
Li XS, Tao XP, Song W et al. AocML: A domain-specific language for model-driven development of activity-oriented

context-aware applications. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(5): 900–917 Sept. 2018.

DOI 10.1007/s11390-018-1865-9

AocML: A Domain-Specific Language for Model-Driven Development

of Activity-Oriented Context-Aware Applications

Xuan-Song Li1,2, Member, CCF, Xian-Ping Tao2, Senior Member, CCF, Member, IEEE
Wei Song1,2, Senior Member, CCF, Member, IEEE, and Kai Dong3

1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
3School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

E-mail: lixs@njust.edu.cn; txp@nju.edu.cn; wsong@njust.edu.cn; dk@seu.edu.cn

Received March 5, 2018; revised July 18, 2018.

Abstract Activity-oriented context-aware (AOCA) applications are representative in pervasive computing. These appli-

cations recognize daily-life human activities, perceive the environment status related to the activities, and react to ensure

the smooth performance of the activities. Existing research proposed a specific light-weight, incremental method to support

the development of such applications; however it is not easy to learn and use. This paper aims to facilitate the development

of such applications and improve the productivity of developers. We propose AocML, a textual domain-specific language

which provides a high-level abstraction of AOCA applications. Specifically, we first show the software model of AOCA

applications and the abstract syntax of AocML. Then, we introduce the concrete syntax of AocML. We also implement the

tools for AocML, including the development environment as well as the generation of Java code and ontology specification.

Moreover, we use a case study and evaluation to demonstrate the advantages of AocML.

Keywords pervasive computing, context-awareness, model-driven development, domain-specific language

1 Introduction

Pervasive computing[1] is a computing paradigm

which embeds computing resources into the environ-

ment, and provides services for users ubiquitously and

transparently. One of the key properties of pervasive

computing applications is context-awareness[2], that is,

such applications can sense the environment and react

based on the environment.

Among these applications, we focus on a typ-

ical kind of applications with the above comput-

ing paradigm, namely, activity-oriented context-aware

(AOCA) applications[3]. Users of AOCA applications

live in a smart space and perform autonomous activities

such as sleeping, reading a book, and watching TV. For

different activities, users may have different requests for

the environment. For example, when a user is read-

ing in a living room, the living room is required to be

bright; when he/she is sleeping in a bedroom, the bed-

room needs to be relatively dark and has an appropriate

temperature. The computing system recognizes users’

activities and senses the environment status. According

to this information, it provides services in order to en-

sure the smooth performance of the activities. AOCA

applications are common in the research of pervasive

computing. Typical AOCA applications include smart

home[4], smart meeting room[5], elderly care systems[6],

etc.

These applications have some features such as open-

ness of the environment and personalization of applica-

Regular Paper

Special Section on Software Systems 2018

The work was supported by the National Key Research and Development Program of China under Grant No. 2017YFB1001801, the
National Natural Science Foundation of China under Grant Nos. 61702263, 61761136003, and 61373011, the Natural Science Foundation
of Jiangsu Province of China under Grant No. BK20171427, and the Fundamental Research Funds for the Central Universities of China
under Grant No. 30917011322.

©2018 Springer Science +Business Media, LLC & Science Press, China

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 901

tion requests. Therefore, it is difficult for developers

to deploy the environment resources and analyze the

requests completely once and for all. The general per-

vasive computing applications development methods

(e.g., [7-8]) do not consider the activity-oriented in-

cremental development; thus they cannot support the

development and maintenance of AOCA applications in

a flexible way.

To deal with this challenge, the existing work[3] pro-

posed a lightweight, incremental programming frame-

work. This framework separates the concerns of envi-

ronment resource descriptions and the application re-

quests definitions. Furthermore, the application re-

quests are dependent on user activities and can be fur-

ther separated into constraints related to each activ-

ity. Although the programming framework and an API

(application program interface) of AOCA applications

have been proposed, the development of such applica-

tions still lacks enough guidance. The developers also

need to spend a considerable amount of time learning

how to use API.

Domain-specific language (DSL) is an alternative

way against API. It provides a development tool which

is tailored towards a particular application domain in

a higher level. In some specific domains, DSLs are able

to improve the productivity of development[9-11].

In this paper, we present a textual DSL named

AocML (short for Activity-Oriented Context Model

Language) for the model-driven development (MDD)

of AOCA applications in order to promote the develop-

ment support for such applications. The main contri-

butions are as follows.

1) We propose a high level model for AOCA appli-

cations to describe the entities in such applications.

2) We propose AocML for specifying AOCA applica-

tions to facilitate the development of such applications.

3) We implement a platform supporting the develop-

ment of AOCA applications based on AocML. This

platform includes an AocML development environment

and a code generator which generates software artifacts

from AocML codes.

The rest of this paper is organized as follows. In

Section 2, we give a review of AOCA applications and

the development method. We also discuss the design

choices of a DSL for AOCA applications. Then, we ana-

lyze the metamodel of AOCA applications in Section 3.

We present AocML concrete syntax in Section 4 and

the implementation of the tools for AocML in Section 5.

We give a case study in Section 6 and an evaluation in

Section 7. We review the related work in Section 8, and

finally conclude the paper in Section 9.

2 Background and Rationale

In this section, we first introduce the concept and

development method of AOCA applications. We then

discuss the requirements of the DSL for AOCA appli-

cations.

2.1 Activity-Oriented Context-Aware (AOCA)
Applications

Among various kinds of context-aware applications,

we use the term “AOCA applications” to refer to the

applications which recognize user activities, sense envi-

ronment information related to the activities, and in-

fluence the users and environment in order to provide

environment-related support for the activities.

AOCA applications have the following characteris-

tics.

Activity Relativity. AOCA applications provide

environment-related support for autonomous activities

of users 1○. In other words, the requirements of these

applications are represented as the environment con-

straints related to user activities. This is the essential

feature of these applications.

Shareable Environment Infrastructure. Various

users may perform various activities in an environment

of smart space. This environment can be encapsulated

as a proactive infrastructure which is independent of

the activities. This infrastructure is shared by different

activities or AOCA applications. Such infrastructure

is open and dynamic because the resources are often

added into it or removed from it.

Spatiotemporal Locality. From the temporal per-

spective, each activity has a duration period. AOCA

applications only need to consider environment con-

straints in each duration period instead of the globe

requirements. From the spatial perspective, the envi-

ronment constraints in a time period usually only relate

to partial resources. The applications may organize the

partial resources to provide services for user activities.

Generally, context-aware systems consist of at least

three layers.

1) Environment Data Source Layer. This layer en-

capsulates the devices and services which are able to

sense or influence the environment. It describes the

system’s capabilities of sensing and influencing the en-

vironment.

1○An activity is seen as a system of human “doing” whereby a subject works on an object in order to obtain a desired outcome[12] .

902 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

2) Context Management Layer. This layer attaches

sematic meaning to environment information. Further,

it performs managing processes such as fusion and fil-

ter.

3) Business Logic Layer. This layer describes the

business logics of applications and the requests for en-

vironment.

Some efforts (such as [13]) layer these applications

in other ways. These ways can be viewed as a refine-

ment of the previous three layers by dividing one or

more layers.

On the basis of the three layers, different kinds of

applications describe the attributes and relationships in

each layer according to the characteristics of the appli-

cations. For AOCA applications, these layers are shown

in a structure as Fig.1.

Activity-Related
Constraints

Activities

E

A B C

D

(1) (2) (3) (4)

Influencing
Users

Environment
Information

Environment

Influencing
Environment

(1) Activity-Oriented Environment Information

 Organization

(2) Information Update

(3) Decision

(4) Adaptation

Fig.1. Layers of AOCA applications.

The environment data source layer of AOCA ap-

plications defines an environment infrastructure which

can be shared by various activities. The attributes in

the environment can be sensed and influenced by the

applications. The business logic layer of AOCA appli-

cations consists of various activities of various users and

the requests of these activities. The requests represent

as constraints on the environment. AOCA applications

maintain a suitable environment for activities to ensure

the smooth performance of the activities. The context

management layer of AOCA applications contains four

iterative phases.

Activity-Oriented Environment Information Orga-

nization. The requirements of AOCA applications are

related to activities. In the runtime, a part of informa-

tion in the environment related to a phase of an activity

is organized. After the organization, the environment

information waits for data update (arrow A). This part

of information performs as the base of context-aware

decision and adaptation. When the activity changes,

the information will be reorganized.

Information Update. The system obtains the up-

dated data value of the attributes in the environment.

After the data update, it turns to the decision phase

(arrow B).

Decision. The system judges whether the environ-

ment satisfies the constraints of current activities. If the

environment does not satisfy the constraints, it turns to

the adaptation phase (arrow C); otherwise, it turns to

the information update phase to wait for future data

update (arrow D).

Adaptation. When the environment does not satisfy

the constraints, the system influences the environment

or influences the user activities. Then, the system turns

to the information update phase to wait for future data

update (arrow E).

2.2 Development Method of AOCA

Applications

Because of the characteristics of AOCA applica-

tions, there are some difficulties to develop such ap-

plications. First, the resources in the shared environ-

ment are often added or moved. Therefore, not only

the values in the environment but also the capabilities

of sensing and influencing the environment are open

and dynamic. Second, activity-related requests for the

environment are personalized. Such requests are diffe-

rent from person to person. When a new user enters the

system, he/she may add personalized requests. These

difficulties make developers difficult to deploy the entire

environment resources and design the requests during

the development phase once and for all.

The existing work[3] proposed a lightweight, incre-

mental programming framework for AOCA applica-

tions in order to facilitate the development and mainte-

nance. In this method, there are two kinds of developers

focusing on different parts of the system.

Infrastructure Developers. These developers deal

with the environment. They construct and maintain an

environment infrastructure. The infrastructure firstly

specifies the types of environment attributes which can

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 903

be sensed or influenced (named as “features”, e.g., light

intensity, temperature). Then, it specifies the instances

of environment attributes related to specific devices

(e.g., sensors, lamps).

Application Developers. These developers deal with

the requests for the environment. They specify the con-

straints of different activity types. Furthermore, the

personalized constraints should be concerned.

This method reflects the idea of “separation of con-

cerns”. The infrastructure developers do not need to

consider the requests of activities. The application

developers just need to read a description provided by

the infrastructure developers in order to know which

features can be considered by the system. They do not

need to know the details of the infrastructure. The at-

tributes in the environment and the constraints in the

applications are lightweight and pluggable.

This work[3] also provided an API to develop AOCA

applications with this programming framework and a

supporting platform PAOC.

2.3 DSL Requirements

The existing work proposed the development

method and an API to facilitate the development of

AOCA applications. The developers still take effort to

learn how to use this API. Therefore, it is unfavourable

for the involvement of the domain experts. Further-

more, development artifacts are not concise enough.

The conciseness will affect the productivity of such ap-

plications.

Model-driven development (MDD) methods at-

tempt to specify a system at a high level of abstraction

in order to improve the capability for automation in

the development and the quality of the applications[14].

The models are usually expressed in domain-specific

languages (DSLs)[15]. MDD methods should provide

model transformations to generate software artifacts

from the models written by DSLs. Compared with

general-purpose languages (GPLs), DSLs have at least

the following advantages[9,16-17].

Concrete Expression of Domain Knowledge. As

domain-specific functionality is coded in a concrete

human-readable form at a high level of abstraction,

software artifacts are not arcane for the developers.

It will reduce the difficulty of developing, testing, and

modifying.

Direct Involvement of the Domain Experts. A pro-

gram expressed in DSL usually has a style which

matches the format typically used by the domain ex-

perts. It helps domain experts take part in the lifecycle

of the software and cooperate with the developers. The

domain experts may even specify, implement, verify,

and validate some artifacts directly.

In this work, we intend to propose a DSL for the

domain of AOCA applications, named AocML. On the

basis of the above advantages, this DSL is easier to learn

for both developers and domain experts of these appli-

cations. The difficulty in learning API will be avoided.

Furthermore, applications can be developed with less

code by a concise DSL than by a GPL, so that the

productivity may be improved.

AocML satisfies the following requirements.

Abstraction of Separated Concerns. As previously

mentioned, the development method uses the idea of

separation of concerns. Therefore, the separated con-

cerns should be identified[18]. DSL should give a high-

level abstraction of the concerns by analyzing the do-

main concepts.

Openness. Resources in the environment and per-

sonalized requests are often modified or added dur-

ing the lifecycle. DSL should support incremental

development. The artifacts of development should be

lightweight and pluggable.

Ease of Use and Reuse. The syntax of the proposed

DSL should be intuitive to use. The artifacts should be

easy to reuse in similar scenarios.

Generally, a DSL has three elements[15]: the ab-

stract syntax which describes the domain concepts as

well as the relationship among them and is normally

specified in a metamodel, the concrete syntax which is

based on the abstract syntax and provided for the deve-

lopers, and the semantics which is usually described by

a translation to other languages, especially a GPL (such

as Java).

Therefore, DSL development consists of three

phases[19]: the analysis of domain-specific terminol-

ogy in an abstract form, the design of concrete syn-

tax, and the implementation of a code generator. For

AOCA applications, we show these three phases in Sec-

tion 3∼Section 5, respectively.

3 Analysis: Concept Model of AOCA

Applications

In this section, we discuss the concept model of

AOCA applications for the lightweight, incremental

development. This model consists of two parts: 1) the

software model to describe the development and run-

time artifacts; 2) the metamodel of the domain concepts

to describe the abstract syntax of AocML.

904 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

3.1 Software Model of AOCA Applications

Fig.2 displays the static model of AOCA applica-

tions. This model separates the development artifacts

into two parts, i.e., the infrastructure and the activity-

related environment constraints of applications.

The infrastructure part describes the features in en-

vironment and the ability to sense or influence these

features. This part is developed independently. The

infrastructure can be shared by various applications.

More specifically, it contains the followings.

Description of Owners. Owners describe entities

which own the environment attributes. It contains not

only the physical locations where the activities are per-

forming but also the persons (users) who are holding

the sensors or other devices. The sensors, services, and

devices are deployed in the environment to sense or in-

fluence the attributes in the owners. This part describes

the locations (e.g., rooms) and the users related to the

system.

Description of Features. Features reflect the sta-

tus of the owners, e.g., temperature of a room, blood

pressure of a person. They indicate the types of en-

vironment data which can be obtained by the system.

This part describes these concept-level features, such as

light intensity, noise intensity, temperature, and blood

pressure.

Description of Sensing Ability. Some devices or ser-

vices (e.g., sensors) are deployed in the environment to

obtain the specific features of specific owners. They

indicate the sensing ability of the infrastructure. This

part focuses on the deployment of each sensor or ser-

vice by defining the feature which it senses (e.g., TelosB

sensors are able to sense attributes with the feature of

light intensity) and the related owner.

Description of Influencing Ability. Some devices

controlled by the computer system are deployed in the

environment to influence the specific features of the en-

vironment. They indicate the influencing ability of the

infrastructure. This part focuses on the deployment of

each device by defining the feature which it influences

(e.g., lamps are able to influence attributes with the

feature of light intensity) and the related owner.

In the application part, we only consider the

activity-related environment constraints. Other re-

quirements are beyond the scope of this work. The

first step is to describe activity types involved in the

applications. Then, the second step is to define the en-

vironment constraints which reflect the requests for the

environment to ensure the smooth performance of the

activities. These constraints can be considered sepa-

rately oriented to the activities. There are two kinds of

environment constraints.

• The default constraints related to specific activity

Infrastructure

Features

Owners

Sensing

Ability

Sensors

Influencing

Ability

Actuators

Application

Activity
Type 1

Default

Constraint 1

Personalized
Constraint 1

Activity
Type 2

Default
Constraint 2

Personalized
Constraint 2

Activity
Type 3

Default
Constraint 3

Personalized

Constraint 3

... Users

Fig.2. Static model of AOCA applications.

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 905

types reflect the general requests of each activity type.

For example, the activity type “reading” usually re-

quires the environment has suitable light intensity. The

application developers define the default constraints on

the basis of the understanding of an application.

• The personalized constraints of a specific user

describe the user has special requests of an activity

type. For example, for the activity type “reading”,

some users may require a brighter environment than

general users. Furthermore, some users may require for

some features beyond the scope of default constraints.

For example, the blood pressure of elderly users should

be monitored at any time, but this feature is usually not

contained in the default constraints of general activity

types. The application developers define the person-

alized constraints on the basis of the investigation of

users.

In the runtime, AOCA applications composite

development artifacts of infrastructure and environ-

ment constraints by a supporting system. We use the

term “context” to combine an activity with related en-

vironment resources. Fig.3 shows the runtime model of

AOCA applications.

In this system, pieces of context are organized in the

runtime and managed by proactive components. The

interactions among infrastructure part, context part,

and application part (activities) consist of the follow-

ing aspects.

• Context components generate context by organiz-

ing environment data according to constraints of cur-

rent activity.

• When an activity changes, the constraints may

change, so that the context will be regenerated.

• Context components influence the environment by

using devices (e.g., lamp) to adjust some features.

• If the constraints of an activity cannot be satis-

fied, the context component will notify the user by some

devices (e.g., smart phone).

3.2 Abstract Syntax of AocML

In order to describe the abstract syntax of AocML,

we use a metamodel of AOCA applications. This meta-

model which is shown in Fig.4 presents the main con-

cepts and relationships of the software model. We

briefly discuss these concepts as follows.

Feature. The infrastructure developers create these

objects. The types of sensors/devices are combined

with the features.

Location. The infrastructure developers create these

objects when there are some sensors/devices deployed

in a location.

Person. The infrastructure developers create these

objects when a person is holding some sensors. If a

person object has not been defined by the infrastruc-

ture developers, the application developers may create

it when they need to define the personalized constraints.

Environment Attribute (EnvAttribute). The infras-

tructure developers create an environment attribute to

describe an element in the environment that can be ac-

cessed. The instances of sensors/devices are combined

with the environment attributes.

In
fr

a
st

ru
c
tu

re

Activity

Influencing

Env. Info.

Context

Constraints

Influencing

Activity

Influencing

Env. Info.

Context

Constraints

Influencing

Activity

Influencing

A
djusting

Adj
us

tin
g

Sensing

Se
ns

in
g

Env. Info.

Context

Constraints

Influencing

..
.

Fig.3. Runtime model of AOCA applications. Env. Info. means enviroment information.

906 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

-feature: Feature
-owner: Owner
-value: Object

EnvAttribute

Feature

Owner

1
1

1

1

Location

Person

Environment

1

*

Constraint

AtomicAssertion

ActivityType
Activity

1

*

1

1

1

1

1 1

Context1*

1 *

1
1

1

*

-predicate: String

-defaultCons: List <Constraint>
-personalCons: Map <String, List<Constrint>>

Fig.4. Metamodel of AOCA applications.

Environment. The supporting system organizes the

environment attributes as an environment.

Activity Type. The application developers create

these objects.

Constraint and Atomic Assertion. An atomic as-

sertion is to judge whether environment attributes

with a specific feature satisfy a condition (e.g.,

<temperature, greaterThan(10)>). A constraint is a

set of atomic assertions. The application developers

define the default constraints for activity types and the

personalized constraints for persons.

Activity. In the runtime, the supporting system re-

ceives the results of activity recognition (e.g., [20]), and

then creates these objects.

Context. Here, we follow Dourish’s[21] understand-

ing of the properties of context, i.e., the scope of context

is defined dynamically; context is particular to each oc-

casion of activity. In our model, a context[3] is consi-

dered as a set of environment attributes related to a

specific activity. It also maintains the constraints of

the activity. The supporting system creates these ob-

jects.

In summary, the tasks of the infrastructure deve-

lopers are to define features, owners (locations/per-

sons), and environment attributes; the tasks of the ap-

plication developers are to define the activity types, de-

fault constraints, and personalized constraints.

4 Design: AocML Concrete Syntax

On the basis of the software model of AOCA appli-

cations and the abstract syntax of AocML, we propose

a textual concrete syntax for creating development ar-

tifacts. This language is platform-independent. In this

work, we implement this language by Xtext[22], a widely

used framework for development of DSLs.

The details of the syntax are shown with BNF

(Backus-Naur Form) in Fig.5. In this definition, ID and

INT are two predefined terminals which indicate the

identifier in Xtext and the integer type, respectively.

According to the software model, AocML-based

development also contains two parts, i.e., environment

infrastructure development and applications develop-

ment.

4.1 Environment Infrastructure Development

In our method, each sensor or service which senses

an environment attribute is encapsulated as a probe.

Each device or service influencing an environment at-

tribute is encapsulated as an actuator.

Fig.6 shows an example of environment infrastruc-

ture development. Lines 3∼8 define a feature. Besides

the feature name (LightIntensity), the developers also

need to declare the owner type (Location or Person)

of the corresponding attribute and the related probe

types, actuator types, operators. The probe types and

actuator types specify the system ability of sensing and

influencing the environment attributes with this fea-

ture. The operators specify the ability of judging the

environment attributes with this feature. Line 9 defines

an owner room810 by giving its name and type. There

are two devices in room810. Line 10 defines a probe

which encapsulates a light intensity sensor by giving its

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 907

<DomainModel> ::= <EnvModel> | <AppModel>
<EnvModel> ::= “envPackage” <QualifiedName> “{” {<Feature> | <Owner>}“}”
<Feature> ::= “feature” <ID> “{”

“owner type” <OwnerType>
“probe type” <ProbeType> {<ProbeType>}
“actuator type” {<ActuatorType>}
“operator” {<JudgeFun>}“}”

<ActuatorType> ::= <ID>

<ProbeType> ::= <ID>

<Owner> ::= “owner” <ID> “:”<OwnerType>“{”{<Probe> | <Actuator>}“}”
<OwnerType> ::= “Location”|“Person”
<Actuator> ::= “actuator” <ID> “:”<ActuatorType>
<Probe> ::= “probe” <ID> “:”<ProbeType>
<AppModel> ::= “appPackage” <QualifiedName> “{” {<ConstraintType>}“}”
<ConstraintType> ::= <DefaultConstraint> | <PersonalizedConstraint>
<DefaultConstraint> ::= “activity” <ID>

“constraint” {<Constraint>}
<PersonalizedConstraint> ::= “person” <ID>

“activity” <ID>

“constraint” {<Constraint>}
<Constraint> ::= <ID>“:”[“[”<TimePeriod>“]”] {<Assertion>}
<TimePeriod> ::= <ID>

<Assertion> ::= “assertion” <AtomicAssertion>{<AtomicAssertion>}
<AtomicAssertion> ::= <ID> “,”<JudgeFun> “,”<Threshold>
<QualifiedName> ::= <ID>{“.”<ID>}
<JudgeFun> ::= (“<”|“>”)[“=”]|“=”|“<>”|“inRange”
<Threshold> ::= <Float> |(“[”|“(”)<Float>“,”<Float>(“)”|“]”)
<Float> ::= [“+”|“-”]((<INT>[“.”<INT>])|(“.”<INT>))

Fig.5. AocML concrete syntax.

name and probe type. Similarly, line 11 defines an ac-

tuator which encapsulates a controllable lamp by giving

its name and actuator type. With the given probe/ac-

tuator type and owner, the supporting system is able

to combine the probe/actuator with an environment at-

tribute.

Fig.6. Environment infrastructure development example.

4.2 Application Development

The application developers deal with the constraints

of activities. They need to specify default and person-

alized constraints of each activity type.

According to the idea in [3], a constraint can be spe-

cified as a conjunction of assertions. Each assertion is a

disjunction of several atomic assertions. Furthermore,

a label of time period (e.g., “At night”, “17:00-18:00”,

“In Sunday”) is optional.

constraint ≡ as1 ∧ as2 ∧ . . . ∧ asn : [time period],

ask ≡ atoAs1 ∨ atoAs2 ∨ . . . ∨ atoAsm,

where ask is an assertion, and atoAsi is an atomic as-

sertion.

Fig.7 shows an example of application development.

Lines 3∼10 specify the default constraints of activity

types Sleeping, WakingUp, and Reading. For the ac-

tivity Reading, the environment should meet at least

one condition of “the curtain is rolled up” and “the

lamp is turned on”. Lines 12∼16 specify the personal-

ized constraints of Bob. Bob needs a darker and warmer

environment to sleep. He also needs a suitable environ-

ment (the light intensity should not be too high) when

he wakes up at night.

Fig.7. Application development example.

908 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

5 Implementation: Tools for AocML

The proposed AocML represents the development

artifacts of AOCA applications at a high-level of ab-

straction. From the perspective of MDA (Model-Driven

Architecture)[23], it is a PIM (platform-independent

model). In this work, we implement the development

support for this DSL. Furthermore, we provide a model-

to-text transformation to convert the AocML models

into Java codes. These codes are generated for the

existing runtime supporting platform PAOC[3]. As

AocML model is not complicated in the mapping be-

tween model and code, we transform the model to code

directly instead of introducing model-to-model trans-

formations to a PSM (platform-specific model). There-

fore, this transformation has some advantages, for in-

stance, the debugging task will be easier, the develop-

ment time will be reduced, and the transformation is

faster[24]. Apart from the Java codes, we provide an-

other transformation to generate OWL specification for

AocML ontology base.

The development phase is shown in Fig.8.

AocML

Java Code of
Environment

Infrastructure

Application
Specification

Environment

Specification

Application
Developers

Infrastructure

Developers

Java Code of

Applications

OWL
Specificaton

PAOC

Platform

Fig.8. Development phase based on AocML.

5.1 AOCA Applications Development Support

Generally, the basic tools for a textual DSL

contain[25]:

1) an editor to develop applications with the DSL,

2) a parser (model injector) to extract models from

a DSL textual specification, and

3) a code generator to transform the models into

software development artifacts.

In this work, we use Xtext[22] to implement the

development environment of AocML. Xtext provides a

framework to specify the grammars of DSLs and auto-

matically generate domain-specific editors. This tool

also includes components such as a parser, a linker,

a type checker, and a compiler integrated by EMF

(Eclipse Modeling Framework). It is easy for DSL deve-

lopers to design a DSL and implement an Eclipse-based

IDE (integrated development environment). IDE has

some utility functions such as highlighting of keywords

and display of syntax errors.

Fig.9 shows the implemented IDE based on Xtext.

We provide not only the infrastructure development

and application development interfaces, but also some

other utility tools, e.g., buttons for invoking JFrame-

based tables which display the specified features and

probes/actuators.

5.2 Java Code Generation from AocML Model

PAOC (platform for activity-oriented context)[3] is

a Java-based platform for supporting the development

and runtime of AOCA applications. This platform pro-

vides a Java API for deploying the resources in en-

vironment infrastructure and specifying constraints of

activities. The interfaces of PAOC API are based on

an object-oriented model which is similar to the meta-

model of AOCA applications (Fig.4). The main con-

cepts of API are consistent with the abstract syntax

of AocML. Therefore, developers of AOCA applica-

tions can specify the infrastructure and constraints with

AocML, instead of using PAOC API.

In order to generate Java code from the developed

AocML model automatically, we implement a code gen-

erator with Xtend 2○. This generator parses every ele-

2○http://www.eclipse.org/xtend/, July 2018.

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 909

Display the

Probes/Actuators

Display the

Features

Fig.9. IDE for AOCA applications.

ment in an AocML model and creates the corresponding

Java code. This generator is integrated in the Xtext-

based IDE of AocML.

As mentioned in Fig.8, the model-to-text trans-

formations are also separated into two parts. Fig.10

presents an example of generating code from the

AocML environment model which is shown in Fig.6.

The generation is organized in the following way.

Fig.10. Example of code generated for environment model.

• Instances of PAOC managers are created (lines

3∼6, Fig.10). These managers are designed with the

singleton pattern[26] so that these instances are glob-

ally unique for each manager.

• A feature is created (lines 8∼14, Fig.10) by setting

its owner type (setOwnerType method), related probe

types and actuator types (setRelatedFeature method of

probe/acutator type), and related operators (setJudge-

Fun method). The getProbeType/getActuatorType

method is invoked to get a probe/acutator type. If

the probe/acutator type is null, the system will create

a type object and return it.

• An owner is created (line 16, Fig.10) by giving its

type and name.

• A probe/actuator is created (lines 18∼22, Fig.10)

by giving its type and name, together with setting its

owner.

Fig.11 presents a fragment of generating code from

the AocML application model which is shown in Fig.7.

The generation is organized in the following way.

• Two specific methods, setDefaultRequirements

and setPersonalRequirements, are created for the spec-

ifications of default constraints and personalized con-

straints, respectively.

• Each atomic assertion is created, and then added

as a disjunctive term of an assertion by the method ad-

910 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

dDisjAtomicAssertion. Lines 18∼20 in Fig.11 show an

example of an assertion with multiple atomic assertions.

Fig.11. Example of code generated for application model.

• An assertion is organized as a conjunctive term of

a constraint by the method addConjAssertion (lines 7,

10, 13, 21, and 32, Fig.11).

• A constraint is added as a default constraint of

an activity by the method addDefaultConstraint (lines

14, 22, Fig.11) or a personalized constraint related to

a user by the method addPersonalizedConstraint (line

34, Fig.11).

• The method setTimePeriod is used to set a time

period for a constraint (line 33, Fig.11).

5.3 OWL Specification Generation from

AocML Model

In the supporting platform, we use an ontology base

to maintain and share knowledge among every module.

In computer science, ontology is “an explicit specifica-

tion of a conceptualization”[27]. The same with general

ontology bases, AocML ontology also has two levels:

• a TBox which describes the concepts and proper-

ties is usually related to object-oriented classes;

• an ABox which describes the facts, and is usually

related to instances of classes.

The ontology base is described with OWL (Web On-

tology Language)[28]. The TBox of AocML ontology is

manually developed in accordance with the metamodel

of AOCA applications (Fig.4). Fig.12 presents the main

concepts and properties in this TBox. The TBox is

valid for all applications supported by AocML.

The OntologyBase class, which is designed with the

singleton pattern, maintains the ontology base. The

Activity

Person

Location
Context

EnvAttr

Constraint

hasActor

hasOwner

locateIn

hasEnvAttr
hasFeature

owl: Classowl: Property

hasConstraint

hasEnvAttr

Feature
hasFeature

hasAct

ActivityType

hasActType

hasDefaultConstraint

Environment

Assertion

hasAssertion

AtomicAssertion

hasAtomicAssertion

Owner

is-a

hasPersonalizedConstraint

is-a

Fig.12. Main concepts and properties in the TBox of AocML ontology.

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 911

main related classes and interfaces are shown in Fig.13.

All the classes of metamodel concepts implement the

OntResource interface. This interface indicates that

these classes are ontology resources, so that each class

corresponds to a concept in the TBox. When the ele-

ments of AOCA applications are created or changed,

the relevant instances in the ABox of AocML ontology

will be created or changed. The class AocMLOntModel

encapsulates OWLModel in Protégé API 3○ and pro-

vides utility interfaces such as construction of a model,

input and output of a model from an OWL file, ope-

rations on classes and instance (e.g., creating resources,

deleting resources, adding property values). The Rea-

soner class encapsulates the inference engine of Protégé,

which is based on Jess 4○. This class supports inferences

on the instances.

<<interface >>
OntResource

AocMLOntModel

OntologyBase

1

1

Reasoner

EnvAttribute

Feature

⇁getOntName↼↽. String

+doReason(in model : AocMLOntModel): AocMLOntModel

-model: OWLModel

⇁getOntClsName↼↽. String

Location

Person

OwnerEnvironment

ConstraintAssertionAtomicAssertion

Activity

Context

Fig.13. Class diagram of the ontology base.

During the development, when the supporting sys-

tem parses the elements in an AocML model, the

instances corresponding to the elements are created

in the ontology base. Meanwhile, the relationships

among the instances are added as the property values.

Note that hasPersonalizedConstraint is a ternary rela-

tionship among Person, ActivityType, and Constraint,

which is difficult to be described by OWL. In our imple-

mentation, we add the name of the activity type as the

prefix of a constraint name, so that it can be viewed as

a binary relationship between Person and Constraint.

6 Case Study

In this section, we introduce the development of a

smart meeting room as a case study. We firstly overview

the scenario and then present the specified AocML

model of the infrastructure and application. Further-

more, we discuss about some design guidelines.

6.1 Scenario: A Smart Meeting Room

Smart meeting room, which is a practical perva-

sive computing scenario, draws widely attention in

academia and industry. The basic task of such a system

is to perceive the environment and control the devices in

the room in order to ensure the smooth progress of the

meetings. As it is a typical scenario, many researchers

use it as a case study to show the practicability of their

work. Different researchers organize this application in

different ways on the basis of their research ideas. For

example, Context Toolkit[7] organizes the system sur-

rounding the Conference Assistant application in hand-

held devices of meeting attendees. This system acquires

3○http://protege.stanford.edu/, July 2018.
4○http://www.jessrules.com/, July 2018.

912 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

the environment information and pushes some sugges-

tions to the attendees. Another work, FollowMe[5], or-

ganizes the system in the form of workflow. The pieces

of environment information are used as events for trig-

gering some activities in the workflow.

In our work, we view the smart meeting room sce-

nario in the perspective of AOCA applications. More

specifically, the development artifacts are separated

into two parts.

Infrastructure of a Smart Meeting Room. The hard-

ware devices and software services which are able to

sense or influence environment information are encap-

sulated in the infrastructure of the smart meeting room

system. The development of this part is independent

of the application requirements. The typical sensors in-

clude TelosB sensors (Fig.14(a)) which are able to sense

light intensity, temperature, humidity and IRIS sensors

(Fig.14(b)) which are able to sense noise intensity. The

typical services include the weather forecast based on

web service. The devices in the system (e.g., lamps,

curtains) can be controlled by some approaches, such as

sending control signals by the Modbus protocol 5○. The

status of the devices (e.g., whether a lamp is turned on,

whether a curtain is rolled up) can be acquired by the

query mechanism of the Modbus protocol, so that we

also view these status as environment attributes. The

infrastructure of a smart meeting room can be designed

as part of a large infrastructure such as a smart office

building.

(b)(a)

Fig.14. Examples of sensors. (a) TelosB. (b) IRIS.

Requirements of Smart Meeting Room Applications.

The users of these applications are the attendees of the

meetings. Application requirements are organized with

activity types of the attendees. For example, an aca-

demic report in the meeting room has multiple phases

such as reporters entering the room, audience entering

the room, reporting, discussing after the report, and at-

tendees leaving the room. These phases are recognized

by the system and then described as different activities

of different users. Developers specify the constraints of

the activities. The system supports the performing of

these activities.

6.2 Development with AocML

Fig.15 shows the AocML-based environment specifi-

cation of a smart meeting room. This system defines six

features: LightIntensity, Temperature, ProjectorOn,

PosterOn, CurtainUp, and MusicOn. A meeting room

room810 is defined as a location. A TelosB sensor is

deployed in the meeting room in order to sense the

light intensity and temperature. It is encapsulated

into two probes p101 and p102. A lamp a201 will

Fig.15. Environment specification of a smart meeting room.

5○http://www.modbus.org/, July 2018.

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 913

influence the light intensity. An air conditioner a202

will influence the temperature. There are four more de-

vices that can be controlled: a projector a203, a poster

a204, a curtain a205, and a music player a206. Their

statuses are acquired by virtual probes p103, p104,

p105, and p106 respectively.

Fig.16 shows the AocML-based application specifi-

cation of a smart meeting room. We define five activity

types and the following default constraints.

• ReporterEntering. The light intensity and temper-

ature should be suitable; the curtain should be rolled

up; the projector should be turned on.

• AudienceEntering. The music player and the

poster should be turned on to welcome the audience.

• Reporting. The music player should be turned off;

the environment should be darker for the sharpness of

the projector.

• Discussing. The environment should be brighter

for the discussing.

• Leaving. The devices such as projector and poster

should be turned off.

Apart from these default constraints, we also give

an example of personalized constraints.

Fig.16. Application specification of a smart meeting room.

6.3 Discussion

In Subsection 6.2, we present a case study of design

and implementation of AOCA applications. We fur-

ther discuss about some notices and suggestions of the

development.

1) One of the key design steps is the definition of fea-

tures. Features contain not only the properties such as

light intensity but also the status of devices such as pro-

jectors. We suggest that it is better to define features

as the basic information which can be acquired directly.

The requirements related to more than one feature can

be specified as the combination of constraints. How-

ever, infrastructure developers can also define complex

features in specific applications. Probes for the fusion

of features can be developed.

2) In an application, we may use different ways to

define the activity types. In the smart meeting room

case, we define two activity types “a reporter is en-

tering” (ReporterEntering) and “an audience is enter-

ing” (AudienceEntering). In the runtime, these activ-

ity types are separated in the activity recognition, i.e.,

when a user is entering the meeting room, the system

sets one of the two activity types on the basis of her/his

identity. An alternative way is to define an activity type

Entering. Then personalized constraints for users with

different identities can be specified.

3) The controlling of a device may be triggered by

different features. In the smart meeting room case, the

lamp can be triggered by the constraints related to light

intensity. However, we can also define a feature to de-

scribe the status of the lamp (e.g., LampOn). Then

we can define constraints related to this feature. The

issue about which way is more appropriate depends on

the scenario. Generally, if the application focuses on

a property of the space (especially when multiple de-

vices can influence the property, e.g., light intensity),

the better way is to define the property as a feature di-

rectly. The infrastructure will decide how to influence

the feature. In contrast, if there are requests for a de-

vice status, the better way is to define the constraints

about the status. In the example above, if we want to

ensure the lamp is turned off when the attendees are

leaving, we can define a feature LampOn to describe

the status of the lamp. Then we can define constraints

about this feature instead of using constraints related

to light intensity.

7 Evaluation

In this section, we evaluate the proposed approach

to demonstrate that AocML facilitates the development

of AOCA applications.

As mentioned in Section 2, the purpose of introduc-

ing DSL in AOCA applications is to reduce the diffi-

culty of learning the approach and improve the pro-

ductivity. Therefore, we need to answer the following

research questions.

RQ1. Is AocML easier to read and understand?

RQ2. Does AocML improve the productivity?

914 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

7.1 Evaluation for RQ1

In comparison with GPLs, AocML provides key-

words which are easier for domain developers to under-

stand. Furthermore, the structure of the development

artifacts is also specific for AOCA applications.

There are some widely used metrics[29-30] to mea-

sure the complexity of a language. In order to evaluate

the readability and understandability, we choose the

following metrics:

• TERM: number of grammar terminals;

• VAR: number of grammar non-terminals.

We evaluate these values of AocML and show the

results in Table 1. It is compared with two GPLs Java

1.5 and ANSI C (the results is shown in [30]), together

with one DSL MLContext[25], which is designed for a

different domain of pervasive computing.

Table 1. Results of Comparison in Grammar Metrics

Metric Java 1.5 ANSI C MLContext AocML

TERM 102 83 24 33

VAR 129 66 8 21

7.2 Evaluation for RQ2

The improvement in productivity is often evaluated

by lines of code (LOC). We take the smart meeting

room scenario (in Section 6) as an example. In this

paragraph, LOC of the development with AocML is

compared with that of PAOC API[3]. We also use

the open source version of the classical tool Context

Toolkit 6○ to develop the smart meeting room infras-

tructure and applications by widgets[7] as an example

of general context-aware development methods. The

results are shown in Table 2.

Table 2. Results of Comparison in LOC

Metric Context Toolkit PAOC API AocML

LOC 423 138 76

7.3 Summary

Based on the results of the two evaluations, we an-

swer the research questions as follows.

RQ1. AocML is easier to read and understand in

comparison with GPLs such as Java and ANSI C. This

benefit is similar to most DSLs. Although some other

DSLs (such as MLContext) may have less grammar ter-

minals and non-terminals than AocML, they are not

designed for AOCA applications. AocML is a more

understandable approach for AOCA applications. The

domain experts can be involved in the development di-

rectly.

RQ2. AocML improves the productivity in compa-

rison with general context-aware development methods

as well as the PAOC API for AOCA applications. A

few lines of AocML code are used to replace more GPL

code. Although PAOC API also encapsulates the know-

ledge of AOCA applications, AocML provides more

benefits such as specialized syntax and syntax error

checking in the development environment.

8 Related Work

Pervasive and context-aware computing is an emerg-

ing research area. A considerable amount of research

efforts focus on the development method of such appli-

cations. Some approaches, such as Context Toolkit[7]

and Solar[31], propose APIs supporting the development

with GPLs. There is also some existing work focusing

on the model-driven development (MDD) of these ap-

plications or designing DSLs for the development. In

this section, we compare AocML with these approaches

in terms of the following properties.

• Application Domain. Which domain is the MDD

method or the DSL tailored to?

• Tool for Development. What kind of tools is de-

signed and implemented for the developers of domain

applications?

• Transformation. Does the approach support

model transformation or code generation? If so, what

kind of model or code will be generated?

• Scalability. How does the approach support the

change of the development artifacts? How can a develo-

per reuse the existing artifacts?

This comparison is shown in Table 3. We learn

from the comparison that the most significant difference

between AocML and other approaches is the applica-

tion domain. Besides PAOC[3], some other existing re-

searches (e.g., [32-33]) also consider the development

based on activities. Furthermore, some efforts (e.g.,

Egospace[34]) separate the development of infrastruc-

ture and application requirements. However, a suitable

DSL for AOCA applications has not been proposed so

far.

Apart from the application domain, we summarize

the other three properties of AocML as follows.

6○http://contexttoolkit.sourceforge.net/, July 2018.

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 915

Table 3. Comparison of the DSLs for Model-Driven Development of Pervasive and Context-Aware Computing

Approach Application Domain Tool for Development Transformation Scalability

PervML[24] Services in pervasive
computing

UML profile and a
general constraint lan-
guage

Generation of Java code
and ontology

Rewrite UML profile;
modify constraints

MLContext[25] Context modeling Specific textual DSL
for entities and context
sources

Generation of Java code
and ontology

Application-
independent,
code for the reuse
among applications

ContextUML[37] Context-aware web ser-
vices

UML profile No Rewrite UML profile

WebML[38] Context-aware web ap-
plications

UML profile Application-independent
generation of Java code

Rewrite UML profile

Ayed et al.[39] General context collec-
tion and adaptation

UML profile PIM to PSM Rewrite UML profile

CML[40] General context-aware
applications

Graph-based model;
textual DSL

Generation of database
scripts

Reuse the unchanged
code; modify the
changed parts

RAPPT[41] Mobile applications Specific textual DSL
for the scaffolding of a
mobile application

Generation of Android
projects

Modify the changed de-
scription code

PerLa[42] Pervasive information
systems

An SQL-like language
for data management
in pervasive systems

No Modify the changed
SQL-like code

Ctrl-F[43] Self-adaptive
component-based
architecture

Specific textual DSL
for control policies

Translation to finite state
automata models

Rewrite the changed
component controllers

Kulkarni et al.[44] Context-aware CSCW
(computer-supported
cooperative work)
applications

Specific textual DSL
for environment speci-
fication and policies

Generation of an applica-
tion’s execution environ-
ment

Reuse the unchanged
environment and
policies, modify the
changed parts

Mobicon[45] Mobile context-
monitoring platform

Specific declarative
query language for
context monitoring
query (CMQ)

No Modify the changed
CMQ

AocML AOCA applications Specific textual DSL
for infrastructure and
application specifica-
tion

Generation of Java code
and ontology

Reuse the unchanged
code; add or modify
the changed parts as
lightweight plug-ins

1) Tool for Development. A number of existing stu-

dies use UML profile or UML extension[35] as a model-

ing language. However, UML is a GPL. The extension

of domain concepts is restricted[25,36]. In this work, we

propose a textual DSL which is beneficial to describe

domain elements.

2) Transformation. We implement the automatic

generation of Java code and ontology from the AocML

model. The reduction of manual code will promote

development efficiency and reduce the number of bugs.

3) Scalability. The fragments specified by AocML

can be used as lightweight plug-ins for the reuse among

multiple applications. This approach gives the benefit

of productivity.

9 Conclusions

In this paper, we proposed a DSL for model-driven

development of AOCA applications in order to facili-

tate the development. We analyzed the concept model

of such applications, and designed the AocML abstract

syntax and concrete syntax. We also implemented a

tool for supporting AocML-based development, includ-

ing the automatic generation of Java code and ontology.

The case study and evaluation demonstrated that this

approach provides the developers a suitable and prac-

tical tool for developing AOCA applications.

As future work, we plan to combine the AocML ap-

proach with formal methods. A possible way is to ana-

lyze the domain model by a formal method and trans-

form the artifacts into a formal system. This formal

system can be used to verify the applications in order to

enhance the reliability. Furthermore, we plan to make

attempts on the DSLs of related application domains

in pervasive computing.

Acknowledgment The authors thank the anony-

mous reviewers for their helpful feedback.

916 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

References

[1] Weiser M. The computer for the 21st century. Scientific

American, 1991, 265(3): 94-104.

[2] Satyanarayanan M. Pervasive computing: Vision and chal-

lenges. IEEE Personal Communications, 2001, 8(4): 10-17.

[3] Li X, Tao X, Lu J. Towards a programming framework

for activity-oriented context-aware applications. Frontiers

of Computer Science, 2017, 11(6): 987-1006.

[4] Gu T, Pung H, Zhang D. Toward an OSGi-based infrastruc-

ture for context-aware applications. IEEE Pervasive Com-

puting, 2004, 3(4): 66-74.

[5] Li J, Bu Y, Chen S, Tao X, Lu J. FollowMe: On research

of pluggable infrastructure for context-awareness. In Proc.

the 20th International Conference on Advanced Informa-

tion Networking and Applications, Volume 1, April 2006,

pp.199-204.

[6] Arcelus A, Jones M H, Goubran R, Knoefel F. Integration

of smart home technologies in a health monitoring system

for the elderly. In Proc. the 21st Int. Conf. Advanced Infor-

mation Networking and Applications, Volume 2, May 2007,

pp.820-825.

[7] Dey A, Abowd G, Salber D. A conceptual framework and

a toolkit for supporting the rapid prototyping of context-

aware applications. Human-Computer Interaction 2001,

16(2): 97-166.

[8] Gu T, Pung H K, Zhang D Q. A service-oriented middle-

ware for building context-aware services. Journal of Net-

work and Computer Applications, 2005, 28(1): 1-18.

[9] Voelter M, Benz S, Dietrich C, Engelmann B, Helander

M, Kats L C, Visser E, Wachsmuth G. DSL Engineer-

ing: Designing, Implementing and Using Domain-Specific

Languages. CreateSpace Independent Publishing Platform,

2013.

[10] Kamma D, Sasi K G. Effect of model based software

development on productivity of enhancement tasks — An

industrial study. In Proc. the 21st Asia-Pacific Software

Engineering Conference, December 2014, pp.71-77.

[11] Mellegard N, Ferwerda A, Lind K, Heldal R, Chaudron M.

Impact of introducing domain-specific modelling in software

maintenance: An industrial case study. IEEE Transactions

Software Engineering, 2016, 42(3): 245-260.

[12] Engeström Y, Miettinen R, Punamäki R L. Perspectives on

Activity Theory. Cambridge University Press, 1999.

[13] Baldauf M, Dustdar S, Rosenberg F. A survey on context-

aware systems. International Journal of Ad Hoc and Ubiq-

uitous Computing, 2007, 2(4): 263-277.

[14] Selic B. Personal reflections on automation, programming

culture, and model-based software engineering. Automated

Software Engineering, 2008, 15(3/4): 379-391.

[15] Kleppe A. Software Language Engineering: Creating

Domain-Specific Languages Using Metamodels (1st edi-

tion). Addison-Wesley Professional, 2008.

[16] Freudenthal M. Domain specific languages in a customs in-

formation system. IEEE Software, 2010, 27(2): 65-71.

[17] Spinellis D. Notable design patterns for domain-specific lan-

guages. Journal of Systems and Software, 2001, 56(1): 91-

99.

[18] Hürsch W L, Lopes C V. Separation of concerns. Technical

Report NU-CCS-95-03, Northeastern University, 1995.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=

0D0343A1A144A43A5687C675AF2766C0?doi=10.1.1.125.2

723&rep=rep1&type=pdf, July 2018.

[19] Mernik M, Heering J, Sloane A M. When and how to de-

velop domain-specific languages. ACM Computing Surveys,

2005, 37(4): 316-344.

[20] Wang L, Gu T, Tao X, Chen H, Lu J. Recognizing multi-

user activities using wearable sensors in a smart home. Per-

vasive and Mobile Computing, 2011, 7(3): 287-298.

[21] Dourish P. What we talk about when we talk about context.

Personal and Ubiquitous Computing, 2004, 8(1): 19-30.

[22] Eysholdt M, Behrens H. Xtext: Implement your language

faster than the quick and dirty way. In Proc. the 25th ACM

International Conference Companion on Object-Oriented

Programming, Systems, Languages, and Applications Com-

panion, October 2010, pp.307-309.

[23] Kleppe A G, Warmer J, Bast W. MDA Explained: The

Model Driven Architecture: Practice and Promise (1st edi-

tion). Addison-Wesley Professional, 2003.

[24] Serral E, Valderas P, Pelechano V. Towards the model

driven development of context-aware pervasive systems.

Pervasive and Mobile Computing, 2010, 6(2): 254-280.

[25] Hoyos J R, Garćıa-Molina J, Bot́ıa J A. A domain-specific

language for context modeling in context-aware systems.

Journal of Systems and Software, 2013, 86(11): 2890-2905.

[26] Gamma E, Helm R, Johnson R, Vlissides J, Booch G. De-

sign Patterns: Elements of Reusable Object-Oriented Soft-

ware (1st edition). Addison-Wesley Professional, 1994.

[27] Gruber T R. A translation approach to portable ontology

specifications. Knowledge Acquisition, 1993, 5(2): 199-220.

[28] Bechhofer S. OWL: Web ontology language. In Encyclope-

dia of Database Systems, Liu L, Özsu M T (eds.), Springer,

2009, pp.90-154

[29] Power J F, Malloy B A. A metrics suite for grammar-based

software. Journal of Software Evolution and Process, 2004,

16(6): 405-426.

[30] Crepinsek M, Kosar T, Mernik M, Cervelle J, Forax R,

Roussel G. On automata and language based grammar met-

rics. Computer Science and Information Systems, 2010,

7(2): 309-329.

[31] Chen G. Solar: Building a context fusion network for

pervasive computing [Ph.D. Thesis]. Dartmouth College,

Hanover, New Hampshire, 2004.

[32] Wischweh J, Bade D. Activity-oriented context adapta-

tion in mobile applications. In Proc. the 8th International

Conference on Mobile and Ubiquitous Systems: Comput-

ing, Networking, and Services, Dec. 2011, pp.298-313.

[33] Rehman K, Stajano F, Coulouris G. An architecture

for interactive context-aware applications. IEEE Pervasive

Computing, 2007, 6(1): 73-80.

[34] Julien C, Roman G C. EgoSpaces: Facilitating rapid

development of context-aware mobile applications. IEEE

Transactions on Software Engineering 2006, 32(5): 281-

298.

[35] Sindico A, Grassi V. Model driven development of con-

text aware software systems. In Proc. International Work-

shop on Context-Oriented Programming, July 2009, Article

No. 7.

Xuan-Song Li et al.: AocML: A Domain-Specific Language for Model-Driven Development 917

[36] Kelly S, Pohjonen R. Worst practices for domain-specific

modeling. IEEE Software, 2009, 26(4): 22-29.

[37] Sheng Q Z, Benatallah B. ContextUML: A UML-

based modeling language for model-driven development of

context-aware Web services. In Proc. the 4th International

Conference on Mobile Business, July 2005, pp.206-212.

[38] Ceri S, Daniel F, Matera M, Facca F M. Model-driven

development of context-aware Web applications. ACM

Transactions on Internet Technology, 2007, 7(1): Article

No. 2.

[39] Ayed D, Delanote D, Berbers Y. MDD approach for the

development of context-aware applications. In Proc. the 6th

International and Interdisciplinary Conference on Model-

ing and Using Context, August 2007, pp.15-28.

[40] Henricksen K, Indulska J. Developing context-aware perva-

sive computing applications: Models and approach. Perva-

sive and Mobile Computing, 2006, 2(1): 37-64.

[41] Barnett S, Vasa R, Grundy J. Bootstrapping mobile app

development. In Proc. the 37th International Conference

on Software Engineering, Volume 2, May 2015, pp.657-660.

[42] Schreiber F A, Camplani R, Fortunato M, Marelli M, Rota

G. PerLa: A language and middleware architecture for data

management and integration in pervasive information sys-

tems. IEEE Trans. Software Engineering, 2012, 38(2): 478-

496.

[43] Alvares F, Rutten E, Seinturier L. A domain-specific lan-

guage for the control of self-adaptive component-based ar-

chitecture. Journal of Systems and Software, 2017, 130: 94-

112.

[44] Kulkarni D, Ahmed T, Tripathi A. A generative program-

ming framework for context-aware CSCW applications.

ACM Trans. Software Engineering and Methodology, 2012,

21(2): Article No. 11.

[45] Lee Y, Iyengar S, Min C, Ju Y, Kang S, Park T, Lee J, Rhee

Y, Song J. Mobicon: A mobile context-monitoring platform.

Communications of the ACM, 2012, 55(3): 54-65.

Xuan-Song Li received his B.Sc.

and Ph.D. degrees in computer science

from Nanjing University, Nanjing,

in 2007 and 2016, respectively. He

is currently an assistant professor in

the School of Computer Science and

Engineering at Nanjing University of

Science and Technology, Nanjing. His

research interests include software methodology, pervasive

computing, and formal methods. He is a member of CCF.

Xian-Ping Tao received his M.Sc.

and Ph.D. degrees in computer science

from Nanjing University, Nanjing, in

1994 and 2001, respectively. He is

currently a professor in the Department

of Computer Science, and State Key

Laboratory for Novel Software Techno-

logy, Nanjing University, Nanjing. His

research interests include software agents, middleware

systems, Internetware methodology, and pervasive com-

puting. He is a senior member of CCF and a member of

IEEE.

Wei Song received his Ph.D. degree

in computer science from Nanjing

University, Nanjing, in 2010. He is

currently an associate professor in

the School of Computer Science and

Engineering at Nanjing University of

Science and Technology, Nanjing, and

was a visiting scholar at Technische Universität München,

Germany. His research interests include software engineer-

ing, program analysis, services computing, and process

mining. He was invited to the Schloss Dagstuhl Seminar

“Integrating Process-Oriented and Event-Based Systems”

held in August, 2016. He is a senior member of CCF and

a member of IEEE.

Kai Dong received his Ph.D. degree

in computer science from Nanjing

University, Nanjing, in 2014. He is

currently an associate professor in

the School of Computer Science and

Engineering at Southeast University,

Nanjing. His research interests include

security, privacy, localization, and social

networks.

