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Abstract Blockchain is becoming popular as a distributed and reliable ledger which allows distrustful parties to transact

safely without trusting third parties. Emerging blockchain systems like Ethereum support smart contracts where miners

can run arbitrary user-defined programs. However, one of the biggest concerns about the blockchain and the smart contract

is privacy, since all the transactions on the chain are exposed to the public. In this paper, we present ShadowEth, a system

that leverages hardware enclave to ensure the confidentiality of smart contracts while keeping the integrity and availability

based on existing public blockchains like Ethereum. ShadowEth establishes a confidential and secure platform protected

by trusted execution environment (TEE) off the public blockchain for the execution and storage of private contracts. It

only puts the process of verification on the blockchain. We provide a design of our system including a protocol of the

cryptographic communication and verification and show the applicability and feasibility of ShadowEth by various case

studies. We implement a prototype using the Intel SGX on the Ethereum network and analyze the security and availability

of the system.
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1 Introduction

Blockchain, proposed as an underlying technology

of cryptocurrency like Bitcoin, allows users to transfer

currency over a distributed, public and trust-less net-

work. Over the last few years, blockchain systems have

evolved to support smart contracts which can run cus-

tom Turing-complete code on the blockchain, such as

Ethereum. Today, public cryptocurrencies are widely

used. On Ethereum, more than 10 million ethers 1○ are

hold by more than 1 million smart contracts. On these

blockchain systems, all the participants have the entire

log of the system and reach a distributed consensus on

the transactions that will modify the state of the chain.

This high degree of replication and the strict consensus

mechanism ensure integrity and availability but make

all data public, which brings the deficiency in confiden-

tiality.

Previous researchers have proposed several solu-

tions to improve the privacy of blockchain. Bitcoin

provides a simple pseudonym-based anonymity to pro-

tect secrets, but it exposes all the transactions plainly,

which is vulnerable under the attack of relationship

analysis[1-2]. Some privacy-preserving cryptocurrencies

such as Monero 2○, Zcash and several others[3-4] do im-

prove the confidentiality of currency transfer, but forgo

programmability and cannot support smart contracts.

Hawk[5] tries to protect the privacy of both currency

transfer and execution of smart contracts. It designs a
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new coin that is similar to Zcash and requires users to

use this coin for private currency transaction. Recently,

Microsoft presents an open-source blockchain frame-

work named Coco 3○. Coco enables the creation of a

trusted network of physical nodes which is protected

by trusted execution environment (TEE). It applies to

building a private blockchain network, aka. permis-

sioned blockchain, and can restrict that only the legal

members can access the information of the blockchain.

We find that few of these proposed systems can

be deployed directly on current widely-used blockchain

systems like Ethereum. They either require users to use

a new coin (e.g., Hawk), or do not support smart con-

tract (e.g., Zcash). A natural question is: is it possible

to support private smart contract on Ethereum?

One of our observations is: in many cases, the pri-

vacy of the execution of smart contracts is much more

important than the privacy of the entire blockchain.

For example, in a second-price auction where the win-

ner pays the second high price, it is critical to hide

all the bids during the auction. When the auction is

done, the currency transfer information (in the log of

blockchain) will eventually be open to the public (e.g.,

if users use ether to bid). Similarly, in a vote, the most

important secret to protect is “who votes whom”. Once

the vote is done, the result could get public on the

blockchain.

Based on the observation, we decouple the protec-

tion of the privacy of smart contract execution from

the protection of the privacy of the entire blockchain,

and further propose a system that can ensure the pri-

vacy of smart contract execution. There are several

challenges in designing our system. It needs to make a

clear separation between the public chain and the pri-

vate smart contracts, and to define a protocol between

the two parts. The system should let any worker node

discover new deployed private contracts from the public

blockchain, execute them in a protected way, and make

the settlement after the execution. The worker nodes

are not trusted in that they may leak or tamper with

the execution states, or even abort the execution in a

malicious way. It is also required to integrate our sys-

tem seamlessly with existing public blockchain systems

like Ethereum without any modification. Finally, for a

user, using our private contract should be as easy as

using ordinary smart contract.

In this paper, we present ShadowEth, a system

that enables private smart contract based on public

blockchains. Our idea is to combine hardware enclaves

and public blockchains to offer confidentiality of smart

contracts while keeping the integrity and availability.

On the public blockchain, we create a public smart con-

tract named “bounty contract” which performs the pro-

cess of deployment and verification and stores the meta-

data of private contract. We also introduce an off-chain

distributed storage named TEE-DS to store binary and

states of private contracts. The entire TEE-DS is pro-

tected by hardware enclaves and thus all the data it

stores will not be leaked or tampered. Users can then

publish the deployment and invocation request and the

remuneration on the bounty contract to draw workers

(who provide off-chain execution environment) in. If a

worker wants to execute a private contract, it needs to

run a worker client in a hardware enclave, which will

get the binary and the state from TEE-DS to execute.

After the off-chain execution, the enclave will generate

a particular signature and put it back to the Ethereum,

which is used to verify the correctness of the execution.

Since we just put the metadata (like hash of binary,

public key, state versions) and the encrypted data (like

input and output) of ShadowEth to the bounty con-

tract, there is no need for any modification to the un-

derlying protocol of existing blockchain systems. Mean-

while, many workers comprise a distributed storage to

improve the reliability and guarantee the availability.

We also implement a prototype of ShadowEth with the

Intel SGX on Ethereum blockchain network and show

the applicability with three use cases.

In summary, our paper makes the following contri-

butions.

• It presents ShadowEth, a confidential, distributed,

trust-less off-chain smart contract system clinging to

existing public blockchain networks like Ethereum with-

out any modification.

• It describes the detailed architecture and protocol

of ShadowEth.

• It shows the applicability of ShadowEth with three

use cases.

• It presents a prototype and demonstrates the se-

curity and availability of ShadowEth.

The rest of the paper is organized as follows. We

present the motivation of this paper and previous tech-

nologies in Section 2. The high-level architecture of

ShadowEth is introduced in Section 3. The detailed de-

sign of ShadowEth is demonstrated in Section 4. Three

cases are presented to show the applicability of Sha-

dowEth in Section 5. A prototype is presented and the

security of ShadowEth is analyzed in Section 6. The

3○Microsoft Corporation. Coco-framework. https://github.com/Azure/coco-framework, Nov. 2017.
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availability of ShadowEth is discussed in Section 7. Re-

lated work is presented in Section 8. Finally this paper

is concluded in Section 9.

2 Background and Motivation

In this section, we provide background on the tech-

nologies that underpin ShadowEth. We first give a

short overview of the blockchain and smart contracts,

explore the lack of confidentiality of current smart con-

tract systems, then introduce the hardware enclave, and

finally describe the threat model of ShadowEth.

2.1 Blockchain

A blockchain typically serves as an open, decen-

tralized and trustless distributed ledger which is main-

tained by all participants. Some participants, called

miners, form a peer-to-peer network and all have the

full copy of the blockchain. They collect transactions

signed by users. After validating the signatures, they

packed these transactions into a block. Each block con-

tains the information of the transactions as well as the

hash of the previous block, which organizes the data

as a sequential list of blocks, called a blockchain. The

blockchain is a distributed system designed for Byzan-

tine fault tolerance. Each transaction which may mod-

ify the state of the chain will be broadcasted to all min-

ers in the network. Once a block is generated, all the

miners need to achieve a consensus on whether to ac-

cept it or not. Each miner can decide the block’s con-

tent arbitrarily, that is to say, he/she can decide which

transactions will be packed into the block. Miners can

always generate different blocks with the same parent

at the same time, which will cause inconsistency called

a fork. To solve the bifurcation, an honest miner always

chooses to follow the longest branch.

If an attacker controls more than 50% of the nodes,

he/she can unilaterally generate the branch containing

the fake transactions faster than the branch containing

the real ones, which causes the double spending prob-

lem. To solve this problem, a miner needs to prove

that he/she has done a certain amount of work before

generating a block. With this proof, known as Proof

of Work (PoW), the block is acknowledged to be valid.

PoW makes a miner create blocks at the rate related to

the proportion of his/her mining power, which prevents

Sybil attacks.

2.2 Smart Contract and Ethereum

The smart contract can trace back to 1996, proposed

by Szabo 4○. It is described as “a set of promises, spe-

cified in digital form, including protocols within which

the parties perform on these promises”. The smart con-

tract is usually designed to ensure the execution of a

contract and to avoid malicious actions as well as un-

foreseen circumstances. It can minimize the utilization

of the trusted third party, which results in the reduction

of transaction cost, and potentially circumvent censor-

ship, collusion and counter-party risk.

Blockchain makes smart contracts possible. Based

on the blockchain, smart contracts usually take the

form of a general-purpose program. Users can write and

deploy any Turing-complete program on the blockchain

network. The most notable smart contract implemen-

tation is Ethereum 5○. A contract in Ethereum will be

endowed with execution contexts such as stack, heap

and persistent memory on the chain. Once a contract

is deployed, it will be executed autonomously. Even its

creator cannot stop the execution or modify the code.

A contract can operate as a specified function, accept

messages as arguments, and eventually update its state.

The execution of a contract is triggered by a message

from a user account or another contract, analogous to

a function call, and is finished when the program exits

or the gas (the fee paid for miners) is depleted.

Ethereum provides a runtime environment named

Ethereum Virtual Machine (EVM). It is sandboxed and

isolated from the host operating system. Each miner

runs an EVM for contract execution. In Ethereum, the

smart contract is a high-level programming abstrac-

tion. Smart contracts can be written in a program-

ming language like Solidity. Then the source code will

be compiled to bytecode for EVM and deployed to the

Ethereum network in a transaction. Ethereum has its

value token called ether 6○. Analogous to Bitcoin, it is a

cryptocurrency with its market value. The settlement

of smart contracts is done on the base of ether. To pre-

vent DoS attacks such as requests for executing some

infinite loop within smart contracts, contracts need to

be powered by a certain amount of ether called gas.

4○Szabo N. Smart contracts: Building blocks for digital markets. 1996. http://www.alamut.com/subj/economics/nick szabo-
/smartContracts.html, Mar. 2018.

5○Buterin V. Ethereum: A next-generation smart contract and decentralized application platform. 2014. https://github.com/et-
hereum/wiki/wiki/%5BEnglish%5D-White-Paper, Mar. 2018.

6○https://coinmarketcap.com/currencies/ethereum/, Nov. 2017.
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Ethereum endows every operation, including compu-

tation and data transfer, with a fixed price, and the

corresponding gas will be consumed once the operation

is executed. A transaction must contain a parameter

named gas limit, which defines the maximum limit of

the gas consumed by the execution. Once a contract

calls another function, it needs to specify a lower gas

limit for the function. If a function exits normally, it

will consume the corresponding gas and return the rest

gas. When a function runs out of its gas, it will be

aborted and all the changes of the states caused by it

will be rolled back to their pre-call states without re-

turning any gas.

The wide public participation of Ethereum and the

strict consensus mechanism ensure the enforcement, in-

tegrity and availability of smart contracts. However,

the lack of privacy becomes a pain point that restricts

the applications of smart contracts in some privacy-

sensitive scenarios.

2.3 Hardware Enclave

Trusted executed environment (TEE) is a new fea-

ture provided by recent commodity CPUs. It creates

a secure area which guarantees the integrity and con-

fidentiality of code and data inside. TEE serves as an

isolated environment running in parallel with OS. It

provides a high-level security for software inside by re-

ducing the trusted computing base (TCB) to only CPU.

Applications running in TEE have secure memory and

cryptographic operations to resist attacks from other

applications, even the privileged software such as OS

or hypervisor.

Our design is general-purpose and applies to any

TEE that has above features. In this paper, our imple-

mentation is based on Intel’s Software Guard Exten-

sions (SGX)[6] 7○ 8○. Intel SGX provides a trusted and

isolated environment called enclave. With this hard-

ware feature in CPU, users can deploy their softwares

in a remote host with integrity and confidentiality un-

less CPU package was hacked. An application running

inside an enclave is protected from other malicious soft-

ware including the operating system.

SGX provides remote attestation 9○ which allows a

remote host to verify the application running in the

enclave and generate a secure channel to communicate

with it. In the process of initiation of an enclave, the

CPU measures the trusted code and the trusted mem-

ory within the enclave and produces a hash based on all

memory pages known as measurement. Then the soft-

ware inside the enclave can acquire a report which con-

tains the measurement and other supplementary data

such as the public key. This report is signed by a

hardware-protected key in CPU to prove that the mea-

sured software is running in SGX indeed. The remote

attester can then verify the report with Intel Attesta-

tion Service (IAS) which can certify that the signature

is valid and the corresponding report is generated from

authentic CPUs.

2.4 Threat Model

Our threat model assumes that multiple parties mu-

tually distrust each other. They are potentially mali-

cious, and may try to steal information of smart con-

tracts, modify the execution flow, and deviate from the

protocol for their benefit. Each party may send, drop,

modify, and record arbitrary messages in the protocol

at any time during the contract deployment and in-

vocation. Any party may crash and stop responding

entirely.

We assume that the blockchain is trustable and

available all the time. The information on the

blockchain is tamper-resistant but public to everyone.

We also assume that network adversaries can intercept

the communication between parties, but they cannot

control the whole network so that the communication

can be eventually established, for example, the user can

send a request to the blockchain network and get the

response.

We trust the hardware enclave, its manufacture (like

Intel) and the remote attestation service. As long as a

node passes the remote attestation, it will be able to

execute the shadow contract within its enclave. The

rest of the system, including the other software stacks

(outside the enclave) and the hardware, is not trusted.

Side-channel attacks[7-10] against enclaves and DoS at-

tacks are not considered in this paper.

Our system also relies on the privacy of private key.

Each private contract has a unique private key only

7○Intel Corp. Software guard extensions programming reference. https://software.intel.com/sites/default/files/managed/48/-
88/329298-002.pdf, Mar. 2018.

8○Intel Corp. Intel software guard extensions SDK. https://software.intel.com/en-us/sgx-sdk, Mar. 2018.
9○Johnson S, Scarlate V, Roza C et al. Intel software guard extentions: EPID provisioning and attestion services. https://sof-

tware.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf, Mar.
2018.
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possessed by the enclave. The private key is used to

generate the attestation that the contract has been ex-

ecuted correctly. If an attacker steals the private key

in some way, he/she can get paid from the Ethereum

without executing the contract, which could compro-

mise the integrity but not the privacy.

3 System Overview

The goal of ShadowEth is to provide a confidential

platform to execute private smart contracts which can

be integrated with existing public blockchain such as

Ethereum. Specifically, the privacy of a smart contract

consists of the following three parts.

• Privacy of the Specification of a Smart Contract.

The source code of a private contract must be hidden

during the deployment and subsequent process of exe-

cution and synchronization.

• Privacy of the Execution of a Smart Contract.

Once a private contract is invoked, the executing pro-

cess on a worker client cannot be spied and the call

arguments as well as the return values should be hid-

den during the execution.

• Privacy of the State of a Smart Contract. The

internal state of a private contract may contain users’

secrets and can reflect the information of recent trans-

actions. Therefore it should not be published on the

blockchain.

To guarantee the confidentiality of the code and

data of a smart contract, a secure channel between a

user and TEE-DS will be established before transfer-

ring the contract. The contract will be encrypted be-

fore transferring and can only be decrypted inside the

corresponding enclave.

To preserve the privacy of execution, we only put

the information of invocation and verification onto the

blockchain. During the deployment of a private con-

tract, TEE will generate a key-pair for this contract

and publish the public key. The invocation arguments

are encrypted with the contract’s public key which can

only be decrypted within the enclave. The return value

will be encrypted by a user-provided key which is deliv-

ered along with call arguments. In the entire process,

the information of the execution is encrypted except in-

side the enclave. Anyone even the worker cannot leak

the internal executing state.

To guarantee the confidentiality of the persistent

state of a private contract, ShadowEth stores only the

hash of the ledger on the Ethereum instead of all data.

The data can only be managed and viewed inside en-

claves. Due to the limited secure memory of enclave

like SGX, data could be moved to untrusted memory

or disk, and sometimes need network transmission for

backup or synchronization. Before writing out the data,

ShadowEth will encrypt all data with the hardware key

which is only kept by CPUs. This ensures that the data

can only be accessed by authenticated users through

ShadowEth and no one outside can view or manipulate

the persistent state.

3.1 System Components

Fig.1 shows the architecture of ShadowEth. Shad-

owEth can be broken down into several sub-

components.

• Bounty Contract. A bounty contract is a native

User Node

Ethereum

TEE-DS

Worker Node

Worker Client

Bounty
Contract

Enclave
User Client

Ethereum Client Ethereum Client

Fig.1. ShadowEth architecture.
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smart contract deployed on blockchain directly, serving

as the public portion of ShadowEth.

• User Client. A user client provides interfaces to

end users. It does not require any enclave to execute.

• Worker Client. A worker client is responsible for

the execution and maintenance of private contracts. It

needs to run inside enclaves.

• TEE-DS. TEE-DS (distributed storage) serves as

a distributed network which stores private contracts.

We create a smart contract named bounty contract

on the Ethereum blockchain network which serves as

a platform for publishing private contract, grabbing

execution task and remuneration settlement. Bounty

contract is a public contract that every participant in

Ethereum can view and use. A user can deploy his/her

private contracts and then invoke them like ordinary

contracts via the bounty contract. On the other side,

workers with TEE-enabled devices can look up execu-

tory tasks in the bounty contract, get the parameters,

do the computation, and finally commit the result of

the execution.

A user client provides interfaces including contract

deployment and invocation for users. It communicates

with the bounty contract through an Ethereum client.

It can be launched without TEE, thereby it is only

trusted by its user.

A worker client is used for fetching executory tasks

from bounty contract, getting code and data of pri-

vate contracts from TEE-DS, executing contracts, com-

mitting results, and updating the persistent state of

contracts. The main part of a worker client, which

does the contract correlation processing, runs inside en-

claves. It communicates with bounty contract through

an Ethereum client. Furthermore, a worker client also

serves as a server node in TEE-DS.

Many worker clients comprise TEE-DS, a peer-to-

peer network storing the code and data of private con-

tracts. In the process of execution of contracts, all the

nodes maintain consistency by Paxos-like consensus al-

gorithm. For a certain contract, different workers store

the same data but encrypt it with different secret keys.

Enclaves maintain the consistency of the unencrypted

logical data. The data synchronization is performed on

the safe channel between two enclaves after the remote

attestation.

3.2 Example

Here is a simple example to briefly demonstrate the

process of deployment and invocation from different

perspectives in our system.

Deployment. Suppose a user needs to deploy a pri-

vate contract to ShadowEth. He/she first compiles the

code and puts the binary to TEE-DS through the user

client. TEE-DS will generate a pair of keys, bind them

with the contract, and transfer only the public key back

to the user. The user client then uploads identification

information of the contract (including the public key

and the hash of binary, etc.) to the bounty contract.

Now the contract is publicly available.

Invocation. Once the user needs to invoke his/her

private contract, he/she sends an invocation request

(including arguments) to the bounty contract with a

sum of remuneration. A worker client will get the ar-

guments from the bounty contract and get the private

contract’s binary from TEE-DS with the public key as

its ID. It then loads the binary to its hardware enclave

and executes using the arguments to get a return value.

After that, it sends the new state of the private con-

tract to TEE-DS, which will be held at this moment.

The worker then makes a response (including the return

value and signature, etc.) and sends it to the bounty

contract. The bounty contract will verify the response

to ensure that it is generated by correct contract, states,

and arguments in real hardware enclave before trans-

ferring the remuneration to the worker. Once TEE-DS

confirms that the execution has been acknowledged by

the bounty contract, it will update the states of the

private contract, which finishes the process of one invo-

cation.

As shown in the example, the Ethereum ensures the

availability (a private contract will eventually get exe-

cuted), and the integrity (the result cannot be mod-

ified), while the hardware enclave is used to protect

privacy. There are many challenges unlisted, e.g., how

to design a protocol and key management to defend

against attacks like rollback and impersonation, how to

minimize the trust on the manager in a second-price

auction, which will be described in Section 4.

4 Design

In this section we present the design of Shad-

owEth. We first describe the three major parts of

ShadowEth: the bounty contract (Subsection 4.1), the

shadow contract (Subsection 4.2) and the TEE-DS

(Subsection 4.3), and then introduce the detailed pro-

tocol (Subsection 4.4).

4.1 Bounty Contract

Bounty contract is a native smart contract deployed

on Ethereum. Its major responsibility is to perform the
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public portion of deployment, invocation and verifica-

tion of private contracts. Sometimes it needs to gene-

rate transactions to handle the settlement. It maintains

two lists: a contract list and a todolist.

Each entry in the contract list represents a private

contract. It contains 1) the contract’s ID (as the pri-

mary key), 2) the contract’s public key, 3) a version

number, 4) an owner list, 5) the hash of the contract’s

persistent state, and 6) the balance of the contract.

Once the bounty contract receives a deploying request,

it will construct a new entry and add it into the contract

list, and the invocation will update the hash value and

increase the version number. The contract list can be

used to record and verify the state of private contracts

but does not expose any information about the core

business logic. Users can deposit funds into a private

contract by sending the corresponding ether to bounty

contract through deploy transaction or invoke transac-

tion (described in Subsection 4.4). The bounty contract

records the funds as the balance of a contract. When

the result of an invocation is a settlement, the bounty

contract will check if the balance is enough before per-

forming the transfer. It is worth noting that the bounty

contract only records the total balance of the contract.

The detailed distribution of this sum money is decided

by the contract itself.

The todolist serves as a task pool. Users publish

invocation tasks into the todolist to allow workers to

bid the task. Each entry represents an invocation re-

quest, which contains 1) the task ID (as the primary

key), 2) the contract’s public key, 3) the encrypted ar-

guments, 4) the remuneration offered by the user, 5)

the state (e.g., TODO or FINISHED), and 6) the en-

crypted return value. Only one worker can gain the

remuneration (typically the first), which is guaranteed

by the Ethereum.

The bounty contract is the key component of our

system. Users and workers communicate indirectly

through the bounty contract. Thus, the integrity and

the availability of operations on private contracts like

deployment and invocation are ensured by the public

blockchain.

4.2 Shadow Contract

We propose to build a confidential environment for

smart contract execution using hardware enclave, but it

is not enough to just deploy the native Ethereum con-

tract directly because only the process of the execution

can be hidden, while the information outside such as

the call arguments and return values is still exposed.

To this end, we introduce Shadow Contract, a re-

design of the native Ethereum smart contract. Shadow

Contract uses a contract gate to isolate the core busi-

ness logic of the smart contract. The contract gate

is loaded by the worker client before the execution of

smart contracts, endowed with the private key of the

smart contract. The contract gate has two primary

functionalities: decrypting arguments and generating

the response. The two functionalities are independent

of the contract code, which means the contract gate can

be compatible with any private contract.

To preserve the privacy of the call arguments, users

need to encrypt them with the public key of the contract

before sending them to the bounty contract. Before exe-

cution, the contract gate first decrypts the arguments

and then invokes the target function with the plaintext.

After the execution, a response is required to put

back to the bounty contract. A response includes the

execution’s return value, the version number before the

execution, the hash of the contract’s state after the exe-

cution, and the settlement information. What is more,

an invocation verification signature (IVS) is required to

be attached to the response.

IVS is used for verifying whether the contract has

been executed correctly inside an enclave. The contract

gate signs the response along with the hash of call ar-

guments and the worker’s ID by the secret key of the

contract to generate IVS. The encryption can only be

performed after the execution within enclaves. Then

the bounty contract can decrypt IVS by the public key

of the contract to verify the execution. The inclusion of

the hash of call arguments is to ensure that the worker

does execute the contract with given arguments. Since

IVS contains the ID of the worker, the remuneration

will be sent to the right worker even when a malicious

attacker captures IVS and resents it to the bounty con-

tract using his/her own Ethereum account.

The return value of the execution is required to be

sent back to the user without exposure. To this end, the

user needs to provide another symmetric key along with

the arguments and encrypt them together with the pub-

lic key of the contract. The contract gate will encrypt

the return value with this key and put the cipher-text

into the response, which will then be put back to the

bounty contract, and only the user can decrypt it.

When a function is to trigger a settlement on

the Ethereum, it will return a transaction-type ob-

ject which the contract gate will put into the re-

sponse. If a response contains settlement information,
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the bounty contract will generate an Ethereum trans-

action to transfer the money.

Besides the above-mentioned data, the contract gate

also puts the hash of the contract state after execution

into the response which is used as an attestation for

off-chain contract transfer.

4.3 TEE-DS

TEE-DS is a peer-to-peer network consisting of

many worker clients. It serves as a distributed storage

of private contracts which can provide high reliability

against malfunction. The secrets (e.g., the code, data

and private key) of a private contract are protected by

hardware enclave, which guarantees the confidentiality.

Admission Mechanism. Anyone who runs the

worker client inside an enclave can join TEE-DS as

a worker. To get permission, the expectant worker

needs to connect one of the approved workers and of-

fer a CPU-signed statement that he/she is executing

a particular enclave. Once the statement is certified,

which is known as remote attestation, the expectant

worker can then join the network, get the current net-

work constitution, and synchronize data from other

workers.

Synchronization Mechanism. After a worker per-

forms an invocation of a private contract, he/she needs

to broadcast the updates to other workers. However,

some workers may publish different updates of the same

contract simultaneously. This happens for several rea-

sons: 1) the states before invocation are different; 2)

the invocation requests they choose are different; 3)

there are some malicious actions. We utilize the con-

sensus on the blockchain to evade conflicts in TEE-DS.

When a worker sends the response of an invocation to

the bounty contract, he/she must specify the version

number before the execution and the hash of the con-

tract’s state after the execution. When receiving more

than one response about the same contract, the bounty

contract will check if the version number is the latest

and only accept the first valid one. Then the bounty

contract increases the version number and updates the

hash. Even if different miners accept different responses

at first, they will eventually reach an agreement by

Ethereum’s consensus mechanism. In TEE-DS, before

the data synchronization, workers will check the version

number as well as the hash in the bounty contract and

only accept the updates which have been acknowledged.

4.4 Protocol

The ShadowEth protocol operates in two scenarios:

1) contract deployment, and 2) contract invocation.

Fig.2 shows the process. Just like smart contract sys-

tems based on public blockchains, our current system

does not support withdrawal mechanisms unless they

have been coded in the contract. Considering the ir-

reversibility and non-repudiation, a contract cannot be

stopped from the outside once deployed. The follow-

ing is a detailed description of the process of these two

scenarios. For simplicity, we ignore mining fees in this

subsection, although they can be supported in the im-

plementation.

4.4.1 Contract Deployment

The first scenario of the ShadowEth protocol is con-

tract deployment, as shown in Fig.2(a). Similar to us-

ing Ethereum natively, users write the business logic

of their private contracts on their clients using native

languages (like C/C++), then compile the code, deploy

them onto TEE-DS, and meanwhile upload the identi-

fication information (e.g., the hash of the code) to the

bounty contract.

The final purpose of the deployment is to generate

an asymmetric key pair, of which the private key is only

kept by the enclave, so that the subsequent invocation

can be protected by the public key directly without es-

tablishing a secure communication channel.

First, the user sends the binary code to TEE-DS

through a secure channel, which is established through

remote attestation and protected by a Keysession which

is used for encrypting data in the session. Once the

code is received, TEE-DS will generate an asymmet-

ric encryption key pair (based on the RSA algorithm):

Keyc p and Keyc s (p for public and s for secret), which

is unique for each contract. Then TEE-DS sendsKeyc p

back to the user.

After receiving Keyc p, the user will upload the

identification information to the bounty contract, es-

sentially announcing the existence of a new private con-

tract. The information includes: 1) Keyc p, 2) the

owner list (the user’s public address as default), and

3) the hash of the binary code. This is done by the

Ethereum client, which generates a deploy transaction

containing the information and sends it to the bounty

contract. The bounty contract then creates a new con-

tract record in its contract list with the identification

information, sets the version number to 0, and sets the

state to DEPLOYED.
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At last, after the deploy transaction is acknowle-

dged, the code of the private contract along with the key

pair will be broadcasted to all other workers in TEE-

DS.

4.4.2 Contract Invocation

Once a private contract has been deployed, users can

invoke it just like invoking native Ethereum contracts.

The procedure is shown in Fig.2(b).

1) A user initiates an invocation request through its

user client. Similar to the native contract invocation in

Ethereum, the user must specify the contract’s Keyc p,

the remuneration, and the corresponding parameters

including the function name and call arguments.

2) The user client will process the request: a) adding

the timestamp into the request body, b) generating a

secret keyKeyreq which is only used for this request and

adding it into the request body, and c) using Keyc p to

encrypt the request except for the remuneration, and

then send the data to the Ethereum client.

3) The Ethereum client generates an invoke trans-

action including the contract’s Keyc p, the encrypted

request, and the remuneration, which is sent to the

bounty contract.

4) Once the bounty contract receives the invoke

transaction, it first verifies the identification to ensure

that the contract exists and the request is from one of

the owners of the contract. It then adds a new entry

with the information included in the invoke transaction

into the todolist marked as TODO, and transfers the

remuneration into its account simultaneously.

5) After the invoke transaction is acknowledged,
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workers can see the executory tasks. They can choose

any task and get the related information including

Keyc p and encrypted request from the bounty con-

tract.

6) By using Keyc p, a worker can ask TEE-DS for

the contract’s code and load the contract into its en-

clave along with the encrypted request. Inside enclave,

the contract gate first decrypts the request to get the

arguments and Keyreq, and then executes the specified

function.

7) If the function exits normally, the contract gate

will broadcast the modification of the contract’s persis-

tent state to other workers in TEE-DS and then gene-

rate a response including the following parts: a) the

version number of the contract before the execution,

b) the hash of the contract’s state after the execution,

c) the return value (if the function has one) which is

encrypted by Keyreq, d) the settlement information (if

the function has one), and e) the IVS (described in Sub-

section 4.2). The worker client then sends the response

back to the bounty contract, and the bounty contract

can verify the validity of the IVS with Keyc p to ensure

that this worker has completed this task correctly. Af-

ter the verification, the bounty contract updates the en-

try in the todolist, marking it as FINISHED and filling

the return value if any, and updates the information of

the contract including the version number and the hash

of contract state. Then the user can fetch the return

value and decrypt it by Keyreq. If the result is marked

as a settlement, the bounty contract will generate a set-

tlement transaction with the settlement information in

the response. The first worker to finish it will obtain

the remuneration.

8) Once the result is acknowledged by bounty con-

tract, the other workers in TEE-DS will accept the

modification.

5 Use Cases

In this section we introduce some use cases to ex-

plain how we can use ShadowEth to preserve the pri-

vacy of smart contract.

5.1 Protecting Simple Vote

We first implement a simple vote example to show

the confidentiality of private contracts. The scenario is

that some people want to start a vote between them-

selves by a smart contract on the Ethereum, but they do

not want to expose the content of this vote to the pub-

lic. In our implementation, we assume that the partic-

ipants know and trust one another and create the vote

contract together. Algorithm 1 shows the approximate

logic of the example but not the detail.

Algorithm 1 . Pseudo-Code of Simple Vote Contract

1: vote← {0, 0, 0, 0, 0}
2: function CAST(option)
3: vote[option] + +

4: function CHECK()
5: return new ResultType(vote)

First, all the voters agree on the voting code (pri-

vate contract). Then they deploy the contract as de-

scribed in Subsection 4.4, which can be performed by

any one of the participants. After the deployment is

acknowledged, each participant can invoke the cast()

function to cast their ballot. The cast() operation will

be executed by workers using hardware enclaves. Any

participant can invoke the check function to query the

current state of the vote at any time.

It is noteworthy that the whole process of the vote

including the cast and the check is hidden and only the

participants can view it. The workers can get involved

in executing but they will never know what indeed hap-

pens inside the contract. If a participant is malicious in

this case, he/she can only leak the vote result but not

the detailed information.

5.2 Protecting Transaction Details

We consider the following scenario: a seller and a

buyer have a contract with a certain price and quan-

tity of some commodity. The key secret of the scenario

is the detail of the purchase including the price, the

quantity and maybe some promotion strategy in some

complicated cases, while the result (i.e., the total ether

transferred) which will eventually be reflected on the

Ethereum is not protected. The approximate code is

shown in Algorithm 2. To ensure the efficacy of the

contract, the seller is required to deposit some funds as

balance before making a purchase, which is done by in-

voking the deposit(), and send corresponding ether to

the bounty contract. Once the both parties are pre-

pared to make a deal, they can invoke purchase() with

the negotiated price and quantity. The invocation of

purchase() requires to be signed by both parties. Ei-

ther party can invoke settlement() for a refund. The

bounty contract will check the total amount of refund

before generating the settlement transaction.

The example can be extended to a multi-

participants scenario which can hide the detail of trans-

actions among the participants and do settlement reg-

ularly. Although the transfer of ether is public on
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Ethereum, it is acceptable in many cases because the

privacy of transaction details is much more important.

And users can do a settlement after a number of trans-

actions, which mixes up the results of these transactions

and makes it difficult to resolve.

Algorithm 2 . Pseudo-Code of Private Transaction Con-
tract

1: int seller addr ⊲ address
2: int buyer addr

3: int seller blc ⊲ balance
4: int buyer blc

5: function DEPOSIT(amount)
6: buyer blc+ = amount

7:
8: function PURCHASE(amount, price)
9: ⊲ check the signature first
10: if buyer blc >= amount × price then

11: buyer blc− = amount × price

12: seller blc+ = amount × price

13: return newResultType(true)
14: else

15: ⊲ transaction failed
16: return newResultType(false)

17:
18: function SETTLEMENT()
19: settlement← new Transaction()
20: settlement.add(seller addr, seller blc)
21: settlement.add(buyer addr, buyer blc)
22: return settlement

5.3 Second-Price Auction

In a second-price auction, the bidder who offers the

highest price wins but pays the second highest price.

The essential element of second-price auctions is that

bidders offer bids without knowing the bid of other bid-

ders.

We implement an example auction program using

ShadowEth, as shown in Algorithm 3. The code above

is an approximation of our real implementation. There

are two different roles in this case: the manager and the

bidders. First the manager can start an auction with

the seller’s address so that the fund can be transferred

to the seller immediately once the auction ends. Af-

ter the auction starts successfully, each bidder can offer

their price by invoking bid(). Since the ether transfer

on Ethereum is public, from which the bid price could

be inferred, we allow a user to obfuscate the real price

by sending an arbitrary (but more than the real price)

amount of ether to bounty contract, and the excess will

be returned to the user after the auction ends. The

manager will decide when to conclude the auction and

invoke conclude() to transfer the money from the win-

ner to the seller and refund other bidders’ funds.

ShadowEth guarantees the input independent pri-

vacy that each user can never see others’ bids even after

the auction. In this way, users’ bids are independent of

others’ bids. Also, the manager’s function is limited

to starting and terminating the auction. Even if the

manager is malicious, he/she cannot disclose any infor-

mation of the auction.

Algorithm 3 . Pseudo-Code of Second-Price Contract

1: Map〈int, int〉 balances

2: int bestP rice← −1
3: int secondPrice← −1
4: int winner ← −1
5: int seller← −1
6: function START(addrOfSeller)
7: balances.clear()
8: seller ← addrOfSeller

9:
10: function BID(addr, price, funds)
11: ⊲ check: funds deposited > real price
12: balances.insert(addr, funds)
13: if price > bestPrice then

14: secondPrice← bestP rice

15: bestP rice← price

16: winner← addr

17: else if price > secondPrice then

18: secondPrice← price

19:
20: function CONCLUDE()
21: settlement← newTransaction

22: settlement.add(seller, secondPrice)
23: settlement.add(winner, balances[winner]
24: −secondPrice)
25: for each b ∈ balances do

26: if b.first! = winner then

27: settlement.add(b.first, b.second)

28: return settlement

6 Evaluation

We implemented a prototype using Intel SGX on the

Ethereum testnet. We demonstrated that ShadowEth

achieves security and availability with acceptable over-

head in this section.

6.1 Prototype

The prototype contains the three major compo-

nents: the bounty contract on Ethereum, the user

client, and the worker client.

The bounty contract is written in Solidity, a high-

level language designed to target the Ethereum Virtual

Machine. We implemented the deploy, the invoke, the

submit interfaces for off-chain users and workers. The

bounty contract holds the funds deposited by all pri-

vate contracts and can generate Ethereum transactions

to redistribute them.

The user client and the worker client are writ-

ten mainly in C and C++. Both communicate with
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Ethereum nodes through JSON-RPC interfaces includ-

ing eth sign, eth sendTransactions and eth call. For the

worker client, we implemented a more complete and

usable software stack than the official SDK (software

development kit) and ported a memcached instance into

an SGX enclave which is used as a distributed storage.

We also implemented the contract gate inside the en-

clave to load and execute contracts. For asymmetric

encryption between the outside and the inside of the

enclaves, we used RSA with 4 096-bit keys.

In contrast to some performance optimization solu-

tions such as TEEchan 10○, each execution in ShadowEth

needs the intervention of Ethereum which is the perfor-

mance bottleneck. Each transaction in Ethereum takes

about 12 seconds to be packaged into a block and the

time is always extended to about 1 minute for five con-

firmations. Furthermore, the confirmation time is re-

lated to the fee paid to the Ethereum miners. For some

simple contracts, the off-chain computation costs seve-

ral seconds (mainly for the decryption and signature

in our current implementation), which is an order of

magnitude less than the confirmation time. Therefore

we can measure the performance by the times that off-

chain components communicate with the on-chain com-

ponents. Currently, it is required to wait for two transa-

ctions to be acknowledged in each execution which is

acceptable in most cases.

6.2 Security Analysis

In this subsection, we discuss how ShadowEth miti-

gates potential attacks. Each party may send, drop,

modify, and record arbitrary messages in the protocol

at any time during the contract deployment and invo-

cation. Therefore we discuss and evaluate the security

of ShadowEth.

Malicious Worker. During the contract deployment,

an attacker may pretend to be a worker and defraud

the user of the code of his/her private contract. To de-

fend this attack, remote attestation is required before

the communication. The worker must provide a report

which is signed by the hardware-protected key to prove

that he/she runs the unmodified worker client in en-

clave indeed. Even if the attacker has compromised

the network, he/she cannot spy or tamper any message

because the communication between the user and the

worker is based on a secure channel which is protected

by a session key after remote attestation. If the user

who performs the deployment is dishonest, he/she can-

not get any more privileges than other users in that

the secret key of the contract is generated and kept by

enclaves.

Stealing Invocation Information. The contract invo-

cation is mediated by bounty contract which is publicly

visible on Ethereum. An attacker may try to steal the

invocation information by spying the bounty contract.

But this will not work because all the secrets of invo-

cation are encrypted. The user encrypts the arguments

with the public key of the contract, and oppositely, the

enclave will encrypt the corresponding return value by

another key which is transferred along with the argu-

ments by the user. Therefore the attacker can only see

the inessential information such as the amount of the re-

muneration. Since the secrets of an invocation are fully

hidden except for the invoker, ShadowEth can guaran-

tee the personal privacy without any exposure risk from

a malicious manager, which is a potential concern of

some other private blockchain system such as Hawk[5].

Integrity of Invocation. There are potential attack-

ers including dishonest workers who want to compro-

mise the integrity of the invocation by tampering invo-

cation requests or committing fake results. Since the

invocation requests are acknowledged on Ethereum, at-

tackers can manipulate them only by controlling more

than half of the computing power of Ethereum, which is

considered impossible. The response of an invocation

includes IVS which contains the hash of correspond-

ing arguments and is signed with the contract’s private

key by the enclave. The bounty contract can check the

IVS with the contract’s public key to verify that the

worker executes the contract correctly with the given

arguments inside an enclave. Therefore no one can fake

a response to the bounty contract.

Replay Attack. To protect the private contract from

the replay attack, each message will be endowed with

a timestamp. When the bounty contract receives an

invoke message, it will first check the timestamp and

refuse the old requests. The communication between

users and workers will be protected in the same man-

ner. Furthermore, the response of an invocation must

specify the corresponding task in the todolist of the

bounty contract. Thus the only one response will be

accepted by the bounty contract for one task. It is

worth noting that the worker’s address inside the IVS

decides who will gain the remuneration and thus it is

no use for attackers to intercept the IVS.

10○Lind J, Eyal I, Pietzuch P et al. TEEchan: Payment channels using trusted execution environments, 2017. https://arxiv.org/p-
df/1612.07766.pdf, Mar. 2018.
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We implemented ShadowEth using Intel SGX which

guarantees the integrity and the confidentiality of the

execution. Intel SGX can protect the execution of

smart contracts from attackers on the same host, even

those who compromise the OS or control physical ac-

cess. All the data of the contract is encrypted except in-

side the enclaves. Malicious workers or attackers on the

same machine can only stop service, modify or record

the encrypted messages, which will not harm the in-

tegrity and confidentiality of our system. For the at-

tacks which exploit the hardware vulnerabilities (e.g.,

Meltdown and Spectre CPU security flaws), Intel has

submitted patches to fix the problems. Actually, most

side-channel attacks require multiple attempts to steal

information from the enclave, and thus we can prevent

these attacks effectively by limiting the execution times.

This is a good idea and we will probably implement in

the future.

It is worth noting that our protocol is not Intel spe-

cific and we can implement our system easily on the

base of another trusted hardware.

7 Discussion

Availability. Currently, the availability of a

blockchain system depends on the participation to a

large extent. Similarly, ShadowEth needs a number of

workers to comprise TEE-DS and provide services for

private contracts. A nascent system always lacks user

participation and few workers are willing to work, and

it requires long time for development. Therefore we

choose to build our system on the base of the mature

Ethereum system and make use of its availability with-

out any modification to Ethereum.

In addition to Ethereum, we also need to establish a

public platform to provide related services such as the

client download (both the user client and the worker

client) and maintaining the information of TEE-DS.

With these services, anyone who has a machine with

an enclave can download a worker client, and then find

and join TEE-DS as a worker. At the beginning, we

may build the TEE-DS with few nodes as a test ver-

sion. With the broad participation of Ethereum, we

anticipate that the requirement of private smart con-

tracts and the remuneration will draw more users and

workers in.

Incentive Mechanism. In current design of Shad-

owEth, workers only get remuneration for executing

contracts. But there is no incentive mechanism for

storing private contracts. Thus some utilitarian work-

ers may stop their machines immediately after one task,

and keep waiting until new tasks are sent to the bounty

contract. Since the remuneration is only gained by

the fastest worker, the time of execution is closely con-

nected with profit. If a worker only executes contracts

without storing them, the latency of synchronizing data

(e.g., binary of contracts) from other workers will add

more overhead to execution time and reduce expected

profit, which motivates workers storing private con-

tracts locally. Furthermore, the worker client is exe-

cuted as a whole and the response is generated only

after all the work is done (including spreading data to

other TEE-DS nodes), which is ensured by enclaves,

and hence no worker can perform part of the execution

to maximize profit.

Workload Measurement. Ethereum provides a gas

mechanism, which endows every operation with a fixed

price. With Ethereum’s runtime environment (EVM),

the workload of each execution can be measured and

then the gas consumption can be calculated with the

gas price. The execution will exit immediately once

the gas is run out. This mechanism can prevent DoS

attacks such as requests for executing some infinite loop

within smart contracts. In our current implementa-

tion, the contract is executed in the native environment

without a similar monitoring mechanism. To solve this

problem, we can measure the workload by execution

time. Each invocation task will be endowed with a

timeout corresponding to the amount of remuneration.

If some workers finish the execution before timeout, the

first one will win. If the workload of the execution is so

heavy that no worker can finish it before timeout, work-

ers can still gain the remuneration with a measurement

to prove that the execution indeed exits after a time-

out. The measurement can be generated by the enclave,

which is similar to Proof of Elapsed Time (PoET) used

by Hyperledger Sawtooth[11].

8 Related Work

Several proposals address the privacy issues of

blockchain systems. The cryptocurrencies such as Mon-

ero and Zcash improve the confidentiality to some de-

gree. Most of them totally depend on cryptographic

methods to hide the information of transactions but

with notable limitation such as high computing over-

head or partial confidentiality. And they forgo pro-

grammability and cannot support smart contracts.

Hawk[5] and Towncrier[12] use Intel SGX as a

technology to improve the privacy of off-chain con-

tracts. Hawk is a decentralized smart contract frame-

work that processes financial transactions off-chain and
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hides the secret on the blockchain, thus providing trans-

action privacy. It divides the smart contract into two

parts: the private portion and the public portion, and

the execution is facilitated by a special party called

manager which is protected by SGX. In contrast to

Hawk, numerous workers in ShadowEth comprise a net-

work for execution and storage of private contracts,

which provides increased reliablity. Towncrier is a data

feed system that serves as a high-trust bridge between

Ethereum blockchain and existing websites. It retrieves

website data, serves it to contracts in need on the

blockchain, and enables private data requests with en-

crypted parameters. It executes its core functionality

inside an SGX enclave to protect data against malicious

attackers.

Coco is a high-scale, confidential blockchain frame-

work. It is a license chain other than public chain and is

designed for enterprise requirements. Each node in the

Coco network is protected by TEE such as Intel SGX

and verified before joining in the network. Therefore

each node is assumed to be not malicious and there is

no need to defend against Byzantine faults. The advan-

tage is that Coco can adopt simple and quick consensus

algorithm such as Raft instead of wasteful and compute-

intensive algorithms like PoW. Therefore Coco can pro-

vide higher throughput and lower latency than general

public blockchains such as Ethereum. Also, TEE can

guarantee the confidentiality of transactions and smart

contracts. However, Coco is not suitable for building

public blockchain systems in that not everyone is free to

join. In contrast, ShadowEth is built on existing pub-

lic blockchains like Ethereum and can provide higher

fault-tolerance.

TEEchan[13] and TEEchain[14] establish high-

performance and secure micropayment channel for the

Bitcoin network. Users that need frequent mutual

transactions can set up a channel and perform fund

transfer through the channel without sending transa-

ctions onto the blockchain, which can improve the

throughput and lower the latency. Only the setup and

settlement will be reflected as transactions on the chain.

TEEchan and TEEchain leverage TEEs to guarantee

the security and the confidentiality of the channel with-

out any modification to the Bitcoin network. But they

only provide enhancement for simple bitcoin transac-

tions while ShadowEth applies to any smart contract

system.

9 Conclusions

We introduced ShadowEth, a system that addresses

a major concern about the current smart contract sys-

tems based on the blockchain — the lack of confiden-

tiality. Unlike the pure and computationally complex

solution (such as Zcash) and the reconstructed licens-

ing chain (such as Coco), ShadowEth can guarantee

the confidentiality of existing public blockchains like

Ethereum without any modification. ShadowEth sepa-

rates the process of the verification of a smart contract

from the private execution, and only puts the verifi-

cation onto the blockchain, without revealing any se-

crets. The actual logic of smart contracts is executed

by off-chain TEE and the communication is encrypted

by a secret key only kept by TEE. We used a native

Ethereum smart contract named bounty contract to

handle the publishing, verification and settlement of a

private contract, which ensures the integrity and coer-

civeness. Then we presented the applicability by case

studies. We also implemented a prototype using Intel

SGX on the Ethereum network and analyzed the se-

curity and availability. We believe that ShadowEth is

a practical approach to building a confidential public

smart contract system.
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