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Abstract Image smoothing is a crucial image processing topic and has wide applications. For images with rich texture,

most of the existing image smoothing methods are difficult to obtain significant texture removal performance because texture

containing obvious edges and large gradient changes is easy to be preserved as the main edges. In this paper, we propose a

novel framework (DSHFG) for image smoothing combined with the constraint of sparse high frequency gradient for texture

images. First, we decompose the image into two components: a smooth component (constant component) and a non-smooth

(high frequency) component. Second, we remove the non-smooth component containing high frequency gradient and smooth

the other component combining with the constraint of sparse high frequency gradient. Experimental results demonstrate

the proposed method is more competitive on efficiently texture removing than the state-of-the-art methods. What is more,

our approach has a variety of applications including edge detection, detail magnification, image abstraction, and image

composition.
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1 Introduction

Image smoothing is always a very important prob-

lem in image processing and has wide applications.

Natural images usually contain clear edges and rich de-

tails, such as texture. The human visual system can

easily understand the natural image and does not have

to consider the texture, because the human perception

is sensitive to the principal structure. Image smoothing

studies are expected to achieve the same goals: 1) pre-

serving the global features of the image, including the

principal structure and edge, and 2) removing some of

the details of the image, such as noise and texture.

Over the past few decades, image smoothing has

attracted much research attention. Rudin et al.[1]

proposed the well-known total variation (TV) regular

term with L1 norm gradient magnitude in 1992. It is

widely applied in image denoising, because it can pre-

serve large-scale edges and remove noise. Tomas and

Manduchi[2] proposed a bilateral filter (BLF), where the

candidate pixel in the image is set as a weighted ave-

rage mean of its neighborhood. It is a simple, local and

non-iterative method. Farbman et al.[3] proposed an al-

ternative edge-preserving smoothing operator, based on

the weighted least squares (WLS) optimization frame-

work in 2008, which involves an L2 norm. WLS is par-

ticularly well suited for progressive coarsening of im-

ages and for edge-preserving multi-scale detail extrac-

tion. Subr et al.[4] proposed a new model for detail

that inherently captures oscillations in 2009, a key pro-
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perty that distinguishes texture from individual edges.

Cho and Lee[5] presented a fast deblurring method that

produces a deblurring result from a single image of the

moderate size in a few seconds in 2009. The related

techniques could be used for other problems in image

processing. Xu et al.[6] proposed an image smoothing

method via L0 gradient minimization in 2011, which

can globally control the number of non-zero resulting

in approximating prominent structures in a structure-

sparsity-management way. Xu et al.[7] also proposed

a new inherent variation and relative total variation

(RTV) measure, which distinguishes the essential diffe-

rence between these two types of visual forms: texture

and structure. The new inherent variation can effec-

tively extract the main structures, while RTV is not

good enough for manipulating some small-scale details.

Li et al.[8] proposed a hybrid domain edge-aware image

processing method in 2013 which is able to synthesize

a global optimization result. He et al.[9] proposed the

guided filter in 2010, which uses a local linear model.

Compared with BLF, guided filter not only preserves

edges but also works much better in detail preserva-

tion. The time complexity of guided filter is indepen-

dent of the size of the window and it is more efficient

to process images when using large windows. Kara-

can et al.[10] proposed an alternative yet simple image

smoothing approach which depends on covariance ma-

trices of simple image features, a.k.a., the region covari-

ances, in 2013. Min et al.[11] proposed a new method

to optimize a fast global smoother with data items and

smooth a priori in 2014. Zhang et al.[12] offered a new

framework called rolling guided filter (RGF) to filter

the images based on joint bilateral filter. It removes

the texture by Gaussian filtering and then recovers the

edge of the input image by BLF. But RGF may filter

the non-texture component and cause ringing artifacts

around edges. Bao et al.[13] proposed a tree filter in

2014, which is a trilateral filter. The tree filter removes

the high contrast details by the minimum spanning tree.

Bi et al.[14] introduced an image transform based on the

L1 norm for piecewise image flattening in 2015. Paris et

al.[15] showed the state-of-the-art edge-aware processing

using standard Laplacian pyramids in 2015. Their ap-

proach is simple and flexible. Zang et al.[16] developed

a novel directional anisotropic structure measurement

for adaptive image smoothing in 2015. Liu et al.[17]

proposed a novel optimization model via the redun-

dancy of natural images, by defining a nonlocal con-

centration regularization term on the gradient in 2015.

This nonlocal constraint is carefully combined with a

gradient-sparsity constraint, allowing details through-

out the whole image to be removed automatically in

a data-driven way. Zheng et al.[18] proposed a new

learning-based weighted total variation (LTV) model

in 2016, where the weights are learned from different

kinds of texture images to well discriminate pixels be-

longing to structural contours from pixels belonging to

texture.

However, image smoothing that removes the tex-

ture while preserving the main structure is a challeng-

ing problem. Most of the previous image smoothing

methods cannot remove the texture obviously in many

situations. In this paper, we propose a novel frame-

work for image smoothing combined with the constraint

of sparse high frequency component of texture images.

The main contributions of our work are as follows. 1)

We design a novel framework for image decomposition

to deal with the high-frequency information of images

with rich texture. 2) We show that the decomposed

images can achieve obvious texture removal effects via

sparse high-frequency gradient constraints. 3) An ex-

tensive experimental evaluation is presented by com-

paring the proposed method with some previous im-

age smoothing approaches on natural images and high-

texture images. Our experimental results show that the

proposed method is much effective on texture removal.

The rest of the paper is organized as follows. In Sec-

tion 2, we present the details of the proposed DSHFG

(Decomposition and Sparse High Frequency Gradient)

algorithm. Section 3 compares the proposed DSHFG

algorithm with some previous image smoothing ap-

proaches and analyzes the result. In Section 4, we

demonstrate the ability of our method in several ap-

plications. Finally, we conclude our work in Section

5.

2 Problem and Proposed Method

2.1 Problem

As aforementioned, the existing image smooth-

ing methods are difficult to obtain significant tex-

ture removal performance in many situations, because

the texture containing obvious edges and large gra-

dient changes is easy to be preserved. As shown in

Fig.1(b), smoothing the input image via L0 gradient

minimization[6] cannot get satisfactory results. We ob-

serve that the texture is mostly removed in the right

dark area, but there are still a lot of texture patterns

in the left area. The red channel is shown as it is

representative of the main image content. In Fig.1(c),
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the black curve represents the input signal and the red

curve represents the smoothed signal via L0 gradient

minimization. The left dramatic changes in the input

signal represent the texture component. The step in

the middle of the input signal represents a main edge

of the input image. The right of the input signal is the

flat component. The red curve shows that L0 smooth-

ing regards the texture as the main edges and preserves

some texture in the smoothed signal.

(b)(a)

(c)

Texture

Edge

Fig.1. (a) Input image. (b) Smoothed image. (c) The black
curve represents the input signal extracted from Fig.1(a) marked
by red lines. The red curve represents the smoothed signal ex-
tracted from Fig.1(b) marked by red lines. Both curves use the
red channel of the images because the red channel is representa-
tive of the main image content.

L0 smoothing counts amplitude changes discretely

in 1D signal, written as

c(f) = # {p| |fp − fp+1| 6= 0} , (1)

where p and p + 1 index neighboring samples.

|fp − fp+1| is a gradient about p which is in the form of

forward difference. #{·} is the counting operator which

counts the number of p that satisfies |fp − fp+1| 6= 0,

that is, the L0 norm of gradient. Because c(f) does

not count on gradient magnitude, c(f) would not be

affected if an edge only alters its contrast. Similar to

TV[1], L0 smoothing cannot get good texture removal

results due to the effect of the high-frequency gradient

of texture.

2.2 Idea of the Proposed Algorithm

In consideration of shortcomings of L0 smoothing,

in this paper, we present a novel framework for im-

age decomposition to better apply the constraints for

sparse high frequency gradients. First, we decompose

the image into two components: a smooth component

and a non-smooth component. Second we remove the

non-smooth component containing high-frequency gra-

dient and smooth the other component with the con-

straint of sparse high frequency gradient. Fig.2 shows

the flowchart of the proposed DSHFG algorithm.

Input Output

Image

Decomposition

Image

Smoothing
Smooth

Component

Non-Smooth

Component

Fig.2. Flowchart of the proposed DSHFG algorithm.

2.2.1 Image Decomposition

Inspired by the image processing techniques[19-25]

including image super-resolution techniques and image

reconstruction techniques, we try to design a decom-

position method to remove part of the high frequency

information in texture images because the abundant

high frequency information in texture images is not con-

ducive to smoothing images directly. The general form

used in most image processing methods based on opti-

mization is to solve

argmin
u

=
1

2
‖x− u‖22 + λR(u).

In this formulation, x is the input image and u is the

output image. The first term is to model data fidelity.

R(u) is a regularization prior. λ is a parameter control-

ling the trade-off between data fidelity and the regulari-

zation of u. In the consideration of the abundant high

frequency information in texture images, we use a low

pass filter to filter out part of high frequency informa-

tion. To keep the output image smooth at the same
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time, the following formulation is designed:

argmin
u

=
1

2
‖x− Φ(u)‖22 + λR(u),

where

Φ(u) = fL ⊗ u,

R(u) =
∑

d
‖gd ⊗ u‖p.

In these formulations, fL is a low pass filter of size

6× 6, ⊗ is the convolution operator, and gd is the gra-

dient operator along multiple directions. R(u) enforces

the output image u to be smooth. Fig.3 shows the

low pass filter and the gradient operator along multiple

directions.

(b)(a)

Fig.3. (a) Low pass filter of size 6 × 6. (b) Gradient operator
along multiple directions.

Based on this idea, we propose the following method

for image decomposition. It can obviously separate part

of high frequency gradient from the input image and

the high frequency gradient corresponds to the texture

of the image. The key idea of our strategy is to de-

compose the input image into a smooth component xL

and a non-smooth component xR. xR contains much

high-frequency information. In this work, we use the

L2 norm of R(u). The smooth component can be ob-

tained by solving the following deconvolution problem:

xL = argmin
xL

1

2
‖x− fL ⊗ xL‖

2
2 + k

4
∑

d=1

‖gd ⊗ xL‖
2
2,

where k is a manual setting parameter that affects the

performance of image decomposition. We design gd as

the gradient operator along direction d ∈ { 1 = hori-

zontal, 2 = vertical, 3 = 45 degrees, 4 = 135 degrees}.

We use the FFT (fast Fourier transform) operator F to

solve this problem efficiently, i.e.,

xL = F−1

(

F (fL)F (x)

F (fL)F (fL)+k
∑

d F (gd)F (gd)

)

, (2)

where • is the complex conjugate operator. The plus,

multiplication, and division are all component-wise ope-

rators. The residual component xR is then obtained as

xR = x− fL ⊗ xL.

Fig.4 compares the gradient amplitude image of the in-

put image with the gradient amplitude image of xL af-

ter image decomposition, which shows that the gradient

of xL obtained in the texture segment is no longer vio-

lent.

250

200
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100

50

0

250

200

150

100

50

0
(b)(a)

Fig.4. Visualized gradient amplitude map. Amplitudes are nor-
malized to [0, 255] and colorized according to the colormap on
the right. (a) Gradient map of the input image. (b) Gradient
map of the smooth component xL.

2.2.2 Constraint of Sparse High Frequency Gradient

After removing the non-smooth component contain-

ing high-frequency gradient, we need to smooth the

other component with the constraint of sparse high fre-

quency gradient. In the past, there were many meth-

ods to constrain the gradient of the image. The famous

TV model constrains the gradient of the input image

to preserve large-scale edges[1,26-28]. TV-L2 model sim-

ply uses a quadratic penalty to enforce the structural

similarity between the input and the output, expressed

as

argmin
S

∑

p
{
1

2λ
(Sp − Ip)

2
+ | (∇S)p |},

where p indexes the pixel of the two-dimensional image.

I is the input image, which could be the luminance (or

log brightness) channel, and S is the resulting struc-

ture image. The data term (Sp − Ip)
2 is to make the

structures in the output image similar to those in the

input image.
∑

p | (∇S)p | is the total variation (TV)

regularizer, written as
∑

p
| (∇S)p | =

∑

p
| (∂xS)p |+ | (∂yS)p |.

This is an anisotropic expression in the two-dimensional

image, and ∂x and ∂y are partial derivatives in two di-

rections. We try to use the TV model to constrain xL in
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the previous image decomposition, but the experimen-

tal result shows that the TV model has limited abi-

lity to distinguish texture from strong structural edges.

Therefore we use L0 norm to constrain sparse high-

frequency gradient[6], written as

argmin
xS

‖xS − xL‖
2
2 + λ‖∇xS‖0, (3)

and the second term in (3) denotes the following for-

mulation:

‖∇xS‖0 = #{p| |∇xxSp
|+ |∇yxSp

| 6= 0},

where xL is the input image obtained from the image

decomposition, xS is the output image, ∇xS is the gra-

dient of xS , and λ is the parameter to control the level

of sparseness in the final output xS . A larger λ pro-

duces a coarser result with less gradient. #{·} denotes

the number of the non-zero gradient pixels and p in-

dexes the pixel of the image xS . (1) shows the form in

the dimensional signal. In the two-dimensional images,

we use four-connected pixels of the p-th pixel.

However, the inclusion of the L0 norm in the objec-

tive function makes it NP-hard. A splitting method

that iteratively optimizes subproblems alternately[29]

can be used as an effective technique. Both of

the two subproblems find their closed-form solutions.

We introduce two variables (h, v) corresponding to

(∇xxS ,∇yxS) respectively, the new model can be rep-

resented as

arg min
xS,h,v

‖xS − xL‖
2
2 + λ‖(h, v)‖0 +

β(‖h−∇xxS‖
2
2 + ‖v −∇yxS‖

2
2), (4)

and the second term in (4) denotes the following for-

mulation:

‖(h, v)‖0 = #{p| |hp|+ |vp| 6= 0},

where β is an automatically adapting parameter to con-

trol the similarity between variables (h, v) and their cor-

responding gradients. (4) can be split into two subprob-

lems which can be optimized iteratively. In each pass,

one set of the variables are fixed with values obtained

from the previous iteration.

Subproblem 1: Computing xS . The following sub-

problem can be extracted from (4):

argmin
xS

‖xS − xL‖
2
2 + β(‖h−∇xxS‖

2
2 + ‖v −∇yxS‖

2
2).

The solution is unique, but it is computationally com-

plex to solve directly, requiring large matrix inversion.

Thus, we use Gauss-Seidel iteration to solve it approx-

imately and diagonalize derivative operators after FFT

for speedup, written as

xS

= F−1

(

F(xL) + β(F(∇x)F(h) + F(∇y)F(v))

F(1) + β(F(∇x)F(∇x) + F(∇y)F(∇y))

)

,

(5)

where F is the FFT operator and • is the complex con-

jugate operator. F(1) is the Fourier transform of the

delta function. The plus, multiplication, and division

are all component-wise operators.

Subproblem 2: Computing (h, v). The following sub-

problem can be extracted from (4):

argmin
h,v

λ‖(h, v)‖0 + β(‖h−∇xxS‖
2
2 +

‖v −∇yxS‖
2
2). (6)

For each pixel of xS , we solve the following energy func-

tion, written as

Ep(hp, vp) = λH(|hp|+ |vp|) +

β
(

(hp −∇xxSp
)2 + (vp −∇yxSp

)2
)

,

where H(·) represents the Heaviside function, i.e.,

H(t) = 1 when t 6= 0 and H(t) = 0 otherwise. The

whole function in (6) is optimized when all subprob-

lems Ep are solved. The solution is made tractable by

using

(hp, vp) =







(0, 0), if (∇xxSp
)2 + (∇yxSp

)2 6
λ

β
,

(∇xxSp
,∇yxSp

), otherwise.
(7)

The whole procedure for image smoothing is summa-

rized in Algorithm 1. In (2), fL is a low pass filter of

size 6 × 6. k is a manual setting parameter. In this

Algorithm 1 . Proposed DSHFG Algorithm

Input: original image x, parameter k, smoothing coef-
ficient λ, parameter β0, βMAX, and rate n

1: Initialize: k = 55;
2: Compute image xL using (2);
3: Initialize: x0

S = xL, β = β0, i = 0;
4: while β < βMAX do

5: Compute gradients (hi
p, v

i
p) using (7);

6: Compute image xi+1
S using (5);

7: β = nβ, i++;

8: end while

9: return

Output: smoothed image xS
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paper, k is 55 when smoothing the texture image. In

(3), λ controls the smoothness. A larger λ produces

greater smoothness with less gradient.

3 Comparison

In this section, we compare our method with a se-

ries of image smoothing methods. Firstly, there are two

methods which can remove the texture relatively well.

One is RTV[7] and the other is RGF[12]. The quality of

the texture removal is mainly evaluated from two as-

pects: 1) whether the method can remove the texture

as much as possible; 2) whether the method can pre-

serve the main structure of the image. As shown in

Fig.5, Fig.5(b) is the result of RTV. We observe that

RTV removes most of the texture and does not blur

the “face” in this image, but the details of “hair” are

removed. Fig.5(c) shows the result of RGF. In this al-

gorithm, the number of iterations is set to 12. RGF

removes most of the texture as well, but the “hair” and

the “eyes” are blurred and the details of “hair” and

“eyes” are not clear enough. Fig.5(d) is the result of

the proposed DSHFG algorithm. DSHFG removes the

texture in the image as much as possible and preserves

the main structure of the image at the same time. The

“hair” and the “eyes” are not blurred and the details

of them are not removed.

(b)(a) (c) (d)

Fig.5. Comparison of texture removal. (a) Original texture im-
age. (b) Result of RTV (λ = 0.03, σ = 2). (c) Result of RGF
(σs = 5, σr = 0.1, iteration = 12). (d) Result of the proposed
DSHFG algorithm (λ = 0.035, k = 55).

Then Fig.6 shows the comparison of a series of image

smoothing methods. As shown in Fig.6(b), the result

of BLF[2] is not obvious. Fig.6(c) is the result of L0

smoothing[6]. It shows that L0 smoothing smoothes

the image strongly, resulting in the loss of the de-

tails. Fig.6(d) shows the result of a fast global smooth-

ing method based on weighted least squares (FGS)[11].

FGS does not work well in the flat areas and some

edges. As shown in Fig.6(e), RGF smoothes better

than BLF, but it still preserves some insignificant de-

tails which should be smoothed. In this algorithm, the

number of iterations is set to 4. Fig.6(f) is result of

the proposed DSHFG algorithm. The main objects are

smoothed properly, and the insignificant details of the

image are smoothed accurately. Compared with the

methods mentioned above, the proposed DSHFG algo-

rithm can get better visual quality of smoothing.

(b)(a) (c)

(d) (e) (f)

Fig.6. Results of several smoothing methods. (a) Input im-
age. (b) Result of BLF (σr = 0.05, σs = 2). (c) Result of L0

(λ = 0.05). (d) Result of FGS (σ = 0.03). (e) Result of RGF
(σs = 4, σr = 0.15, iteration = 4). (f) Result of the proposed
DSHFG algorithm (λ = 0.02, k = 30).

4 Applications

There are many applications of image smoothing in

image processing. We apply the proposed DSHFG algo-

rithm to edge detection, detail magnification and image

abstraction. Besides, DSHFG can be applied to image

composition. The input image is pre-proposed by the

proposed image smoothing algorithm, and a principal

structure image is achieved. Then the principal struc-

ture image is fused with a background image to get a

new image.

4.1 Edge Detection and Operation

Edge Detection. There are rich details such as tex-

ture in natural images which can influence the perfor-

mance of edge detection. DSHFG can remove trivial

details and preserve principle edges. As illustrated in

Fig.7, many fine edges are included in the original gra-

dient map. When we detect edges in the input image,

there are many slight edges in the edge map. Then

we produce a gradient map on our smoothed result.

The gradient map mainly contains meaningful edges

and the edge map detected on our smoothed image by

the Canny operator contains fewer slight edges and is

much clearer.

Image Abstraction. Image abstraction is applied in

many image editing tools. It gives the developing de-

mand for image editing tools for amateur users[30]. Our



508 J. Comput. Sci. & Technol., May 2018, Vol.33, No.3

method can serve as the abstracting tool. An example

of image abstraction using our method is illustrated

in Fig.8. First, we smooth the input image, and then

edges are detected in the smooth image. Finally, the

extracted edge map is enhanced and added back to aug-

ment the visual distinctiveness of different regions.

(b)(a) (c)

(d) (e) (f)

Fig.7. Edge detection. (a) Input image. (b) Gradient map of
(a). (c) Edge map of (a). (d) Smoothed image. (e) Gradient
map of (d). (e) Edge map of (d).

(b)(a)

(c) (d)

Fig.8. Image abstraction. (a) Texture image. (b) Result of (a).
(c) Natural image. (d) Result of (c).

4.2 Detail Magnification

When the details of an image are not obvious

enough, we can enhance the details of the original im-

age with a simple detail magnification method. First,

for the given image, we get a smooth layer and a de-

tail layer using our image smoothing method. Then

we enhance gradients in the detail layer, e.g., using a

difference of Gaussian (DoG) operator. Finally, the en-

hanced detail layer is composed with the smooth layer.

Fig.9 shows the input images and their magnification

results.

(b)(a)

(c) (d)

(e) (f)

Fig.9. Detail magnification. (a) Flower. (b) Result of (a). (c)
Hill. (d) Result of (c). (e) Stone. (f) Result of (e).

4.3 Image Composition

The drawings, paintings, and graffiti images usually

cannot be directly used in image composition[31], be-

cause the structure of the target and source images do

not match. Therefore we extract the principle struc-

ture such as words and patterns from the source image

by the proposed DSHFG algorithm and then merge the

structure image and the target image. As shown in

Fig.10, the composition is much more natural using our

produced structure images.
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(b)(a)

(c) (d)

Fig.10. Image composition. (a) Input image. (b) Smoothed
image. (c) Result of (a). (d) Result of (b).

5 Conclusions

A novel framework for image smoothing was pro-

posed based on image decomposition and the sparse

high frequency component of images. Experiments

on both nature images and images with rich texture

such as drawings, paintings, and graffiti images demon-

strated that the proposed DSHFG algorithm achieves

much better performance. Furthermore, DSHFG can

be flexibly embedded into various image processing ap-

plications. In future work, we will try to combine our

DSHFG algorithm and machine learning to speed up

our algorithm and improve the texture removal perfor-

mance.
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