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Abstract This paper presents a novel algorithm for automatically detecting global shakiness in casual videos. Per-

frame amplitude is computed by the geometry of motion, based on the kinematic model defined by inter-frame geometric

transformations. Inspired by motion perception, we investigate the just-noticeable amplitude of shaky motion perceived

by the human visual system. Then, we use the thresholding contrast strategy on the statistics of per-frame amplitudes to

determine the occurrence of perceived shakiness. For testing the detection accuracy, a dataset of video clips is constructed

with manual shakiness label as the ground truth. The experiments demonstrate that our algorithm can obtain good detection

accuracy that is in concordance with subjective judgement on the videos in the dataset.
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1 Introduction

With the proliferation of inexpensive video record-

ing devices, there has been a dramatic increase in the

amount of video content. But image distortions fre-

quently appear in video frames due to the involun-

tary vibration of cameras in the recording[1], espe-

cially for those casual videos recorded by the ama-

teurs using hand-held video cameras. Video shakiness

and motion blur are two frequent distorting effects re-

lated to this scenario, which often degrade the visual

quality of videos by hiding vital information. There-

fore, it needs to eliminate these distortions prior to

assisting some intelligent video processing and multi-

media applications[2], e.g., video conferencing, video

surveillance, and multimedia communication. Many

image/video deblurring and stabilization algorithms

have been developed in the past decade[3-4], where the

automatic detection of motion blur and shakiness be-

comes necessary in the pre-processing stage. While the

detection of motion blur has been extensively studied

and is relatively mature[5-7], video shakiness detection

is less explored in the field of video stabilization, es-

pecially designed for casual shaky videos. In this pa-

per, we concern on the phenomenon of video shakiness,

caused by camera vibration, and seek for an automatic

shakiness detection algorithm oriented to casual videos.

Video shakiness, also known as video jitter or in-

stability, is caused by the disturbance of steady cam-

era movement in the recording process, which generates

the sense that the scene is oscillating through frames.

It is a very important preprocessing step for a variety

of video processing tasks. Unfortunately, a few exist-

ing algorithms for shakiness detection do not suit casual

videos[8-9]. The challenge to this problem mainly lies in

that the sense of shakiness essentially relates to subjec-

tive response on motion conditions like frequency and

amplitude. But there is less appropriate formulation

yet in accordance with perceptual interpretation that
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is able to faithfully characterize these conditions. Be-

sides, unlike motion blur that can be detected just by

the spatial appearance degradation even from a single

image[7], video shakiness involves motion disturbance

within an ambiguous timeline window in the temporal

domain. Thus it seems to be very difficult to identify

video shakiness from just one frame. Considering the

above issues, the purpose of this paper is to propose

an appropriate motion model that is able to faithfully

identify shakiness of casual videos.

The main contribution of our work is a new kine-

matic model to identify the video shakiness. The geo-

metry of motion defined by inter-frame transforma-

tions enables per-frame shakiness amplitude compu-

tation that conforms to motion perception. We also

build a dataset with manual labels on frames to an-

notate their shaky or stable attributes, which can be

used as the ground truth to evaluate the accuracy of

the shakiness detection algorithm. The experiments on

the dataset demonstrate the efficiency and effectiveness

of our algorithm for detecting shakiness, especially for

casual videos.

2 Related Work

Video shakiness is ubiquitous and gets involved

in a variety of video processing tasks, like video

encoding[10], quality assessment[11], retargeting[12],

stabilization[4,13-14], editing[15-16], and hyperlapse

creation[17-18]. Although a wealth of methods

for motion blur detection exist, like using domain

adaption[5-6,19] or fusion[20-21], there has been much

less effort towards video shakiness detection. Unlike

motion blur, the detection of video shakiness is impos-

sible from just a single image, while it requires temporal

analysis on the continuous change of frame appearance.

However, some existing work has drawn on the idea of

domain adaption from blur detection for shakiness de-

tection, which is relevant to our purpose.

Visentini-Scarzanella and Dragotti[8] proposed a

video jitter analysis tool in the scenario of video foren-

sics. They computed the high energy components of

feature trajectories in the frequency domain, by using

2-level wavelet decomposition. Then, they compared

the high energy components with some trained video

dataset to identify the jitter. This method is good

at detecting small global jitter in re-capturing videos,

but does not work well for detecting shakiness in ca-

sual videos with non-static background. Sibiryakov[9]

defined the video jitter as the global projection-based

error between two adjacent frames on the intensity do-

main, and used it as a sort of descriptors for match-

ing videos in a dataset. This method is designed for

video content identification, but does not give any cri-

terion for judging the shakiness of a single video itself.

For home videos, Yan and Kankanhalli[22] defined video

shakiness as the repeated forward and backward move-

ment along same directions. They used the difference

of direction and amplitude of relative displacement vec-

tors between adjacent frames for video shakiness identi-

fication, but this method can only detect translational

motion shake.

Video stabilization is highly related to video shak-

iness detection. Video stabilization usually contains

three steps: motion estimation, motion smoothing, and

motion compensation, which resorts to optimizing on

the motion representation for visual smoothness[13,23].

Recently, paper [14] proposes a global approach which

is claimed flexible and efficient by solving a quadratic

minimization problem defined for image warps. And

a novel formulation of video stabilization in the space

of geometric transformation is presented in [24]. The

optimized smooth path is cast as the geodesics on the

Lie group embedded in transformation space. However,

all these approaches focus on the stabilization without

detecting whether the video is shaky or not.

Considering the above minor progress on shakiness

detection for casual videos, we attempt to step forward

by making comprehensive investigation on the percep-

tion of video shakiness and then propose a shaky motion

model for automatic shakiness detection in the sequel.

3 Kinematic Model Based on Inter-Frame

Geometric Transformation

To describe the shakiness characterization, we need

to establish a descriptive motion model to represent the

smooth or shaky motion. Furthermore, the sensation of

shaky motion is also a perceptual attribute, while the

motion model should be adapted to accommodate the

motion perception.

3.1 Kinematics-Based Motion Model

Kinematics describes the object motion from the

geometry of the system without considering the phys-

ical conditions of the object, like mass or force that

causes the motion. It is suggested that trajectories

for human reaching motions from one point to an-

other are chosen so that they minimize the integral
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of the square norm of jerk (i.e., the derivative of mo-

tion acceleration)[25]. Thus, an ideal smooth motion

described by a path A(t) from the perspective of kine-

matics is assumed to minimize the following energy

functional[26]:

J =
1

2

∫ t1

t0

< ∇V ∇V V,∇V ∇V V > dt, (1)

where V = dA(t)
dt is the velocity of the motion, ∇ is

the operator of affine connection defined in the tan-

gent space at each instant position along the path, and

< ·, · > is the inner product. Actually, (1) gives a kine-

matic description on the smoothest motion to bring the

hand from the initial position to the final position in

a given time interval [t0, t1]. Physically, this equation

describes the change of motion accelerations along the

path.

Unfortunately, (1) cannot be solved analytically, but

it can be proved that with homogeneous boundary con-

ditions in velocities and accelerations, the minimum

jerk curve trajectories follow the same path as the

geodesics[26]. Therefore, we can use the geodesic path

to approximate the optimal smooth path defined by

(1). Mathematically, the geodesics between the initial

position at the time t0 and the final position at t1 is

defined as the path optimizing the following integral

energy functional:

G(A(t)) =

∫ t1

t0

<
dA(t)

dt
,
dA(t)

dt
> dt, (2)

which minimizes the change of motion velocities along

the path. Here, we assume the geodesic solution of (2) is

P (t). In mathematics, solving P (t) is a mature prob-

lem from the perspective of differential geometry[27],

which can be easily computed once specifying the form

of camera motion A(t). Specially, such a geodesic path

even has a closed-form solution as demonstrated in Sec-

tion 4.

For shaky motion, its path deviates a potential

geodesic path as described above. Then, the amplitude

of shakiness can be formulated as the instant deviation

between A(t) and P (t), denoted by st = P (t) ⊖A(t),

where the symbol ⊖ means the relative difference be-

tween the two paths with respect to a given metric.

3.2 Inter-Frame Geometric Transformation
Motion

The camera motion typically has two kinds of rep-

resentations: parametric and non-parametric. We can

apply the motion pattern analysis as in [28-29] to ob-

tain fine-scaled non-parametric motion model, but it

is computationally intensive and does not suit analytic

calculation in (1). Therefore we resort to the paramet-

ric motion model of geometric transformations, which

converts to a series of mapping functions between cor-

responding points of two frames. Generally, the map-

ping function is parameterized by a matrix M t ∈ R
n×n

for representing the camera motion, which can be cho-

sen from a set of transformations, e.g., rigid, similarity,

affine and projective transformations.

In reality, the ideal camera movement follows a

three-dimensional (3D) path defined by rigid transfor-

mations in the Euclidean space, which involves 3-axis

shifts (forward/backward, left/right, and up/down)

and 3-axis rotations (yaw, pitch, and roll). But in

the case only given the two-dimensional (2D) video

frames, recovering the 3D path by using the methods

like structure-from-motion (SfM) is expensive and brit-

tle in practice[23]. And thus previous work prefers to

inferring 2D movement directly from adjacent frames

to approximate the camera movement.

When the camera rotates by θp, θt, θr in pan, tilt,

and roll axes, respectively, an arbitrary point p = (x, y)

of the image is moved to the following point p′ =

(x′, y′)[30]:

(

x′

y′

)

=

(

cos θr − sin θr
sin θr cos θr

)(

x
y

)

+

(

dp
dt

)

, (3)

where dt = L×tan θt ≈ L×θt, dp = L×tan θp ≈ L×θp,

and L is the camera-to-object distance. Therefore

considering the parallel shifts with respect to the image

plane, i.e., left/right and up/down shifts, we can use 2D

rigid transformation (including the components of ro-

tation and translation) to approximate the 2D camera

movement, which derives the following parametric ex-

pression for the transformation M t:

p̄ ′ = M t(p̄) =

(

Rt d t

0 1

)

p̄ , (4)

where Rt ∈ R
2×2 is the planar rotation transformation

matrix, d t ∈ R
2 is the planar translation transforma-

tion, and p̄′ = [p′, 1]T and p̄ = [p, 1]T are the homo-

geneous coordinates of the corresponding points. Ac-

tually, all the rotation and translation transformations

form the special Euclidean group (SE(2)) 1○, which is

essentially a Lie group, i.e., an algebraic group with

1○The special Euclidean group is SE(2) =

{(

R d

0 1

)

,RTR = Id,detR = 1, d ∈ R
2

}

, where Id is the identity matrix.
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the structure of differentiable manifold[27]. Then, the

kinematic smooth motion Pt can be formulated as the

geodesics on SE(2). We will take the above motion

model as an example, and demonstrate how to engage

the above perceptual and kinematic characterization in

shakiness detection on SE(2).

Remark. The global parametric motion model of

(4) has been a general and mandatory step in many

video processing methods like [22, 24, 30] and software

like VirtualDub Deshaker 2○. However, the novelty of

our work is to take it as the element in the Lie group,

by which we can derive the shakiness amplitude in the

sense of kinematics based on the manifold metric. This

will assist the shakiness detection as elaborated in Sec-

tion 4.

3.3 Shaky Motion Perception

Generally, human perceive motion from the dis-

placement of retinal images, together with the persis-

tence of vision to form the temporal variation[31]. Thus,

besides the kinematic motion model, we need to investi-

gate the perceptual cues about shakiness, by which the

established motion model is able to correctly interpret

the perception on motion shake.

Typically, the motion perception of shakiness arises

from the perceived deviation from the pursuit on the

illusory smooth motion[32]. Thus, it is closely related

to two vibration conditions, amplitude and frequency,

with respect to an intended smooth motion trend. To

sense the video shakiness, a necessary condition is that

the displacement between consecutive frames is visible

by stimulating retinal neuron, or saying it is beyond the

visual acuity of human eyes. It has been demonstrated

that visual acuity is about 1 arcmin (minute of arc) on

average, i.e., the human eye can resolve around 1
60 of a

degree[33]. Considering the preferred viewing distance

between 20 and 40 inches (about 50 cm and 100 cm)

for viewing computer screen with retinal quality reso-

lution, it can be derived that the minimal displacement

that human eyes can sense is about 0.5 pixels in gene-

ral. Hence, the amplitude of shakiness is assumed to be

at least 0.5 pixels for visible identification on the shaky

motion.

As for the condition of frequency, it is found that hu-

man eyes themselves enable voluntary adaption on tar-

get vibration in the range of 0.5 Hz∼2 Hz[34], due to the

vestibular system (organ of balance) functions through

vestibulo-ocular reflex and vestibulo-spinal reflex[32].

Actually, this body resonance mechanism imposes a

constant attenuation on shakiness from outside vibra-

tion. Moreover, the persistence of vision is between 0.1

seconds and 0.4 seconds around. Therefore, a necessary

condition for sensing shaky motion is that the duration

of displacement caused by retinal imaging changes is

more than 0.1 seconds. While common video frame rate

is about 25∼30 frames per second, it is about 0.1 sec-

onds for three frames. Hence, the shakiness inbetween

three frames can be sensed by human visual system,

which means the shakiness frequency is at least 3 fps in

sensing video shaky motion.

Consequently, inspired by the above motion percep-

tion cues, shakiness can be characterized by the rel-

ative displacement through three consecutive frames

with amplitude more than 0.5 pixels, termed as just-

noticeable shakiness (JNS) conditions for sensing shaky

motion.

4 Video Shakiness Detection on SE(2)

The kinematic characterization of shakiness in Sec-

tion 3 relies on the geodesics as the ideal motion path

to define the amplitude. Fortunately, we have a closed-

form solution for computing the geodesics on SE(2). In

this case, the geodesic solution Pt of (2) between the

initial position at t0 and the final position at t1 can be

explicitly computed based on the rotational and trans-

lational components as follows:

R̃t = Rt0 exp(Ω0 t̃), d̃t = t̃(dt1 − dt0) + dt0 , (5)

where t̃ = (t − t0)/(t1 − t0), Ω0 = log(RT
t0
· Rt1), and

exp(·) and log(·) are the matrix exponential map 3○ and

logarithm 4○ respectively[26].

Mathematically, the Lie group of SE(2) is equivalent

to the product group of rotation transformations and

translation transformations, which can be denoted by

SO(2) and T(2) respectively, i.e., SE(2) = SO(2)⊗T(2),

where ⊗ is the direct product of groups. Besides, we

can parameterize the rotation transformation of SO(2)

with a 1D rotational angle θt ∈ R as Rt(θt), and the

translation transformation of T(2) with 2D vector as

dt = (dxt , d
y
t )

T. Hence, we have the following paramet-

ric expression of the transformation motion model of

2○http://www.guthspot.se/video/deshaker.htm, Mar. 2018
3○The exponential of a matrix A is defined by exp(A) =

∑

∞

k=0
1
k!
Ak.

4○A matrix B is a logarithm of A if exp(B) = A.
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(4) as





x′

y′

1



 =





cos θt − sin θt dxt
sin θt cos θt dyt
0 0 1









x
y
1



 . (6)

Substituting the above transformation into (5), we

obtain the geodesic solution represented by

Rt(θt̃) =

(

cos θt̃ − sin θt̃
sin θt̃ cos θt̃

)

, dt(d
x
t , d

y
t ) = t̃dt0,t1 ,(7)

where θt̃ = t̃θt0,t1 and θt0,t1 is the rotational angle

from the starting to the end in the interval [t0, t1], and

dt0,t1 = dt1 − dt0 is the translational vector from the

starting to the end in the interval [t0, t1] (see Fig.1).
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Fig.1. The geodesics on SE(2) is the linear interpolation of
rotational angles and translational vectors between the starting
and end points (blue dots) in the interval. (a) Original path.
(b) Geodesic path. The green rectangles illustrate the rotation
transformations of some sampled frames along the motion paths
(black lines). The x-axis is the frame index, and the y-axis
records the x-coordinate of the trajectory of the frame center.

As the shaky motion perception indicates the just-

noticeable shakiness amplitude among three frames (see

Subsection 3.3), we need to compute the geodesics go-

ing through consecutive three frames. Assuming the

frames Ik−1, Ik and Ik+1 and according to (7), we can

derive the following geodesics through the three frames

as



























































R̃k−1 = Id,

d̃k−1 = (0, 0)T,

R̃k = R(θ̃k =
θk−1,k+1

2
),

d̃k = (
dxk−1,k+1

2
,
dyk−1,k+1

2
)T,

R̃k+1 = R(θk−1,k+1),

d̃k+1 = (dxk−1,k+1, d
y
k−1,k+1)

T,

(8)

where θk−1,k+1 is the rotational angle from Ik−1 to

Ik+1, and dk−1,k+1 is the translational vector from Ik−1

and Ik+1. It should be noted that the rotational angle

here is directional such that the anti-clockwise angle

has a positive value and the clockwise angle has a neg-

ative value. Intuitively, the geodesics through the three

frames boils down to the linear interpolation of the rota-

tional angle on SO(2) and translational vector on T(2)

separately, which finally reconciles the composition of

rotation and translation transformations as the smooth

path through the three frames.

Then for the frame Ik, the deviation from the

smooth path defined by the consecutive three frames

is
δdk = dk−1,k − d̃k = dk−1,k − dk−1,k+1/2,

δθk = θk−1,k − θ̃k = θk−1,k − θk−1,k+1/2,
(9)

which includes the components of both translation and

rotation transformations (see Fig.2).

However, the deviation defined by (9) concerns the

aspect of motion direction or magnitude. To obtain

the real amplitude corresponding to motion shakiness,

we must exclude the deviations of rotational angle and

translational vectors without direction changes through

the three frames (e.g., Fig.2(a)), and confine it to

only the shakiness amplitude arising with directional

changes (e.g., Figs.2(b) and 2(c)). Consequently, we de-

fine the shakiness amplitude with respect to the trans-

lation and the rotation transformations as:

sdk = Ξ

(

dk−1,k · dk,k+1

‖dk−1,k‖2‖dk,k+1‖2

)

‖δdk‖2,

sθk = Ξ(θk−1,kθk,k+1)‖δ
θ
k‖2,

(10)

where ‖ · ‖2 is the L2-norm, Ξ(·) is the truncation func-

tion that satisfies Ξ(x < 0) = 1 and Ξ(x > 0) = 0.

Thus, we obtain the amplitude as the pair of scalars of

directional deviation, i.e., sk = P (t)⊖A(t) = (sdk , s
θ
k).

Actually, the amplitude defined in (10) also entails

the degree of shakiness, i.e., a larger amplitude implies

more severe shake. We use the scheme of threshold con-

trast (TC) to determine the shaky or stable attributes

of each frame. TC is the minimum contrast at which

the target can be distinguished from its surroundings.

Formally, we set two parameters α and β as the cri-

teria for translational and rotational shakiness thresh-

olds, respectively, whereupon the frame with sdk > α or

sθk > β is identified as shaky; otherwise stable. Thus,

we can obtain the shakiness detection results for the

input video frames. Fig.3 shows two examples of us-

ing our algorithm to detect the shakiness in the frames,

with the shaky motion of either moderate amplitude

(Fig.3(a)) or large amplitude (Fig.3(b)).

Setting of Threshold Values. Obviously, the shaki-

ness detection result depends on the setting of the two
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Fig.2. Shakiness amplitude corresponding to four instances of the frames: (a) Ij , (b) Ik, (c) Im, and (d) In. From top to bottom:
motion path, translational amplitude and rotational amplitude (as shown by the red arrows). The green rectangles in the motion path
illustrate the rotation transformations between adjacent frames.

threshold values. The minimal amplitude for shakiness

sensation in Subsection 3.3 suggests the threshold val-

ues to be α = 0.5 pixels for the translational compo-

nent. As for the rotational component, it is noticed that

human eyes are sensitive to a rotation angle as small as

about 3 arcmin[35], which suggests a default value for

β. We call these two values to be the setting of the just-

noticeable shakiness, because they are from the limited

frequency response and lower bound of amplitude to in-

duce the shaky motion perception, respectively. But in

reality the values might be influenced by the imaging

noise, and the computational model of shakiness am-

plitude also depends on the accuracy of feature points

matching. We will give a full investigation on the set-

ting of the threshold values in the experiments of Sec-

tion 5.

Implementation Details. To compute the rigid

transformation between two frames in (4), we adopt

the pyramidal Lucas-Kanade[36] for feature points de-

tection and matching among consecutive three frames.

We also use the standard RANdom SAmple Consensus

(RANSAC) method to filter out the outlier points that

mostly locate in the moving foreground objects. Then,

the remaining feature points of the two frames ({pk}

and {p′

k}) are used to fit the best rotation transfor-

mation Rt and the best translational vector dt. Con-

cretely, the translation is the vector between the geo-

metric centers of the matching points, i.e., dt = p′

o−po,

where po =
∑

k pk/N , p′

o =
∑

k p
′

k/N , and N is the

number of feature points. Then, the rotation trans-

formation is Rt = V UT[26], where U and V are the

orthogonal matrices in the singular value decomposi-

tion (SVD), i.e., [pk − po]2×N [p′

k − p′

o]
T
2×N = UΣV T,

and Σ is the diagonal matrix of singular values.

5 Experiments

We implement our video shakiness detection algo-

rithm by C++ programming language, and also build

a dataset of videos with different motion types as the

benchmark for testing shakiness detection. Next, we

will elaborate the details of the dataset and evaluate

the performance of our shakiness detection algorithm

by running it on the video dataset.

5.1 Dataset of Videos with Shakiness Label

For evaluating the performance of shakiness detec-

tion algorithm, we establish a dataset of video clips and

label ground truth shakiness as the benchmark.

Dataset. The collected video clips are classified

into two categories: professional videos and casual

videos. The professional videos refer to ideally steady
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Fig.3. (a) and (b) are two examples of video shakiness detection according to the amplitudes of translational and rotational components
respectively. The x-axis is the frame index and the y-axis is the amplitude.

videos of high quality, which consist of clip footages of

movies and some other videos recorded by professional

cameras equipped with hardware stabilizers. Con-

cretely, we use the tool of tripod for recording steady

videos by position-fixed camera, Dji Osmo 5○ to obtain

steady videos when walking on the ground, and drone

equipped with steadicam for the steady aerial videos

(see Fig.4(a)). Consequently, there are four sources of

professional videos obtained from movie, tripod cam-

era, Osmo camera and drone camera (see Table 1 and

Fig.4(b)). It should be noted that the ideal steadiness

of these professional videos is guaranteed by the auxil-

iary hardware and also confirmed by human subjective

judgement in selecting them.

The casual videos refer to the ones that are recorded

in the natural usage of the camera without any stabi-

lizer, e.g., walking, running, riding, and driving. Gene-

rally, these videos possess the most common shaky mo-

tions in daily lives. We collect these videos from the

Internet repository or record by ourselves using the am-

ateur video cameras (see Table 1 and Fig.4(c)). For

example, the riding videos are recorded by the camera

fixed on a bicycle, and the driving videos are recorded

by the dashcam installed in the automobile. Such ca-

sual videos usually interlace the steady and shaky mo-

tions in the frame sequence, which can be used to test

shakiness detection algorithms.

Finally, our dataset has 60 video clips in total, of

which there are 30 clips in the category of professional

videos, and 30 clips in the category of casual videos, and

the resolution is 1 280 × 720. These videos present a

variety of motion types. The average length of the video

clips in the dataset is about 17.2 seconds. Table 1 shows

the statistics on the videos in the dataset, and Figs.4(b)

and 4(c) show some sampled frames of video clips in the

dataset. All the videos are with the frame-based shak-

5○http://www.dji.com/product/osmo, Mar. 2018.
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(a) (b) (c)

Tripod Camera Osmo Camera

Drone Camera Dashcam

Movie Tripod

Osmo Drone

Walking Running

Riding Driving

Fig.4. Dataset. (a) Some devices used in recording videos for our dataset. (b) Sampled frames of professional videos in our dataset.
(c) Sampled frames of casual videos in our dataset.

Table 1. Statistics on the Video Clips in Our Dataset

Professional Video Casual Video

Source #Videos Avg. Length (s) Source #Videos Avg. Length (s)

Movie 6 9.8 Walking 9 21.9

Tripod camera 9 21.8 Running 7 19.2

Osmo camera 7 20.3 Riding 8 18.3

Drone camera 8 9.7 Driving 6 17.8

Note: #Videos means the number of video clips recorded from different sources, and avg. length means their average length in seconds.

iness labeling results as the ground truth, whereupon

this dataset can further be used as the test data for

video shakiness detection algorithms.

Labeling Shakiness. To assess the shakiness detec-

tion accuracy, we need a definite shakiness label for

each frame as the ground truth. Because video shaki-

ness is a perceptual understanding, its criterion is ob-

viously derived from human judgement on viewing the

video content. Therefore, we recruit 20 people to label

the shaky frames manually and watch the videos one

by one, whilst they stuck the labels of shaky or stable

on video frames to complete the ground truth shaki-

ness label assignment. When watching the videos, we

encourage people to sense the shaky motion based on

the deviation from their experience on watching normal

movie or TV videos, because these videos are ideally

stable videos that are recorded by a static or moving

camera mounted on the tripod or dolly. Besides, peo-

ple are instructed to pay more attention to the motion

shake located on the background, which actually deliv-

ers the shakiness caused by the camera vibration rather

than the dynamic foreground objects.

The professional videos in the dataset are assumed

to be ideally stable, and are all labeled as stable for the

frames of each video by default. On the contrary, la-

beling the casual videos is an expensive task due to the

complexity of shaky motion, which needs more efforts

to assign the correct frame-based labels. It should be

noted that the extreme fineness of labeling shakiness

by checking each frame is meaningless and impossible

in reality. Here, we just encourage people to isolate the

sequential frames that they thought are shaky or stable

as short as possible. Then, we average the beginning

and the ending of the corresponding segments and label

their frames as shaky or stable.

To complete this task, we design a custom inter-

face to assist manually labeling on the video frames.

This interface has a window to display the video, and

the user can mark the beginning and the ending of a

segment by clicking the window to add time stamps

on the timeline. Thus if shakiness is viewed, the user

clicks once as the starting of the shaky segment. If the

shakiness disappears, the user clicks again as the end of

the shaky segment. Our interface allows playback and

fast-forward to help the user correct the beginning and

the ending time. Then, we record the shakiness labels

of the segments by shaky or stable for each video in

the categories of casual videos. After the manually la-

beling process by all the people on the same video, the

interface releases the average beginning and the average

ending time as the time stamp for the initial position

and the final position of the segments, respectively. In

the final stage, it is allowed to further refine the be-

ginning and the ending time by examining sequential
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segments based on the averaged time stamps.

Consequently, we obtain a dataset that contains

professional and casual videos with the shakiness la-

bels assigned on their frames as the ground truth. This

dataset involves common shaky motions that frequently

appear when recording casual videos, which are as-

signed manual labels for shakiness identification. Next,

we employ the videos in the dataset to evaluate the per-

formance of our video shakiness detection algorithm.

5.2 Shakiness Detection Results

Given a video in the dataset, we run our algorithm

and make statistics on the shakiness identification re-

sults. Then, we can obtain the shakiness label shaky

or stable for each frame according to the decision made

by thresholding based on (10). We did the experiments

on both professional videos and casual videos in the

dataset. All the experiments were done on a PC ma-

chine with 3.1 GHz Intelr Dual Core CPU and 8 GB

RAM.

We report the performance of our algorithm in this

subsection. The performance focuses on the precision

and recall rate of the shakiness detection by compar-

ing our resultant labels with the ground truth ones. It

should be noted that the computation of precision and

recall rate is based on the manually labeled segments in

Subsection 5.1, i.e., if the segment which the detected

shaky frame falls in is also labeled shaky as the ground

truth, we consider the segment as the correct identifi-

cation by our algorithm. Concretely, the precision P of

the shakiness detection is defined as:

P =
#({detected shaky segments} ∩ {shaky segments})

#{detected shaky segments}
,

(11)

and the recall rate R in the shakiness detection is de-

fined as

R =
#({detected shaky segments} ∩ {shaky segments})

#{shaky segments}
,

(12)

where #({A}) denotes the number of set A, {shaky

segments} is the set of all the shaky segments that are

manually identified, and {detected shaky segments} is

the set of automatically detected shaky segments. We

mainly use these two indices for evaluating the detec-

tion performance, and Fig.5 and Fig.6 show some statis-

tics of the results by applying our algorithm on the

dataset.
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The running time of our algorithm is very short,

which enables 82 fps for the video of 1 280 × 720 res-

olution, due to the simplicity of shakiness amplitude

computation. The memory cost of our algorithm is also

low in the implementation because only three successive

frames are involved in the computation. More impor-

tantly, our algorithm gains significant performance on

the accuracy of video shakiness detection by setting the

appropriate threshold values suggested as follows.

Influence of Translation and Rotation. To investi-

gate the influence of translational and rotational com-

ponents, we compute the precision and recall rate by

shakiness detection based on just one of the two com-

ponents (see Fig.5). It can be seen that both the trans-

lation and the rotation contribute to the overall motion

shake, while the translational shakiness usually domi-

nates the detection performance. Besides, the influence

is also related to the types of scenes, where the use of

one component might induce bad shakiness detection,

e.g., for the videos of riding and driving in the scene of

the street.

Threshold Values Setting. A key issue in shakiness

detection is the setting of threshold values α and β for

making shaky or stable decision. We have given the

ideal just-noticeable shakiness conditions with α = 0.5

pixels and β = 3 arcmin based on the motion percep-

tion analysis in Subsection 3.3. Fig.5 shows the shak-

iness detection results of the videos in the dataset by

using these two JNS threshold values, where the statis-

tics on the detection precision and the recall rate are

illustrated. It should be noted that the precision and

the recall for casual videos are computed based on the

detected shaky frames with respect to the ground truth

shaky labels. For professional videos, as all the frames

are labeled stable as the ground truth, they are com-

puted with respect to the stable frames, i.e., calculating

the accuracy of frames labeled as stable by our shak-

iness detection algorithm. This is the reason why the

precision values are all 1 in Fig.5(a). Overall, it can be

seen that setting these two values gains a commendable

performance on the precision and recall rate for the ca-

sual videos, 86.6% and 90.9% on average respectively.

To understand the influence of the threshold val-

ues to the shakiness detection results, we further do

experiments on the precision and recall by gradually

changing the values of α and β in a certain range, e.g.,

α ∈ [0.5, 2] and β ∈ [0.1, 5]. Then, we make statis-

tics on the precision and recall rate based on the corre-

sponding threshold values. Figs.6(a) and 6(b) show the

precision-recall curve of the experiment on the casual

videos and the professional videos respectively, where

the precisions are all 1 in Fig.6(b) by detecting the sta-

ble frames instead of shaky frames in the professional

videos. Based on the above statistics, we find the op-

timal setting of the threshold values is α = 0.8 pixels

and β = 2.2 armin in the application, which gains the

precision and recall rate about 91.7% and 87.1% re-

spectively. Table 2 shows the average precision and the

average recall rate for the videos in each category.

5.3 Comparisons

We also compare our algorithm with other shaki-

ness detection methods. Though there is a large body

of studies on video motion model, as far as we know, the

systematic approach to shakiness detection is still the

minority in the research, especially for casual videos.

Here, we choose the method of [22] as the represen-

tative for comparison, which is also based on a global

inter-frame motion model. Table 2 shows the quanti-

tative comparison on the precision and recall rate of

shakiness detection by different methods, where our al-

gorithm gains better performance on the precision and

recall rate of the shakiness detection. Actually, the

method of [22] mainly deals with translational shaki-

ness, thereby it generates bad detection for the com-

plicated shaky motions like walking and running in the

casual videos. Contrarily, our algorithm involves the

shakiness in both translational and rotational compo-

nents, which enables better shakiness detection.

5.4 Limitations and Discussions

Although our algorithm enables commendable per-

formance on shakiness detection, it is not without limi-

Table 2. Comparison of Shakiness Detection Precision and Recall Rate (P/R) by Our Algorithm and

the Method of Yan and Kankanhalli[22]

Method Professional Video Casual Video

Movie Tripod Osmo Drone Walking Running Riding Driving

Ours 1.00/0.978 1.00/1.00 1.00/0.985 1.00/1.00 0.905/0.860 0.908/0.936 0.942/0.833 0.871/0.830

Yan and Kankanhalli[22] 0.904/0.904 1.00/1.00 1.00/0.961 0.926/0.926 0.563/0.842 0.691/0.719 0.692/0.909 0.734/0.809

Note: The bold numbers indicate the performance of the better method.
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tations. Firstly, our algorithm uses the rigid transfor-

mations between adjacent frames as the camera motion

model. Therefore it cannot well deal with the shakiness

generated by quick zooming in/out and out-of-plane ro-

tation. Secondly, the computation of inter-frame trans-

formation relies on feature points detection and match-

ing. Therefore it might generate erroneous estimation

on the translation and rotation for the frames with large

homogeneous regions, which influences the amplitude

computation and shakiness detection. Thirdly, our al-

gorithm takes the spatial content of the entire frame for

shakiness amplitude computation, which ignores some

other factors, like visual attention, spatial resolution

and frequency that also influence the sense of motion

stability.

Actually, the principle of our kinematics-based

shakiness detection can be generalized by using a more

complex shaky motion model, e.g., similarity, affine or

homography transformations for modeling the camera

motion. The key step is to compute the corresponding

geodesics on the Lie group of the corresponding trans-

formations, e.g., the similarity group Sim(2), general

affine group GA(2) or projective group PG(2)[27]. Once

we have the geodesics as the intended smooth motion

path for amplitude computation, we can obtain the

shakiness metric for detection. Besides, we can adopt

content or perception analysis on the videos to improve

the fidelity of shakiness detection. For example, we can

use the distribution of region of interest (ROI), visual

saliency or spatial frequency to weight the influence of

shaky motions in different regions. Overall, our algo-

rithm suggests a novel way to automatic video shaki-

ness detection, which would facilitate the application of

video processing like stabilization, in dealing with the

casual videos.

6 Conclusions

We presented a perception-inspired and kinematics-

based algorithm for automatically detecting video shak-

iness caused by camera vibration. The mechanism

of motion perception is adopted in order to analyze

and characterize the just-noticeable shakiness condi-

tions (amplitude and frequency), and the corresponding

shaky motion is modeled by the deviation from kine-

matic transformation motion path. Specially, we gave

a concrete solution for shakiness detection on SE(2)

with its explicit geodesic for amplitude computation.

A benchmark dataset is also established to evaluate the

shakiness detection accuracy by our algorithm.

As the future work, we plan to investigate more

perceptual cues, like ROI and visual saliency in our

shakiness detection algorithm. Besides, it is promising

to combine motion blur detection in our framework.

Because shaky videos often incur blurred appearance

in the frames, the combination of the two detection

schemes will improve the quality enhancement by video

deblurring and stabilization.
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