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Abstract Mobile crowd sensing is an innovative paradigm which leverages the crowd, i.e., a large group of people with

their mobile devices, to sense various information in the physical world. With the help of sensed information, many tasks

can be fulfilled in an efficient manner, such as environment monitoring, traffic prediction, and indoor localization. Task

and participant matching is an important issue in mobile crowd sensing, because it determines the quality and efficiency

of a mobile crowd sensing task. Hence, numerous matching strategies have been proposed in recent research work. This

survey aims to provide an up-to-date view on this topic. We propose a research framework for the matching problem

in this paper, including participant model, task model, and solution design. The participant model is made up of three

kinds of participant characters, i.e., attributes, requirements, and supplements. The task models are separated according to

application backgrounds and objective functions. Offline and online solutions in recent literatures are both discussed. Some

open issues are introduced, including matching strategy for heterogeneous tasks, context-aware matching, online strategy,

and leveraging historical data to finish new tasks.

Keywords mobile crowd sensing, participant selection, task allocation, task and participant matching

1 Introduction

Mobile crowd sensing (MCS)[1-2] has attracted sub-

stantial attentions these years in both research litera-

tures and commercial applications. With the increase

in the availability of smart devices, including mobile

phones, smart vehicles, wearable devices and so on,

MCS has become more and more popular. The key

feature of MCS is to recruit common participants and

their smart devices to execute large-scale tasks, such

as city monitoring[3-4], smart transportation[5-6], and

emergency alarming[7]. A traditional way to finish such

tasks is to employ dedicated staffs and devices to pa-

trol around the city and collect required information;

hence it costs much time and money. Currently, smart

devices are equipped with a richer set of sensors, includ-

ing GPS, cameras, accelerometers, microphones, gyro-

scopes, etc.[8] These sensors enhance the sensing capa-

bilities of smart devices, and make it possible to get

abundant sensing data from ordinary smart devices.

Survey

This work was partially supported by the National Natural Science Foundation for Outstanding Excellent Young Scholars of
China under Grant No. 61422214, the National Natural Science Foundation of China under Grant Nos. 61402513, 61379144, and
61772544, the National Basic Research 973 Program of China under Grant No. 2014CB347800, the Hunan Provincial Natural Science
Fund for Distinguished Young Scholars of China under Grant No. 2016JJ1002, the Natural Science Foundation of Guangxi Zhuang
Autonomous Region of China under Grant No. 2016GXNSFBA380182, the Guangxi Cooperative Innovation Center of Cloud Computing
and Big Data under Grant Nos. YD16507 and YD17X11, and the Scientific Research Foundation of Guangxi University under Grant
Nos. XGZ150322 and XGZ141182.

∗Corresponding Author

©2018 Springer Science +Business Media, LLC & Science Press, China



Yue-Yue Chen et al.: Survey on Task and Participant Matching in Mobile Crowd Sensing 769

Moreover, the computing capability of portable equip-

ments has become more and more powerful. With the

help of massive widespread participants and their smart

devices, an MCS system can collect information more

economically and timely.

As illustrated in Fig.1, an MCS framework consists

of three parts, i.e., the MCS server in the cloud, task

publishers, and participants with smart devices. The

task publishers upload tasks and requirements to the

MCS server, and the MCS server is responsible of pro-

viding results to them. After receiving tasks from mul-

tiple task publishers, the server does some task mana-

gement work before publishing them to participants,

such as large task decomposing, similar tasks fusion

and so on. The participants register their information

to the server, if they are interested in some tasks. The

server selects some participants as participants to exe-

cute related tasks. With abundant embedded sensors,

participants are able to sense various data and help to

finish the tasks. The MCS server is in charge of data

collection, processing and providing service for the par-

ticipants. Numerous participants can be either data

providers or data consumers. That means the partici-

pants can provide data for the MCS server and request

data service from it.

MCS Server

Participants

Sensing DataMatch

Task-Publishers

Tasks

Results

GPS
Accelerometer

Compass
Gyroscope

Microphones
Cameras

...

Fig.1. MCS framework.

From the MCS server’s perspective, many tasks

from multiple publishers need to be finished, while lots

of participants wait to execute tasks at the same time.

Therefore, it is important to match tasks and partici-

pants properly. However, it is also challenging to finish

the matching due to multiple reasons. Firstly, both

tasks and participants have many different attributes

and requirements, and it is difficult to match proper

participants and tasks. Secondly, mobility is an impor-

tant feature of participants in the MCS framework, and

it makes the matching problem more difficult. Thirdly,

both tasks and participants usually appear dynami-

cally, which brings up new challenges for matching in

real time. To tackle these problems, many matching

methods have been proposed and a great number of

papers have been published in these years.

In this paper, we survey the up-to-date research is-

sues about the task and participant matching problem,

so as to plot the mainstream and emerging area of the

matching problem. To the best of our knowledge, there

is no previous survey paper about the matching prob-

lem in MCS. We propose a novel research framework

for the matching problem in this survey, including par-

ticipant model, task models, and solutions design. The

related research work is surveyed according to the three

parts in the framework as follows.

• For the participant model, the literatures are clas-

sified into three types based on different participant

characters, including participant attributes, require-

ments, and supplements.

• For the task model, the literatures are classified

into two types based on the sensing scope, i.e., area task

and point task.

• For the solution design, the literatures are divided

into online algorithms, and offline algorithms based on

the input data availability from the start.

The remainder of the paper is organized as follows.

In Section 2, the process details of MCS and the re-

search framework of matching problem are introduced.

In Section 3, multiple characters of the participants are

discussed. Different task models based on task back-

ground and objective functions are listed in Section 4.

The solutions are compared in Section 5. After review-

ing lots of literatures, some future research directions

are introduced in Section 6. Finally, Section 7 concludes

this paper.

2 Preliminaries and Research Framework

In this section, we first introduce the preliminaries

for the process of MCS and locate the matching prob-

lem among this process, and then illustrate the research

approach in this paper and the main contents of the

matching problem.
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2.1 MCS Process

According to the MCS framework, the MCS process

is divided into three steps, as shown in Fig.2, includ-

ing participant recruitment, task execution, and data

processing.

Incentive

Matching

Sensing

Data Uploading

Pre-Processing

Data Mining

Visualization
Data 

Processing

Task 
Execution

Participant 
Recruitment

MCS 
Process

Registration

Fig.2. Three steps and related domains in the MCS process.

In the first step, to get sufficient high-quality sensing

data, the MCS server needs to recruit proper partici-

pants for different tasks. Three substeps are involved

in this step, i.e., registration, matching, and incentive.

Incentive strategies focus on balancing benefit between

the MCS server and participants. On one hand, partici-

pants are usually getting some payments for their task-

execution cost. On the other hand, the budget of the

MCS server is limited. Hence, there is a natural con-

tradiction that both the server and participants want

to maximize their own benefit. Some reviews about

this domain[9-12] have been published. Task description

is included in the registration step, and participants

would sign in interested tasks. The matching between

participants and tasks, marked with a dotted rectangle

in Fig.2, is discussed in this paper. The matching sub-

step focuses on selecting proper participants for proper

tasks (or vice versa), and attributes of both participants

and tasks should be considered in matching strategies.

Hence, the matching substep is very fundamental in the

whole MCS process.

The second step is task execution, which also in-

cludes three substeps. Substep 1 is information sens-

ing with mobile sensors according to task requirements

to get needed information. Substep 2 is data pre-

processing (such as noise filtering, data quality en-

hancement) by smart devices to reduce uploading cost.

Substep 3 is data uploading by different methods to the

MCS server. The constraints considered in this step in-

clude energy[13], cost and hardware restraint[14].

The third step is data processing. Data min-

ing based on information uploaded by participants is

needed in this step. Moreover, most of the MCS sys-

tems may visualize their service and release APPs.

Many applications have been designed in the MCS sys-

tems. For example, one kind of MCS applications is

road-related. Koukoumidis et al. introduced a traf-

fic schedule service based on traffic signals detecting

and predicting[5]. Guo et al. introduced a shop pro-

filing system through crowd sensing WiFi heat map

and machine learning algorithms[15]. Zhou et al. pre-

dicted bus arrival time based on bus passengers’ crowd

sensing[16]. Morishta et al. aimed to find the flow-

ering cherries along roads using mobile crowd data[6].

Some other kinds of applications are also introduced

in recent papers. Cherian et al. designed a method

to gauge the occupancy of in-door parking garages, by

detecting driving status through cellphones[3]. Ludwig

et al. proposed an emergency discovery system, which

relies on crowd participants[7]. Guo et al. proposed

to transfer the community bulletin boards to online in-

formation, which is meaningful for information sharing

and propagation[4]. The constraints considered in this

step include data reliability, error detection, and imple-

mentation effort.

In particular, the privacy[17-18] and the security[19]

problems accompany the whole MCS process. Based

on the introduction of the MCS process, we can see

that, task execution is the main work of participants,

and data processing is mainly the server’s job, while

the participant recruitment needs the efforts of both

participants and the server.

2.2 General Framework for Solving the

Matching Problem

As discussed before, the matching substep deter-

mines which data to select and how to collect data.

Hence, the quality of sensing information collected by

the MCS server heavily depends on the matching pro-

cess. There are two main components in this substep,

i.e., participants and tasks. Both participants and tasks

have different characteristics and requirements. There-

fore, to execute the matching process successfully, these

characteristics and requirements have to be considered

and discussed. In this survey, we propose a framework

for solving the matching problem in this subsection.

This framework depicts the basic research procedures

for matching problem in MCS. The framework is illus-

trated in Fig.3. We summarize the research procedure
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Fig.3. Research framework for participant and task matching problem in MCS.

into three parts, participant model, task model, and

solution design.

In the first part, we propose a general participant

model for the MCS process. We believe that most of the

participant characters studied till now can be depicted

by our participant model. The participant model con-

sists of three elements, i.e., the participant attributes,

the participant requirements, and supplements of the

participants. The participant attributes depict the in-

herent characters of participants while the matching

process happens. The requirements from participants

are sent to the server, and they express the participants’

interests in the matching process. The supplements of

participants indicate the extrinsic factors, which may

influence the selection results in the matching process.

The combination of the three elements illustrates the

status of participants in the matching process. More

detailed discussion about the participant model is in-

troduced in Section 3.

In the second part, we introduce several task mod-

els appeared in related literatures till now. We divide

these task models into two main categories based on

task sensing range, i.e., area tasks and point tasks. The

reason is that the objective functions and requirements

of these two kinds of tasks are always different. If the

sensing scope of a task is an area, the task is called area

task. For example, the task of sensing the PM 2.5 val-

ues in a city, and the task of finding traffic congestion in

a downtown are all area tasks. A point task means that

the task sensing scope is a point. For instance, the task

of taking a picture of a church, and the task of collecting

the noise value at the doorway of a bar, are point tasks.

In the area tasks, the coverage is the most concerned

problem, while the completion rate in the point tasks is

discussed widely. In Section 4, we will introduce more

find-grained task models within each main category.

Furthermore, solutions design with the given

participant model and task models is crucial for the

matching problem. We divide the existing solutions

into two types, i.e., offline matching and online match-

ing. If the participants and tasks are known in advance,

the matching problem can be formulated into an offline

matching problem. If the participants or tasks come to

the MCS server dynamically, the matching problem is

an online matching problem. Related algorithms about

the two types of solutions used in recent papers are

introduced and discussed respectively in Section 5.

3 Participant Model

Many participant characters have been discussed in

recent literatures. To contain different characters of

participants under different situations and to illustrate

a participant comprehensively, we propose a general

participant model, as shown in Fig.4. The participant

model consists of three components, i.e., participant at-

tributes, requirements, and supplements. The partici-

pant attributes depict the inherent characters of the

participants, such as reputation and mobility. The at-

tributes of a participant are determined by the par-

ticipant itself. The participant requirements are the

interests from participants to the MCS server or task

publishers. For example, some participants may re-

quire to protect privacy, and some participants may

require to select tasks by themselves (initiative) instead

of being assigned tasks by the MCS server. The par-

ticipants supplements indicate the extrinsic characters

about participants, which are the complements besides

the inherent characters and participant requirements.

The supplements include social features of participants,
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the environmental context of them, etc. Actually, there

are far more participant characters than those we list.

However, most of the appeared characters belong to one

of the three elements. In this section, we will introduce

the three elements and related characters, respectively.

Attributes

>Reputation

>Participant Mobility

Requirements

>Privacy

>Initiative

Supplements

>Social Features

>Context

Participant Model

+ +

Fig.4. General participant model for MCS.

3.1 Participant Attributes

The participant attributes indicate the inherent

characters of participants. These characters are deter-

mined once the participants come to the tasks. Two

typical participant attributes are discussed in this sub-

section. The first one is the reputation, which impacts

the quality of uploaded data. The second one is the par-

ticipant mobility. The concerned factors include that,

the needed participants are mobile or static, and the

mobile trajectories of participants are alterable or not.

3.1.1 Participant Reputation

If the reputation of participants can be gotten in

public, recruiters are able to pick the participants ac-

cording to their reputation ranking. However, no uni-

form reputation record exists in mobile crowd sensing,

even though some reputation records have been availa-

ble in economic area. That is because evaluating the

reputation of a participant is challenging, and comput-

ing methods of reputation can be various with different

tasks and different participants.

Many reputation frameworks have been proposed.

Huang et al. proposed a reputation system for evalu-

ating the trustworthiness of participants, utilizing the

Gompertz function to compute data quality uploaded

by a device over a period of time[20]. A higher repu-

tation score represents more reliable data in the past.

Truskinger et al. concluded that the past perfor-

mance of participants, the opinions of other partici-

pants, or a combination of both was used to calculate

reputation[21]. A reputation framework, combining an

initial score based on direct or indirect data sources and

a performance score based on performance of the partic-

ipant in current task, is proposed in [21]. Christin et al.

considered the privacy of participants while establish-

ing their reputation files, utilizing periodic pseudonyms

and the reputation transfer[22]. Ren et al. introduced

a bid price into the reputation system to evaluate the

cost performance ratio of participants[23]. Mousa et al.

reviewed the reputation frameworks clearly in mobile

participatory sensing[24].

3.1.2 Participant Mobility

Participants in an MCS system can be either static

or mobile. In a static situation, the selection strategies

are easy to design. For example, if a task queries the

temperature of an area at a certain time, the partici-

pants can upload their possible locations to the MCS

server. However, in a mobile situation, how to select

sensing data is challenging, because the trajectories of

participants are sprawling. Usually, there are two ways

to select sensing data from cluttered trajectories. The

first way is to select participants and their whole tra-

jectories, which may incur redundancy, since different

trajectories may overlap in some segments. The second

way is to select segments instead of the whole trajecto-

ries to avoid redundancy.

Multiple researches are based on the first way. Zhao

et al. removed redundant participants by analyzing his-

torical trajectories and calculating the coverage ratio of

target area[25]. The constraint is the limited budget.

He et al. selected participants based on predictable

trajectories[26], and the selection goal is to maximize

the spatial and the temporal coverage of the target

area. The trajectory of each participant is supposed

to be predicted, which can be achieved in many ways,

such as navigation, periodic movement[27], or just up-

loaded by participants themselves. Gao et al. selected

bus routes to satisfy coverage requirements[28]. The bus

routes can be known beforehand since the bus routes of

a city are usually changeless. All these papers select

the whole trajectories of the participants to get sensing

data. They all use the greedy selection strategy as one

of the matching algorithms.

As mentioned before, selecting the whole trajecto-

ries is an intuitive method, while the drawback is ob-

vious. The redundancy exists when the selected tra-

jectories are overlapping, and the payment for the re-

dundancy is a waste. As illustrated in Fig.5, suppose

we want to monitor the environment condition of a city.

After publishing the area scope to the crowd, three par-
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ticipants apply to contribute to the task. The trajecto-

ries of three participants are shown in Fig.5. If we need

to recruit two of them due to the limited budget, data

redundancy cannot be avoided no matter which two are

chosen, because the first half of their trajectories are

almost the same. Therefore, several studies are based

on the second way, i.e., the segment selection. Trajecto-

ries can be divided into multiple segments, according to

spatial distance or temporal distance. Based on spatial

distance, segments belong to different squares. Boutsis

and Kalogeraki proposed that when there were multi-

ple segments within a same square, the MCS server as-

signed different costs per segment based on the availa-

bility of the segments[30]. Hence, the selection stra-

tegy can be designed to achieve a trade-off between

the quality of sensing data and the cost. Hamind et

al. discussed the segment selection problem in traffic

conditions, where trajectories were along with roads,

and the trajectory segments were determined by road

segments[31]. Chen et al. proposed both offline and

online segment selection mechanisms for predicted tra-

jectories, and backward greedy algorithm was used in

[29]. Based on temporal distance, the length and the

pattern of different segments are different, and hence

the selection problem is more challenging. However, to

the best of our knowledge, few literatures focus on this

issue. Zheng provided an overview for more methods

to segment trajectories[32].

A

B

C

Fig.5. Example of trajectory redundancy[29] .

3.2 Participant Requirements

The participant requirements indicate the need of

the participants sent to the MCS server or task re-

questers. We discuss two of requirements, since these

requirements have been repeatedly mentioned in recent

literatures. The first one is the participant privacy,

which should be protected in MCS applications. The

second one is the participant initiative, which means

the tasks are selected by participants themselves or as-

signed by the MCS server.

3.2.1 Participant Privacy

Smart devices are widely used nowadays. On one

hand, the smart devices give us more and more conve-

nience for our lives and work. On the other hand, the

risk of our privacy leakage is getting increasingly higher.

One important obstacle on the road of implementing

mobile crowd sensing is that people do not want to

share their information or sensing data. Therefore, pro-

tecting participant privacy when matching participants

and tasks is the obligation of the MCS server.

Pournajaf et al. examined the problem of spatial

task assignment in crowd sensing, when participants

utilize spatial cloaking to obfuscate their locations[33].

Cloaking is a popular obfuscation way to protect the

location privacy of the participants. It means that a

coarse-grained location scope is used to represent a fine-

grained location. The MCS server can only receive a

scope instead of a precise location. They proposed a

novel two-stage optimization approach which consists

of a global optimization using cloaked locations and

a local optimization using participants’ precise loca-

tions without breaching privacy. Wang et al. adopted

differential-privacy in sparse MCS to provide a theo-

retical guarantee for participants’ location privacy[34].

Sparse MCS is a concept proposed by Wang et al.[35],

which aims at selecting as few as possible participants

to finish tasks, while guaranteeing the information qua-

lity. Differential privacy is another obfuscation mecha-

nism to protect privacy, and it is widely used in secu-

rity area. Wang et al.[34] argued that the effectiveness

of cloaking was greatly impaired if the adversary had

prior knowledge about the target participants’ location

distribution. Differential privacy means that an obfus-

cated location is mapped to an actual location, and the

obfuscated location is uploaded to the MCS server in-

stead of the actual location. As shown in Fig.6, the

solid people icons indicate the actual locations, while

the dotted people icons indicate the obfuscated loca-

tions, and the stars indicate the task allocation results.

Data quality loss is discussed to balance privacy protec-

tion and data quality guarantee. Xiao et al. proposed a

participant recruitment protocol to select the minimum

amount of participants to guarantee the task quality,

while protecting the privacy of the participants[36]. The

protocol is based on a greedy strategy. The approxima-

tion ratio is analyzed, and the security of the protocol

is proven.
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Fig.6. Location obfuscated method and task allocation in [34].

Celis et al. pointed out that participant privacy

had attracted a lot of attentions, while the task pri-

vacy was ignored seriously[37]. Hence, to protect task

privacy, it was proposed to split a whole task into multi-

ple small components. Information loss functions were

introduced to formally measure the amount of private

information leaked as a function of the task assignment.

Multiple assignment situations are also discussed.

3.2.2 Participant Initiative

In most literatures about the matching problem, the

MCS server is responsible for selecting and assigning

tasks to each participant. However, the participants

can be active enough to select tasks themselves in some

situations, instead of waiting to be selected as partici-

pants by the MCS server. The MCS server releases

many points of interest (PoIs) to participants, and par-

ticipants can choose interested ones according to their

plans and upload their options. In this situation, par-

ticipants do not need to expose their private informa-

tion, but have to negotiate with the MCS server about

their options. Cheung et al. proposed an asynchronous

and distributed task selection strategy to help the par-

ticipants choose PoIs on their own, and the selected

tasks form their trajectories[38]. The MCS server re-

leases tasks with locations, deadlines and payoffs. The

participants need to upload their starting location and

ending location. The participants select tasks which

can be finished before the deadline. A non-cooperative

game based selection process was proposed. Zhang et

al. proposed a novel taxi orders dispatch model based

on a popular ride-sharing system called DiDi[39]. The

passenger orders are dispatched to multiple drivers,

and each driver determines whether or not to accept

the dispatch. Many factors may influence the decision

of drivers, and a machine learning method is used to

model the decision results.

Another way is to neutralize the initiative of both

the participants and the MCS server. Celis et al. pro-

posed an intermediate approach called Tug Of War

(TOW), which balanced flexibility for both the partici-

pants and the MCS server[37]. The tasks are supposed

to be split into multiple components, and each compo-

nent can be independently completed by a user. The

authors[37] presented selection strategies for all three

selection methods, and analyzed the tradeoffs.

3.3 Participant Supplement

The supplements of participants indicate the ex-

trinsic characters related to participants, including the

social features and contexts. The social features can

help to describe the participants, since the social acti-

vities are important components of people’s lives. The

contexts of participants describe the surround features

around participants or their sensors. The contexts can

help to match participants more precisely.

3.3.1 Social Features of Participants

With the rapid development of mobile social net-

work, human life is becoming more and more closely

linked to their social behavior. Cho et al. pointed out

that users’ long-distance movements were determined

by their social networks, while short-distance trajecto-

ries were daily repeated[27]. Furthermore, participants

can be distinguished by their social tags, such as loca-

tion stamps and interests. Therefore, selection strate-

gies can be designed according to their social informa-

tion. Two kinds of frameworks for matching problem

based on social network are introduced in the following.

One way is to select participants based on their

social tags. In this situation, the MCS server is sup-

posed to have the needed information of participants,

which can be uploaded by participants themselves or

mined from public data. Cardone et al. proposed a

geo-social crowd sensing platform, profiling participants

with time, location, social and other information[40].

The participants are selected for different tasks accord-

ing to their profiles. Ren et al. proposed a social-aware

selection framework, considering the social tags, task

delay and reputation in crowd sensing[23]. Multiple so-

cial tags, such as sporting (interest tag), Toronto (loca-

tion tag), and so on, are related to participants. Diffe-

rent tasks can select corresponding tags according to re-

quirements, and hence select related participants. Simi-

larly, some selection mechanisms were proposed based

on the expertise or the speciality of the participants.
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The expertise and the speciality indicate that a par-

ticipant may only have expertise or speciality in some

certain domains. Pu et al. selected participants accord-

ing to their speciality tags, indicated by task attributes

of categories and keywords[41]. Mavridis et al. modeled

the tasks and the participants using a skill tree, and

proposed a task assignment mechanism using hierarchi-

cal skills for the model[42]. Zhang et al. formulated an

expertise-aware task allocation problem[43]. The exper-

tise of a task or a participant is obtained by semantic

analysis, including semantic information extraction and

dynamic hierarchical clustering. The random observa-

tions of participants for a task are assumed to follow a

normal distribution. Hence, the formulated task allo-

cation problem can be solved by the EM (expectation-

maximization) algorithm.

The other way is to identify participants through

multi-hop friendship relations. It means that the tasks

can be finished by friends and friends of the friends.

Amintoosi and Kanhere proposed a trust-based selec-

tion framework based on social network, and a route

selection strategy was also put forward[44]. Chang and

Wu pointed out that the absence of a relay worker might

disrupt the information flow in a task finishing process,

and proposed several data collection strategies based

on two special social structures[45]. One social struc-

ture is triangle relation among any three consecutive

participants, and the other is quadrilateral relation be-

tween two intersected workflows. In such a selection

framework, the route information and the route selec-

tion method are key research points.

3.3.2 Contexts of Participants

Context includes the participant status and the sit-

uations of surrounding environment. Participant status

includes motion status (running, walking, etc.), move-

ment status (location, direction, etc.), and so on. Sur-

rounding status includes the number of companies, the

environment categories (park, gym, home, etc.), and so

on.

To select participants according to their context,

the context information should be detected successfully.

With the help of the rich set of embedded sensors in

smart devices, context detection is becoming more and

more accurate. Nath proposed a user status sensing

framework based on a heterogeneous architecture[46].

By combing various sensor data, user status (e.g., Is-

Driving, IsWalking, AtHome) can be obtained. Fur-

thermore, by mining relationships among various con-

text attributes, more elaborated context can be de-

duced. Much energy can be saved due to the deduc-

ing process, because sensing, specially GPS sensing,

is energy-consuming. More context detection methods

can be seen in [8, 50].

Reddy et al. assumed that user trajectories are con-

text annotated, and designed a data collector selection

strategy based on the annotated context[47]. Tamilin

et al. presented an integrated realtime civic awareness

and engagement platform, and pointed out that user

context was an essential element to determine whether

the user was in conditions relevant to tasks[51]. How-

ever, the user context is represented by sensing capa-

cities of participants, which is incomplete. Zhang et al.

discussed the context-aware participant selection mech-

anism, and indicated that task utility was dynamic be-

cause participants can log in or out at any time[48].

The authors assumed that the user context can be rep-

resented by logging out probability, and the selection

strategy was designed aiming to maximize the long-

term task utility. Liu et al. proposed to select partici-

pants according to their context[49]. The ground truth

of the sensing data is difficult to get, yet the context

of the participants can be detected. The data quality

is related to the context. Hence, the context can be a

measurement to help matching. For example, the data

quality is different when a participant is sitting, walk-

ing, or running. A context-quality classifier is trained to

capture the relation between context information and

the data quality, and the classifier is applied to guide

participant recruitment.

Context is an important factor in the MCS system,

and behavior recognition has been studied in many lite-

ratures. Nevertheless, selection strategies based on user

context have not been researched deeply. There are

various reasons. Firstly, the context changes rapidly

for each user in each time slice, and continual behavior

detection is energy-consuming. Secondly, surrounding

situation is hard to be determined just by device sen-

sors. For example, it is difficult to detect whether a user

is in a park or on a road. Thirdly, too many context

categories exist in human daily life, and no uniform tax-

onomy is defined. With all those obstacles, more efforts

are still needed in context-aware selection framework.

3.4 Summary of the Participant Model

The summary of literatures about the participant

model can be seen in Table 1. Several conclusions are

drew based on Table 1 as follows. Firstly, most of the

related literatures focus on one of the participant char-
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Table 1. Summary of Different Characters in Participant Model

Paper Attribute Requirement Supplement

Reputation Mobile Privacy Initiative Social Context

Huang et al.[20]
√

Truskinger et al.[21]
√

Christin et al.[22]
√ √

Ren et al.[23]
√ √

Zhao et al.[25]
√

He et al.[26]
√

Gao et al.[28]
√

Boutsis and Kalogeraki[30]
√

Hamid et al.[31]
√

Chen et al.[29]
√

Pournajaf et al.[33]
√ √

Wang et al.[34]
√ √

Xiao et al.[36]
√ √

Cheung et al.[38]
√ √

Zhang et al.[39]
√ √ √

Celis et al.[37]
√ √

Cardone et al.[40]
√

Pu et al.[41]
√

Mavridis et al.[42]
√

Zhang et al.[43]
√

Amintoosi and Kanhere[44]
√

Chang and Wu[45]
√

Nath [46] √

Reddy et al.[47]
√ √

Zhang et al.[48]
√ √

Liu et al.[49]
√

acters, since it is difficult to consider all the charac-

ters. Only [39] combines the three kinds of participant

characters, i.e., attributes, requirements, and supple-

ments. Secondly, participant mobility is considered in

most related papers. The privacy protection strategies

and the initiative strategies are always associated with

the participant mobility. The participant mobility pro-

vides more opportunities for ingenious privacy protec-

tion and initiative strategies. Thirdly, the social charac-

ters of participants are always considered alone instead

of being integrated into other characters. Therefore,

combinational optimization based on multiple partici-

pant characters is a future research direction.

4 Task Models

As introduced in the research framework in Sec-

tion 2, we divide the task models into two main cate-

gories, i.e., the area tasks and the point tasks. The

two categories have been discussed repeatedly in recent

literatures. The accordance of the classification is the

task’s spatial scope, which is an area or a point. In

this section, the fine-grained task models that belong

to each category are discussed. We classify the task

models under each category based on different objec-

tive functions, and the classification result can be seen

in Fig.7. For the area tasks, the coverage of the target

area is the most important problem. Baseline cover-

age functions include basic spatial-temporal coverage

and weighted coverage. Other definitions about the

area quality other than coverage are also discussed. For

point tasks, the objective functions can be divided into

three kinds, i.e., completion rate maximization (CRM),

CRM with uncertain participants and participant-task

utility optimization. Specially, there are some other

kinds of task models, which have not been discussed

so much in recent literatures. We will introduce them

briefly at the end of this section.

Area Tasks

>Basic ST Coverage

>Weighted Coverage

>Other Area Quality

Point Tasks

>Basic CRM

>Uncertain CRM

>p-t Utility Optimize

Task Models

Fig.7. Task model classification in MCS.
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4.1 Area Task

An area task always concerns the whole spatial area

during a certain period. However, it is difficult to col-

lect all data of the whole target area. One reason is

the limited budget. It is costly to recruit enough par-

ticipants to cover the whole task area. Another reason

is regional inequality. Sometimes there are no partici-

pants at all in some remote areas. Hence, to meet diffe-

rent tradeoffs between the task requirements and the

participant characters, it is important to decide diffe-

rent matching objective functions.

After reviewing recent literatures about the match-

ing problems in area tasks, we divide the related objec-

tive functions into three categories, i.e., basic spatial-

temporal coverage, weighted coverage, and other defi-

nitions of area quality. The concern of our classifica-

tion basement about the coverage objectives is whether

the sub-areas are treated equally. In the basic spatial-

temporal coverage, all the divided areas in the whole

task area are treated equally. In the weighted coverage,

different divided areas need different kinds of partici-

pants. Moreover, some novel definitions of area quality,

besides the coverage objectives, are introduced in the

last category.

4.1.1 Basic Spatial-Temporal Coverage

One basic spatial-temporal coverage standard is the

coverage ratio, which means the ratio of sensed area

to the whole area. In order to maximize the spatial-

temporal coverage of participants within a given bud-

get, a common method can be illustrated as follows.

The target area is divided into multiple squares, and

the time period is divided into multiple time slices. If

the amount of given budget cannot afford all the par-

ticipants, a subset of them should be selected which

can maximize the coverage ratio. He et al. for-

mulated the participant trajectories into a spatial-

temporal matrix, and defined the matching problem as

maximizing spatial coverage or temporal coverage sep-

arately by selecting proper participants based on pre-

dicted trajectories[26].

Another basic spatial-temporal coverage standard

is uniform coverage, which means the collected data

should be uniformly distributed in the whole area.

However, measuring the uniform degree of participant

distribution is challenging. Ji et al. proposed a hierar-

chical entropy-based objective function to address this

challenge[52]. Coverage ratio can be different according

to different partition granularities, as shown in Fig.8.

The distributions in Fig.8(a) and Fig.8(c) are identical,

while the partition granularities are different. Fig.8(b)

and Fig.8(d) also have the same distribution and diffe-

rent partition granularities. Fig.8(a) and Fig.8(b) are

in the fine-grained partition granularity, and their cove-

rage ratios are the same, which is 1/4, although their

distributions are different. Fig.8(c) and Fig.8(d) are

in the coarse-grained partition. The coverage ratio is

1/4 in Fig.8(c), while it is 1 in Fig.8(d). The entropy

mean of multiple granularities is selected as the uni-

form degree measurement. Furthermore, a parameter

is used to tune up coverage uniformity and covered

square number. To maximize the proposed measure-

ment function, a graph-based task selection strategy is

designed according to starting and ending locations of

the participants, and an iterative participant selection

process is defined. However, the entropy only repre-

sents the amount of information inside the target area,

rather than spatial location relationship between par-

ticipants. Hence, a more accurate uniform measure-

ment function is needed. Zhao et al. further divided

time slices into multiple sampling periods, and put for-

ward that one square should only be sampled once (or

predefined times) in a time slice[25]. To reduce sam-

pling redundancy, a greedy strategy is proposed based

on historical trajectory matrix. However, if the num-

ber of candidates is so small that many squares cannot

be sensed even once during a sensing time slice, this

selection method cannot work any more.

(a) (b)

(c) (d)

Fig.8. Same distribution showing different uniform degrees in
different partition granularities[52].
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4.1.2 Weighted Coverage

Sometimes the matching strategy should be de-

signed based on area attributes, such as population, re-

gion ranking, and density requirement, instead of treat-

ing all the areas equally. For example, more people an

area contains, more precise the monitoring should be.

Hence, more participants should be selected within the

area.

Jaimes et al. proposed a geometric coverage model

where the weight of a sensor was the sensor number

within its coverage[53], as illustrated in Fig.9. The au-

thors aimed to find a subset of sensors whose union cov-

ers all the sensors. A combination of two kinds of greedy

strategies is designed to tackle this problem. However,

this measurement function may incur that participants

gather in densely-populated areas, and too few or even

no participants are selected in the area if the partici-

pants are distributed sparsely. Therefore, the weighted

coverage should be combined with uniform coverage

to illustrate a more reasonable coverage measurement

function. Mendez and Labrador argued that the size of

selected participant set for each area should be based on

the variability of the interested factor in that area[54].

If a factor is fairly constant in a region, which can be

constructed by historical data, a low number of partic-

ipants should be selected, and vice versa. The weight

is the temporal variety of interested parameters, which

is always ignored by most other papers. Hence, besides

the spatial variety, the temporal variety, such as the

time slice length, temporal uniform coverage, or tem-

poral weighted coverage, should be discussed more in

the future. Song et al. proposed that the quality of

information (QoI) of a square in a time slice can be

represented by the number of sensors needed for each

Fig.9. Geometric coverage model proposed in [53].

task[55]. The question is how to select the minimum set

of participants to satisfy the QoI requirements of the

whole target area within a given budget. The question

can be transformed into a nonlinear knapsack problem.

A mobility formulation based on probability and dy-

namic greedy selection strategy is designed to solve this

problem.

4.1.3 Other Definitions of Area Quality

Liu et al. proposed a new metric to measure the

sensing quality of a target area, which was called ur-

ban resolution[56]. Like the concept of image resolution,

the urban resolution is the number of gridded sensors.

Statistic methods are used to explore the relationship

between the number of sensors and the number of grid-

ded sensors. Kang et al. further enhanced the sensing

quality via data correlation[57], where a tensor decom-

position was used to analyze and rebuild the sensing

data.

Wang et al. tried to minimize the sensing

squares because of the limited budget, while guaran-

teeing the information quality of the whole task area

simultaneously[60]. The compressing sensing strategy

(STCS)[58] is used to deduce unsensed cells. Static par-

ticipants are supposed to be massive enough to cover

all the squares. One square is selected to be sensed at

one sensing cycle, until the information quality reaches

the defined threshold. Leave-one-out strategy is used

to measure the error rate of the reconstruction stra-

tegy, and a Bayesian inference is used to compute the

posterior probability distribution of sensing errors.

Wu et al. leveraged the metadata of photos, includ-

ing location, orientation, field of view, and range of a

camera, to define photo utility[59]. The utility is used

to measure how well a target area is covered by a set of

photos. Based on the defined utility, a photo selection

algorithm was proposed to achieve constant coverage

ratio under a resource budget.

4.1.4 Summary of Matching in Area Tasks

The comparison of different matching strategies in

area tasks is illustrated in Table 2. As discussed be-

fore, the basic spatial-temporal coverage metrics in-

clude coverage ratio[26] and uniform coverage[25,52]. In

all the three papers, the participant information is as-

sumed to be known before matching. However, accu-

rate trajectory prediction is difficult to achieve. Hence,

coverage ensuring with uncertain participants should be

discussed in the future. In the weighted coverage, seve-

ral distinctions between squares have been discussed in
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Table 2. Comparison of Different Matching Strategies in Area Tasks

Paper Summary Assumption Objective Constraint Mathematical Tool(s)

He et al.[26] Participant recruitment
strategy for vehicle-based
crowdsourcing

Known trajectories Max. spatial or tem-
poral coverage

Budget NP-complete proven;
greedy approximation;
genetic algorithm

Ji et al.[52] Crowd-based urban sens-
ing framework

Known departure/ des-
tination locations, and
time of trajectories

Uniform coverage
with minimal
participants

Budget Dynamic programming

Zhao et al.[25] Cooperative sensing and
data forwarding framework

One square sampled
once in a time slice

Reduce sampling
redundancy

Budget Greedy selection

Jaimes
et al.[53]

Incentive mechanism in
participatory sensing sys-
tem

Static participants Min. participant
number whose union
covers all participants

Budget Greedy selection

Mendez and
Labrador[54]

Method to determine par-
ticipant distribution

Static participants Improve the area esti-
mations with a fixed
participant number

N/A N/A

Song et al.[55] QoI aware dynamic partic-
ipant selection

Mobile participants Min. participants to
satisfy QoIs of all
squares

Budget Nonlinear knapsack; dy-
namic greedy selection

Liu et al.[56] A new metric to measure
the sensing quality of a tar-
get area

Known distribution of
sensors

N/A N/A Pareto distribution;
Monte Carlo simulation

Wang et al.[60] Leverage data reconstruc-
tion to reduce the number
of sensing cells while ensur-
ing the data quality

Static and unchanged
participants

Minimize the number
of sensing cells

Quality
threshold

Compressive sensing;
Bayesian inference; leave-
one-out re-sampling

Wu et al.[59] Method to crowdsource
photos that best cover the
target area

Photo metadata which
can be obtained

Max. defined cover-
age utility of selected
photos

Resource
budget

Greedy selection

Note: Max. means maximize; min. means minimize.

recent literatures, including the participant density[53],

the factor variability[54], and the quality requirement of

each square[55]. More differences should be concerned

in the future. Other definitions of area quality include

urban resolution[56], reconstructed data quality[60], and

visual coverage[59]. All three definitions are novel and

interesting, and more follow-on work should appear.

4.2 Point Task

In the mobile crowd sensing system, each point task

is always related to a specific location, and the partici-

pants should arrive at the location to finish the task. In

most literatures about the matching strategies of point

tasks, multiple tasks instead of single task are always

discussed together. As different point tasks are related

to different locations and participants can be static or

mobile, the matching strategies are variable.

After surveying the related literatures, it is found

that two important indicators are often used as op-

timization objectives, i.e., the completion rate maxi-

mization (CRM) and the participant-task utilities opti-

mization (PTUO). The former one aims to complete as

many tasks as possible, and the latter one aims to op-

timize a global participant-task utility defined accord-

ing to applications. Based on this discovery, we divide

the task model into three sub-models, i.e., basic CRM,

CRM with uncertain participants, and PTUO. In the

sub-model of basic CRM, some basic objective func-

tions with certain participants are introduced. In the

sub-model of CRM with uncertain participants, varia-

ble formulations of participant uncertainty are intro-

duced. In the sub-model of PTUO, we focus on the

different definitions of participant-task utilities. At last

in this subsection, we discuss the research status about

the tasks models in point tasks.

4.2.1 Basic Completion Rate Maximization

The completion rates of all the target point tasks

are discussed widely in recent literatures. The partici-

pants in this matching problem are always supposed to

be mobile.

If the trajectories of participants can be known or

predicted, the matching problem is an optimization

problem. Liu et al. analyzed two typical situations:

few participants more tasks (FPMT) and few tasks

more participants (MPFT)[61]. They proposed several

matching strategies for both situations. In the former

situation, the objective function is to maximize the to-

tal number of accomplished tasks. In the latter situa-

tion, the goal is to minimize the total number of selected
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participants. Similarly, Guo et al. proposed two kinds

of situations, where all tasks should be finished[62]. In

the first situation, the tasks are delay-tolerant, and

the participant trajectories are predicted. The delay-

tolerant task means that the deadline of the task is

loose, and there is no need to upload sensing data in

real time. The objective function under this situation is

to minimize the total number of selected participants.

In the second situation, the tasks are time-sensitive,

and the participant movements are intentional. Time-

sensitive means the sensing data should be uploaded

to the MCS server in real time. Intentional movement

means participants can move arbitrarily during the task

execution. The objective function under this situation

is to minimize the total distance between participants

and tasks.

Gao et al. aimed to monitor PM 2.5 of several im-

portant locations within a city[28], such as schools and

hospitals. The monitoring nodes are deployed on buses,

since the bus routes are distributed in the whole city

and are relatively stable. However, it is expensive to

install monitoring nodes on every bus. To design bus

selection strategy, the city area is divided into multi-

ple squares, and each square has an importance value

based on the distances between them and those impor-

tant locations. Moreover, each square can be covered

by several bus routes or several time slices; hence there

is a coverage degree for each square. As illustrated in

Fig.10, the number in each square indicates the impor-

tance, and the color in each square indicates the cove-

rage degree. The weight of each square is the product

of importance and coverage degree, and the objective

function is to maximize the weight sum of the selected

important locations (PoIs).

If the trajectories of participants cannot be pre-

dicted, the matching problem becomes more complex.

In most related literatures, some of restraints are set

for participants. For instance, the original location, the

destination, the start time, and the end time of par-

ticipants are known. The MCS server can plan trajec-

tories for participants under their permits. With this

precondition, Kang et al. proposed that each task must

be executed multiple times to ensure the reliability of

the sensing result[63]. The objective function of this

problem is to maximize the number of finished tasks

with a certain reliability by assigning appropriate sets

of tasks to participants. The trajectories of participants

in this problem are assumed to be alterable. The allo-

cated tasks for a participant determine the trajectory

of this participant. Offline and online matching algo-

rithms are discussed, respectively, and the competitive

ratio of proposed algorithms are calculated.

1 1/2 1/5 1/4 1/5

1/2 1 1/2 1 1/2

1 2 1 2 1

1/2 1 1/2 1 1/2

PoIs:

Coverage 

Degree:

1/102 1 1/4 1/9

Fig.10. Weight calculation of PoIs in [28].

In some other literatures, only static participants

are considered. Kazemi and Shahabi defined the com-

pletion rate maximization problem, and three alter-

native solutions were proposed to address this prob-

lem, including a greedy strategy, a least location en-

tropy priority strategy, and a nearest neighbor priority

strategy[64].

4.2.2 Completion with Uncertain Participants

In many situations, it is uncertain about whether

or not a sensor (or a participant) covers a task. Hence,

the probability of a task being finished by uncertain

participants should be considered. We introduce the

completion rate maximization problem with uncertain

participants.

Piggyback Crowdsensing (PCS) was proposed by

Lane et al.[65], which is an energy-efficient model lever-

aging smartphone application opportunities to perform

sensing and data uploading. Based on PCS, many

matching strategies aiming to maximize probabilistic

matching were proposed. It was proposed that area

coverage constraints can be replaced by cell tower cove-

rage constraint, since cell towers are distributed among

cities[66-68]. A high covering percentage of cell towers in

a given region ensures that most part of the given area is

covered. The call sequence of a user is assumed to be an

inhomogeneous Poisson process, and the intensity can

be estimated as the mean number of related historical

data. After that, the probability of a cell tower be-

ing covered by a user can be computed. The matching
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problem is formulated as maximizing the coverage rate

of cell towers at each time slice. Furthermore, Xiong et

al. aimed to achieve the full cell tower coverage, and

presented several participant selection methods based

on the calculated coverage probabilities[69]. The cove-

rage probability of adjacent squares can be computed

in some methods, and more complicated models based

on this precondition were studied.

Wang et al. also computed the coverage probability

based on historical data from a telecom operator, and

then further converted the matching problem into the

representation of a bipartite graph[70]. An iterative

greedy process is employed to optimize the matching

problem. Similarly, based on the piggyback model, Li

et al. formulated the coverage probability of a square

by a user to be the probability of making calls by the

user in this square[71]. The total coverage rate of square

is the probability sum of selected participants. The

probability of making calls by a user in a square can

be computed according to historical data. Li et al. in-

troduced a new MCS architecture which leverages the

cached sensing data to fulfill partial sensing tasks in

order to reduce the size of selected participant set[72].

Chen et al. studied the stochastic task recommen-

dation problem[73]. Each participant is associated with

several predicted trajectories, and the probability of

each trajectory can be calculated. The goal is to maxi-

mize the expected utility of all tasks achieved by se-

lected participants. Furthermore, Xiao et al. proposed

a deadline-sensitive task allocation framework with un-

certain participants[74]. Each participant is associated

with multiple probabilistic trajectories. Several partici-

pants might be recruited to cooperatively perform one

task, to ensure that the task can be finished before the

deadline. The objective function of this paper is to

maximize the finish probability of all tasks within each

deadline. The problem was proven to be NP-hard, and

several approximation algorithms were proposed in this

paper. The approximation ratios were also calculated.

4.2.3 Participant-Task Utilities Optimization

Besides the completion rates of tasks introduced

above, some participant-task utilities have been dis-

cussed in recent literatures as the objective functions.

The definitions of participant-task utilities are always

associated with application requirements. The utilities

combine both the participant characters and the task

objectives.

Tong et al. proposed to minimize the distance be-

tween the participants and the tasks[75]. The bipar-

tite graph was used to formulate the matching prob-

lem between the participants and the tasks. The two-

sided online situation was considered, where both par-

ticipants and tasks come to the MCS server dynami-

cally. Two approximation algorithms were discussed.

Lee et al. proposed to minimize the total driving time

from drivers to passengers in the online taxi-hailing

systems[76]. Real-time traffic conditions were consi-

dered. The previous dispatch strategies in DiDi 1○ are

to maximize the passenger-driver scores[39]. The score

is calculated through a learning-to-rank based method.

Yu et al. proposed a participant selection problem

for offline event marketing[77]. Three important fac-

tors were considered, i.e., distances between partici-

pants and event locations, overlapping social influence

of participants, and item coverage of participants. The

participant selection problem was transformed into a

combinatorial optimization problem with the objective

function of the marketing effect maximization.

Cheng et al. pointed out that previous stu-

dies on the matching strategies that maximize the

participant-task scores were only based on the present

information[78]. Thus, a prediction-based matching

problem was proposed to maximize a global matching

score, including the present matching and the future

matching. A grid-based prediction method was de-

signed, and a heuristic method was proposed to tackle

the matching problem.

4.2.4 Summary of Matching in Point Tasks

The comparison of different matching strategies in

point tasks is illustrated in Table 3. CRM is a tradi-

tional problem in point tasks, and we introduce diffe-

rent studies on this topic, including CRM with static

participants[64], with mobile participants[61-62], and

with mobile participants and heterogeneous tasks[63],

respectively. To support these researches, trajectory

prediction algorithms are needed. In the sub-model of

CRM with uncertain participants, we introduce several

kinds of formulations. The first kind is to formulate

the uncertainty of participants as the probabilities of

calls[66]. The second kind is to assume that there are

several possible trajectories of each participant[73-74].

The third kind is to assume that the coverage of

each sensor follows a Gaussian distribution[28]. In

the sub-model of PTUO, the participant-task utili-

ties are determined by applications. Several utili-

1○http://www.didichuxing.com, Apr. 2018
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Table 3. Comparison of Different Matching Strategies in Point Tasks

Paper Summary Assumption Objective Constraint Mathematical Tool (s)

Liu et al.[61] Multi-task allocation
framework

Known mobile partici-
pants

Max. the number
of finished tasks; min.
total payments

Movement
distance

Minimum cost maxi-
mum flow; multi-
objective optimization

Guo et al.[62] Multi-task allocation
framework

Known mobile partici-
pants

Min. movement dis-
tance; min. the num-
ber of participants

Time sensi-
tive or not

Greedy-enhanced ge-
netic selection

Kang et al.[63] Quality-aware online task
allocation

A task must be exe-
cuted multiple times;
alterable trajectories

Max. the number of
tasks exceeding qua-
lity threshold

Worker ca-
pacity; cost
budget

Greedy selection; branch
and bound

Kazemi and
Shahabi[64]

Completion ratio
maximization

Static participants Completion ratio
maximization

Budget Greedy selection;
entropy; nearest neigh-
bor

Zhang et al.[66] Participant selection
framework for piggyback
crowdsensing

Piggyback; known his-
torical records of par-
ticipant calls

Min. participant
number to meet
coverage requirement

Resource
budget

Poisson process; greedy
selection

Xiong et al.[69] Participant selection
framework for piggyback
crowdsensing

Piggyback; known his-
torical records of par-
ticipant calls

Min. participant
number to full cover
the task area

Resource
budget

Poisson process

Wang et al.[70] Participant selection
framework on a multi-task
sensing system

Piggyback; known his-
torical records of par-
ticipant calls

Max. defined utility
of participant and task
matching

Resource
budget

Poisson process; bipar-
tite graph; greedy selec-
tion

Li et al.[71] Offline and online
algorithms for piggyback
crowdsensing

Piggyback; known his-
torical records of par-
ticipant calls

Max. coverage proba-
bility

Resource
budget

Poisson process; greedy
selection

Chen et al.[73] Task allocation with uncer-
tain trajectories

N/A Max. the expected
utility

Time bud-
get

Lagrangian relaxation

Xiao et al.[74] Deadline sensitive task
allocation with uncertain
trajectories

N/A Max. the finish
probability of all tasks
within each deadline

Task dead-
line

Non-trivial set cover
problem; greedy selec-
tion

Gao et al.[28] Novel air quality monitor-
ing system by deploying
monitoring nodes on buses

N/A Maximize the weight
sum of the selected lo-
cations

Budget Greedy selection

Tong et al.[75] Matching in two-side on-
line situation

Participants and tasks
come to the server dy-
namically

Min. the distance
sum between partici-
pants and tasks

Budget Weighted bipartite
graph; Hungary
algorithm; greedy selec-
tion

Yu et al.[77] Participant selection
framework for offline event
marketing

Known participant in-
formation

Max. the marketing
effect

Budget Greedy selection

Cheng et al.[78] Prediction-based matching Static participants Max. the present
and future matching
scores

Budget Greedy selection; divide-
and-conquer

Note: Max. means maximize; min. means minimize.

ties are introduced in this paper, such as the to-

tal distance minimization[75], the total driving time

minimization[76], and the total scores considering diffe-

rent factors maximization[39,77]. Moreover, the future

utilities optimization is also discussed[78].

4.3 Other Kinds of Tasks

4.3.1 Joint of Area Tasks and Point Tasks

Zhang et al. pointed out that the optimization goal

of a point task was usually to maximize the comple-

tion rate, while that of an area task was usually to

maximize the coverage[79]. The authors proposed to

combine these two goals by leveraging the two kinds

of tasks. The coverage scope of participant trajecto-

ries formed by the participants’ traveling to the point

tasks can be used to improve the quality of area tasks.

A task management framework was designed to effi-

ciently match participants to the combined tasks. More

researches about the joint of area tasks and point tasks

should be made in the future, since the task fusion is

an efficient way to improve the matching quality.

4.3.2 Line Tasks

In vehicle-based MCS applications, the coverage of

paths is significant, because road-based services, such as

congestion warning and accident alarming, can be im-

proved through coverage information analysis. Hamid

et al. proposed a greedy vehicle-trajectory selection

strategy aiming to maximize the coverage ratio of a
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given path[31]. Since a vehicle may not stick to the

trajectory it announces, some applications require re-

dundancy at some part of the given path (for higher

accuracy). They introduced a leaving probability for

the former situation, and a coverage degree for the lat-

ter situation, to improve the selection strategies sep-

arately. More detailed trajectory related formulations

and computations are discussed in [32].

4.3.3 Visual Crowdsensing

Visual crowdsensing is an important paradigm of

crowdsensing. It leverages cameras of smart devices

to attain the information of targets. A target can be

a person, a building, a game, and so on. Guo et al.

surveyed the challenges and opportunities in the visual

crowdsensing[80]. In visual crowdsensing, a task is usu-

ally to take photos, which incurs new research issues

such as data redundancy identification and elimination,

high data processing cost, complex data structure, and

high data transmission cost. Several papers[81-82] have

been published to tackle the related problems in the

visual crowdsensing.

5 Solutions Design

Based on the arrival time of participants, the selec-

tion strategies are classified into offline selection and

online selection. For online selection, the participants

arrive dynamically, and the decision on whether or not

to choose the participants is made on the occasions of

their arrivals. For offline selection, all the participants

are ready, and the selection is made in advance based

on historical or predictable information.

As depicted in Fig.11, there are multiple kinds of al-

gorithms in both offline and online situations. In the of-

fline situations, the algorithms can be divided into three

types, i.e., greedy-based algorithms, machine learning

(ML) based algorithms, and graph-based algorithms.

In the online situations, we discuss the one-side online

situations and multi-side online situations separately.

One-side online situations mean that only tasks or only

participants are coming dynamically, while the other

component is known in advance. Multi-side online sit-

uations refer to that more than one of the components

in the MCS system are coming to the MCS server dy-

namically. In the former situations, we introduce three

kinds of algorithms, i.e., greedy-based algorithms, game

theory-based algorithms, and graph-based algorithms.

In the latter situations, we discuss two kinds of algo-

rithms, i.e., greedy-based algorithms and graph-based

algorithms.

Offline Algorithms

>Greedy-Based
>ML-Based
>Graph-Based

One-Side Online

>Greedy-Based
>Game Theory

Solutions Design

Online Algorithms

Multi-Side Online

>Greedy-Based
>Graph-Based

Fig.11. Solutions design in MCS.

5.1 Offline Matching Algorithm

If the information of the tasks and the participants

is all known in advance, the matching problem is seen

as offline matching. One important strategy used in

many papers is the greedy selection strategy. In most

cases, the matching problem is proven to be an NP-

complete problem, and the greedy selection strategy is

an efficient way to solve such a problem. For exam-

ple, in [26], one of the objectives is to maximize the

spatial coverage ratio. The relevant strategy is to se-

lect a user who can maximize the total coverage into

the participant set in each step until the budget is ex-

hausted. In [83], a reliable task assignment problem

is studied. The authors formulated two optimization

goals, maximum reliability assignment (MRA) under

a recruitment budget, and minimum cost assignment

(MCA) under a task reliability requirement. These two

problems were proven to be NP-hard, and greedy algo-

rithms were designed to obtain approximate solutions.

The key feature of greedy selection strategy is to choose

the best option in each step until the objective func-

tion is satisfied or the constraint is reached. Hence,

it is important to quantify the objective function for

one step. The greedy selection strategy is so widely

used that most of the papers mentioned in our survey

adopt this strategy or an improved version. To improve

the matching efficiency, some other heuristic methods,

such as genetic algorithm, simulation annealing algo-

rithm, and ant colony algorithm, are also used in some

papers.

Machine learning based algorithms are also popu-

lar in related work. Hsieh et al. proposed to estimate

the air quality in unsensed areas by training a multi-

layer perceptron, because the sensing results of diffe-

rent sensing areas were supposed to be inter-related[84].

Based on the perceptron, a greedy selection algorithm
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combined with a sorting algorithm was used to select

proper areas as the sensing tasks. Wang et al. utilized

a Bayesian inference to estimate the air quality in un-

sensed areas[60]. The prior knowledge is gotten through

cross-validation results of the sensing areas. Based on

the estimated results, a participant selection algorithm

was designed. The main idea is to deduce the data of

unsensed areas through different methods, and to select

the one with maximum difference as the sensing area.

The Bayesian inference plays a key role.

Some matching mechanisms are based on graph the-

ory. Ji et al. selected PoIs for each participant to op-

timize their trajectories, and achieved a maximum uni-

form coverage[52]. Proper locations are selected firstly

for each participant, and possible trajectories are listed

in a location graph. The goal of the matching algo-

rithm is to maximize the utility (uniform coverage) of

selected PoIs. A dynamic programming strategy was

used to find an approximate optimal path. Liu et al.

proposed to solve a matching problem based on the

minimum cost and maximum flow (MCMF) algorithm

in graph theory[61]. The participants are assumed to be

few, and tasks are many (FPMT). The representation

graph can be seen in Fig.12. Each participant must

finish q tasks, and each task can be executed at most

p times. The task set in the third level is produced

by selecting q tasks randomly, and the weight between

the second level (participants) and the third level is the

executing cost. A greedy algorithm was used to select

the minimum cost flow in the graph. Actually, by re-

ducing to the maximum flow problem, any algorithm

that computes the maximum flow in the network can

be used to solve the matching problem. However, the

computation of the third level is time-consuming.

5.2 Online Matching Algorithm

The online matching problem can be divided into

one-side online matching and multi-side online match-

ing. One-side online matching means that only the

tasks arrive dynamically, while the participants are

known in advance; or only the participants arrive dy-

namically, and the tasks are determined. In most re-

lated work, the tasks are supposed as known at first,

and the participants dynamically come to the MCS

server. Zhao et al. designed an online selection stra-

tegy combining with an incentive mechanism[85]. Li et

al. designed three progressive strategies: offline selec-

tion strategy based on comprehensive information, on-

line selection strategy with dynamic participants and

static tasks, and online selection strategy with dynamic

participants and dynamic tasks[71]. Hu et al. proposed

a framework consisting of an inference model and an

online task assigner[86]. The inference model was used

to get reliable label results, which is implemented by

the EM (Expectation Maximization) algorithm based

on the reputation of participants, the distance between

participants and PoIs, and the influence of PoIs. The

online task assignment is based on greedy algorithm.

First, the quality improvement of each task is computed

if it is assigned to one or more participants. Then, the

best tasks for each participant are selected to maximize

Participants

Task Sets

Tasks

S

m

n֓ n֓ n֓ n

q⊳

p⊳

⊳

t

1 2 3 4

1 2 3

1 2 3

4

5 6

Cn
q

q'
D(TSP)

Fig.12. MCMF for the FPMT problem[61].
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the total improvement. Zhang et al. formulated the

online task assignment problem, and proposed three in-

centive mechanisms to solve this problem based on on-

line reverse auction[87]. Furthermore, the authors de-

signed two online incentive mechanisms motivated by

a sampling-accepting process and weighted maximum

matching to assign most valuable tasks to the selected

participants in [88].

Other kinds of strategies used in online matching

problems are applications of game theory. Han et al.

formulated the dynamic participant selection problem

as a multi-armed bandit (MAB)[89]. A feasible sensing

engagement (FSE) is selected in each time slot, with

cost and revenue as attributes of each FSE. The selec-

tion series of FSE make a robust sensing policy (RSP).

Hence the problem can be abstracted as defining an

RSP which can get the maximum revenue. The cost

of each FSE is dynamic to make sure the robustness.

The authors further proposed a task scheduling mech-

anism in mobile crowd sensing system in [90]. Sim-

ilarly, She et al. formulated the task-participant ar-

rangement problem into the MAB problem, and two

matching algorithms based on traditional MAB solu-

tions were proposed and compared[91]. The tasks, with

capacity and conflicting event pairs, are regarded as

arms. The feedback (accepting or rejecting the ar-

ranged tasks) from the participants is regarded as the

reward. One of the proposed matching algorithms is

based on Thompson sampling (TS), and the other one

is based on upper confidence bound (UCB). The ex-

perimental results indicate the performance of UCB is

better than that of TS. Cheung et al. formulated the

task selection process in a pull situation based on a

non-cooperative game[38]. In every negotiation round,

each participant selects tasks which can maximize the

utility. The utility of each participant equals the payoff

of selected tasks minus the moving cost, which is the

function of the moving distance. It is proved that the

algorithm converges to Nash equilibrium within a poly-

nomial time. To compare the efficiency of the proposed

algorithm, a centralized greedy selection algorithm and

a distributed greedy selection algorithm are introduced

respectively. The experimental results show that the

social surplus and task coverage of the proposed algo-

rithm and the centralized greedy selection algorithm

are similar. However, the payoff fairness between par-

ticipants of the former one is much better than that of

the latter one. Pu et al. proposed that the arrivals of

the participants to a PoI follow a Poisson process[41].

They then formulated the matching problem as a dy-

namic programming problem, and designed a matching

strategy based on Bellman equation.

Multi-side online matching means that more than

one part of the MCS system is unknown beforehand,

and a real-time decision on whether or not to select

should be made. Particularly, two-side online matching

indicates that the tasks and the participants both arrive

dynamically. Tong et al. identified a new online micro-

task allocation problem, and called it the global online

micro-task allocation (GOMA) problem[75]. Two-side

online situations are considered in this paper, including

dynamic tasks and dynamic participants. The alloca-

tion problem is formulated into the maximum bipartite

matching problem, as shown in Fig.13. A two-phase

framework based on a Hungary algorithm, which is a

traditional solution to bipartite matching problem, was

proposed to balance the competitive ratio and the effi-

ciency. However, the experimental results show that the

performance of the greedy matching algorithm is similar

to that of the proposed algorithm, while the former one

is less complex than the latter one. Moreover, Song et

al. proposed a new three-side online matching problem,

where the participants, the tasks, and the workplaces

should be selected in real time, to maximize the utility

function[92]. Three matching algorithms were proposed,

including a basic greedy algorithm, a threshold greedy

algorithm, and an adaptive threshold greedy algorithm.

The basic greedy algorithm aims to select fresh triple

which can maximize the utility function. Considering

the high time complexity of the basic greedy algorithm,

the threshold greedy algorithm was proposed, and its

main idea is to select triple upper the predefined thresh-

old. Furthermore, the adaptive threshold greedy algo-

rithm aims to adapt the threshold to a proper value

through analyzing the matching results in each cycle.

1
1

2

3

4

2

3

4

5

Tasks Participants

Fig.13. Bipartite matching model for two-side online situati-
ons[75].
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5.3 Summary of Solutions

After surveying the proposed solutions by recent

literatures, we can find that the greedy-based algo-

rithms are used in both offline and online situations.

The reason is that in most of the discussed cases, the

global optimization method to solve the matching prob-

lem in MCS is time-consuming. The greedy-based al-

gorithms can be proved as an efficient approximation of

the global optimization. Another popular direction to

solve the matching problem is the graph-based method.

The reason is that the matching problem can be natu-

rally formulated through the bipartite graph, and tra-

ditional algorithms for the bipartite matching can be

used in the matching problem in MCS. The game theory

based algorithms are popular in one-side online situa-

tions. One of the reasons is that the related game the-

ories focus on the trade-off between exploiting and ex-

ploring, which is suitable to the online situations. The

matching algorithms in multi-side online situations are

less than those in the one-side online situations, and

we believe that more game theory based algorithms for

multi-side online situations will be discussed in the fu-

ture. The machine learning based algorithms are popu-

lar in offline algorithms, because they are always time-

consuming and proper features are needed.

6 Future Research Directions

Based on our review of the matching strategies, we

propose several directions for future research. These

directions include matching strategy for heterogeneous

tasks, context-aware matching, online selection, and

leveraging historical data to finish new tasks.

6.1 Matching Strategy for Heterogeneous

Tasks

As described above, the task publishers upload the

tasks to the MCS server, and the MCS server assigns

the tasks to the participants. Hence, multiple task

publishers may upload tasks simultaneously, and those

tasks can be very different. It is a challenge for the

MCS server to deal with all the different tasks, espe-

cially when there are connections between tasks. For

example, if one task is about traffic accident sensing

and collection, another task is about traffic jam detec-

tion and navigation. It is reasonable to merge these

two kinds of tasks, and to select the same participants

for both tasks. By introducing the heterogeneous tasks,

task fusion and task decomposition become research is-

sues. On one hand, a large task can be divided into mul-

tiple sub-tasks according to different steps, and para-

llel assignment can improve the task efficiency. On the

other hand, related tasks uploaded by different publish-

ers can be merged as one task, or accomplished by the

same set of participants. Coordinating these two kinds

of situations is important to optimize the productivity

of the MCS server.

6.2 Context-Aware Matching

Context includes the environmental information

surrounding the participants as well as the behavioral

information of the participants. Examples of the en-

vironmental information include whether a participant

is in a park, how many companions are around a par-

ticipant, how much sensing battery is left. Examples

of the behavioral information include whether a par-

ticipant is on a driving, in a meeting, or walking. By

analyzing the context, the MCS server can assign tasks

more wisely. If a participant is on a driving, tasks such

as temperature or PM 2.5 information collection cannot

be assigned, since the sensing results are within the car

and are not representative. Therefore, context-aware

selection mechanisms are needed. However, it is chal-

lenging to collect the contextual information. There are

few papers till now focusing on the context-aware sens-

ing. Participant selection based on the context is rare.

There are some reasons. First, the needed context for

a task is hard to be abstracted and defined. Second,

the context change in different time slices makes the

context sensing more complicated. Third, context in-

formation is always associated with participant privacy,

and people usually are not willing to share.

6.3 Online Strategy

Existing papers usually assume that the number

and the distribution of the participants are known at

first, and the selection strategies are based on the rigor-

ous precondition. However, in a real MCS framework,

the participants usually appear randomly. Hence, it is

more useful to design online selection strategies than

offline ones. Nevertheless, it is challenging to deter-

mine whether to select a participant or not for a task

as soon as the participant signs up. Machine learning

based methods may help to design online strategies,

since machine learning can excavate patterns according

to historical information.
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6.4 Leveraging Historical Data to

Finish New Tasks

Big data has been a hot research point in recent

years. Large amount of historical data is stored in both

the MCS server and terminal devices. Most existing

researches on participant selection in the MCS frame-

work focus on designing selection strategies according

to instant information. However, they usually ignore

making use of the abundant historical data. Actually,

some applications are related to historical data tightly.

For instance, how to recruit witnesses or records of an

accident is a useful application. However, it is difficult

to search useful information among tremendous amount

of data. Therefore, it is meaningful to find a way to

leverage proper historical data to finish new tasks.

7 Conclusions

Task and participant matching is an important

problem in mobile crowd sensing. In this survey, we

provided the reader with an extensive review of the

state-of-the-art researches on this topic. The contents

of mobile crowd sensing and the importance of the

matching problem were introduced first. The research-

ing framework was then presented, including the par-

ticipant model, task models, and matching solutions.

By analyzing the limitations and weaknesses of exist-

ing work, possible directions of novel future research in

this field are discussed.

The extensive literature analysis showed that most

matching solutions are designed based on the partici-

pant situations and the task requirements. In addition,

it is found that more and more factors are considered in

the participant model to select the proper participants

efficiently. Concerning the task models, it is found that

technologies and algorithms applicable at either area

tasks or point tasks have evolved significantly, yet the

matching problems with other task types need more

researches. For the solutions, multiple kinds of mathe-

matical tools can be used to design new matching so-

lutions. The task and participant matching is a signifi-

cant issue in mobile crowd sensing, which still needs

great effort to be studied in the future.
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