates, one (shared) vertex normal, and the topology of

vertices (faces); a quad of two triangles is here specified.

Fig.1. Example OBJ file of two triangles forming a quad.

Optionally, “g” tag can be used to specify hierarchical

grouping of faces (not shown here for simplicity).

The OBJ models typically accompany material tem-

plate library (MTL) files that specify materials such as

diffuse and specular reflectance. They are usually small

and easy to parse, and we do not take them into account

in this work.

2.3 Previous OBJ Parsers

Due to the simple specification of the OBJ for-

mat, there have been many available implementations

of OBJ parsers, including TinyOBJ 4○ and MeshLab[1].

They are mostly based on CPU processing and simi-

lar in structures (see Fig.2 for overview). An OBJ file

is read into a file stream, and is parsed for each line.

The vertex attributes (positions, texture coordinates,

and normals) are simply accumulated as arrays, and

the array of faces/polygons stores references (typically,

integer indices) to the vertex attributes.

The original references to vertex attributes in faces

contain repeated vertices, and thus, need to be trans-

lated to a new single vertex buffer only of unique en-

tries. This often requires a hash table to efficiently

avoid the redundancy. Also, the three different at-

tribute indices need to be consolidated as a new unified

index buffer, because the majority of modern render-

ing APIs (e.g., OpenGL and Microsoft Direct3D) allow

a single index buffer for high-performance rendering.

This often requires interleaved arrays of aggregate ver-

tex attributes to use a single index buffer for multiple

attributes.

0

0 1

23

In
p
u
t 

O
B

J
O

u
tp

u
ts

Vertex Buffer Index Buffer

vnvtv

1

2

3

4

1

2

3

4

1 1

2

f

1 2 3 0 1 2 3 4 5

0 1 2 0 2 3

Parsing + Indexing

x֒y֒z x֒y֒z v⊳vt⊳vn

v⊳vt⊳vn

v⊳vt⊳vn

v⊳vt⊳vn

v⊳vt⊳vn

v⊳vt⊳vn

u֒v

u֒v

u֒v

u֒v

x֒y֒z

x֒y֒z

x֒y֒z

v

v v

f

f

f f

v

v

vt

vn

v

vt

vn

v

vt

vn

v

vt

vn

Fig.2. Overview of OBJ parsing in typical CPU parsers.

4○http://syoyo.github.io/tinyobjloader/, Dec. 2016.



420 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

The previous CPU-based parsers are generally slow,

and a GPU-based scheme (with NVIDIA CUDA and

Thrust 5○) has been recently proposed by Possemiers

and Lee[8]. The parsing is greatly parallelized, which

proves the benefit of GPUs. This work motivates us

to better utilize GPUs and optimize the scheme for

higher performance. Particularly, we introduce an en-

tirely chunk-based scheme for scalability. Also, the ver-

tex buffer indexing, requiring sorting, was significantly

improved with the table-based lightweight scheme.

3 Overview of Framework

This section provides a preliminary overview of our

framework for parallel OBJ parsing (see Fig.3 for il-

lustration). Our framework consists of four parts: the

chunk-based file reader, the tag-based line splitter, the

element-wise line parser, and the vertex buffer indexer.

Our framework is entirely chunk-based, and processes

each chunk in a scalable way. We provide an overview

below and details in Section 4∼Section 6.

The first step is the chunk-based file reading. A

typical buffer-based reading from a raw file stream,

by default, incurs significant overhead and redundant

memory copy (to the buffer). For better file access, we

use an alternative method, the memory-mapped file to

utilize the efficient virtual memory management pro-

vided by the operating systems. The file is repeatedly

read on the basis of chunks, and the chunk of the file

is partially mapped to virtual memory addresses. The

chunks are usually small and can be directly loaded into

the GPU memory for further in-memory chunk parsing.

The second step is line splitting, which delimits lines

in the chunk. Our line reader delimits the lines by the

first characters (i.e., element tags in OBJ file formats)

instead of the last characters in the line (i.e., line feeds).

This approach allows us to avoid an additional step to

trim redundant lines, improving the speed of reading

lines.

Then, the third step is parsing/translating individ-

ual lines to binary arrays from the text representations.

We use our own ASCII-to-binary type conversion func-

tions. Although there are many tag types in the OBJ

file, this work focuses only on the most basic elements

of OBJ tags, for geometric attributes and face topology.

The vertex buffer indexing is the last and the most

important step to accelerate the entire loading. The

vertices for forming faces are randomly associated with

multiple indices of the binary arrays of positions, nor-

mals, and texture coordinates. A typical CPU-based

parser can use hashing, but it cannot be easily paral-

lelized on GPUs. To cope with this, we propose an ef-

ficient chunk-based scheme to make this parallel, with

less overhead of sorting. The sorting in our indexing

scheme is performed on the basis of individual chunks.

Hence, its overhead is much smaller than the previous

one that requires to sort an array of entire vertices[8].

OBJ File

Per-Chunk Line Splitter (GPU)

Outputschunk1 chunkC
… Temporary Arrays

0

key(v) vt/vn

…

1 …

Index Buffer

Vertex Buffer

0

0

1 …

1 …

chunk2File Reader (CPU)

… v … v t … v n …  \nv

Per-Chunk Vertex Buffer Indexing (GPU)

Per-Chunk Line Parser (GPU)
for each tag  {v, vt, vn, f֒ ⊲⊲⊲}

   - find starting indices for line parser (see Fig.5 for details)
   - parse and integrate to global temporary arrays

vec3v … vec3

vec2vt … vec2

vec3vn … vec3

ivec3f … ivec3

for each vertex (references) in faces
   - add only a unique vertex (references) to indexing table (see Fig.7 for details)

Indexing Table

v

vt

vn

v

vt

vn

Fig.3. Overview of our OBJ parser framework.

4 Scalable File Loader

This section describes the preprocessing step of our

framework that is performed before parsing. This stage

includes the chunk-based file reading and the tag-based

line splitting.

4.1 Chunk-Based File Reader

The major difference of our work and the previous

work[8] is the use of chunks through the entire pipeline

(see Figs.3 and 4). We first split a file to chunks by a

user-defined size and repeatedly process each chunk un-

5○http://docs.nvidia.com/cuda/, Dec. 2016.



Sunghun Jo et al.: GPU-Driven Scalable Parser for OBJ Models 421

til no chunks are read from the file. This scheme enables

serial chunk processing, which is scalable to large-size

models. Note that, however, each chunk is processed in

parallel on GPUs.

Per-Chunk Line Splitter

OBJ File

Raw Chunk

v … v t … v n … … … f … \n

Raw Chunk Raw Chunk…Memory
Mapping

Chunk
Refinement

      chunk1       chunk2       chunkC
…

…\n\n …\n\n …\n\n

Fig.4. Our chunk-based file reader for scalable parsing.

As already mentioned in Section 3, a typical buffer-

based file streaming may not be efficient due to the use

of a temporary buffer and its copies. Even a single ad-

ditional copy for each line access may incur non-trivial

overhead. Therefore, we use an alternative method for

faster chunk-based file access.

Our chunk-based scalable scheme is realized using a

memory-mapped file (MMF; e.g., mmap in Linux). The

memory mapping of the file enables direct access to the

file content of a finite range (here, the chunk size), as the

chunks reside in the main memory. Hence, this avoids

the use of temporary buffer and its repeated copies.

This way is even more efficient owing to the automatic

cache management of the virtual memory system, which

is provided by operating systems. This simple change to

the loader brings us a non-trivial (actually, quite high)

speedup.

For each chunk, we do line splitting in the next step,

but the last line of each chunk requires to be handled

with care. When the chunk does not end up with the

linefeed, the line needs to be padded with missing in-

formation to the next linefeed. This can be done at

negligible cost; doing this in GPUs is obviously ineffi-

cient. Since such missing line content is not that big,

we add a slight margin (e.g., 128 bytes) to the chunk

for file mapping. Finding such a line feed is performed

only for the ending of the chunk.

The chunk size matters in tuning for performance.

Intuitively, too small or large sizes might not be effi-

cient, and finding a moderate size is necessary. The size

of the chunk is also related to the number of threads for

GPU parsing, but it is hardly possible to explicitly for-

mulate. We instead use a rule of thumb by an empirical

approach. We report the effects of the chunk size in our

experiments (Section 7).

4.2 Tag-Based Parallel Line Splitter

Unlike the typical line-based file reading (e.g., using

fgets in the C language), our scheme directly reads a

chunk block. Hence, we need to split the chunks to lines

in a separate GPU pass. GPU threads as many as cha-

racters in the chunk are launched, and mark delimiting

characters as 1 and others as 0. The former technique[8]

uses the linefeed (“\n”) as a delimiting character. This

works well, but a robust reader requires to trim mean-

ingless lines (e.g., comments and blanks) and additional

memory copies as well.

We improve the former technique using a tag-based

splitting scheme. We use a heading character (i.e., tags)

instead of the linefeed. The OBJ format declares a

small number of tags, and we can easily exploit this

scheme. Specifically, our idea is to find “v” and “f” in

the line (“vt” and “vn” share the same heading “v”).

Then, the line parser can start from the headings, and

parse (a fixed number of) numeric entities. Hence, we

do not have to process the entire lines to the end with-

out trimming comments and blanks.

For robust reading, ambiguity in the comments

needs to be avoided. In other words, “v” and “f” may

exist in the comments, and thus it is necessary to addi-

tionally verify that the preceding non-whitespace cha-

racter is the linefeed. As for the exception in the first

line, we prepend a linefeed for the beginning of each

chunk (shown in Fig.4).

Once the heading of each line is found, we mark the

valid heading as 1 and the others 0. These marks are

refined for processing of each tag in the line parsing.

5 Parallel Line Parser

This section describes how to identify each element

of the OBJ file separately and how to parse individual

lines to binary representations.

5.1 Parallel Element Identification

Since we know the specific location where each line

begins, we can directly parse individual lines. How-

ever, one problem here is that we need to identify the

indices of individual elements to store the binary out-

put of the parser to the (intermediate) attribute arrays.

In the CPU-based processing, the index identification

is easy using a per-element counter. However, apply-

ing the index identification on GPUs requires atomic

accesses to the counters, which serializes entire threads

with significant stalls.

To identify individual indices of line elements in

parallel without atomic counters, we use a GPU-based

parallel indexing scheme (see Fig.5 for illustration and

Algorithm 1 for the pseudocode), which is proposed by



422 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

For Each 

0 12… 128 129 N֓

L
in

e 
P
a
rs

er

v…v… vt…vt… vn…vn… f…f…

v

L
in

e 
S
p
li
tt

er

vt

vn

fv vt vn f

ivec3

ivec3

vec3

vec3

vec2

vec2

vec3

…
…

…
…

vec3

\n v … v … v t … … \n

Mark Delimiting Characters as 1

0 1 … 2 … 3 3 … … …

0 1 … 1 … 1 0 … … 0

Chunk

SAT

Packed Buffer

0

Find Start Indices for Each Line

Packed Start Index Buffer (for Each Tag)

… …1 …

1 12… 128… 129 … … …

1 12 128 …

Fig.5. Identification of the attribute start indices for the line parser.

Possemiers and Lee[8] for their vertex buffer indexing

scheme. Briefly saying this, we separate the parsing

for attribute elements and faces. In the beginning of

each parsing, we mark only the tag we process as 1

and others 0. For instance, when we parse v tag only,

we mark lines with v tag as 1. Then, we apply the

parallel prefix sum (e.g., summed area table[16]), which

accumulates forward elements from indices; we used

thrust::inclusive scan for implementation 6○. The

resulting output indicates the starting positions (having

non-zero indices) of each line for the element and where

to store output (to the indices of the output buffer). We

again tightly pack the output buffer using the indices

and trigger parsing. In addition, this allows us to find

the number of total lines to invoke the GPU threads for

line parsing.

Algorithm 1 . Line Splitter

Input: C[N ]: file chunk ⊲ N : size of chunk
Output: P [M ]: tag index buffer ⊲ M : size of tag index buffer
1: /* Kernel Code */
2: procedure MarkTag(C)
3: B[tid]← 0 ⊲ B: temp. buffer to store marks
4: if C[tid] is tag then B[tid]← 1 ⊲ tid: thread ID

5: return B

6: /* Kernel Code */
7: procedure Packing(C, B)
8: if C[tid] is tag then P [B[tid]− 1]← tid ⊲ store tag index

9: return P

10: /* Host Code */
11: procedure LineSplitter
12: B ←MarkTag(C)
13: B ← Thrust::inclusive scan(B) ⊲ parallel prefix-sum
14: P ←Packing(C, B)

We note that lengths of individual lines need not to

be found. This is because each tag has a fixed number

of scalar values and we can serially parse the line until

we find the same number of whitespace characters.

5.2 Line Parsing

Line parsing follows the same approach as [8] does.

The parsing can be classified into vertex attribute (geo-

metry) parsing and face (topology) parsing. While the

vertex attributes are largely similar, based on vecto-

rized real numbers, face information is based on the

integer indices that are indirect references to the arrays

of the vertex attributes. The pseudocode for the line

parsing is given in Algorithm 2.

Algorithm 2 . Line Parser

Input: C[N ]: file chunk ⊲ N : size of chunk
Input: P [M ]: tag index buffer ⊲ M : size of tag index buffer
Output: V [M ]: vertex attribute buffer ⊲ one of {pos, tex, norm}
Output: F [K]: face (index) buffer ⊲ K: number of faces × 3
1: /* Kernel Code */
2: procedure ParseLine
3: if C[P [tid]] is a vertex tag then ⊲ parse for vertex
4: for each token t[i] do v[i] ← atof(t[i])

5: V [tid]← v

6: else if C[P [tid]] is a face tag then ⊲ parse for triangle
7: for each token t[i] do f [i]← atoi(t[i])

8: for each vertex attribute j do ⊲ {0,1,2} for “v/vt/vn”
9: F [3× tid + j]← (f [3j], f [3j + 1], f [3j + 2])

Vertex attributes are parsed only for real numbers,

while faces only for integers. Since we know where each

line starts, we can directly access each element. We

used our own type conversion function; CUDA, used for

our implementation, does not provide standard ASCII-

to-float conversion (e.g., atof). After parsing is com-

plete, we store the binary values to tightly packed ar-

rays for each element (i.e., positions, normals, texture

6○http://docs.nvidia.com/cuda/, Dec. 2016.



Sunghun Jo et al.: GPU-Driven Scalable Parser for OBJ Models 423

coordinates, and faces).

While vertex attribute formats are nearly fixed by

the types of tags (e.g., 3 for position and normals and

2 for texture coordinates), face formats can be variable

depending on the types of polygons and optional refe-

rences. However, modern OpenGL deprecates general

polygons types except triangles, and we assume that

only up to three vertices can be present in a single

line. As for the optional references, the references to

vertex positions are crucial, but those for normals and

texture coordinates are optional. We handle the four

possible cases, including “v/vt/vn”, “v/vt/”, “v//vn”,

and “v//” in the face definition. For the integer type

conversion, we also use our own atoi(), similar to our

atof().

6 Scalable Parallel Indexing of Vertex Buffers

This section describes the problem of vertex buffer

indexing and our approach for parallel indexing.

6.1 Background on Vertex Buffer Indexing

The last stage builds new vertex and index buffers

readily available for rendering by vertex buffer indexing

(see Fig.2 for illustration). In the previous stage, we are

given the vertex attributes of positions, normals, and

texture coordinates, and their indices/references in the

face elements. However, modern rendering APIs typi-

cally allow only a single index buffer, and we need to

build a new vertex buffer, interleaving three vertex at-

tributes (e.g., see Fig.6), and use references to the new

vertex buffer as a new index buffer.

Fig.6. Simple definition of a vertex structure in C++ language.

A straightforward solution to build a new vertex

array is to create a new vertex for each face element.

However, typical OBJ files contain substantial amounts

of repeated vertices (having the same references to ver-

tex attributes). Hence, it is necessary to maintain only

unique entries in the vertex buffer. For this, a typical

CPU indexing can simply use a hash table, which uses

the three attribute indices as a key. However, a GPU-

based scheme cannot easily exploit the hashing. The

hashing requires atomic accesses to a single table, and

leads to conflicts in parallel writing. Hence, the main

challenge here is how to avoid the use of a hash table

and how to avoid conflicts in writing the same entries

into the table.

The previous approach[8] uses sorting to cluster ver-

tices in proximity, the predicate of which compares the

real-number values by positions, normals, and texture

coordinates in a row. For implementation, Possemiers

and Lee[8] used thrust::sort. By this way, the same

vertices can be easily detected, removing repeated en-

tries. However, this requires a heavy sorting of the en-

tire vertices, significantly degrading performance. To

cope with this problem, we propose a much efficient

way based on the indexing table, which is also scalable

to large models.

6.2 Table-Based Vertex Buffer Indexing

Our novel scheme for the vertex buffer indexing is

table-based, which is scalable and avoids the previous

issues as well. First, we use a global indexing table of a

fixed size so that the indexing result of each chunk can

be seamlessly accumulated, thereby making our index-

ing scalable. Second, we perform the vertex sorting on

the basis of each chunk. Since the number of vertices

in each chunk is much smaller, the sorting overhead is

greatly reduced; recall that the sorting overhead scales

with at least O(N logN). Third, we use integer indices

(precisely, the position attribute v) as keys to the index-

ing table, which also lowers key-comparison overhead

for sorting. As a result, our indexing highly improves

performance in comparison with the previous work[8].

The indexing table is a key data structure of our ef-

ficient vertex buffer indexing, which interacts with each

chunk and is translated to a new vertex buffer and in-

dex buffer in the end (see Fig.7). The indexing table

is actually a simple 2D array. Each row is assigned by

the position index of each vertex in the face elements,

and the columns hold unique combinations of indices

of normals and texture coordinates. In practice, the

unique combinations are defined by the adjacent faces

and not too many. Therefore, we pre-allocate the table

with a fixed size (in our experiment, 7 columns suffice

in practice). Actually, this serves as a fixed linked list,

because GPUs do not support a native linked list due

to the lack of pointers.

Based on the indexing table, our within-chunk in-

dexing is performed as follows (see Algorithm 3 for the

pseudocode). We first extract an unpacked vertex ar-

ray (only of integer attribute references) from each face

in each chunk. We then sort the unpacked vertex ar-

ray using only the vertex position reference as a key.

This sorting clusters vertices homogeneous in terms of

position; this scheme is similar to that of [8], but much



424 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

For Each Vertex (References) in Faces

A/A/A

A/A/A

A/B/A

B/A/C

C/A/A

C/A/A

1

0

0

1

1

0

Index Table

Key (v) vt/vn

A AA BA

B AC

C AA

A/A/A

C/A/A

B/A/C

A/A/A

A/B/A

C/A/A

S
o
rt

 b
y
 v

(V
er

te
x
 C

lu
st

er
in

g
)

M
a
rk

 C
lu

st
e
r 

H
e
a
d
in

g
s

Look up Index Table
by v (Position)

New Vertex Indices

Key (v) Indices

A 0 1

B 2

C 3Assign New Vertex Indices

For Each Vertex (References) in Faces

A/A/A 0

C/A/A 3

B/A/C 2

A/A/A 0

A/B/A 1

C/A/A 3

Fig.7. Proposed table-based vertex buffer indexing scheme.

efficient due to less inputs. Then, we access the in-

dexing table only for the first vertice for each position

index. A thread for the same vertex reads the index-

ing table, and writes only unique pairs of normals and

texture coordinate back to the table. Thereby, the ver-

tices of the same key can be accessed in a single GPU

thread without atomic accesses, significantly improving

the overall performance.

Algorithm 3 . Vertex Buffer Indexing

Input: E[J]: chunk from face (index) buffer ⊲ J: chunk size

Input: T [U ][7]: indexing table ⊲ U : no. unique entries
Input: C[U ]: index counter buffer ⊲ holds no. of entries for each

index
Output: I[K]: (final) index buffer ⊲ K: no. faces × 3
1: /* Kernel Code */
2: procedure UpdateIndexTable (T , E)
3: if E[tid] is heading and not exists in T [tid] then
4: T [E[tid].pos][C[tid]] ← E[tid]
5: C[tid]← C[tid] + 1

6: /* Kernel Code */
7: procedure CreateNewVertexIndex(T )
8: for i = 0 to C[tid]− 1 do

9: if T [tid][i] is valid then Tn[tid][i] = 1
10: else Tn[tid][i] = 0

11: return Tn

12: /* Kernel Code */
13: procedure LookupIndexTable(T , E, Tn)
14: for i = 0 to C[tid]− 1 do

15: if T [E[tid].pos][i] is E[tid] then
16: return Tn[E[tid].pos][i]

17: /* Host Code */
18: procedure VertexBufferIndexing
19: for each chunk E do

20: sort(E.pos) ⊲ using Thrust::sort
21: UpdateIndexTable(T , E)

22: Tn ←CreateNewVertexIndex(T) ⊲ Tn: vertex index buffer
23: Tn ← Thrust::inclusive scan(Tn)
24: for each chunk E do

25: In ← LookupIndexTable(T , E, Tn )
26: I ← Append(I, In)

27: return I

When all the chunks are processed and the table

is made complete, we create tightly packed vertex and

index buffers from the table. The indexing table can

be sparse, because we allocate the over-size table up to

a potentially largest column size. Since we know how

many cells are filled, the buffer can be packed tightly.

This again relies on the summed area table, which per-

forms the prefix sum of the first cell of each row. From

the final indices of each cell, we directly create a ver-

tex buffer, which now assigns real values using the at-

tribute references in the table. As for the index buffer,

we need to read all the face chunks again, because the

index buffer is ordered by the triangle order. For each

face, we can easily identify the indices of its vertices by

looking up the table using the position index. In this

way, face elements can be translated to the final index

buffer. One limitation here is that the globally defined

table needs to reside in GPU memory, and thus, the

maximum size of a file we can process is limited by the

size of GPU memory. Nevertheless, this is more effi-

cient than the scheme in [8] which requires the entire

file to be read to GPU memory. This scheme can be

extended to a scalable way by using chunk-based access

to the table (i.e., the index table is also split by its own

chunks). Nonetheless, the size of actual vertex buffer

is much smaller than its file size, because text formats

are usually larger than the binary representations and

there are many repeated face elements.

Our indexing scheme fits also with CPUs, and is

more efficient than GPU-based schemes. The CPU pro-

cessing bypasses the costly sorting and directly builds

the table, because the table can be directly accessed.

We also demonstrate the benefit of this scheme in Sec-

tion 7.



Sunghun Jo et al.: GPU-Driven Scalable Parser for OBJ Models 425

7 Results

We implemented and experimented our system us-

ing NVIDIA CUDA API on an Intel Core i7 machine

with an NVIDIA GTX 980 Ti graphics card and 16 GB

main memory. Our parallel OBJ parser (POP) uses two

types of vertex buffer indexing, one with CPU indexing

(CPOP) and the other with GPU indexing (GPOP).

The time complexity of our algorithms can be a

combination of three major stages. Given the size N

of the input data, we split them into M and P chunks

for the parsing and the vertex buffer indexing, respec-

tively. Then, the time complexity of the line split-

ting is O(N), because the parallel prefix sum of each

chunk uses a linear-time implementation. The line

parser simply runs in O(N). The vertex buffer indexing

sorts each chunk, leading to O(N logP ). Consequently,

the overall time complexity of our framework becomes

O(N logP ), implying the main bottleneck is the chunk

sorting in the vertex buffer indexing.

The experiments used six 3D OBJ models: Stan-

ford Dragon, Hairball, XYZ Dragon, XYZ Thai Statue,

Lucy, and Lucy3. Lucy3 is a tripled copy of Lucy. Fig.8

shows their geometric complexities and how they look.

Lucy and Lucy3 are used to prove the utility of our

method for massive models. The models are not as-

signed materials, which are visualized with arbitrary

colors.

(a) (b) (c)

(d) (e) (f)

Fig.8. Six 3D models used for our experiments. (a) Stan-
ford Dragon (63.5 MB, 0.4M, 0.9M, 14 MB, 10 MB). (b) Hair-
ball (219 MB, 1.5M, 2.9M, 47 MB, 35 MB). (c) XYZ Dragon
(573 MB, 3.6M, 7.2M, 116 MB, 87 MB). (d) Thai Statue
(805 MB, 5M, 10M, 160 MB, 120 MB). (e) Lucy (2.29 GB, 14M,
28M, 449 MB, 337 MB). (f) Lucy3 (7.14 GB, 42M, 84M, 1.3 GB,
1.0 GB). The numbers in the parentheses following the name of
each model indicate the file size, the numbers of vertices and
faces, the size of the vertex buffer, and the size of the index
buffer, respectively. M means ×106.

We used different chunk sizes of reader/parser and

vertex buffer indexing. We chose optimal sizes based

on our experiment (Fig.9). Precisely, the parser chunk

used 64 MB. The chunk for vertex buffer indexing used

256 KB only for GPOP; CPOP did not use chunks, be-

cause it can directly access the table in the memory.

50

52

54

56

58

60

62

T
im

e
 (

m
s)

T
im

e
 (

m
s)

T
im

e
 (

m
s)

T
im

e
 (

m
s)

5

0

10

15

20

25

30

Parser Chunk Size Parser Chunk Size

Indexing Chunk Size Indexing Chunk Size

216 217 218 219 220 221 222 223 224 225 226 216 217 218 219 220 221 222 223 224 225 226

3.4

3.6

3.8

4.0

4.2

4.4

50

100

150

200

250

3000

0

216 217 218 219 220 221 222 223 224 225 226 216 217 218 219 220 221 222 223 224 225 226

(a) (b)

(c) (d)

Τ103

Τ103

Τ103

Τ103

Fig.9. Effects of chuck size of our OBJ parsers. (a) CPOP, using XYZ Dragon. (b) CPOP, using Lucy3. (c) GPOP, using XYZ Dragon.
(d) GPOP, using Lucy3.



426 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

We compared our solutions with two previous meth-

ods. The first is a well-known CPU-based one,

MeshLab[1]. The second is the aforementioned GPU-

based one[8], which serves as a reference method (here-

after, REF) in this work. We here excluded an-

other well-known CPU-based implementation, Tiny-

OBJ. Since TinyOBJ does not include the vertex buffer

indexing (unlike our solutions and REF), a fair compa-

rison is difficult without additional implementations.

Fig.10 compares the performances of the four tech-

niques. Overall, both of our methods greatly outper-

form all the previous ones. CPOP outperforms GPOP

by a factor of 1.27∼1.86 for all the models except Lucy3.

In the case of Lucy3, GPOP wins CPOP by a slight

margin (with a speedup of 1.08). This shows the sort-

less CPU indexing is better for medium-size models,

but the GPU indexing better fits massive models (also

for a full GPU implementation). Unlike ours, REF is

not able to load the two large models, Lucy and Lucy3,

because REF needs the full in-memory processing in

GPUs. This proves our solutions are better than REF

in terms of scalability. The average speedup factors of

CPOP are 4.9 and 13.7 with respect to REF and Mesh-

Lab, respectively, and those of GPOP are 2.8 and 9.0

with respect to REF and MeshLab, respectively.

Fig.11 shows the performance breakdown, which

compares CPOP, GPOP, and REF. While our solutions

separate file reading and line splitting, REF merges

them as “importing”; REF uses multi-threading for file

reading and line splitting. Lucy and Lucy3 are reported

only for ours. Overall, our solutions are more efficient

than REF in all the steps. The largest differences are

found in the vertex buffer indexing, and other stages

are also more efficient. CPOP is more efficient due to

its faster vertex buffer indexing, but the difference is

less manifested for large models (Lucy3).

Lastly, we report the effects of chunk sizes on per-

formance (Fig.9). We use different chunk sizes for the

reader/parser and the vertex buffer indexing. Over-

all, larger sizes of the parser chunk show higher per-

formance but are saturated above 226 B (equivalent to

64 MB). This results from the higher parallelism from

the larger chunk sizes. On the other hand, optimal sizes

of the indexing chunk are found around 218 B (equiva-

lent to 256 KB). Since a larger size of the indexing

chunk degrades the performance in particular for the

chunk sorting, a smaller (but not too small) chunk is

preferred.

8 Discussions and Limitations

In the present work, we focus solely on the pars-

ing of the OBJ models. The framework and individual

steps are designed for scalable and parallel processing

of linewise commands. We envision our work can be

extended for other text-based specifications.

At present, our implementation supports only com-

mon commands in the specification of OBJ models, i.e.,

“v”, “vn”, “vt”, and “f”. In order for our work to be

more practical, we are planning to extend the work to

handle “g” (group) and other commands (e.g., para-

metric primitives).

Our GPU-based vertex buffer indexing (GPOP) still

requires to apply sorting, even though the sorting is effi-

cient. This sorting makes a difference with CPU-based

vertex buffer indexing (CPOP). A sort-less vertex buffer

Standford Dragon Hairball XYZ Dragon Thai Statue Lucy3Lucy
0

10

20

30

40

50

400

5
2
 5

8
8

1
2
8
 0

8
7

8
 1

1
2 1
4
 4

2
0

3
6
7

5
7
4

1
 3

1
1

3
 5

3
7

8
8
0

1
 4

9
7

4
 4

1
7 1
2
 2

4
1

2
 1

0
2

3
 6

6
0 1
1
 5

8
0

3
1
 6

3
9

2
 8

8
3

5
 3

6
7

4
3
 1

3
6

1
5
 8

8
7

CPOP GPOP REF MeshLab

(3
x
, 
9
x
)

(2
x
, 
6
x
)

(5
x
, 
1
4
x
)

(3
x
, 
8
x
)

(5
x
, 
1
5
x
)

(3
x
, 
8
x
)

(5
x
, 
1
5
x
)

(3
x
, 
8
x
)

(N
/
A

, 
1
5
x
)

(N
/
A

, 
8
x
)

(N
/
A

, 
1
3
x
)

(5
x
, 
1
4
x
)

T
im

e
 (

m
s)

Τ103

1
2
8
 0

8
7

7
4
8
 6

9
0

Fig.10. Performance comparison of the four OBJ parsers. CPOP and GPOP indicate our solutions that use the vertex buffer indexing
on CPUs and GPUs, respectively. Speedup factors are given against REF and MeshLab.



Sunghun Jo et al.: GPU-Driven Scalable Parser for OBJ Models 427

Time (ms) Time (ms)

0 200 400 600 1000 0 0.5 1.0 2.0 6.0

(a) (b)

0 1 2 3 4 15

Time (ms) Time (ms)

0 2 4 6 20

(c) (d)

Time (ms) Time (ms)

0 4 8 12 16 0 20 40 60 80

(e) (f)

Τ103

Τ103

Τ103

CPOP

GPOP

REF

CPOP

GPOP

CPOP

GPOP

REF

CPOP

GPOP

REF

CPOP

GPOP

CPOP

GPOP

REF

Τ103

Τ103

File Reader Line Splitting Importing Parsing VB IndexingMem. Alloc.

Fig.11. Performance breakdown of CPOP, GPOP, and REF. (a) Stanford Dragon. (b) Hairball. (c) XYZ Dragon. (d) Thai Statue.
(e) Lucy. (f) Lucy3.

indexing would eventually lead to truly efficient OBJ

parser. This is a good subject for further performance

improvements. Another alternative strategy is a hy-

brid indexing that employs CPU-based indexing up to

medium-size models and GPU-based indexing for huge

models.

Another limitation of the vertex buffer indexing is

that the global indexing table needs to be maintained in

(GPU) memory. Hence, our work can load OBJ mod-

els the size of indexing table of which is less than the

size of GPU memory. Since the size of modern graphics

cards reaches up to 6 GB∼8 GB, it is sufficient in prac-

tice. For further scalability, the global indexing table

needs to be re-designed in a scalable way. Also, the ta-

ble needs to be associated with the scalable rendering

modules which can download the loaded vertex buffers

into main memory and load them into GPU memory

on demand. The subject is of interest for future work.

Our GPU-based approach for an OBJ parser is per-

formed in a synchronous way, where tasks for each

chunk are serially performed either on GPUs or CPUs.

While already efficient, we believe there is an additional

room for optimizing performance. Such examples in-

clude asynchronous scheduling of tasks (modern GPUs

support simultaneous threading and memory copy) and

thereby hiding latencies in CPU-GPU communications.

One way to further improve the scalability of our

framework is to employ multiple GPUs to distribute

workload across multiple GPUs. Our line splitter and

line parser can be improved with this scheme, because

they perform in parallel for each chunk. However, our

vertex buffer indexer interacts with the global index-

ing table. This might cause non-trivial communication

overhead for synchronization across GPUs, which re-

quires a well-designed parallel indexing scheme. Alter-

natively, the communication overhead can be reduced

using a virtualized-GPU scheme (e.g., NVIDIA’s scala-

ble link interface), but this scheme is limited in its plat-

form dependency. Further work and experiments are

encouraged to explore optimal multi-GPU schemes of

the vertex buffer indexing.

9 Conclusions

In this paper, we presented a scalable efficient parser

framework for the Wavefront OBJ file format. All the

components were designed on the basis of chunk pro-

cessing, which is seamlessly scalable for a large file with

many chunks. Within-chunk processing is made highly

efficient, overcoming a few limitations of the previous

study. The improvements include better file handling,



428 J. Comput. Sci. & Technol., Mar. 2018, Vol.33, No.2

tag-based line splitting, and table-based efficient ver-

tex buffer indexing. To our knowledge, this work is

currently the fastest parser framework for loading OBJ

models.

In the future, we are planning to extend and im-

prove our work in terms of scalability (full out-of-core

processing, also with scalable rendering framework), a

full support for OBJ commands, sort-less vertex buffer

indexing, and an asynchronous scheduling to further

hide latency.

Finally, we note that our work starts from one of the

text-based file specifications but can be extended to a

more general text processing. Well-designed process-

ing strategy and performance optimization techniques

would be crucial components for such general text file

parser.

Acknowledgment Models of Stanford Dragon,

XYZ Dragon, XYZ Thai Statue, and Lucy 3D are pro-

vided by the courtesy of the Stanford 3D Scanning

Repository and the Hairball model by Samuli Laine,

Tero Karras, and Morgan McGuire at NVIDIA.

References

[1] Cignoni P, Corsini M, Ranzuglia G. MeshLab: An open-

source 3D mesh processing system. ERCIM News, 2008,

73: 45-46.

[2] Lu W, Chiu K, Pan Y. A parallel approach to XML parsing.

In Proc. the 7th ACM/IEEE Int. Conf. Grid Computing,

Sept. 2006, pp.223-230.

[3] Ghorpade J, Parande J, Kulkarni M, Bawaskar A.

GPGPU processing in CUDA architecture. arXiv preprint

arXiv:1202.4347, Feb. 2012.

[4] Han T D, Abdelrahman T S. hiCUDA: High-level GPGPU

programming. IEEE Trans. Parallel and Distributed Sys-

tems, 2011, 22(1): 78-90.

[5] Si X, Yin A, Huang X, Yuan X, Liu X, Wang G. Parallel op-

timization of queries in XML dataset using GPU. In Proc.

the 4th Int. Symp. Parallel Architectures, Algorithms and

Programming, Dec. 2011, pp.190-194.

[6] Johnson M. Parsing in parallel on multiple cores and GPUs.

In Proc. Australasian Language Technology Association

Workshop, Dec. 2011, pp.29-37.

[7] Bakkum P, Skadron K. Accelerating SQL database ope-

rations on a GPU with CUDA. In Proc. Workshop

on General-Purpose Computation on Graphics Processing

Units, March 2010, pp.94-103.

[8] Possemiers A L, Lee I. Fast OBJ file importing and parsing

in CUDA. Computational Visual Media, 2015, 1(3): 229-

238.

[9] Head M R, Govindaraju M. Parallel processing of large-

scale XML-based application documents on multi-core ar-

chitectures with PiXiMaL. In Proc. the 4th IEEE Int. Conf.

on eScience, Dec. 2008, pp.261-268.

[10] Li X, Wang H, Liu T, Li W. Key elements tracing method

for parallel XML parsing in multi-core system. In Proc.

Int. Conf. Parallel and Distributed Computing, Applica-

tions and Technologies, Dec. 2009, pp.439-444.

[11] Cameron R D, Herdy K S, Lin D. High performance XML

parsing using parallel bit stream technology. In Proc. Conf.

the Center for Advanced Studies on Collaborative Research:

Meeting of Minds, Oct. 2008.

[12] Hou Q, Zhou K, Guo B. BSGP: Bulk-synchronous GPU

programming. ACM Trans. Graphics, 2008, 27(3): Article

No. 19.

[13] Canny J, Hall D, Klein D. A multi-Teraflop constituency

parser using GPUs. In Proc. Conf. Empirical Methods in

Natural Language Processing, Oct. 2013, pp.1898-1907.

[14] Lewis M, Lee K, Zettlemoyer L. LSTM CCG parsing. In

Proc. Annual Conf. North American Chapter of the Asso-

ciation for Computational Linguistics, June 2016.

[15] Hall D L W, Berg-Kirkpatrick T, Klein D. Sparser, better,

faster GPU parsing. In Proc. ACL, June 2014, pp.208-217.

[16] Hensley J, Scheuermann T, Coombe G, Singh M, Lastra

A. Fast summed-area table generation and its applications.

Computer Graphics Forum, 2005, 24(3): 547-555.

Sunghun Jo received his B.S. degree

in computer engineering at Hansei Uni-

versity, Gunpo City, in 2016. He is a

M.S. student in computer engineering at

Sungkyunkwan University, Suwon. His

main research interest is real-time ren-

dering.text text text text text text text

text text text text text text text text

text text text text text text text text text text text text

text text text text text tex

Yuna Jeong received her B.S. degree

in computer engineering at Korea Poly-

technic University, Siheung, in 2012.

She is a Ph.D. student in computer en-

gineering at Sungkyunkwan University,

Suwon. Her main research interest is

real-time rendering.text text text text

text text text text text text text text

text text text text text text text text text text text text

text text text text text text

Sungkil Lee received his B.S. degree

in materials science and engineering and

Ph.D. degree in computer science and

engineering at Pohang University of Sci-

ence and Technology, Pohang, in 2002

and 2009, respectively. He is currently

an associate professor in the Depart-

ment of Software at Sungkyunkwan

University, Suwon. He was a postdoctoral researcher at

the Max-Planck-Institut Informatik (2009∼2011). His re-

search interests include GPU rendering, GPU algorithms,

virtual/augmented reality, perception-based rendering,

and information visualization.


