
Zhang L, Tian JH, Jiang J et al. Empirical research in software engineering — A literature survey. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 33(5): 876–899 Sept. 2018. DOI 10.1007/s11390-018-1864-x

Empirical Research in Software Engineering — A Literature Survey

Li Zhang1,2, Senior Member, CCF, Jia-Hao Tian1, Member, CCF, Jing Jiang1,∗, Member, CCF, Yi-Jun Liu1,2

Meng-Yuan Pu1,2, and Tao Yue3, Senior Member, IEEE

1State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China
2College of Software, Beihang University, Beijing 100191, China
3Simula Research Laboratory, Martin Lingesvei 25, 1364 Fornebu, Norway

E-mail: {lily, ttstr, jiangjing, lyj mika, pumengyuan}@buaa.edu.cn; tao@simula.no

Received March 5, 2018; revised May 14, 2018.

Abstract Empirical research is playing a significant role in software engineering (SE), and it has been applied to evaluate

software artifacts and technologies. There have been a great number of empirical research articles published recently. There

is also a large research community in empirical software engineering (ESE). In this paper, we identify both the overall

landscape and detailed implementations of ESE, and investigate frequently applied empirical methods, targeted research

purposes, used data sources, and applied data processing approaches and tools in ESE. The aim is to identify new trends

and obtain interesting observations of empirical software engineering across different sub-fields of software engineering. We

conduct a mapping study on 538 selected articles from January 2013 to November 2017, with four research questions.

We observe that the trend of applying empirical methods in software engineering is continuously increasing and the most

commonly applied methods are experiment, case study and survey. Moreover, open source projects are the most frequently

used data sources. We also observe that most of researchers have paid attention to the validity and the possibility to

replicate their studies. These observations are carefully analyzed and presented as carefully designed diagrams. We also

reveal shortcomings and demanded knowledge/strategies in ESE and propose recommendations for researchers.

Keywords empirical software engineering, empirical method, systematic mapping study

1 Introduction

Empirical software engineering (ESE) studies

software-related artifacts in order to characterize, un-

derstand, evaluate, predict, control, manage and im-

prove them via qualitative and quantitative analyses[1].

ESE methods have been widely applied and well-

recognized in software engineering.

With the increasing popularity of empirical meth-

ods, ESE has gained wider identification and higher

recognition. Universities have started ESE courses, and

relevant academic institutions have established special

ESE groups such as the Empirical Software Engineer-

ing Group of Microsoft Research 1○. In order to pro-

mote ESE and improve the quality of ESE research, it

is necessary to obtain a comprehensive understanding

of ESE, e.g., knowing in which context and for what

purposes empirical studies with case studies should be

conducted.

Over the past five years, articles published in Inter-

national Conference of Software Engineering (ICSE),

Empirical Software Engineering Journal (EMSE), IEEE

Transaction on Software Engineering (TSE), and Sym-

posium on Empirical Software Engineering and Mea-

surement (ESEM) have reported a large number of em-

pirical evaluations[2]. Especially, in ICSE 2016 2○, the

program committee announced that among all the ac-

cepted papers, ESE was the most interesting research

Survey

Special Section on Software Systems 2018

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61672078 and 61732019, and
the National Key Research and Development Program of China under Grant No. 2018YFB1004202.

∗Corresponding Author
1○https://www.microsoft.com/en-us/research/group/empirical-software-engineering-group-ese/, Aug. 2018.
2○http://2016.icse.cs.txstate.edu/program/main-conference, July 2018.

©2018 Springer Science + Business Media, LLC & Science Press, China

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 877

area with a total of 32 related papers accepted. This

clearly shows that there is an increasing trend of con-

ducting empirical studies in various software engineer-

ing fields.

To identify the application of empirical methods in

the SE context from those venues, we select a repre-

sentative journal (EMSE) and a representative confe-

rence (ESEM). In fact, it is difficult to define whether

a paper is an empirical research paper as there is no

widely accepted common understanding on it. EMSE

and ESEM are well-established venues particularly fo-

cusing on ESE. EMSE was founded by Basili et al. in

1996, while ESEM was organized first in 2008. Both of

them have considerable numbers of publications from

senior ESE researchers every year.

In this paper, we conduct a systematic mapping

study on 538 articles to obtain an overview of the appli-

cation of empirical research methods in the recent five

years. Among the 538 selected articles, 260 of them

are from ESEM and the other 278 articles are from

EMSE, which are all published between January 2013

and November 2017.

The main contributions of our mapping study are

as follows.

• We obtain an understanding of where (in which

sub-fields) and how empirical research methods have

been applied. Results show that experiment, case study

and survey are the three most frequently used empirical

methods.

• We illustrate the data sources of empirical studies.

An interesting finding is that the open source projects

have provided data for over half of the research pa-

pers we have investigated. Thus, open source projects

have proved to be one of the most popular data sources

and there is an increasing trend of using open source

projects in ESE.

• We observe that the most popular open source

platforms are Apache, GitHub, and SourceForge. The

most adopted open source projects are Eclipse, Fire

Fox, and Linux kernel.

• We identify supporting approaches and tools for

data collecting/processing/analysis in ESE. We eva-

luate researchers’ awareness of threats to validity and

their considerations on replications of their experi-

ments. Results show that more than 90% of articles

have paid attention to threats to validity and experi-

ment replications.

Our research contributions could help researchers in

finding supporting approaches/tools and improving the

quality of their studies.

This paper is organized as follows. In Section 2 we

introduce related work. Section 3 describes the design

and method of our study. In Section 4, we present the

results and analysis. Section 5 discusses our findings

and threats to validity. At last, Section 6 concludes the

paper and discusses the future work.

2 Related Work

Empirical research has been studied in various con-

tents. Borgs et al.[3] performed a systematic mapping

study in 2015 to identify ESE mechanisms including

methodologies, tools and guidelines to help and encour-

age researchers to choose proper mechanisms from the

lists they provided. In their study, in total 375 mecha-

nisms were identified.

In 2017, Cosentino et al.[4] explored the software en-

gineering researches related to GitHub through a map-

ping study, attested the high activity of research in the

field of the open source collaboration. The authors re-

vealed a set of shortcomings and proposed actions to

mitigate them. And in [4], the importance of open

source platforms and projects as data sources of con-

ducting ESE research was emphasized.

There are other studies focusing on specific empiri-

cal methods such as replications[5], specific topics (e.g.,

bug reports[6]), and concerning sub-fields of software

engineering such as software testing[7]. Bezerra et al.[5]

conducted a systematic review to extract and synthe-

size data from reported replications. They found an

increasing trend of replications and identified several

limitations of the studied replications. Zhang et al.[6]

presented an exhaustive survey on bug-report analysis.

In [7], Zhang et al. presented a literature survey on

tasks, challenges and future directions of bug resolu-

tion in software maintenance process. In 2017, Ahmad

et al.[8] conducted a systematic mapping study on em-

pirical research in cloud-based software testing.

In our previous work[9], we investigated the pub-

lications of 250 EMSE articles from January 2013 to

June 2017. Via qualitative and quantitative analyses,

we found that the most applied empirical methods were

experiment, case study and survey. We studied the in-

volved sub-areas, data sources selection, data process-

ing tools and technologies in ESE. In this paper, we

overcome the limitation of extracting data from only

EMSE and extend the article inclusion ending date to

November 2017. As a result, additional 260 ESEM pa-

pers and 18 EMSE papers are taken into account in

this paper. To compare with the findings reported in

878 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

[9], there are several differences. For instance, the per-

centage of articles adopting the survey method has in-

creased from 8% to 17.4%). Moreover, the open source

platform, GitHub, is more popular than SourceForge,

as a data provider, which is however not the case as

reported in [9].

3 Method

3.1 Research Questions

To get a better understanding of ESE methods, we

identify and address the following four research ques-

tions.

RQ1. Which research fields/sub-fields of software

engineering are most concerned in the selected papers?

ESE is a sub-field of software engineering and it fo-

cuses on finding solutions for software engineering prob-

lems by using empirical research methods and qualita-

tive/quantitative analysis. It is necessary to find out

the most popular topics in ESE, sub-fields and sub-

topics most relevant to ESE.

RQ2.What are the most common ESE methods and

types of research purposes? What is the application

status of ESE methods in different sub-fields?

This paper aims at identifying the most applied ESE

methods and the sub-fields of software engineering in

which these empirical methods are adopted. Types

of empirical research purposes in software engineering,

domain significance and typical scenarios are also ad-

dressed.

RQ3. What are the characteristics of data sources?

What are the commonly applied data collection, data

processing and data analysis tools?

The book “Experimentation in Software Enginee-

ring”[10] presents different data collection methods and

data processing strategies according to different ESE

methods. We intend to investigate if data collection

and data processing in ESE have been influenced by

various factors such as the wide use of the Internet, the

rapid development of data mining technologies and the

popularity of open source projects hosting platforms

and open source communities.

Furthermore, the following questions are expected

to be answered. What percentage do open source

and industrial projects take respectively among all

data sources? What is the trend of using open

source/industrial projects as data sources? Which open

source projects are the most common choices of re-

searchers? In which software engineering sub-fields are

empirical methods more likely to be adopted? How

many projects/cases are used in one research? What

are the most commonly used mathematical statistical

methods and data analysis tools in ESE?

RQ4. How concerned are researchers about the vali-

dity and the possibility to replicate empirical studies?

This research question concerns researchers’ under-

standing and awareness of the validity and the possi-

bility to replicate ESE studies. First, we present re-

searchers’ understanding of the validity of their stu-

dies by checking if they explicitly discussed the vali-

dity/limitations of their studies. Then, we investigate

which types of threats to validity concern researchers

the most. Meanwhile, we pay close attention to if

they take the “possibility to replicate the study” into

account, by checking whether they have provided re-

sources or other relevant information for replications.

3.2 Article Selection

Considering the large number of articles in ESE, it is

a challenge to collect and analyze all of them in details.

Moreover, our research content is quite broad. There-

fore, systematic mapping and scoping[11] are more suit-

able than systematic literature review. Mapping study

is often chosen when aiming at obtaining the general

overview of the current technical development or prac-

tice level of a research area. As a result, we decide

to adopt systematic mapping and scoping to analyze

selected articles from EMSE and ESEM. Some of the

important characteristics of EMSE and ESEM are dis-

cussed below.

• As two important venues in ESE, EMSE and

ESEM focus on the application of empirical methods

in software engineering, and research contributions of

papers published in these two venues cover various sub-

fields of software engineering. These two venues are rep-

resentative and therefore, they could, to a great extent,

reflect the current status of ESE.

They both have enough papers with great quality.

EMSE has published papers for 20 years, with six vol-

umes per year, and most of the articles are 30∼40 pages.

ESEM has been established since 2007, and more than

600 articles have been published until December 2017.

Their impact factors in software engineering domain

have significantly increased in last few years. EMSE

has been in the Q1/Q2 area of the Journal Citation

Report for the last four years.

Articles from other venues are not included. Empir-

ical methods are widely used in research articles in SE

field. But it is difficult to clearly tell whether they are

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 879

empirical research papers. To avoid negative effects on

the validity of our research (discussed in Section 5), we

exclude research papers from other venues.

To identify the research features and provide an

overview of ESE over the last five years, totally 538

papers are selected, i.e., 250 EMSE papers from Jan-

uary 2013 to November 2017 and 260 ESEM papers

from 2013 to 2017.

3.3 Data Acquisition

The data acquisition procedure is shown in Fig.1.

In the first step, we collect a total of 538 research ar-

ticles from EMSE and ESEM, excluding the periodical

editors’ articles, guidelines, with the acknowledgement

of EMSE and the introduction papers, post papers of

ESEM. A preliminary data summary table is designed

according to the research questions, and it is improved

iteratively during the data collection process. In the

second step, we randomly select sample articles from

the 538 primary articles. In the third step, the data

summary table is filled out with the information col-

lected from the sample articles. The obtained empir-

ical research data is analyzed in step 4. Step 5 is to

modify the data summary table by iteratively refining

the process from step 2 to step 5. We obtain the final

data summary table once this iterative process is com-

plete. The sixth step is to fill out the data summary

table of all of the 538 articles. In the last step, we an-

alyze the collected data using statistical methods, and

present our research results.

In the second step, more than 90 sample articles

are selected. To extract data from the articles, every

article is read and data tables are filled by the authors

of this article and volunteers (postgraduate students or

Ph.D. candidates studying ESE in Beihang University,

Beijing) respectively. The results from participants are

carefully compared by discussing differences. Notice

that this method is also widely used in social science[12].

Analyses of the collected data are performed carefully

by consistently considering the four research questions

and ensuring the possibility to replicate our research in

the future.

Table 1 describes the structure of our data ex-

traction form. Notice that the values remarked as

“�” mean they are for multiple-choice while the val-

ues remarked as “◦” mean they are for single-choice.

As shown in Table 1, software engineering domains

are classified into the following 12 sub-fields described

in [13]: software requirement (SR), software design

(SD), software construction (SC), software testing

(ST), software maintenance (SM), software configura-

tion management (SCM), software engineering mana-

gement (SEM), software engineering process (SEP),

software engineering models and methods (SEM&M),

software quality (SQ), software engineering professional

practice (SEPP), and software engineering economics

(SEE). Articles that do not belong to these 12 sub-

fields are classified into the “OTHER” type after agreed

by all the participants. Therefore, one paper probably

covers more than one sub-field. For example, in 2013,

Delgado and Martinez[14] identified the prevented de-

fects by unit tests and then performed an analysis on

cost and savings. According to SWEBOK 3.0, this ar-

ticle touches upon both software testing and software

engineering economics. Keeping in mind the definitions

of the sub-fields of SE from SWEBOK 3.0, we try to

arrange the selected papers in groups by reading the

titles and going through their abstracts.

The empirical methods applied in empirical studies

are decided mainly according to authors’ declaration

Data Table Results

Data
Sample

Articles

Primary
Articles

ESEM&EMSE

Articles
1. Screen 2. Select

7.Analyze
6.Fill 5.Modify

4.Acquire
3.Fill

Fig.1. Data extraction table formation process.

880 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Table 1. Data Extraction Form

Item Value Remark

Resource Journal/conference name, publish date

Title Title

Author Author name

Sub-field � Software requirement � Software design � Software construction
� Software testing � Software maintenance � Software configuration management
� Software quality � Software engineering management
� Software engineering process � Software engineering models and methods
� Software engineering professional practice � Software engineering economics
� OTHER

Multiple-choice

Topic Extract topics from abstracts referring to SWEBOK[13]

Empirical method � Controlled experiment � Quasi-experiment � Case study
� Replication experiment � Simulation � Survey � Literature review
� Systematic mapping study
� Pilot study � Systematic literature review � OTHER

Multiple-choice

Research purpose � Exploratory research � Explanatory research
� Technical validation � OTHER

Multiple-choice

Data resource � Industrial project � Open source project � Open test set/data set
� Industrial standard � Laboratory project � OTHER

Multiple-choice

Data collection
method

� Questionnaire � Interview � Observation � Archive data
� Preprocess � OTHER

Data processing
method

Data processing and data analysis methods mentioned in the article

Project and tool
used

Projects, software and mathematics tools mentioned in the article

Chart and figure
used

Charts and figures used for analyses in the article

Validity ◦ No, the article does not contain discussion on threats of validity
◦ Yes, the article contains threats of validity (weakness, disadvantage, limitation)
◦ Yes, the article conducts analysis about threats of validity, including:
� Construct validity � Internal validity � External validity � Conclusion validity

◦ For single-choice
� For multiple-choice

Consideration on
possibility to replicate
the studies

◦ Yes ◦ No Single-choice

and/or the definitions of empirical methods. Typi-

cally, almost all the selected papers adopt the follow-

ing empirical methods: experiment (including quasi-

experiment and controlled experiment), case study, sur-

vey, simulation, replication, systematic literature re-

view, system mapping study, and pilot study. Meth-

ods different from the above ones are classified into the

“OTHER” type.

In our previous work[9], three common types of re-

search purposes were defined: explanatory research,

exploratory research, and technical validation. In ex-

planatory studies, researchers use data to interpret a

phenomenon or result. While the discovery of a phe-

nomenon, problem, or law, is called exploratory re-

search. Technical validation is often used for evaluating

technologies including strategies, algorithms, models,

methods, tools, etc. If there are other types of research

goals, we classify them as “OTHER” and provide ex-

planations.

Data sources are classified into industrial projects,

open source projects, open test sets/datasets, indus-

trial benchmarks, laboratory projects, and “OTHER”

sources.

The researchers’ data collection methods include

questionnaire, interview, observation, data archiving,

pre-processing, crawler, and “OTHER”. In order to un-

derstand the empirical research in data processing and

analysis, we extract data processing and analysis meth-

ods/tools from each article, as well as the analysis of the

results such as histograms and pie charts.

A fundamental question concerning results from an

experiment is how valid the results are, and this refers

to another important aspect to consider in empirical re-

search, namely validity, which helps researchers to mea-

sure the study results’ trustworthiness. It can be sorted

into structural validity, internal validity, external vali-

dity, and conclusion validity (reliability)[15].

Possibility to replicate the investigation is an in-

trinsic and important property of empirical research,

and the purpose of a replication is to show that the re-

sult from the original experiment is valid for a larger

population. A replication becomes a “true” replica-

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 881

tion if it is possible to replicate both the design and

the results[10]. In recent years, researchers in ESE have

gradually gained the awareness of its importance. An

empirical study that considers the possibility of replica-

tions enhances the credibility of the study. The replica-

tion package of our primary literature, statistics, figures

and charts is available online 3○.

4 Analysis and Results

In this section, the collected data is presented, and

we answer each research question with extracted data.

The acquired data from these articles is normalized and

organized into charts and diagrams, so as to get clear

results through analyses.

4.1 RQ1. Which Research Fields/Topics of

Software Engineering Are Most Concerned

in Selected Papers?

4.1.1 Publications in EMSE and ESEM

First of all, to describe the general state of EMSE

and ESEM publications in the last five years, we collect

all the articles by systematically searching the journal

website, conference website. Excluding the periodical

editors’ articles, guidelines, acknowledgement of EMSE,

and introduction papers and post papers of ESEM, to-

tally 538 articles are obtained. The number of papers

published per year is shown in Fig.2. From Fig.2 we can

see that the number of papers published by EMSE has

increased significantly since 2013. In 2017, it reaches 69

(the issue published in December 2017 was excluded be-

cause our data collection is finished by November 2017),

while the number of ESEM papers keeps at 50∼65, ex-

cept in 2015 when there were only 36 papers. From

2015, the total number of both venues per year presents

a smoothly growing trend.

49 63
36

56 56

32

57

52

68 69

0

20

40

60

80

100

120

140

2013 2014 2015 2016 2017

A
rt

ic
le

 N
u
m

b
e
r

Year

ESEM EMSE

Fig.2. Number of articles published in ESEM and EMSE in
Jan. 2013∼Nov. 2017.

4.1.2 Covered Sub-Fields of SE

As presented in Section 3, software engineering do-

mains are classified into 12 sub-fields according to

SWEBOK 3.0. Any article that does not match the

description of the mentioned 12 sub-fields is placed in

the “OTHER” category, while an article can cover mul-

tiple sub-fields. Therefore we have already taken this

factor into account and designed our methodology ac-

cordingly. Fig.3 shows the results of our classification.

As can be seen from Fig.3, empirical research papers

cover basically all the sub-fields of software engineering.

The most popular sub-fields are software maintenance,

software quality, and software testing. In the first place,

4

17

23

24

30

30

44

61

66

67

83

87

126

0 20 40 60 80 100 120 140

OTHER

Software Design

Software Configuration Management

Software Engineering Economics

Software Engineering Management

Software Engineering Process

Software Requirement

Software Construction

Software Engineering Models and Methods

Software Engineering Professional Practice

Software Testing

Software Quality

Software Maintenance

Article Number

S
u
b

-
F
ie

ld

Fig.3. Article numbers in different sub-fields of SE.

3○http://t.beihangsoft.cn/lily/ch/index.html, July 2018.

882 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

empirical research methods are mostly applied in soft-

ware maintenance, with 126 articles (23.4%). This

can be the result of the two EMSE special issues of

program comprehension and reverse engineering. Soft-

ware quality and software testing have 87 (16.2%) and

83 (15.4%) articles, respectively. Articles in software

engineering professional practice, software engineering

models and methods, and software construction are also

considerable. The number of articles in software engi-

neering professional practice is 67 (12.5%), while soft-

ware models and methods have 66 (12.3%) articles and

the number of articles in software construction is 61

(11.3%). Article numbers in these three sub-fields are

also considerable. There are 30 (5.6%) articles in soft-

ware engineering process, 30 (5.6%) articles in software

engineering management, 24 (4.5%) articles in software

engineering economics, 23 (4.3%) articles in software

configuration management, and 17 (3.2%) articles in

software design. In the five sub-fields above, the article

numbers are relatively smaller than those of the sub-

fields discussed before. There are only four articles in

the “OTHER” category since they do not match the

description of any of the 12 sub-fields.

Summary. In this subsection, we review the over-

all publications of EMSE and ESEM in the recent five

years. Empirical studies in these research papers cover

all software engineering sub-fields, and empirical re-

search methods are most applied in software mainte-

nance, software quality, and software testing.

4.2 RQ2. What Are the Most Frequently Used

ESE Methods and Types of Research

Purposes?

4.2.1 Empirical Research Methods in Software
Engineering

Table 2 presents the number of articles adopting

each empirical method. Among the 538 articles, nine

empirical methods are used, as shown in Table 2.

Experiment (quasi-experiment and controlled experi-

ment) has been used in 264 (49.1%) articles. There

are 168 articles adopting controlled experiment among

the 264 articles, and the other articles use quasi-

experiment, which is often used when it is impossible

to randomly assign treatments to subjects[16].

The adoption of case study ranks the second, and

it is used in 185 (34.4%) articles. Case study is an

empirical method for investigating phenomena in real-

world environment[17]. However, the distinction be-

tween case study and experiment is not precisely de-

fined. We mainly rely on authors’ claims to distinguish

these two methods in our mapping study. However,

we shall do the classification not only according to the

authors’ declarations, but also by evaluating the metho-

dology in each article by ourselves. When there is no

explicit indication of which of the two research met-

hods is used, one principle we follow is that if there

are artificial control variables in the research, it is clas-

sified as an experiment. For example, Haller et al.[18]

presented a tool for detecting and classifying advanced

data structures used in binary files, and evaluated the

accuracy of the tool in 10 real-world applications. The

authors claimed that they used case studies to perform

research in 10 cases. But according to our judgment,

the adopted empirical method is experiment.

Survey is adopted in 94 (17.5%) articles. Survey

is a method to collect and summarize evidence from a

large representative sample of the overall population of

interest[19]. In recent years, there has been increasing

emphasis on human aspects in software engineering re-

search and practices[20]. The common forms of survey

method are questionnaire, interview, etc.[10] As an in-

dependent and complete method, survey should include

research goal, design, implementation, data analysis,

conclusion formation, and validity analysis.

Questionnaire is also used together with other re-

search methods. However, if it is only used for data

collection without reaching a conclusion, it will not be

Table 2. Empirical Methods Used in the Selected Articles

No. Method Article Number Primary/Secondary Remark

1 Experiment 264 Primary 168 adopt controlled experiment, the others
adopt quasi-experiment

2 Case study 185 Primary

3 Survey 94 Primary

4 Literature review methodology 47 Secondary 29 adopt systematic literature review, 18 for
systematic mapping study

5 Replication experiment 18 Secondary

6 Pilot study 20 Primary

7 Simulation 5 Primary

8 OTHER 1 Action research

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 883

considered as a research method. Instead it is just re-

garded as a data collecting approach. This will be dis-

cussed in Subsection 4.3.2.

The literature review methodology is a kind of sec-

ondary study[21] based on the experience of publica-

tions. Literature review has been adopted in 47 (8.7%)

articles. Among them, 29 use systematic literature re-

view (SLR for short) while 18 use systematic mapping.

Replications of experiments[22] appear in 18 articles,

and five of them are included in the replication experi-

ment special issue of EMSE in April 2014. Pilot study

is a small-scale study in real-world environment[23],

and it is used in 20 selected articles. For example,

in 2017, Wang[24] conducted a pilot study to test the

study design and environment in order to ensure the

effectiveness and feasibility before conducting a large-

scale investigation. In 2015, Octaviano et al.[25] pro-

posed strategy of “score citation automatic selection

(SCAS)”, and a small-scale pilot study was then used to

evaluate the accuracy and error of the strategy. There

are five articles adopting the simulation experiment

method, which is often used when it is too difficult to

conduct an experiment.

We find that in addition to the empirical methods

listed in Table 1, there is another empirical method,

namely action research, with which researchers carry

out studies as participants in real-world projects[26].

According to Table 2, in the original studies, the

most commonly adopted research methods are experi-

ment, case study, and survey, and these three methods

appear in more than 95% of the articles. Despite the

number of articles using the survey method is relatively

low, questionnaire and interview are used in 187 arti-

cles as data collection methods. Data collection meth-

ods will be discussed in Subsection 4.3.2. We consider

experiment, case study and survey very important, and

recommend that researchers should master these three

research methods. Fig.4 illustrates the percentage of ar-

ticles adopting experiment, case study and survey from

2013 to 2017. According to Fig.4, articles using experi-

ment and survey have been increasing, while the adop-

tion trend of case study falls slightly.

4.2.2 Features of Empirical Methods Adoption in
Different Sub-Fields

The adoption of various empirical research methods

in different sub-fields has been analyzed, and the result

is shown in Table 3. Experiment and case study are

applied in all the sub-fields of SE.

Experiment is used mostly in software maintenance,

software quality, software construction, and software re-

quirement. One of the reasons for abundant use of ex-

perimentation in these sub-fields is that it is easy for

researchers to control variables and get access to his-

torical data in order to evaluate the validity of new

approaches or technologies. For example, Shin and

Williams[27] performed experiments to assess how the

error prediction method worked on predicting vulnera-

bility with open source browser Firefox data. In 2013,

Raja[28] applied a text mining technique to the defect

report of open source software to study the quantity of

the defect, and the result was compared with that of

manual statistics. Experiment is the most frequently

used method in the software requirement sub-field. In

software requirement, evaluation is often subjective.

Therefore, for some experiments, questionnaires or in-

terviews are often needed as supplement. For example,

Özlem and Carver[29] examined the impact of individ-

ual factors on requirements inspections by providing

the participants with experimental materials and al-

lowing them to find errors in the required documents

and record them in the error list.

0

10

20

30

40

50

60

2013 2014 2015 2016 2017

P
e
rc

e
n
ta

g
e
 (

%
)

Year

Experiment Case Study Survey

Fig.4. Percentage and trend of articles adopting experiment,
case study and survey respectively.

Case study is adopted more frequently than the

other empirical methods in software engineering pro-

cess, software engineering management, software engi-

neering professional practice, and software engineering

economics. Researches in these fields are normally im-

pacted by multiple factors that are difficult to control.

Difficulties in simulation, long time cycles and high

cost may make experiment unsuitable in software en-

gineering process, software engineering management,

software professional practice, and software economics.

In these sub-fields, case study is more appropriate to

be used because it extends the controlling on multiple

factors. For example, Estler et al.[30] conducted a case

study in 2014. In their case study they collected data

884 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Table 3. Applied Times of Empirical Methods in Different Sub-Fields of Software Engineering

Sub-Field Experiment Case Survey Literature Replication Pilot Simulation OTHER

Study Review Study Experiment

Software requirement 30 10 8 2 2 3 2 0

Software design 12 4 1 4 1 0 1 0

Software construction 32 25 9 3 3 1 0 0

Software testing 36 25 10 3 2 4 0 0

Software maintenance 77 41 9 5 2 2 .3 0

Software configuration management 9 14 3 0 1 0 0 0

Software engineering management 15 15 8 4 4 0 0 0

Software engineering process 10 14 7 2 0 0 0 0

Software engineering models and methods 36 14 10 11 3 5 1 0

Software quality 48 33 6 3 3 0 1 1

Software engineering professional practice 15 26 32 3 2 5 0 1

Software engineering economics 12 9 2 1 1 1 0 0

OTHER 2 1 0 1 0 1 0 0

of 66 real-world global software projects via question-

naires and interviews, in order to discover the difference

between projects developed by agile flows (Scrum, XP,

etc.) and projects developed by structured flows. In

this case, the experiment method was not selected be-

cause it was difficult to control the other factors ex-

cept those in software engineering process. As men-

tioned above, experiment is seldom used in software

engineering process with few exceptions. For instance,

in the research of Chen et al.[31], a new semi-automatic

software process evaluation approach using machine-

learning technologies was proposed. In order to ver-

ify the validity of this approach, a contrast experiment

was conducted in nine real-world industrial projects to

evaluate the implementation of the defect management

process, and the authors compared the results with ex-

isting approaches.

The number of articles using the survey method is

smaller than those using experiment and case study.

Survey is more widely used in software construction

and software maintenance. It is often used to explore

the qualitative study of a topic, and to quickly under-

stand participants’ perspectives on specific topics. Re-

sults are also influenced by many factors such as the

choice of participants. For example, in 2016 Chen et

al.[32] conducted a survey to investigate viewpoints of

the participants on refactoring. The result showed that

the participants had various viewpoints on refactoring

and issues expected to be solved in the future were pre-

sented.

There is no obvious field significance in the applica-

tion of simulation experiments and pilot studies. Simu-

lation experiment is used in software requirements, soft-

ware maintenance, and software quality. Pilot study

is often used in software construction, software test-

ing, and software maintenance. For instance, Un-

terkalmsteiner et al.[33] studied the selection of test

cases and evaluated the performance of different infor-

mation through experiments retrieval methods. Before

their experiments, a pilot study was conducted to con-

firm whether the information retrieval method could be

used in the choice of test cases.

4.2.3 Types of Purpose/Paradigms of ESE Studies

There are three types of research paradigms:

exploratory, explanatory, and technical validation.

Fig.5(a) presents the distribution of the articles for

different types of research purposes. According to

Fig.4, 320 (59.3%) articles are exploratory. This type

of purpose is to identify problems or discover possible

patterns by observing phenomena based on evidence or

data; 212 (39.4%) of the articles belong to technical

validation, which can be used to evaluate new strate-

gies, algorithms, models, methods, tools and so on; 19

articles are explanatory, such as studying causal rela-

tionships existing in software engineering. In addition,

in 13 articles, exploratory studies were conducted be-

fore the technical validations.

Fig.5(b) presents the numbers of empirical methods

(experiment, case study, survey, and literature review)

adopted in researches with different types of purposes.

As shown in Fig.5(b), case study is the most frequently

used empirical method in exploratory researches. For

example, Capiluppi and Izquierdo-Cortázar[34] explored

the relationship between the developers’ workload and

the concentration of development time from the Linux

open source case. In technical validation, the experi-

ment method is most frequently adopted. It is suitable

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 885

for technical validation of new methods. Explanatory

study is usually used to explain the causal relationship

between phenomenon and laws, such as [29] and [35].

There are 10 articles in which the authors conducted ex-

ploratory researches to identify problems and then pro-

posed approaches as solutions before performing tech-

nical validations, such as [36] and [37].

(a)

(b)

13

19

212

320

0 200 400

Exploratory &
Technical Validation

Explanatory

Technical Validation

Exploratory

Article Number

P
u
rp

o
se

 T
y
p
e

0

50

100

150

200

250

300

350

400

E
xp

lo
ra
to
ry

T
ec
hn

ic
al

V
al
id
at
io
n

E
xp

la
na

ta
ry

E
xp

lo
ra
to
ry

&
 T

ec
hn

ic
al

V
al
id
at
io
n

A
rt

ic
le

 N
u
m

b
e
r

Experiment Case Study

Survey Literature Review

Fig.5. Research purpose types of articles. (a) Numbers of arti-
cles for different research purpose types. (b) Empirical methods
in articles of different purpose types.

In empirical research, researchers sometimes com-

bine multiple empirical methods to achieve different re-

search purposes. The examples are as follows.

• There are five articles adopting both literature re-

view and survey. For example, in 2014, Smite et al.[38]

firstly used the systematic literature review to explore

the problems encountered in the new terminology of

global software engineering, such as the ambiguity of

new terminology classification. Then the authors solved

the problems through a survey, namely conducting in-

terviews to global software experts.

• In 19 articles, survey and case study are used to-

gether. For example, in 2013, Greiler and Deursen[39]

firstly figured out the problem of the test suite plugin

in the architecture design through a survey, and then

proposed a method to solve the problem. At last the

authors evaluated the validity of the proposed method

through a case study.

• There are eight articles using case studies and

experiments together. For instance, in the research

of Callaú et al.[40], a case study of a large Smalltalk

code base was carried out to find out the problems

in dynamic feature classification. Then an automatic

dynamic classification approach was proposed and was

then validated by an experiment.

• The only article combining literature review,

experiment and case study is the article of Cheung et

al.[41] In this article, firstly, the authors used literature

review to explore the limitations of the cloning web page

detection technology and relevant tools. Then they

used case study to collect data from Google, Yahoo,

and Twitter and solve the problems they encountered in

cloning web pages. At last, a cloned web page detecting

tool was presented, and the authors used an experiment

to evaluate the effectiveness of the tool. Results showed

that the proposed tool provided higher accuracy than

tools proposed by other researchers.

4.2.4 Research Purpose Types in Different Sub-Fields

For further acknowledgement about research pur-

poses of empirical research in different sub-fields, we

collect related statistics of researches in each sub-field,

and the results are shown in Table 4. In most of the

sub-fields of SE, articles with the exploratory research

purpose take the largest percentage. However, in soft-

ware maintenance, software testing and software design,

articles aiming at technical validation are more than

exploratory articles. In software maintenance and soft-

ware quality, the number of articles aiming at explain-

ing the cause or effect of some statues is larger than

that of any other sub-fields.

4.2.5 Summary

The top three frequently used empirical methods

in software engineering researches are experiment, case

study, and survey.

In all software engineering sub-fields, experiment

and case study are used. Experiment is the most popu-

lar in software maintenance, software quality, software

construction, and software requirements. Case study

is used more than other empirical methods in software

engineering process, software engineering management,

and software professional practice.

886 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Table 4. Research Purpose Types in the Sub-Fields of

Software Engineering

Sub-Fields/Research Exploratory Technical Explanatory

Purpose Type Validation

Software requirement 23 18 2

Software design 8 9 0

Software construction 44 18 1

Software testing 37 46 4

Software maintenance 58 67 4

Software configuration
management

19 5 0

Software engineering
management

28 8 2

Software engineering
process

20 9 1

Software engineering
models and methods

36 28 0

Software quality 48 35 8

Software engineering
professional practice

54 11 2

Software engineering
economics

17 7 7

OTHER 2 1 1

The most common empirical research purpose is ex-

ploratory, which is closely followed by technical valida-

tion researches in the second place. Most of the experi-

ments are used for technical validation, while most of

the case studies are used for exploratory purposes.

4.3 RQ3. What Are the Characteristics of

Data Sources? What Are the Commonly

Applied Data Collection, Data Processing

and Data Analysis Methods/Tools?

4.3.1 Data Sources of Empirical Research

Data sources of literature reviews are published pa-

pers, and data of survey is often gathered by interview

or questionnaire, which will be discussed in details in

Subsection 4.3.2. In this subsection, we focus on all the

primary data sources, while excluding the secondary

data of 47 literature reviews. We find that out of the

538 articles, 489 articles’ data sources consist of open

source projects, industrial projects, lab projects, and

standards/datasets/test-suits/benchmarks. The result

is depicted in Fig.6.

An article may have multiple data sources, such as

[42], in which the researchers used data from both open

source and industrial projects. According to our statis-

tics, 53.4% of the articles use open source projects data

for empirical research, including open source software

code, process data, and data from open source commu-

nities, etc.

2013 2014 2015 2016 2017

Open Source 46.2% 30.8% 47.7% 50.0% 55.8%

Industry 30.9% 30.8% 17.0% 19.4% 17.6%

Lab 7.4% 15.0% 8.0% 4.8% 6.4%

Dataset/Standard

/Benchmark
4.9% 3.3% 2.3% 4.0% 12.8%

0.0

10.0

20.0

30.0

40.0

50.0

60.0

P
e
rc

e
n
ta

g
e
 (

%
)

Fig.6. Percentage and trend of data sources used in empirical
research.

Fig.6 presents the trend of different data sources in

empirical research in the selected articles from 2013 to

2017. In 2015 and 2016, the percentage of papers using

open source projects kept around 50%, while in 2017

it rose up to 56%. Generally, there is an obvious ris-

ing trend of using open source projects as data sources

from 2014.

Among all the surveyed articles, 28.7% of them use

industrial projects and the percentage is gradually de-

creasing. There are 10.6% of articles using laboratory

projects. There are also 7.2% of studies using stan-

dard datasets or open-test sets/benchmarks, which re-

veals the lack of present standard datasets and open

test sets/benchmarks.

We also conduct analyses across sub-fields and

project sources. Fig.7 shows the percentage of the four

kinds of data sources from the articles in each sub-

field. It can be perceived that open source projects are

adopted more than any other kind of data source in ar-

ticles of the following sub-fields: software requirement,

software construction, software testing, software main-

tenance, software engineering process, software quality,

software engineering professional practice, and software

engineering economics. In the sub-fields of software de-

sign and software configuration management, industrial

projects are mostly used. While in the sub-fields of

software testing and software engineering management,

the percentages of articles using industrial projects and

open source projects are close. Thus, the researches fo-

cusing on costs, processes, and new development mod-

els or methodologies are more likely to use industrial

projects as data source. Meanwhile in software con-

struction, software maintenance and software configu-

ration management, it is easier for researchers to obtain

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 887

SR SD SC ST SM SCM SEM SEP
SEM&

M
SQ SEPP SEE OTHER

Dataset/Standard/Benchmark 8.3% 0.0% 9.5% 4.5% 4.8% 6.3% 4.3% 4.2% 5.1% 11.1% 13.1% 5.3% 0.0%

Lab 8.3% 10.0% 21.4% 15.2% 6.0% 6.3% 21.7% 4.2% 8.2% 1.9% 11.5% 5.3% 0.0%

Industry 16.7% 70.0% 16.7% 33.3% 32.1% 75.0% 30.4% 25.0% 25.5% 33.3% 23.0% 15.8% 0.0%

Open Source 66.7% 20.0% 52.4% 47.0% 57.1% 12.5% 43.5% 66.7% 61.2% 53.7% 52.5% 73.7% 100.0%

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 (

%
)

Open Source Industry Lab Dataset/Standard/Benchmark

Fig.7. Data sources of empirical studies in different sub-fields.

data from open source projects. Open source software

is geographically and timely dispersed. Open source

projects are often developed by contributors with diffe-

rent backgrounds. Software construction and software

maintenance are currently the sub-fields mostly related

to open source projects, in which there are many open

source projects as proper research materials. Test-

related data is available in both open source projects

and industrial projects. Choosing a lab project as a

data source is less frequent in ESE, because it is difficult

to simulate the complex software engineering problems,

and it is hard for other researchers to conduct replica-

tion studies. We also see that standard datasets/test

sets/benchmarks are even fewer, indicating that availa-

ble standard datasets for research in software engineer-

ing are insufficient. In general, researchers from most

software sub-fields tend to use open source projects.

Specially, there tends to be more lab projects and stan-

dard datasets/test-sets in the software requirement sub-

field than the other sub-fields.

1) Most Frequently Used Open Source Projects in

Empirical Research. From the analysis in previous sub-

sections, we find that open source projects are used

in almost all software engineering sub-fields. With the

rapid development of open source platforms and open

source communities, some famous open source software

products such as Linux, Apache Web are even more

widely used than the industrial ones of the same kind.

Meanwhile, due to the easier access to open source

software and the convenience to conduct replicated re-

searches, more and more researchers begin to use them.

In order to facilitate a better use of open source software

in ESE, further analysis on the use of open source soft-

ware in all 489 primary research articles is conducted.

Fig.8(a) lists the top four open source platforms

providing project data for articles, including Apache,

GitHub, SourceForge, and Mozilla. As shown in

Fig.8(a), there are 85 articles using data from Apache

projects. Apache projects belong to Apache Software

Foundation (ASF) 4○. ASF is a non-profit organiza-

tion that provides an open source for Apache projects.

HTTP Server, IBatis, Tomcat, Wicket, Maven2, and

Ant, are often used for experimental research in Apache

projects, such as Derby, Xerces, httpd, Hadoop, $lit-

eral, Struts, Lucene, Axis2 c, Pluto, SOLR, Joda-time,

Hibernate, Cocoon, JMeter, and cpptasks. Projects

from the open source hosted platform GitHub Systems,

such as MDG, JBidwatcher, dnsjava, Closure Library,

and SproutCore, have provided research materials for

70 articles. Fifty-four articles use open source projects

from SourceForge, which is an open source software

platform and warehouse. For example, in 2013, Raja[28]

used text clustering in defect reports of FileZilla, jEdit,

PHP, MyAdmin, pidgin and Slash from SourceForge to

predict the defect resolution time. In 2015 Arcuri and

Fraser[43] randomly extracted 100 Java projects from

4○https://www.apache.org/, July 2018.

888 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

SourceForge to study the parameter value setting prob-

lem of a searching algorithm. In addition, projects from

the Mozilla Nonprofit Foundation are used in 41 arti-

cles, including Firefox, Firefox Extensions Firebug and

Rhino. It is visible from Fig.8(b) that there has been

an obviously increasing trend of using GitHub in recent

years, while articles using Apache and Mozila are also

increasing.

85

70

54

41

0

20

40

60

80

100

Apache GitHub SourceForge Mozilla

A
rt

ic
le

 N
u
m

b
er

OS Platform

2013 2014 2015 2016 2017

Mozilla 6 9 7 8 11

SourceForge 6 11 9 16 11

GitHub 1 10 9 13 36

Apache 9 17 15 21 23

0

5

10

15

20

25

30

35

40

A
rt

ic
le

 N
u
m

b
er

(b)

(a)

Fig.8. Use of open source platforms. (a) Most used open source
(OS) platforms in the 489 articles. (b) Trend of using Apache,
GitHub, SourceForge and Mozilla.

The most frequently used open source projects are

identified through further statistics. Fig.9 lists the

top 10 frequently used open source projects. They

are Eclipse, jEdit, Linux kernel, JHotDraw, Lucene,

ArgoUML, Firefox, Tomcat, PostgreSQL, httpd and

Rhino. There are 57 articles using Eclipse project data,

such as Eclipse source code, version information, bug

reports[44], and open source plug-ins on Eclipse. jEdit is

a text editor developed in Java language. For example,

in article [45], a data fusion model for feature position-

ing was proposed using jEdit evaluation. Linux kernel

is a computer operating system kernel written in C lan-

guage. The Linux kernel method, kernel source code,

and version information can be used as the data source

of empirical research. JHotDraw is a two-dimensional

GUI framework. In 2014, Bavota et al.[46] used JHot-

Draw data to evaluate an automated class refactoring

approach. Lucene is a full-text search engine toolkit.

ArgoUML is a UML model tool. Firefox is a browser

for Windows, Linux, and OS X platforms. Tomcat is

a web application server, PostgreSQL is a relational

database management system, and httpd is Apache

Hypertext Transfer Protocol (HTTP). Rhino is a 3D

modeling software. These commonly used open source

projects have some advantages in common: complete

documents, continuously updated version, wide cover-

age of users, and high code quality.

4

7

10

12

14

16

17

20

26

26

57

0 10 20 30 40 50 60

Rhino

httpd

PostgreSQL

ArgoUML

Tomcat

JHotDraw

Lucene

JEdit

Linux Kernel

FireFox

Eclipse

Article Number

O
S
 P

ro
je

c
t

Fig.9. Most frequently used open source projects in the 489
articles.

2) Number of Studied Projects/Cases in a Single

Empirical Research. Both researchers and practition-

ers are concerned with the proper number of projects

for an empirical research, which is also one of the most

controversial topics in this field. In this paper, we count

the number of projects used in researches for different

research purposes, and results are shown in Table 5.

The project number refers to the number of projects

used in each article. We have also organized the dis-

tribution of projects according to their use in various

sub-fields of SE. We tabulate our results in Table 6.

Table 5. Number of Projects Used in an Article of

Different Purpose Types

Maximum Minimum Median

Exploratory 7 365 1 3.0

Technical validation 3 469 1 3.5

Explanatory 21 1 3.5

Exploratory & technical
validation

900 1 6.0

Total 7 365 1 3.0

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 889

Table 6. Descriptive Statistics of the Numbers of

Projects Used Across Different Sub-Fields

Sub-Field Maximum Minimum Median

Software requirement 2 117 1 14.0

Software design 9 1 2.0

Software construction 1 160 1 7.5

Software testing 3 286 1 3.0

Software maintenance 7 365 1 3.0

Software configuration
management

5 1 1.0

Software engineering
management

20 1 3.0

Software engineering
process

1 547 1 4.0

Software engineering
models and methods

2 217 1 3.0

Software quality 7 365 1 4.5

Software engineering
professional practice

1 385 1 3.0

Software engineering
economics

51 1 3.0

OTHER 29 3 5.0

In some of the articles, a large number of projects

were studied. For example, Zhu et al.[47] collected

832 408 repositories from GitHub in 2012, which include

the meta-data describing attributes. In [48], 17 877

apps mined from the BlackBerry and Google app stores

in 2014 were used to evaluate their proposed simila-

rity measure technique. Mcilroy et al.[49] used 10 713

projects of GooglePlay to find the update frequency

of those mobile applications, so as to provide useful

advices for developers in 2016. In the technical val-

idation of Allix et al.[50], the authors selected 52 000

Android apps from Google Play to verify their detec-

tion methods they proposed to solve the problem of

malware detection. There are another three articles

which adopted over 10 000 projects. In these articles,

too many projects are selected, which could greatly af-

fect the average number. In order to make the sta-

tistical results reflect the real situation, the maximum

(the largest number of projects used in one article), the

minimum (the smallest number of projects used in one

article), and the median of project numbers used in

each article are calculated without average.

The numbers of projects in various researches are

presented in two perspectives, namely type of research

paradigm and research sub-field, as shown in Table 5

and Table 6.

• Type of Research Paradigms and Case/Project

Quantity. We can see from Table 5 that the median

of the number of projects used in a technical valida-

tion or exploratory study is literally higher. To verify

a new method, or to find a result from a phenomenon,

researchers usually need multiple projects to perform

their researches. The researches that perform interpre-

tative studies are designed to verify the causal relation-

ship between phenomena and laws, and the number of

chosen projects will be less. The medians vary in [3,

6]. The variances of exploratory studies and technical

validations are greater.

From further analysis, we find that, of all the 538

articles, there are only 14 articles (2.7%) using more

than 1 000 projects, six of which are for technical vali-

dation. For example, Fraser and Arcuri[51] studied 1 385

open source projects from SourceForge and Googlecode

to validate the general defect prediction model they

proposed. Eight articles are exploratory studies. For

instance, Vasilescu et al.[52] explored the evolution of

the ecosystem contributors’ workload and involvement

in projects and activities by studying 1 316 GNOME

projects. There are 80 articles using one project, ac-

counting for 15.7% of articles. Among these 80 articles,

42.5% of them are for technical validation, and 50% of

them are for exploratory studies.

• Sub-Field and Case/Project Number. From Ta-

ble 6, we can see that there is a big difference be-

tween the maximum value and the minimum value in

some sub-fields. The result shows that in most sub-

fields, there is a maximum of more than 1 000 projects,

while in software design, software configuration mana-

gement, software engineering management, and soft-

ware engineering economics, the maximums are rela-

tively smaller. This may result from the difficulty to

get the data that researchers need in these three sub-

fields.

Median is representative since it is not affected so

much by the maximums and the minimums. After ana-

lyzing the medians of project number in each sub-field,

we find that first, the median of project number in soft-

ware requirement is 14, and then software construc-

tion has a median of 7.5. Up next are software quality,

software engineering process, software engineering eco-

nomics, and the medians in these sub-fields are between

3 and 5. As shown in Fig.6, articles in these sub-fields

use open source projects very frequently, which makes

the medians larger than those of other sub-fields. Soft-

ware configuration management and software design

have the lowest medians, while over half of the arti-

cles in each of the two areas choose to use one single

project. This probably indicates that in these two sub-

fields, using only one project in research can also be

basically approved by peer researchers. It may be dif-

890 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

ficult to obtain the required project data in these two

sub-fields.

4.3.2 Methods for Data Collection

We review all the data collection tools or methods

demonstrated in the articles. The result is shown in

Table 7.

The result shows that in primary studies, data

archiving is the most frequently used data collection

method, which is adopted in 164 articles. Then ques-

tionnaire is used in 148 articles and up next is inter-

view, which is used in 108 papers. Questionnaire and

interview are the most commonly used data collection

methods in surveys, and they are also frequently used

in experiments and case studies. Questionnaire and in-

terview are combined in 23 papers. In 46.4% of the

articles, researchers collect data or information from

people, such as article [53].

Questionnaire is used in articles from all the sub-

fields as a flexible method. Most common forms of

online questionnaire include mail-based questionnaire

on website. Interview is often used to collect data in

surveys and case studies. It can be classified into struc-

tured, semi-structured and unstructured interview[1].

Structured interview and survey both have clear ques-

tions. Interview in general is more flexible and accessi-

ble than questionnaire, and meanwhile more time con-

suming.

Data archiving is used in experiments, case studies

and surveys, and it is a very frequently used data col-

lecting method in experiments. Data archiving refers

to, for example, minutes of meeting, documents from

different development phases, failure data, organiza-

tional charts, financial records, and other previously

collected measurements in an organization.

There are 17 articles adopting crawlers to collect

data and four articles using observations. For instance,

Kosti et al.[54] conducted a behavioral research on par-

ticipants after obtaining their personalities and project

preference by observation.

Table 8 shows the number of articles which use diffe-

rent collection methods in various sub-fields. It is evi-

dent in Table 8 that interview is the most frequently

used in software quality, software maintenance, and

software construction.

Questionnaire is mostly used in articles of software

engineering models and methods, software testing, soft-

ware quality, and software maintenance. In sub-fields

where human is treated as research objects, question-

naire and interview are more likely to be adopted. Data

archiving is most frequently used in software quality

and software maintenance.

4.3.3 Methods and Tools for Data Processing and
Analysis

In this subsection, we illustrate the methods and

tools used in data processing and analysis. Firstly,

we present the mostly used figures and charts. Trends

or characteristics can be easily revealed through them.

Then, popular statistical tests are listed. At last, the

advantages and applying conditions of adopted sup-

porting tools for data analysis are compared.

1) Usage of Figures and Charts. We find almost all

articles using visual aids to describe their results. This

makes the results clearer. Specific uses of different kinds

of figures and charts are shown in Fig.10. Tables are

mostly used in almost all articles. Bar charts, boxplots,

line charts, scatter diagrams and histograms are also

frequently used. For this reason, we think these charts

are analytical tools that empirical researcher should

master.

2) Usage of Mathematical Statistics. Empirical stu-

dies always produce a large amount of data, which

makes data analysis an indispensable link. Various sta-

tistical methods are available during data analysis. Ta-

ble 9 shows the mathematical statistics methods used

in these articles. Wilcoxon test, t-test, Mann-Whitney

test, variance analysis (ANOVA), and Kruskal-Wallis

test are the most commonly used statistical tests. As we

can see, they all belong to hypothesis test. Researchers

should master these methods in order to select an ap-

Table 7. Number of Articles Using Different Data Collection Methods While Using Different Empirical Methods

Empirical Method Questionnaire Interview Data Archiving Crawler Observation

Experiment 62 15 87 6 1

Case study 31 46 56 9 2

Survey 46 42 12 2 1

Pilot study 8 5 4 0 0

Simulation 1 0 4 0 0

OTHER 0 0 1 0 0

Total 148 108 164 17 4

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 891

Table 8. Number of Articles Using Different Data Collection Methods in Each Research Sub-Field

Sub-Field Interview Questionnaire Data Archiving Crawler Observation

Software requirement 5 10 10 2 1

Software design 5 5 4 0 0

Software construction 17 14 19 5 0

Software testing 14 24 15 0 0

Software maintenance 17 20 51 2 1

Software configuration management 9 7 10 0 0

Software engineering management 7 15 9 0 0

Software engineering process 6 7 9 1 0

Software engineering models and methods 16 27 23 3 0

Software quality 20 24 29 0 0

Software engineering professional practice 5 12 13 1 1

Software engineering economics 6 6 7 1 0

OTHER 0 0 1 0 0

1
5
6
7
10
10
12
14
22

40
53
58

77
96

155
165
168

509

0 100 200 300 400 500 600

Waterfall
Venn Diagram

Increment Graph
Heat Map

Spider Chart
3D Chart

Bubble
Area Chart
Pie Chart

Collective Diagram
Curve Chart

Cluster Graph
Histogram

Scatter Diagram
Line Chart

Boxplot
Bar Chart

Table

Article Number

F
ig

u
re

/
C

h
a
rt

Fig.10. Figures and charts used in empirical studies.

Table 9. Statistical Tests Used in Empirical Research

Sample Number Sample Capacity Statistical Test Article Number

1 Large (normal distribution) Chi-square test 17

1 or 2 Large (normal distribution) t-test 117

2 Large (normal distribution) F test 27

paired t-test 8

Small (not normal distribution) Wilcoxon test 143

Mann-Whitney test 78

No restriction Sign test 12

2 or more Large (normal distribution) ANOVA 72

Small (not normal distribution) Kruskal-Wallis test 35

propriate one for statistical analysis during the study.

Statistical hypothesis 5○ is a testable hypothesis on the

basis of observing a process that is modeled via a set

of random variables. It is a method of statistical infer-

ence. Commonly, two statistical datasets are compared,

or a dataset obtained by sampling is compared with a

synthetic dataset from an idealized model.

The comparison is deemed statistically significant if

the relationship between the datasets would be an un-

likely realization of the null hypothesis according to a

5○https://en.wikipedia.org/wiki/Statistical hypothesis testing, July 2018.

892 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

threshold probability — the significance level. Hypoth-

esis tests are used in determining what outcomes of a

study would lead to a rejection of the null hypothesis

for a pre-specified level of significance.

Here are the test methods’ spheres of applications.

• Cases When There Is One Sample or Two Sam-

ples. t-test is the most commonly used parameter test

when testing a single sample or two samples with a

large sample size. Generally, it is used to test the over-

all mean value when a single normal population vari-

ance is not known or when the two independent normal

population variances are unknown but equal.

• Cases When There Are Two Samples. Both the

Wilcoxon test and the Mann-Whitney test are capa-

ble of testing two datasets of small samples with non-

normal distribution. However, the Wilcoxon test is

a non-parametric test for paired samples, while the

Mann-Whitney test is a non-parametric test for two

independent samples and it is a test between different

groups.

• Cases When There Are Two or More Samples.

The variance analysis and the Kruskal-Wallis test are

all significant tests for analyzing the mean value diffe-

rences between two or more samples. The difference is

that variance analysis is used to analyze the mean diffe-

rence between two or more samples of a larger scale

significance, which is often used to analyze and infer

which factors have a significant impact on the study.

When the sample size is small, it is more appropriate to

choose the Kruskal-Wallis test. The Kruskal-Wallis test

is a sequence-based variance analytical method which

is often used to test the populations of samples.

3) Usage of Data Analysis Tools. Data analysis

plays an important role in ESE. It makes statistics

well-ordered and provides visual functions which help

researchers to conclude results more quickly and effec-

tively. The most commonly used tools are Microsoft

Excel, SPSS, R Statistical Analysis Tools, and Mat-

Lab. As the most popular office-software, Microsoft

Excel is the choice of most researchers for statistical

analyzing, which is mentioned in 64 articles. There are

31 articles using SPSS for statistical analysis. Due to

its simplicity and various functions, SPSS is frequently

used for statistical analysis calculations, data mining,

predictive analytics, and decision support tasks. There

are 22 articles using R statistical analysis tool. R is fa-

vored by researchers as an excellent tool for statistical

calculations and statistical charting. Seventeen articles

use MatLab, which combines algorithm development,

data visualization, data analysis, and other functions

to perform data analysis.

The four tools above are mainly for quantitative

data analyses. The most commonly used qualitative

analysis tool is NVivo 6○, and 11 articles use it to ana-

lyze stereotyped data. NVivo, as a software that sup-

ports qualitative research methods and hybrid research

methods, can be used to collect, organize and ana-

lyze interviews, which makes it very convenient for re-

searchers to process and analyze qualitative data.

4.3.4 Summary

• The mostly used data sources of empirical research

are open source projects, followed by industrial projects

and laboratory projects. Open source projects and in-

dustrial projects provide data for over 80% of the se-

lected empirical research articles. The number of arti-

cles using open source projects has been continuously

rising in recent years.

• Open source projects act as the primary data

source for empirical research in software requirement,

software maintenance, software testing, etc.

• The median of project numbers among all articles

is 3.

• Questionnaire, interview, and data archiving are

the most commonly used data collection methods.

4.4 RQ4. How Concerned Are Researches
about Validity and Possibility to Replicate
Empirical Studies?

4.4.1 Researchers’ Attention to Validity

Validity is important to measure the effectiveness of

an empirical study. None of the empirical studies can

avoid the threats of validity, and researchers should give

sufficient considerations on the validity of empirical re-

search in order to mitigate some effectiveness threats.

Kosti et al.[54] proposed a guideline for validity discus-

sion which classified validity into structural validity, in-

ternal validity, external validity, and conclusion vali-

dity.

Through the validity analysis in the statistical data

extraction table, we find that the authors of EMSE and

ESEM articles have a satisfactory understanding and

awareness of the validity and the results are showed

in Fig.11. The validity threat, weakness, limitation,

or other terms with similar meanings, are mentioned

in 94.2% of selected articles, and this indicates that

most researchers are aware of the validity of empirical

6○www.qsrintenational.com/nvivo/nvivo-products, Aug. 2018.

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 893

research. Only 31 articles (5.8%) do not mention the

validity threat. Among the 507 (94.2%) articles that

have mentioned threats to validity, 318 (59.1%) arti-

cles discuss the validity according to the classification

of construct validity, internal validity, external validity

and conclusion validity (reliability).

5.8%, 31

59.1%, 318

35.1%, 189

94.2%, 507

Considerations on Threats to Validity

Not Mentioned Classified Following Yin s Approach[55]

Mentioned But No Classfication

Fig.11. Discussions on threats to validity in the 538 articles.

External validity is discussed most frequently, and

external validity evaluation is considered as the met-

ric of whether the research conclusions can be applied

to practice[56]. Among the articles that have classified

threats to validity, 94% of them discuss the external

validity and 86% discuss the internal validity, 73% of

the articles discuss the construct validity, and 38% of

the articles discuss the conclusion validity (reliability).

4.4.2 Researchers’ Awareness of Replications

Possibility of replication is a significant issue in em-

pirical research. An increasing number of researchers

are appealing for the attention on the possibility of

replication[2]. Therefore, authors’ attention paid to the

possibility of replication is evaluated.

According to the related items shown in Table 10,

the considerations on the possibility of replication are

classified into seven categories. We think in the first six

categories, the possibility of replication has been taken

into account while in the 7th category, the possibility

of replication is not considered. Our result shows that

in most articles (over 92%) it is taken into account.

Situation 1. Possibility of replication is emphasized

and the replication package is available online. Among

all the selected articles, 23.4% of them belong to this

category.

Situation 2. The list of questionnaire/interview or

primary articles is provided, which can be used for repli-

cation. There are 12.8% articles falling into this cate-

gory.

Situation 3. The websites of data sources or projects

are given. Most of the articles (41.1%) belong to this

category.

Situation 4. The replication resource is collected

from previous studies; therefore, it is accessible from

previous studies. For example, in [28] the authors de-

clared that the data used in their experiments was col-

lected from two previous studies. This category covers

10.8% of all articles.

Situation 5. Authors may tell readers to ask them

for research data. For instance, article [57] makes it

clear that the data was accessible if you contacted the

authors. This category only includes 0.7% articles.

Situation 6. Authors declared that research data

was not available. The confidentiality of the used

projects could be the reason. This category covers 3.3%

of all the articles.

Situation 7. The possibility of replication was not

addressed by authors, which covers 7.8% of all the ar-

ticles.

4.4.3 Summary

Among all the selected research papers, 94.2% of

researchers paid attention on threats to validity and

described the specific threats to validity, while in the

other 5.8% articles validity threats are not mentioned

by authors. Over 92% of the researchers take the pos-

sibility of replication into account by providing access

to research data. However, there are still less than 8%

articles that do not consider the possibility of replica-

tion.

Table 10. Considerations About the Possibility of Replication

Situation No. Have Consideration or Not Situation Article No./Percentage

1 Y Replication package is provided available online 126/23.4%

2 Y Lists of questionnaire/interviews/articles available 69/12.8%

3 Y Websites of data sources provided 221/41.1%

4 Y Replication resources available in previous studies 58/10.8%

5 Y Asking authors for replication resources 4/0.7%

6 Y Not available for explicit reasons 18/3.3%

7 N Possibility of replication is not addressed by authors 42/7.8%

894 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

5 Discussion

5.1 Threats to Validity

According to Yin’s approach[55], we discuss threats

to internal validity, external validity, construct validity

and conclusion validity in this subsection.

5.1.1 Internal Validity

This aspect of validity is of concern when causal

relations are examined[2]. Both systematic literature

reviews and system mapping researches face the com-

mon internal threats to validity that all literature re-

search methods share: selection bias and subjectivity.

Selecting different articles for literature research may

result in different results. In recent years, the quan-

tity of ESE papers has been very large, and different

software-engineering journals have different degrees of

acceptance of empirical research. How to choose proper

ESE articles and how to decide time range of articles

are both important factors, which may affect the in-

ternal validity. In addition, the internal connection of

software engineering and computer science makes sub-

field classification job more complex.

It is challenging to distinguish empirical articles

from the others because of the lack of generally accepted

criterion and clear definitions. Meanwhile, the quality

of these articles varies. We consider ESEM and EMSE

as they are the main venues for publishing empirical

research results. The official website of EMSE 7○ says:

“Empirical Software Engineering provides a forum for

applied software engineering research with a strong em-

pirical component, and a venue for publishing empiri-

cal results relevant to both researchers and practition-

ers.” ESEM’s call for papers writes: “The ACM/IEEE

International Symposium on Empirical Software Engi-

neering and Measurement (ESEM) is the premier confe-

rence for presenting research results related to empirical

software engineering.” These two venues are widely ac-

cepted by the software engineering community in terms

of their scopes, and they establish reputations in terms

of their peer-reviewing processes. Therefore, we select

papers from EMSE and ESEM as our research materi-

als.

Subjectivity refers to the internal validity of the re-

search results when we design and fill in the data sum-

mary table. In order to improve the validity of this

paper, our extracted data has been modified for many

times on the basis of the method shown in Fig.1. To fin-

ish the data summary table, it demands multiple rounds

of reviews and discussions. For example, different op-

tions and decisions on the criteria for judgment are dis-

cussed to reduce the ambiguity at most. In order to

reduce the intention of human misjudgment, multiple

authors participate in the data acquisition process. If

the decision results are inconsistent, we put it into the

collective discussions, and this approach can reduce the

threat to validity from subjectivity.

5.1.2 External Validity

The external validity focuses on the suitability of

research results. Our findings are based on the empir-

ical software engineering publications from EMSE and

ESEM. And it is unknown about whether our results

can be generalized to empirical research papers from

other journals or conferences. In the future, we would

like to study more empirical research papers and com-

pare their results with our current findings. We will

explore whether including more papers will draw diffe-

rent conclusions. Our current results are based on the

investigation of 538 articles. We therefore believe the

conclusion we draw is representative.

5.1.3 Construct Validity

This aspect of validity reflects to what extent the

operational measures studied really represent what the

researcher has in mind and what is investigated accord-

ing to the research questions. While designing the data

digest tables, there is a threat of structural validity.

We take the iterative design method, randomly select

the article to fill in the test, and then fill out the data

summary table according to the result. We make it as

an iterative process to achieve the final data summary

table. Iterative design methods can effectively decrease

the threat to the construct validity.

5.1.4 Conclusion Validity

This aspect is concerned with to what extent the

data and the analysis are dependent on the specific re-

searchers. Hypothetically, if another researcher con-

ducted the same study later on, the result should be

the same[16]. In this paper, the research methods and

processes are elaborated in details to ensure that the

research process can be reproduced, and we hope re-

searchers can reproduce our study. The threats to con-

clusion validity in this paper are in the data statistics

and analysis process. During these two processes, we

use Excel for assistance.

7○https://link.springer.com/journal/10664, July 2018.

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 895

5.2 Illustrations About SLR

In this paper, we also conduct a research on SLR

(systematic literature review) articles in recent eight

years (2010∼2017). As we mentioned in Subsection

4.2.1, the literature review methodology is a kind of

secondary study based on the experience of previous

publications. Reading related literature reviews can be

an efficient way to obtain an overview of the research

statues in certain sub-fields or topics.

The strategy for collecting the relevant literature is

two-fold. 1) A keyword search uses “literature + re-

view” as keywords in DBLP (Database Systems and

Logic Programming) from 2010∼2017. 2) We filter the

search results by selecting articles from software en-

gineering related journals and conferences. After the

above two steps, we obtain 256 selected SLR papers.

We select DBLP as our literature database because

it is an English literature database which contains all

kinds of research findings in computer science domain.

Most of the important journals on computer science are

tracked, as well as the proceedings papers of many well-

recognized conferences, and thus it can well present the

overall research achievements in various directions.

Firstly, as shown in Fig.12, the article numbers in

every year from 2010 to 2017 are listed. There has been

an obvious increasing trend of article numbers per year

in recent eight years. Specially, the article number of

each year during 2015∼2017 is much larger than that of

any year before 2015, with an amplification of around

200%. From 2010 to 2014, all these years’ article num-

bers are less than 26. From 2015∼2017, the average ar-

ticle number reaches 49, indicating that in recent three

years, researches have been using SLR as their research

method more frequently.

Fig.13 presents the distribution of these 256 SLR

articles in different journals or conferences. There is a

significant article quantity difference between different

journals/conferences. Sixty-one articles are from the

journal of Information & Software Technology, which is

much larger than the article numbers from any other se-

lected venues. As for all the other journals/conferences,

their article numbers are less than 25. Among them,

12 journals/conferences have 1∼3 SLR articles, 13 of

them have 5∼15, and there are three of them whose

SLR article numbers are between 20 and 25. Their SLR

article numbers are strongly influenced by the specific

demands of articles and the total number of volumes or

issues. For example, Journal of Information & Software

Technology has a much larger total number of articles,

while ACM Computing Survey and Computer Science

Review are more likely to accept SLR papers according

to their call for papers.

15
19 23 25 25

51
43

55

0

10

20

30

40

50

60

2010 2011 2012 2013 2014 2015 2016 2017

A
rt

ic
le

 N
u
m

b
e
r

Year

Fig.12. Number of SLR articles of each year on software engi-
neering in 2010∼2017.

5.3 Gains, Problems, and Trends

Through our mapping study, we find that empirical

researches cover all the sub-fields of software engineer-

ing research area. Experiment, case study, survey and

SLR are widely used in all sub-fields of software engi-

neering during every stage of software life cycle. There

are some distinctions of their use along with the specific

sub-fields they apply to.

The number of articles on software maintenance is

much larger than that on any other sub-field. This indi-

cates that software maintenance is the most interesting

sub-area to ESE researchers, with significant value to

be focused on. Also, this reflects that a lot of potential

work and improvements are to be done in this area.

There are three types of research paradigms in ESE,

namely exploratory, explanatory and technical valida-

tion. In exploratory empirical research, case study is

more frequently used while in technical validation re-

searches, experiment is adopted more. Exploratory re-

searches and technical validations appear in all sub-

fields of software engineering.

As the main data sources, open source projects and

industrial projects provide over 80% data for empiri-

cal research. Laboratory projects are much fewer than

them. Open source projects as a support for ESE

and a sufficient supplement for the lack of standard

datasets/test-sets, have become increasingly popular

data sources among empirical researchers in recent

years.

Currently, the most frequently used open source

hosting platforms are Apache, SourceForge, GitHub

and Mozilla, while the adoption of GitHub is rising in

persistence. We also list the most frequently used open

source projects (Fig.9). By analyzing the data collec-

tion methods, we give researchers several suggestions

896 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

1
1
1
1
1
2
2
3
3
3
3
3

5
5
6
6
7
7
8
8
8
9

11
12

14
23
24
24

61

0 20 40 60

 British Journal of Educational Technology
 Computer Networks

Aslib Proceedings
E-Informatica

Information Science
Confrence on Advanced Information Systems Engineering(CAiSE)

IEEE Transactions on Services Computing
 Software and System Modeling

Aslib Journal of Information Management @ Emerald
DATA BASS

Jounal of Computer Science
Software Quality Journal

 Computers & Industrial Engineering
Computers in Industry

Empirical Software Engineering
Engineering Applications of Artificial Intelligence

IEEE ACCESS
Int. Symp. Empirical Software Engineering & Measurement

ACM Sigsoft Software Engineering Notes
Computer & Security

International Conference on Software Engineering
Computer Standards & Interfaces

Transactions on Software Engineering
Journal of Software

ACM Computing Suveys
Computer Science Review

 Journal of Systems and Software
Int. Con. Evaluation & Assessment in Software Engineeing

Information & Software Technology

Article Number

V
en

u
e

Fig.13. Number of SLR articles in the selected journals and conferences of software engineering field in 2010∼2017.

for getting acknowledge of the data processing meth-

ods and tools they should master in Subsection 4.3.3.

We encounter several problems during our research

as we present above. Firstly, as we mention in Sub-

section 5.1, there is a difficulty to distinguish empirical

articles from the others because of the lack of gene-

rally accepted criterion. The same problem occurs dur-

ing our literature survey. We find empirical articles in

EMSE and ESEM can be classified into two types. In

the first scenario, empirical methods are applied as the

main/primary measures to find answers to the research

questions directly. While in the other scenario, solu-

tions for research questions are proposed first, and then

empirical methods are adopted just for assistance to

prove the correctness or efficiency of it. But in practice,

we find it difficult to precisely decide whether empirical

methods are primary or secondary. Second, there is a

lack of specification in terminologies. The most typical

example is that when an author uses “. . . case study” as

the title of the article, actually it is a controlled experi-

ment conducted in the research.

Fortunately empirical research articles from EMSE

and ESEM have more complete structures than those

from the other journals or conferences. Meanwhile, re-

searchers have an excellent awareness of validity and

the possibility of replication, and thus more than 95%

of them consider these two issues. But in other empiri-

cal research articles, there are still some obvious short-

comings and inadequacy, such as the lack of basis for

questionnaires’ design, the lack of analysis on the ratio-

nality of choosing participators and insufficient validity

or limitation analysis. Therefore, we propose a more

systematic education for ESE researchers.

Future Trend. According to our analysis on the

EMSE and ESEM articles, there is an increasing trend

on adoptions of open source data in empirical research.

Among the selected articles, over 80 of them involve

mining, analyzing or learning big data. As defined in

Wikipedia, “empirical research” is a research using em-

pirical evidence. It is a way of gaining knowledge by

means of direct and indirect observation or experience.

In the digital era with various big data technologies,

it is easier to obtain empirical data (data of real-world

projects). Therefore, we think that introducing new

technologies such as machine learning and data mining

to empirical study is necessary.

6 Conclusions

In this paper, we presented the overall landscape of

ESE in the latest five years by reviewing and analyzing

538 research papers: 278 published in EMSE and 260

published in ESEM from January 2013 to November

2017. We found that empirical researches cover every

sub-field of software engineering. Our important find-

ings are listed below.

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 897

• There are various available empirical methods and

they suit different situations. They are chosen by re-

searchers according to the research materials, goals and

environment. Among them, experiment, case study,

and survey are most frequently used.

• Types of research paradigms are classified into ex-

ploratory, explanatory, and technical validation. Ex-

ploratory articles are in the first place, technical valida-

tion articles are in the second, and explanatory articles

are in the third.

• We also identified the data sources for empirical

research, such as frequently used open source platforms

and projects. Open source resources are found to be

the primary data source for empirical research. There

is an obvious trend of using open source projects.

• At last we found most researchers have awareness

of validity and the possibility of replication while still

a few of them (less than 10%) pay little attention.

By identifying detailed implementations at critical

points of empirical research, we aim to help researchers

in performing researches of better quality. Our findings

provide researchers supporting strategies, technologies

and skills at each phase of their empirical research. At

the same time, we reminded researchers of paying at-

tention on threats to validity analysis and providing

readers enough research data or resources to ensure the

possibility to replicate their researches.

In the future, we plan to expand the scope of the

survey by including more venues, more papers, so as

to make our research more complete and convincing.

In this paper, we mainly studied adoption of empirical

methods in software engineering. We plan to provide

detailed guidelines on how to apply empirical methods

in various research areas of software engineering, and

study more technologies or methods used in empirical

studies. Meanwhile, we plan to develop automatic or

semi-automatic tools with natural language processing

(NLP) functions which assist us in data collecting, pro-

cessing and analysis.

References

[1] Shull F, Singer J, Sjøberg D I K. Guide to Advanced Em-

pirical Software Engineering. Springer, 2008.

[2] Siegmund J, Siegmund N, Apel S. Views on internal and

external validity in empirical software engineering. In Proc.

the 37th International Conference on Software Engineer-

ing, May 2015, pp.9-19.

[3] Borgs A, Ferreira W, Barreiros E, Almeida A, Fonseca L,

Teixeira E, Silva D, Alencar A, Soares S. Support mecha-

nisms to conduct empirical studies in software engineering.

In Proc. the 19th International Conference on Evaluation

and Assessment in Software Engineering, April 2015, Arti-

cle No. 22.

[4] Cosentino V, Izquierdo J L C, Cabot J. A systematic map-

ping study of software development with GitHub. IEEE Ac-

cess, 2017, 5: 7173-7192.

[5] Bezerra R, Silva F, Santana A, Magalhaes C, Santos R.

Replication of empirical studies in software engineering: An

update of a systematic mapping study. In Proc. the 2015

ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measurement, October 2015, pp.132-

135.

[6] Zhang J, Wang X Y, Hao D, Xie B, Zhang L, Mei H. A

survey on bug-report analysis. Science China Information

Sciences, 2015, 58(2): 1-24.

[7] Zhang T, He J, Luo X, Chan A T S. A literature review

of research in bug resolution: Tasks, challenges and future

directions. The Computer Journal, 2016, 59(5): 741-773.

[8] Ahmad A, Brereton P, Andras P. A systematic mapping

study of empirical studies on software cloud testing meth-

ods. In Proc. IEEE International Conference on Software

Quality, Reliability and Security Companion, July 2017,

pp.555-562.

[9] Zhang L, Pu M Y, Liu Y J et al. Empirical investigation of

empirical research methods in software engineering. Journal

of Software, 2018, 29(5): 1422-1450. (in Chinese)

[10] Wohlin C, Runeson P, Höst M, Ohlsson M C, Regnell B,

Runeson P, Wesslén A. Experimentation in Software Engi-

neering. Springer, 2012.

[11] Petersen K, Feldt R, Mujtaba S, Mattsson M. Systematic

mapping studies in software engineering. In Proc. the 12th

International Conference on Evaluation and Assessment in

Software Engineering, June 2008, pp.68-77.

[12] Petticrew M, Roberts H. Systematic Reviews in the Social

Sciences: A Practical Guide. John Wiley & Sons, 2008

[13] Bourque P, Fairley R E. Guide to the Software Engineering

Body of Knowledge (3rd edition). IEEE Computer Society

Press, 2014

[14] Delgado D, Martinez A. Cost effectiveness of unit testing

a case study in a financial institution. In Proc. the 2013

ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measurement, October 2013, pp.340-

347.

[15] Cook T D, Cambell D T. Quasi-Experiment: Design and

Analysis Issues for Field Setting. Houghton Mifflin, 1979.

[16] Robert J M. Experimental and quasi-experimental designs

for generalized causal inference. Journal of Policy Analysis

and Management, 2003, 22(2): 330-332.

[17] Runeson P, Ḧost M. Guidelines for conducting and report-

ing case study research in software engineering. Empirical

Software Engineering, 2009, 14(2): 131-164.

[18] Haller I, Slowinska A, Bos H. Scalable data structure de-

tection and classification for C/C++ binaries. Empirical

Software Engineering, 2016, 21(3): 778-810.

[19] Molléri J S, Petersen K, Mendes E. Survey guidelines in

software engineering: An annotated review. In Proc. the

10th ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, September 2016,

Article No. 58.

[20] Bao L F, Li J, Xing Z C, Wang X Y, Xia X, Zhou

B. Extracting and analyzing time-series HCI data from

screen-captured task videos. Empirical Software Engineer-

ing, 2017, 22(1): 134-174.

898 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

[21] Petersen K, Vakkalanka S, Kuzniarz L. Guidelines for con-

ducting systematic mapping studies in software engineering:

An update. Information and Software Technology, 2015, 64:

1-18.

[22] Juristo N, Vegas S. Using differences among replications

of software engineering experiments to gain knowledge. In

Proc. the 3rd International Symposium on Empirical Soft-

ware Engineering and Measurement, October 2009, pp.356-

366.

[23] Monteiro C V, Silva F Q, Capretz L F. The innovative be-

haviour of software engineers: Findings from a pilot case

study. In Proc. the 10th ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measurement,

September 2016, Article No. 7.

[24] Wang Y. Characterizing developer behavior in cloud based

IDEs. In Proc. the 2017 ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measurement,

November 2017, pp.48-57.

[25] Octaviano F R, Felizardo K R, Maldonado J C, Fabbri S C

P F. Semi-automatic selection of primary studies in system-

atic literature reviews: Is it reasonable? Empirical Software

Engineering, 2015, 20(6): 1898-1917.

[26] Heeager L T, Rose J. Optimising agile development prac-

tices for the maintenance operation: Nine heuristics. Em-

pirical Software Engineering, 2015, 20(6): 1762-1784.

[27] Shin Y, Williams L. Can traditional fault prediction mod-

els be used for vulnerability prediction? Empirical Software

Engineering, 2013, 18(1): 25-59.

[28] Raja U. All complaints are not created equal: Text analysis

of open source software defect reports. Empirical Software

Engineering, 2013, 18(1): 117-138.

[29] Albayrak Ö, Carver J C. Investigation of individual fac-

tors impacting the effectiveness of requirements inspections:

A replicated experiment. Empirical Software Engineering,

2014, 19(1): 241-266.

[30] Estler H C, Nordio M, Furia C A, Meyer B, Schneider J.

Agile vs. structured distributed software development: A

case study. Empirical Software Engineering, 2014, 19(5):

1197-1224.

[31] Chen N, Hoi S C, Xiao X. Software process evaluation:

A machine learning framework with application to de-

fect management process. Empirical Software Engineering,

2014, 19(6): 1531-1564.

[32] Chen J, Xiao J, Wang Q, Osterweil L J, Li M. Perspectives

on refactoring planning and practice: An empirical study.

Empirical Software Engineering, 2016, 21(3): 1397-1436.

[33] Unterkalmsteiner M, Gorschek T, Feldt R, Lavesson N.

Large-scale information retrieval in software engineering:

An experience report from industrial application. Empir-

ical Software Engineering, 2016, 21(6): 2324-2365.

[34] Capiluppi A, Izquierdo-Cortázar D. Effort estimation of

FLOSS projects: A study of the Linux kernel. Empirical

Software Engineering, 2013, 18(1): 60-88.

[35] Fucci D, Turhan B. On the role of tests in test-driven

development: A differentiated and partial replication. Em-

pirical Software Engineering, 2014, 19(2): 277-302.

[36] Mcburney P W, Mcmillan C. An empirical study of the tex-

tual similarity between source code and source code sum-

maries. Empirical Software Engineering, 2016, 21(1): 17-

42.

[37] Mcilroy S, Ali N, Khalid H, Hassan A E. Analyzing and

automatically labelling the types of user issues that are

raised in mobile app reviews. Empirical Software Engineer-

ing, 2016, 21(3): 1067-1106.

[38] Šmite D, Wohlin C, Galvina Z, Prikladnicki R. An empir-

ically based terminology and taxonomy for global software

engineering. Empirical Software Engineering, 2014, 19(1):

105-153.

[39] Greiler M, Deursen A V. What your plug-in test suites

really test: An integration perspective on test suite un-

derstanding. Empirical Software Engineering, 2013, 18(5):

859-900.

[40] Callaú O, Robbes R, Tanter É, Röthlisberger D. How (and

why) developers use the dynamic features of programming

languages: The case of small-talk. Empirical Software En-

gineering, 2013, 18(6): 1156-1194.

[41] Cheung W T, Ryu S, Kim S. Development nature matters:

An empirical study of code clones in JavaScript applica-

tions. Empirical Software Engineering, 2016, 21(2): 517-

564.

[42] Ceccato M, Capiluppi A, Falcarin P, Boldyreff C. A large

study on the effect of code obfuscation on the quality of java

code. Empirical Software Engineering, 2015, 20(6): 1486-

1524.

[43] Arcuri A, Fraser G. Parameter tuning or default values? An

empirical investigation in search-based software engineer-

ing. Empirical Software Engineering, 2013, 18(3): 594-623.

[44] Tian Y, Lo D, Xia X, Sun C N. Automated prediction of

bug report priority using multi-factor analysis. Empirical

Software Engineering, 2015, 20(5): 1354-1383.

[45] Dit B, Revelle M, Poshyvanyk D. Integrating information

retrieval, execution and link analysis algorithms to improve

feature location in software. Empirical Software Engineer-

ing, 2013, 18(2): 277-309.

[46] Bavota G, Lucia A D, Marcus A, Oliveto R. Automating ex-

tract class refactoring: An improved method and its evalua-

tion. Empirical Software Engineering, 2014, 19(6): 1617-

1664.

[47] Zhu J, Zhou M, Mockus A. Patterns of folder use and

project popularity: A case study of GitHub reposito-

ries. In Proc. the 8th ACM/IEEE International Sympo-

sium on Empirical Software Engineering and Measurement,

September 2014, Article No. 30.

[48] Al-Subaihin A A, Sarro F, Black S, Capra M, Harman M,

Jia Y, Zhang Y. Clustering mobile apps based on mined tex-

tual features. In Proc. the 10th ACM/IEEE International

Symposium on Empirical Software Engineering and Mea-

surement, September 2016, Article No. 38.

[49] Mcilroy S, Ali N, Hassan A E. Fresh apps: An empirical

study of frequently-updated mobile apps in the Google play

store. Empirical Software Engineering, 2016, 21(3): 1346-

1370.

[50] Allix K, Bissyandé T F, Jérome Q, Klein J, State R, Traon

Y L. Empirical assessment of machine learning-based mal-

ware detectors for Android — Measuring the gap between

in-the-lab and in-the-wild validation. Empirical Software

Engineering, 2016, 21(1): 183-211.

[51] Fraser G, Arcuri A. 1600 faults in 100 projects: Automati-

cally finding faults while achieving high coverage with Evo-

Suite. Empirical Software Engineering, 2015, 20(3): 611-

639.

Li Zhang et al.: Empirical Research in Software Engineering — A Literature Survey 899

[52] Vasilescu B, Serebrenik A, Goeminne M, Mens T. On the
variation and specialisation of workload: A case study of the

GNOME ecosystem community. Empirical Software Engi-

neering, 2014, 19(4): 955-1008.
[53] Xia X, Bao L F, Lo D, Kochhar P S, Hassan A E, Z Xing Z

C. What do developers search for on the Web? Empirical
Software Engineering, 2017, 22(6): 3149-3185.

[54] Kosti M V, Feldt R, Angelis L. Archetypal personalities

of software engineers and their work preferences: A new

perspective for empirical studies. Empirical Software Engi-
neering, 2016, 21(4): 1509-1532.

[55] Yin R K. Case Study Research: Design and Methods (4th

edition). Sage Publications, 2009.
[56] William B J, Carver J C. Examination of the software archi-

tecture change characterization scheme using three empir-

ical studies. Empirical Software Engineering, 2014, 19(3):

419-464.
[57] Schulz T, Radliński L, Gorges T, Rosenstiel W. Predicting

the flow of defect correction effort using a Bayesian net-

work model. Empirical Software Engineering, 2013, 18(3):

435-477.

Li Zhang received her Bachelor’s,

Master’s and Ph.D. degrees in computer

science and technology from Beihang

University, Beijing, in 1989, 1992

and 1996, respectively. She is now a

professor in the State Key Laboratory

of Software Development Environment,

Beihang University, Beijing, where she is leading the

expertise area of system and software modeling. Her main

research area is software engineering, with specific interest

in requirements engineering, software/system architecture,

model-based engineering, model-based product line engi-

neering, and empirical software engineering.

Jia-Hao Tian received his Bache-

lor’s and Master’s degrees in software

engineering from Jilin University,

Changchun, in 2012 and 2015 respec-

tively. He is now a Ph.D. candidate in

the State Key Laboratory of Software

Development Environment, Beihang

University, Beijing. His research in-

terests include empirical software engineering, software

architecture, and machine learning.

Jing Jiang is an assistant professor

in the State Key Laboratory of Software

Development Environment, Beihang

University, Beijing. Her research

interests include software engineering,

empirical software engineering, data

mining, and recommendation. She

received her B.S. and Ph.D. degrees in

computer science from Peking University, Beijing, in 2007

and 2012, respectively.

Yi-Jun Liu received her Bache-

lor’s degree in computer science and

technology from Huazhong Normal

University, Wuhan, in 2016. She is now

a postgraduate student in the State Key

Laboratory of Software Development

Environment, Beihang University,

Beijing. Her research interests include

empirical software engineering, natural language process-

ing, and knowledge engineering.

Meng-Yuan Pu received her Bach-

elor’s degree in software engineering

from East China Normal University,

Shanghai, in 2015. She received her

Master’s degree in software engineering

from Beihang University, Beijing. Her

research interests include empirical

software engineering, software testing

and artificial intelligence.

Tao Yue is a chief research scientist

and head of Department of Engineering

Complex Software at Simula Research

Laboratory (SRL), Norway, and she is

also affiliated with UiO (University of

Oslo). She has received her Ph.D. de-

gree in the Department of Systems and

Computer Engineering at Carleton University, Ottawa,

Canada, in 2010. Before that, she was an aviation engineer

and system engineer for seven years. She has nearly

20 years of experience of conducting industry-oriented

research with a focus on Model-Based Engineering (MBE)

in various application domains such as Avionics, Maritime

and Energy, Communications, Automated Industry, and

Healthcare in several countries including Canada, Norway,

and China. Tao is on the editorial board of Empirical

Software Engineering and Science of Computer Program-

ming. She is on the steering committee of MODELS 2018

and will serve as PC co-chair of MODELS 2019. Tao

has been on the program and organization committees of

several international conferences (e.g., MODELS, RE and

SPLC) and is also actively participating in defining inter-

national standards in Object Management Group (OMG),

including Precise Semantics for Uncertainty Modeling

(PSUM), System Modeling Language (SysML) V2, and

UML Testing Profile (UTP) V2. Tao also served as an ex-

pert of proposal evaluation committee of an EU H2020 call.

