
Fabŕıcio Filho J, Rodriguez LGA, da Silva AF. Yet another intelligent code-generating system: A flexible and low-cost

solution. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(5): 940–965 Sept. 2018. DOI 10.1007/s11390-

018-1867-7

Yet Another Intelligent Code-Generating System: A Flexible and

Low-Cost Solution

João Fabŕıcio Filho1,2, Luis Gustavo Araujo Rodriguez1, and Anderson Faustino da Silva1

1Department of Informatics, State University of Maringá, Maringá-PR 87020-900, Brazil
2Federal University of Technology — Paraná, Campo Mourão-PR 87301-899, Brazil

E-mail: joaof@utfpr.edu.br; luisgar1990@gmail.com; anderson@din.uem.br

Received May 27, 2017; revised May 10, 2018.

Abstract Modern compilers apply various code transformation algorithms to improve the quality of the target code.

However, a complex problem is to determine which transformation algorithms must be utilized. This is difficult because of

three reasons: a number of transformation algorithms, various combination possibilities, and several configuration possibil-

ities. Over the last few years, various intelligent systems were presented in the literature. The goal of these systems is to

search for transformation algorithms and thus apply them to a certain program. This paper proposes a flexible, low-cost and

intelligent system capable of identifying transformation algorithms for an input program, considering the program’s specific

features. This system is flexible for parameterization selection and has a low-computational cost. In addition, it has the

capability to maximize the exploration of available computational resources. The system was implemented under the Low

Level Virtual Machine infrastructure and the results indicate that it is capable of exceeding, up to 21.36%, performance

reached by other systems. In addition, it achieved an average improvement of up to 17.72% over the most aggressive compiler

optimization level of the Low Level Virtual Machine infrastructure.

Keywords compiler, code transformation, iterative compilation, knowledge representation, machine learning

1 Introduction

Intelligent systems are systems that can interact

and learn about particular contexts. These systems

reduce the cost to solve complex problems because of

their ability to extract, classify and accumulate know-

ledge. In recent years, several papers have applied in-

telligent systems to different contexts, for example, dia-

gnosis of vitamins and mineral deficiency on the human

body[1], databases[2], architectural anomalies on soft-

ware reuse[3], or code generation[4].

Code generation is a process performed by

compilers[5-6]. It is considered to be a complex prob-

lem because of the difficulty in choosing 1) which code

transformation algorithms (TAs)[7] must be utilized, 2)

the order of such TAs, and 3) their parametrizations. In

this context, intelligent systems can be used to select

TAs and, consequently, apply them to an input pro-

gram.

The first generation of intelligent systems, in the

context of code generation, is based on iterative compi-

lation techniques[8-10]. Although these systems are able

to extract and classify knowledge in order to select TAs

for code generation, they do not store knowledge. In

addition, they require a high response time to provide

a good solution. Therefore, the second generation of in-

telligent systems emerges and applies machine learning

techniques in order to address these issues[11-13].

This paper proposes a flexible, low-cost and in-

telligent system called Yet Another Intelligent Code-

Generating System (YaCoS), which is capable of effi-

ciently selecting TAs to be used by the compiler. The

objective is to present a system that provides various

forms of knowledge representation and extraction. In

addition, the proposed system offers continuous learn-

ing and exploits the available hardware resources in or-

der to improve the knowledge database.

The main contributions of this paper are as follows.

1) We propose an intelligent system for selecting TAs

to be used by the compiler, whose characteristics are:

Regular Paper

©2018 Springer Science +Business Media, LLC & Science Press, China

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 941

a) knowledge extraction, classification, and accu-

mulation;

b) configuration of knowledge representation;

c) configuration of the knowledge extraction form;

d) continuous learning;

e) exploitation of available computing resources.

2) We provide a real implementation of the proposed

system as a tool for the Low Level Virtual Machine

(LLVM) compiler infrastructure[14].

3) We provide a detailed analysis and evaluation of

the proposed system.

In addition to the aforementioned contributions, we

attempt to tackle the following questions.

1) What is the best accumulated knowledge? The

one from the most similar past experience even if such

experience does not perform well, or the accumulated

knowledge that has the best performance even if such

knowledge is not derived from the most similar past

experience?

2) What is the best approach for characterizing pro-

grams? A dynamic approach or a static approach?

3) Which entities should be used for characterizing

programs? All the structural entities of the program

(i.e., the entire program), or only entities from the hot

function?

4) What is the cost-benefit between performance

(quality of results) and response time?

The results indicate that the proposed intelligent

system is able to surpass the performance of other sys-

tems, in terms of the quality of the results and response

time. In addition, the system achieves an average im-

provement of up to 17.72% over the most aggressive

compiler optimization level of the LLVM infrastructure.

2 Flexible, Low-Cost and Intelligent Code-

Generating System

During code generation, modern compilers apply

various TAs to improve the quality of the target code.

However, some TAs may be beneficial to a particu-

lar program but not to others. Thus, the appropri-

ate strategy is to select TAs considering the problem

to be program-dependent. In order to solve this is-

sue, this section presents Yet Another Intelligent Code-

Generating System (YaCoS), which is flexible, low-cost

and capable of selecting TAs for code generation.

2.1 Overview

Fig.1 presents the code generation flow used by

YaCoS. The input and the output of YaCoS are the

source code and the target code respectively, and pos-

sess the same semantics.

The code generation flow is comprised of the follow-

ing steps.

1) Characterizing. First, the system extracts fea-

tures, which will represent the program.

2) Comparing. The knowledge (or feature vector)

YaCoS

Input

Input Program

Source
Code

Program
Representation

Program
Characterization

New
Solution

Learn

Compile
and

Evaluate

Continuous
Learning

List of
Similar

Solutions

Return Target
Code

Output

List of
Prior

Solutions Retrieve
Solutions

Knowledge
Base

Comparison
Coefficient

Fig.1. Code generation flow used by YaCoS.

942 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

extracted from the test program is compared with vec-

tors stored in the knowledge database. This is done in

order to obtain solutions applied to similar programs

that were previously compiled by the system.

3) Retrieving. After identifying similar compiled

programs, the system retrieves effective TA sequences

from these programs. This process establishes a recov-

ery model, which defines how and in what order the

recovered solutions will be applied. The similarity be-

tween the programs stored in the knowledge database

is considered on retrievement of the solutions.

4) Compiling. When the order of prior solutions is

obtained, the test program is compiled with each re-

trieved TA sequence and, consequently, generates sev-

eral target codes.

5) Evaluating. Each target code is evaluated in or-

der to find the best solution. This end result is com-

prised of the best TA sequence that generates the best

target code.

6) Returning. The best generated code is returned

to the end user.

7) Learning. The knowledge database is fed with

new knowledge.

Based on the aforementioned steps, YaCoS requires

a knowledge database containing relationships between

programs and TAs. An interesting feature of YaCoS is its

ability to improve knowledge quality and, consequently,

improve the generated code for future requirements.

YaCoS is meant to be a system that assists the end

user to generate code; however, generating a knowledge

database is not an easy task. Thus, the knowledge

database should be generated and maintained by com-

piler experts but not end users. To minimize this prob-

lem, the end user can use YaCoS with its standard know-

ledge database, which is described in Subsection 2.2.

Although there exists a necessity to select, order

and parameterize TAs, YaCoS does not attempt to solve

all these problems. In fact, YaCoS uses a mechanism to

choose TAs. Furthermore, the order of application of

each algorithm is not fully addressed. Finally, choos-

ing parameters for each optimization is not addressed

in this paper, although TAs require such process. Thus,

we use default parameters provided by the compiler.

2.2 Knowledge Base

The knowledge database stores relationships be-

tween program features and transformation algorithm

(TA) sequences.

It is important to highlight that a concise know-

ledge database is required in order to simplify the

search process for solutions. Thus, representing TA se-

quences should be amplified, containing good solutions

for several classes of programs. Therefore, creating the

database has the following steps.

1) Form a set with good TA sequences. This set

consists of:

• the best TA sequence, found by a genetic algo-

rithm (GA), for each training program;

• the 10 good TA sequences found by Purini and

Jain’s approach[10];

• the three LLVM optimization levels (-O1, -O2 and

-O3).

2) Evaluate each training program using the entire

set of TA sequences.

3) Store an input, in the knowledge database for

each training program, containing all TA sequences and

their respective performance (runtime), and program

features.

Knowledge stored in the database must be able to

cover different classes of problems. Thus, our selection

strategy for creating the knowledge base focuses on this

premise. In fact, our strategy is based on Purini and

Jain’s approach[10].

A genetic algorithm (GA) is used to create a good

TA sequence for each training program. This approach

can be described as follows. The initial population is

random and each individual consists of a TA sequence,

which evolves with each generation. Each individual is

represented by a vector, where each position contains

a TA sequence. The size of each individual can vary

from 1 to |TA-Space| (size of the search space, more

precisely, the number of TAs).

Two individuals are chosen at each iteration using

a tournament strategy and, thus, generate new indi-

viduals through a crossover operator, which has a 60%

probability of occurrence. Furthermore, this operator

can be applied to individuals of different sizes. Con-

secutively, the mutation operator can alter or modify

new individuals. This operator has a 40% probability

of occurrence.

The mutation process modifies an individual by 1)

inserting a new TA sequence arbitrarily; 2) removing a

TA at a random point; 3) exchanging two TAs that are

in a sequence of arbitrary points; 4) altering a TA for

another. One of the aforementioned modifications is

performed and chosen randomly.

Crossover and mutation, apart from modifying or

creating new individuals, modify the order of TAs.

The execution of GA is set to 100 generations and a

population of 50 individuals. The best performing indi-

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 943

vidual always remains for the next generation. GA ends

its execution when one of the following conditions oc-

cur: 1) convergence does not exist for three consecutive

generations; 2) population diversity is less than 0.01.

It is worth mentioning that Purini and Jain[10] and

Martins et al.[15] proposed a similar strategy.

Thus, the knowledge base stores relationships be-

tween program features and TA. Furthermore, it stores

the order of application of each TA. It is important to

note that the 10 good TA sequences found by Purini and

Jain, and the three compiler optimization levels are se-

quences that indicate the order of application of each

algorithm.

2.2.1 TA Space

Transformation algorithms are comprised of a TA se-

quence. In addition, the search space is comprised of

131 TAs 1○. Thus, the size of an individual can vary

between 1 and 131 (algorithms).

2.2.2 Training Programs

The selection of training programs has to be based

on knowledge capable of covering different classes of

problems. Purini and Jain[10] proved that this issue can

be addressed using simple programs with low runtime.

Thus, the knowledge base was created using Purini

and Jain’s programs[10], which were taken from the

LLVM 2○ test suite. An addition of six programs from

The Computer Language Benchmarks Game 3○ was also

used. These programs allow establishing relationships

of <features, TAs>, which will cover diverse classes of

programs.

Table 1 presents the training programs.

2.2.3 Relationship of <features, TAs>

Characteristics extracted from training programs

(or test programs) form a feature vector of size F, where

F is the number of features used to represent a program.

Thus, the relationship of <features, TAs> associates TA

sequences with specific features. Therefore, YaCoS is ca-

pable of identifying which TA is adequate to use during

code generation.

As mentioned before, the knowledge database stores

for each training program: TA sequences and their re-

spective performance (runtime), and the program fea-

tures. This means that YaCoS is able to know which se-

quence was the best one during target code generation

for the training program (analyzing the performance).

Thus, YaCoS considers the order of performance dur-

ing the evaluation of TA sequences during target code

generation for the test program.

Subsection 2.3 explains in detail the structure of a

feature vector.

Table 1. Training Programs

Training Program

Purini and ackermann (T00) mandel (T28)

Jain’s ary3 (T01) mandel-2 (T29)

training bubblesort (T02) matrix (T30)

programs chomp (T03) methcall (T31)

dry (T04) misr (T32)

dt (T05) n-body (T33)

fannkuch (T06) nsieve-bits (T34)

fbench (T07) oourafft (T35)

ffbench (T08) oscar (T36)

fib2 (T09) partialsums (T37)

fldry (T10) perlin (T38)

flops (T11) perm (T39)

flops-1 (T12) pi (T40)

flops-2 (T13) queens (T41)

flops-3 (T14) queens-mcgill (T42)

flops-4 (T15) quicksort (T43)

flops-5 (T16) random (T44)

flops-6 (T17) realmm (T45)

flops-7 (T18) recursive (T46)

flops-8 (T19) reedsolomon (T47)

fp-convert (T20) richards benchmark (T48)

hash (T21) salsa20 (T49)

heapsort (T22) sieve (T50)

himenobmtxpa (T23) spectral-norm (T51)

huffbench (T24) strcat (T52)

intmm (T25) towers (T53)

lists (T26) treesort (T54)

lpbench (T27) whetstone (T55)

Computer binary-trees (T56) mandelbrot (T59)

language fasta (T57) pidigits (T60)

benchmarks fasta-redux (T58) regex-dna (T61)

game

2.3 Characterizing Programs

Since selecting TAs is a program-dependent prob-

lem, YaCoS can be parametrized to characterize pro-

grams by extracting features from: 1) their entire struc-

ture or 2) only their hottest function. In the first case,

the process of selecting TAs is guided by features of

the entire program. In the second case, the process is

guided by features of the most critical part of the pro-

gram.

1○http://sites.google.com/site/transformationspaceof131tas, June 2018.
2○http://llvm.org, June 2018.
3○http://benchmarksgame.alioth.debian.org/, June 2018.

944 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Computer programs can be represented by dynamic

or static features. Dynamic features describe program

behaviors related to their execution. However, static

features describe the program’s algorithmic structures.

Dynamic features are appealing because they are re-

lated to both the hardware and program behavior dur-

ing execution. However, these features possess disad-

vantages such as program execution and platform de-

pendency.

Alternatively, static features are platform-

independent and do not require program execution.

However, these characterizations do not consider the in-

put data, which can change the program behavior and,

consequently, alter parameters of the code-generating

system.

YaCoS can be parametrized to use one of the follow-

ing program characterizations.

Performance counters (PC) are the outcome of pro-

gram execution. These features are related to the

available hardware. Several research publications use

PC as a program characterization scheme[11-13]. These

features are collected with instrumentation tools dur-

ing program execution. Table 2 presents PC used when

YaCoS is executed on an I7 processor.

Table 2. Performance Counters

Class Feature

Cache PAPI L1 TCM PAPI L1 LDM PAPI L1 ICM

PAPI L1 DCM PAPI L1 STM PAPI L2 STM

PAPI L2 TCA PAPI L2 DCW PAPI L2 TCM

PAPI L2 TCR PAPI L2 DCA PAPI L2 TCW

PAPI L2 DCH PAPI L2 ICR PAPI L2 DCM

PAPI L2 ICM PAPI L2 ICA PAPI L2 ICH

PAPI L2 DCR PAPI L3 TCM PAPI L3 DCW

PAPI L3 DCA PAPI L3 TCR PAPI L3 TCW

PAPI L3 ICR PAPI L3 ICA PAPI L3 TCA

PAPI L3 1DCR

Branch PAPI BR PRC PAPI BR UCN PAPI BR CN

PAPI BR NTK PAPI BR INS PAPI BR MSP

PAPI BR TKN

SIMD PAPI VEC SP PAPI VEC DP

Floating PAPI FDV INS PAPI FP INS PAPI DP OPS

point PAPI FP OPS PAPI SP OPS

TLB PAPI TLB DM PAPI TLB IM

Cycles PAPI REF CYC PAPI TOT CYC PAPI STL ICY

PAPI STL ICY

Instructions PAPI TOT INS∗

Note: All values are normalized by the metric indicated by ∗.

Compilation data (CD) are features that describe

the relationships between program entities. They

are defined by the intermediate language used by

the code-generating system, for which YaCoS is based

on. Queiroz Junior and Silva proposed using these

features[13]. However, their use is limited to data pro-

vided by the compiler, despite being directly related to

the source code. These features are collected by the

code-generating system, which YaCoS is based on, in

other words, LLVM. Such features are presented in Ta-

ble 3.

Table 3. Compilation Data

Class Feature

Binary insts Number of Add insts

Number of Sub insts

Memory insts Number of Store insts

Number of Load insts

Number of memory instructions

Number of GetElementPtr insts

Number of Alloca insts

Terminator insts Number of Ret insts

Number of Br insts

Other insts Number of ICmp insts

Number of PHI insts

Number of machine instrs printed

Number of Call insts

Function Number of non-external functions

Basic block Number of basic blocks

Floating point insts Number of floating point instructions

Total insts Number of instructions (of all types)∗

Note: insts means instructions.

Numerical features (NF) are features extracted from

relationships between the program entities, which are

defined by specific features of the programming lan-

guages. They were proposed by Namolaru et al.[16] and

were systematically produced by experiments. Namo-

laru et al. proved their influence on parameterizing

code-generating systems. Similar to CD, numerical fea-

tures are also extracted from the intermediate language

used by the code-generating system. These features are

presented in Table 4.

Symbolic representation (DNA) characterizes each

instruction of the intermediate language as a gene.

This representation is an extension of the proposal by

Sanches and Cardozo[17]. The advantage of using DNA

as a code representation is that it captures all of the

program’s structures and encodes all of its instructions

simultaneously. The proposed symbolic representation

is presented in Table 5.

As shown in Table 5, a DNA encodes instructions into

a string. These instructions, which compose a program

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 945

Table 4. Numerical Features

Class Feature

Basic block Number of basic blocks in the method

Number of basic blocks with a single predecessor

Number of basic blocks with a single predecessor and a single successor

Number of basic blocks with a single predecessor and two successors

Number of basic blocks with a single successor

Number of basic blocks with two predecessors and one successor

Number of basic blocks with more than two predecessors

Number of basic blocks with more than two successors

Number of basic blocks with more than two successors and more than two predecessors

Number of basic blocks with more than 500 instructions

Number of basic blocks with number of instructions in the interval [15, 500]

Number of basic blocks with less than 15 instructions

Number of basic blocks with two predecessors

Number of basic blocks with two successors

Number of basic blocks with two successors and two predecessors

Binary operations Number of binary bitwise operations in the method

Number of binary floating point operations in the method

Number of binary integer operations in the method

Call instructions Number of calls that return a float

Number of calls that return a pointer

Number of calls that return an integer

Number of calls with pointers as arguments

Number of calls with more than 4 arguments

Number of direct calls in the method

Number of indirect calls (i.e., done via pointers) in the method

Control flow graph Number of critical edges in the control flow graph

Number of conditional branches in the method

Number of edges in the control flow graph

Number of unconditional branches in the method

Number of phi-nodes in basic blocks

Conversion instructions Number of floating point conversion instructions

Number of integer conversion instructions

Functions Number of functions

Memory instructions Number of store instructions

Number of load instructions

Number of memory address instructions

Other instructions Number of vector instructions

Number of getElementPtr instructions

Number of instructions in the method∗

Number of switch instructions in the method

Number of terminator instructions

Number of aggregate instructions

Number of assignment instructions in the method

function, are defined by the intermediate representation

of the code-generating system.

It is worth mentioning that PC is a dynamic feature

and, thus, the system must execute the program to ex-

tract such features. As mentioned earlier, this increases

the system response time, consequently offering a dis-

advantage. However, it models the program behavior

and, therefore, provides benefits.

In terms of different characterizations, it is impor-

tant to note that:

• PC and CD characterize the entire structure of the

program;

946 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

Table 5. DNA Encoding

Instruction Symbolic Representation Instruction Symbolic Representation

Br A InsertValue d

Switch B Load e

IndirectBr C Store f

Ret D Alloca g

Invoke E Fence h

Resume F AtomicRMW i

Unreachable G AtomicCmpXchg j

Add H GetElementPtr k

Sub I Trunc l

Mul J ZExt m

UDiv K SExt n

SDiv L UIToFP o

URem M SIToFP p

SRem N PtrToInt q

FAdd O IntToPtr r

FSub P BitCast s

FMul Q AddrSpaceCast t

FDiv R FPTrunc u

FRem S FPExt v

Shl T FPToUI w

LShr U FPToSI x

AShr V ICmp y

And W FCmp z

Or X Select 0

Xor Y VAArg 1

ExtractElement Z LandingPad 2

InsertElement a PHI 3

ShuffleVector b Call 4

ExtractValue c Others 5

• NF characterizes the entire structure of the pro-

gram, as well as its hottest function;

• DNA characterizes only the hottest function.

Because there are several different characterizations,

YaCoS can be partially or fully based on the structure

of the program for extracting knowledge and generating

target code.

It is important to mention that similar static struc-

tures can generate different features. This is because of

the differences in runtime, input, and number of mod-

ules. In order to address this issue, YaCoS normalizes

the collected features except for DNA. This is done be-

cause this issue does not occur when such a feature

is utilized. Tables 2∼4 indicate the features used to

normalize the feature vector. These features are high-

lighted with ∗.

2.3.1 Identifying Hot Functions

A hot function is related to the performance of the

program and thus it is considered to be the most rep-

resentative function.

A program’s real cost is related to user inputs and,

therefore, calculated dynamically. However, program

execution does not alter its static properties (DNA or

NF). Thus, we have chosen a static profiling technique

to estimate the cost of code functions and, therefore,

identify their hot function.

Wu and Larus[18] proposed a static profiling tech-

nique that achieves significant results to estimate func-

tion costs. This was done by analyzing the control flow

graph. They proposed a technique that integrates re-

sults from predictive heuristics. These results are based

on previous work by Ball and Larus[19]. The process

of integrating the results is done by a mathematical

technique[20] that incorporates evidence from different

sources for reliable predictions. Therefore, the proposed

system uses this static profiler to identify the hot func-

tion.

2.4 Comparing Programs’ Characteristics

YaCoS must identify similar programs in order to

obtain prior solutions (TA sequences). More precisely,

YaCoS must identify which programs in the knowledge

base are similar to the test program.

This paper proposes the use of reactions as a mech-

anism to identify the similarity between two programs.

Hypothesis. Two or more programs are similar if

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 947

they react identically when applying the same TA se-

quences.

Validation. It is possible to obtain similar perfor-

mance curves for programs Px and Py , applying the

same TA sequences. This indicates that both programs

react identically, thus having a high degree of similarity.

A simple method to verify this hypothesis is to: 1) com-

pile the programs with the same TA sequences; 2) plot

the performance chart for both programs; 3) compare

the behavior of each curve. As shown in Fig.2, pro-

grams adpcm c and n-body are similar because of their

comparable reaction behavior. However, ackermann re-

acts differently, which means it is not similar.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

1

2

3

TA Sequences

S
p
e
e
d
u
p

adpcm_c

n-body

ackermann

Fig.2. Performance curves.

Based on the premise that reactions are a good

strategy to identify similarities, it is necessary to specify

the similarity coefficient that, given the feature vectors

of two programs, determines whether they react simi-

larly.

YaCoS can be parametrized to use one of the follow-

ing coefficients.

Cosine (CO). The similarity between the programs

Px and Py is obtained by:

sim(Px, Py) =

M
∑

w=1
(Pxw × Pyw)

√

M
∑

w=1
(Pxw)2 ×

√

M
∑

w=1
(Pyw)2

,

where M is the size of the feature vector and, thus, Pxw

is the feature W of program X (the same occurs for

Pyw).

Euclidean (EU). The similarity between the pro-

grams Px and Py is obtained by:

sim(Px, Py) =
1

√

M
∑

w=1
(Pxw − Pyw)2

,

where M is the size of the feature vector and, thus, Pxw

is the feature W of program X (the same occurs for

Pyw).

Jaccard (JA). The similarity between the programs

Px and Py is obtained by:

sim(Px, Py) =
1

M

M
∑

w=1

min(Pxw, Pyw)

max(Pxw, Pyw)
,

where M is the size of the feature vector and, thus, Pxw

is the feature W of program X (the same occurs for

Pyw).

Support Vector Machine (SVM). It is a supervised

learning model that analyzes data for classification

purposes[21].

Needleman-Wunsch (NW). It is an algorithm[22] used

to compare programs based on DNA. It is widely used

in the literature to compare biological DNAs. Thus, a

score is evaluated to determine similar reactions be-

tween two programs. This evaluation criterion is based

on the alignment of DNAs.

The coefficients CO, EU and JA, initially applied by

Lima et al.[12] and Queiroz Junior and Silva[13], return

a similarity percentage based on two feature vectors.

Furthermore, SVM classifies a training set and indicates

which training element is more similar to the test ele-

ment. Finally, NW returns a score between the alignment

of two DNAs that indicates the similarity between two

programs (feature vectors).

It is important to note that NW is utilized only

when YaCoS is guided by the program’s hottest func-

tion. However, other coefficients can be used to identify

similar programs based on any other type of character-

ization.

2.5 Retrieving TA Sequences

It is necessary to develop a strategy to retrieve prior

experiences (TA sequences). This strategy needs to

be based on the premise that the knowledge database

stores information about preceding compilations, which

contain diverse TA sequences related to the program

that was previously compiled and identified as similar.

YaCoS can be parametrized to retrieve prior experi-

ences using the following models.

948 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

ELITE retrieves all TA sequences that outperform the

best compiler optimization level (with a lower runtime).

This is done by analyzing only the training program

that has the highest similarity.

JUST retrieves from the knowledge database N TA

sequences and analyzes only the training program with

the highest similarity. This is done by considering

the order of performance, in other words, the high-

performing N TA sequences are chosen.

NEARLY retrieves from the knowledge database N TA

sequences. This is done by considering only TA se-

quences that outperform the best compiler optimiza-

tion level. If the training program with the highest

similarity does not have N better TA sequences, the TA

sequences of the second highest training program are

chosen, and so on.

JUST and NEARLY need the system parameter N,

which must be selected by the user and indicates the

number of prior experiences that the system must re-

trieve. In addition, such strategies consider the order

of performance which means that the N selected se-

quences are in increasing order based on their perfor-

mance (runtime). Consequently, this will recover the

sequences that have the best performance.

The main objective is to propose strategies and,

thus, analyze the best approach for obtaining perfor-

mance. This can be done by:

1) retrieving only good TA sequences from the train-

ing program with the highest similarity (ELITE), or

2) retrieving only the TA sequences that belong to

the training program with the highest similarity and

are ordered in terms of performance (JUST), or

3) retrieving good TA sequences from training pro-

grams that have a proximate similarity (NEARLY).

2.6 Compiling the Test Program

After selecting N TA sequences, YaCoS generates N

target codes using a different TA sequence for each one.

This task is performed by informing the LLVM compiler,

which transformations should be enabled.

2.7 Evaluating the Target Codes

Afterwards, YaCoS evaluates and returns the N tar-

get codes to the user. This process is performed by

executing each target code, analyzing its runtime, and

returning the less time-consuming code to the user.

2.8 Learning from New Compilations

It is worth highlighting that an intelligent system re-

quires continuous learning over time. Thus, YaCoS uses

a feedback mechanism to enable the said requirement.

Feedback can be done by:

1) storing only the knowledge from new evaluations,

2) adjusting familiar knowledge database solutions

to the test program, or

3) creating new solutions and adjusting them to the

test program.

The first feedback mechanism is the simplest be-

cause it stores (learns) considering the last compilation;

in other words, it considers the target code that was re-

turned to the user. This solution has a lower cost since

there are no additional compilations and evaluations.

The second feedback mechanism requires finding the

best possible solution of the knowledge database for

such a test program. Thus, the cost increases because

the system applies and evaluates all known solutions to

the input program.

The third feedback mechanism requires a strategy

to create new TA sequences. Iterative compilation tech-

niques can be applied to the test program before it is

stored in the knowledge database. Thus, new (good) so-

lutions will be created, which are specifically designed

for the new program. However, there is a high cost to

execute such a strategy.

In order to offer a balance between costs and bene-

fits, the second strategy will be utilized for YaCoS. The

first strategy is the simplest because it does not analyze

the entire database to find the best solution; however, it

is the least efficient strategy. Although the third strat-

egy is the most efficient in terms of performance (ben-

efits), it has a high cost because it requires a thorough

analysis of the solutions in the search space. Therefore,

the second strategy is used because it provides the best

existing knowledge, and it does not require considerable

system cost to produce new knowledge.

System feedback provides continuous learning while

simultaneously adding computational costs. However,

computer architectures[23] have evolved over the last

few years. Multi-core processors have emerged[24], thus

allowing a concurrent use of resources. A solution to

reduce the system cost is to perform background learn-

ing.

The proposed strategy is as follows. After the sys-

tem provides a solution to the user, further attempts

to improve it are made by searching for other possible

knowledge database solutions. This process is executed

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 949

in the background and updates the database after it is

entirely analyzed. This strategy is similar to the pro-

posal presented by Chen et al.[25]

Background learning uses hardware resources trans-

parently. This means that it does not block user re-

sponse. Thus, it adjusts the best solutions without in-

creasing the system response time.

In the aforementioned model, the background

thread has the responsibility to learn about a new solu-

tion. This is done transparently, meaning that the use

of resources is unnoticeable.

3 Finding the Default Configuration

Several experiments were performed in order to find

the default configuration for YaCoS. These experiments

are described in this section. It is worth highlighting

that feedback and background learning were not consi-

dered for these experiments.

3.1 Hardware and Software Platform

Architecture. Intelr CoreTM i7-3770 CPU 3.4 GHz

with 8 GB RAM executing the Ubuntu 14.04 x64 ope-

rating system using kernel 4.2.0-41.

Compiler. The compiler infrastructure is LLVM

3.7.1[14].

Feature Extraction PC. It is extracted using PAPI 4○

tools. CD is provided by the LLVM infrastructure. Two

extractor modules were implemented in order to extract

NF and DNA during the compilation process of LLVM’s in-

termediate language.

Representing Programs. This paper examines two

different approaches to represent programs: 1) hot func-

tions (HOT) for DNA and NF, or 2) the entire program

(FULL) for NF, CD and PC.

SVM. The sklearn library[26] was used to calculate

this coefficient.

Programs. The test phase was performed with

programs from Collective Benchmark (cBench) 5○ and

Polyhedral Benchmark Suite (Polybench) 6○. These

programs are presented in Table 6. The inputs used

for cBench and Polybench were 1 and large respec-

tively.

Runtime. Each training program was executed 100

times to ensure accurate results. This was done during

the process of creating the knowledge base. In addi-

tion, 20% of the results were discarded: the best 10%

and the worst 10%. Thus, the average runtime is cal-

culated based on 80% of the data. The test programs

were executed 10 times with the same data analysis.

Table 6. Test Programs to Evaluate YaCoS

cBench Programs Polybench Programs

adpcm c (C00) 2mm (P00)

adpcm d (C01) 3mm (P01)

bitcount (C02) adi (P02)

blowfish d (C03) 2mm (P03)

blowfish e (C04) bicg (P04)

bzip2d (C05) cholesky (P05)

bzip2e (C06) correlation (P06)

CRC32 (C07) covariance (P07)

dijkstra (C08) deriche (P08)

ghostscript (C09) doitgen (P09)

gsm (C10) fdtd-2d (P10)

jpeg c (C11) floyd-warshall (P11)

jpeg d (C12) gemm (P12)

lame (C13) gemver (P13)

mad (C14) gesummv (P14)

patricia (C15) gramschmidt (P15)

pgp d (C16) heat-3d (P16)

pgp e (C17) jacobi-2d (P17)

qsort1 (C18) lu (P18)

rijndael d (C19) ludcmp (P19)

rijndael e (C20) mvt (P20)

rsynth (C21) nussinov (P21)

sha (C22) seidel-2d (P22)

susan c (C23) symm (P23)

susan e (C24) syr2k (P24)

susan s (C25) syrk (P25)

tiff2bw (C26) trisolv (P26)

tiff2rgba (C27) trmm (P27)

tiffdither (C28)

tiffmedian (C29)

Parameters NEARLY and JUST. They were parame-

terized to retrieve N TA sequences. In fact, 1, 3, 5 and

10 TA sequences were evaluated. ELITE does not have

a numeric parameter for retrieving TA sequences from

the knowledge database.

Metrics. The evaluation uses five metrics to analyze

the results:

1) GMS: geometric mean of speedups;

2) NPS: number of programs that have a higher

speedup than the most aggressive compiler optimiza-

tion level (-O3);

4○http://icl.cs.utk.edu/˜mucci/papiex/papiex.html, July 2018.
5○http://ctuning.org/cbench, July 2018.
6○http://www.cse.ohio-state.edu/˜pouchet/software/polybench, July 2018.

950 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

3) IMP: improvement related to -O3;

4) NS: number of TA sequences evaluated;

5) RT: the response time of the technique.

The speedup is calculated as follows:

Speedup =
Runtime Level O0

Runtime
.

The improvement is calculated as follows:

Improvement = (Speedup− 1)× 100.

These metrics are also used for the final evaluation

of YaCoS.

3.2 Methodology to Find Default Similarity

Coefficient

The default similarity coefficient will be the one that

is capable of identifying if two curves are similar. This

is done by considering the default knowledge database,

behavior, and amplitude. The behavior refers to the

performance about whether there was speedup or slow-

down. The amplitude refers to how much gain or loss

in performance there was.

It is possible to describe the behavior of program

Px using the reaction table (ReT) as shown in Table 7.

Table 7. Behavior of Px When Compiled with

TA Sequences from S0 to Sn

S0 S1 S2 ... Sn

S0 1 T0/T1 T0/T2 ... T0/Tn

S1 T1/T0 1 T1/T2 ... T1/Tn

S2 T2/T0 T2/T1 1 ... T2/Tn

.

..
.
..

.

..
.
.. 1

.

..

Sn Tn/T0 Tn/T1 Tn/T2 ... 1

Note: Yellow and white cells have the same amplitude and beha-
vior, but in an inverse proportion. All gray cells have value 1.

In Table 7, the element in row i and column j rep-

resents the performance (Eji) obtained by using the TA

sequence Sj in relation to the TA sequence Si, being Tk

the runtime of the program when optimized by the TA

sequence Sk.

There is a possibility to verify if there was a gain

or loss in performance for each ij input. This can

be seen in ReTs, corresponding to both Px and Py.

The methodology consists in using the top of the di-

agonal to measure the behavior. Thus, for each pair

(Eji(Px), Eji(Py)), the Coeff(Eji(Px), Eji(Py)) func-

tion measures the similarity between the behavior and

the amplitude of performance regarding Sx and Sy.

This is calculated as follows:

Coeff(Kx,Ky) =











min(Kx,Ky)
max(Kx,Ky)

,

if ¬(Kx > 1⊕Ky > 1),

0, otherwise,

in which Kx = Eji(Px) and Ky = Eji(Py).

Considering N TA sequences, the default coefficient

obtains the highest value of MCoeff, which is calculated

by:

MCoeff =

n
∑

i=0

n
∑

j=i+1

Coeff(Eij , E′

ij),

where Eij and E′

ij refer to the performance obtained

by Px and Py respectively.

Thus, the default coefficient is found in two steps.

First, we find the training program most similar to the

test program and, consecutively, we calculate MCoeff.

It is important to note that such steps are performed

for each similarity coefficient defined in Subsection 2.4,

in addition to several training programs.

3.3 Finding Default Program Characterization

and Default Similarity Coefficient

Table 8 presents the most similar training program

for each test program. This is done by considering the

maximum value of MCoeff (bMCoeff).

The highest possible value for bMCoeff is 2 775. This

is because 75 transformation sequences (1 sequence

generated for each training program, the 10 sequences

found by Purini and Jain[10], and the 3 compiler opti-

mization levels) were considered for the evaluation pro-

cess. However, this value is not reached, as shown in

Table 8. Thus, it is important to consider that the said

metric attempts to model the behavior and amplitude

reached by the performance.

It is important to identify the default (best) value

even if the highest is not reached. In addition, it is in-

dispensable to identify which similarity coefficient and

characterization will produce a value that is proximate

to the best one achieved.

Table 9 presents the results obtained by the strate-

gies. The results are based on the distance to the best

possible value (MCoeff

bMCoeff
).

The best average value is obtained by FULL-NF with

CO. However, other strategies have a performance loss

of up to 10.78%.

It is worth highlighting the unexpected performance

of PC, which is the only dynamic characteristic evalu-

ated. In fact, PC has the lowest average value among

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 951

the other strategies. The best value is up to 4.51%,

which is worse than that of FULL-NF.

Table 8. bMCoeff

cBench Programs Polybench Programs

Bench Similar Value Bench Similar Value

C00 T43 973.81 P00 T25 1 352.41

C01 T41 1 016.72 P01 T25 1 380.98

C02 T41 1 082.03 P02 T07 1 159.72

C03 T33 1 087.25 P03 T57 1 089.14

C04 T33 1 090.80 P04 T29 1 036.28

C05 T56 919.08 P05 T45 1 102.08

C06 T48 891.61 P06 T07 1 203.89

C07 T21 1 118.84 P07 T57 1 125.70

C08 T03 1 188.44 P08 T45 1 131.50

C09 T22 419.72 P09 T47 1 338.01

C10 T36 633.14 P10 T07 1 193.10

C11 T32 637.31 P11 T25 1 106.82

C12 T42 595.48 P12 T20 1 089.59

C13 T27 814.21 P13 T57 1 057.15

C14 T39 946.59 P14 T25 985.16

C15 T03 1 175.13 P15 T28 913.13

C16 T32 981.34 P16 T57 1 192.77

C17 T06 911.81 P17 T33 1 083.28

C18 T08 1 137.78 P18 T45 1 156.71

C19 T59 660.21 P19 T45 1 071.26

C20 T07 552.13 P20 T57 1 109.52

C21 T48 1 158.37 P21 T57 1 066.27

C22 T06 1 122.57 P22 T07 1 125.84

C23 T33 906.77 P23 T15 1 204.63

C24 T06 927.34 P24 T15 1 111.42

C25 T50 1 034.76 P25 T14 1 227.14

C26 T42 876.43 P26 T57 1 030.43

C27 T42 874.93 P27 T57 1 205.69

C28 T42 903.93

C29 T43 849.50

Table 9. Obtained Results

Strategy WV GM BV PR BR

HOT DNA NW 0.63 0.80 1.00 1 9

CO 0.46 0.78 1.00 2 6

NF EU 0.58 0.78 1.00 1 3

JA 0.60 0.80 1.00 2 7

SVM 0.58 0.78 1.00 1 3

FULL PC CO 0.49 0.76 1.00 1 6

EU 0.55 0.73 1.00 1 1

JA 0.58 0.77 1.00 1 4

SVM 0.55 0.72 1.00 1 1

CO 0.46 0.77 1.00 1 6

CD EU 0.59 0.79 1.00 1 5

JA 0.50 0.76 0.98 0 13

SVM 0.59 0.79 1.00 1 5

CO 0.48 0.81 1.00 3 13

NF EU 0.58 0.78 1.00 1 8

JA 0.59 0.79 1.00 1 10

SVM 0.58 0.78 1.00 1 8

Note: WV: worst value; GM: geometric mean; BV: best value; PR

number of perfect results; BR: number of best results.

NF has consistent results, having the smallest vari-

ance: 0.58 × 10−4, and 1.70 × 10−4, for HOT and FULL

respectively. In addition, other strategies have vari-

ances of 6.12 × 10−4, and 2.77 × 10−4, for PC and CD

respectively.

The largest variance is obtained by PC. This means

that although this representation achieves good perfor-

mance with JA, the results with other coefficients are

non-standard, reaching a difference of ≃ 6.57% between

SVM and JA.

DNA has an average of 1.51% less than the best strat-

egy. Overall, it is 30.77% worse than the best strategy.

HOT, DNA and JA have satisfactory results and, thus,

indicate the possibility of representing the program fo-

cusing on its hot function.

FULL-NF is the best program characterization

scheme because of four reasons as follows.

1) FULL-NF has the best MCoeff.

2) FULL-NF has stability to achieve perfect results

when the similarity coefficient is altered.

3) FULL-NF obtains one of the smallest variances

among the best results.

4) The worst results of FULL-NF are not so low as

the other characterizations.

CO is the best coefficient because of three reasons as

follows.

1) CO has the best values of MCoeff.

2) CO is the coefficient that extensively presents the

best results.

3) CO is among the coefficients that reach the highest

number of programs with the best result.

These results indicate that FULL-NF and CO will be

the default program characterizations and similarity co-

efficients respectively.

3.4 Finding Default Strategy to Retrieve Prior

Experiences

After identifying the default program characteriza-

tion and similarity coefficient, it is necessary to evaluate

strategies to retrieve prior experiences.

Fig.3 presents speedups for each recovery strategy

of YaCoS, using NF-FULL and CO.

GMS JUST.10 reaches 1.986, which is the high-

est average speedup and, thus, 1.05% higher than

NEARLY.10 (1.976). Furthermore, it is 5.56% higher

than ELITE, which obtains 1.930. JUST is also higher

than NEARLY, reaching 1.842 and 1.796 for N = 5 and

N = 3 respectively. However, NEARLY obtains 1.829

and 1.794. NEARLY and JUST reach 1.456 and 1.453 for

N = 1 respectively, thus resulting in a difference of

952 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

0.3%. It is worth mentioning that JUST is able to sur-

pass the performance of -O3 (1.838) for 5 TA sequences.











⌢

S
p
e
e
d
u
p

ELITE











N/ N/ N/ N/

S
p
e
e
d
u
p

JUST











N/ N/ N/ N/

S
p
e
e
d
u
p

NEARLY

Fig.3. Speedups for each recovery strategy.

NPS JUST and NEARLY reach similar values consi-

dering the coverage metric. JUST reaches 25.86%,

50.00%, 65.52% and 87.93%, and NEARLY obtains

25.86%, 48.28%, 63.79% and 87.93% for 1, 3, 5 and 10

prior experiences respectively. However, ELITE covers

82.76% of the test programs.

IMP JUST.10 obtains the highest average improve-

ment (18.55%) concerning -O3. NEARLY.10 and ELITE

improve the programs with an average of 13.55% and

17.72%. For N = 1, both JUST and NEARLY obtain an

average improvement of 8.19%. However, they achieve

9.17% and 8.38% for N = 3 respectively. Furthermore,

NEARLY and JUST improve the test programs by 7.87%

and 9.79% for N = 5.

In terms of uncovered programs, JUST.10 has the

smallest decline in performance (1.08%). ELITE and

NEARLY.10 worsen the programs with an average of

1.90% and 1.98% respectively. The decline rates for

JUST are 58.87%, 22.27% and 22.45% for 1, 3 and 5

prior experiences respectively. NEARLY reaches 58.35%,

22.27% and 22.61% for N = 1, 3, and 5 respectively.

NS ELITE is the only strategy that does not param-

eterize the number of TA sequences. The average value

of NS for this strategy is 13.3. This means that it eval-

uates a larger number of TA sequences than JUST and

NEARLY.

RT is worth considering that ELITE evaluates a larger

number of TA sequences than other strategies. However,

it has a shorter response time (249.02 s). JUST and

NEARLY respond in 311.57 s and 320.82 s for N = 10

respectively. JUST responds in 41.36 s, 100.77 s and

159.72 s for N = 1, 3, and 5 respectively. NEARLY has

an RT of 41.28 s, 105.28 s and 168.89 s for N = 1, 3 and

5 respectively.

The highest performance for cBench programs is

achieved by NEARLY.10, which reaches 1.919. JUST.10

and ELITE obtain 1.892 and 1.866 respectively. Other

values worth mentioning for this set of programs are:

1.649 for NEARLY.1, 1.788 for NEARLY.3, 1.831 for

NEARLY.5, 1.642 for JUST.1, 1.790 for JUST.3, and

1.833 for JUST.5. NEARLY.10 and JUST.10 have the

highest coverage, reaching 83.33% for cBench programs.

However, ELITE obtained 73.33%.

JUST.10 has the highest average number of

speedups for Polybench programs, reaching 2.092. The

highest value for NEARLY.10 and ELITE is 2.038 and

2.002 respectively. NEARLY has 1.274, 1.799 and 1.826

for 1, 3 and 5 retrieved experiences respectively. JUST

achieves 1.274, 1.804 and 1.851 accordingly.

JUST has slightly better results than the other two

strategies. This indicates that it is better to retrieve TA

sequences from a program that has the highest simila-

rity, but with less performance.

These results indicate that JUST has potential to be

the default strategy to retrieve prior experiences.

4 Best Knowledge Database Solutions

In YaCoS, the results depend on the knowledge that

is accumulated. In fact, this knowledge has to possess

good solutions for input problems because it will not

achieve good performance regardless of the number of

TA sequences. Thus, the default YaCoS configuration

(representation of the problem and coefficient) should

retrieve the best possible TA sequence that exists in the

knowledge database.

This section aims to evaluate the distance between

the performance obtained by YaCoS and the perfor-

mance obtained by compiling the test program using

all TA sequences in the knowledge database (BestALL).

These results may indicate the consistency of the con-

figuration, as well as confirming JUST as the default

configuration.

The results chosen for comparison in this section are

the best achieved for each strategy. Table 10 presents

speedups reached by NEARLY and JUST for N = 10,

ELITE, and BestALL.

In terms of cBench programs, the average diffe-

rences are 9.91%, 7.04% and 4.59% for ELITE, JUST and

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 953

Table 10. Results of YaCoS compared with BestALL

cBench Programs Polybench Programs

Bench ELITE JUST NEARLY BestALL Bench ELITE JUST NEARLY BestALL

C00 1.678 1.747 2.476 2.740 P00 2.674 2.665 2.665 2.798

C01 1.371 1.372 1.567 1.764 P01 2.445 2.481 2.476 2.630

C02 3.668 3.668 3.668 3.668 P02 1.147 1.137 1.137 1.147

C03 1.812 1.812 1.823 1.834 P03 2.423 2.423 2.423 3.000

C04 1.752 1.752 1.780 1.786 P04 1.543 1.862 1.543 1.862

C05 1.505 1.505 1.505 1.505 P05 1.559 1.852 1.846 1.852

C06 1.957 1.981 1.960 1.981 P06 1.754 1.754 1.754 1.754

C07 1.069 1.106 1.112 1.112 P07 1.660 1.628 1.628 1.660

C08 1.262 1.262 1.262 1.272 P08 1.843 1.796 1.796 1.843

C09 1.061 1.061 1.063 1.063 P09 2.972 3.039 2.990 3.039

C10 2.302 2.302 2.302 2.302 P10 1.105 1.105 1.105 1.107

C11 2.009 2.009 2.009 2.009 P11 3.943 3.943 3.943 4.057

C12 2.053 2.053 2.053 2.056 P12 4.867 4.808 4.808 4.867

C13 2.331 2.261 2.261 2.331 P13 3.172 3.172 3.172 3.172

C14 2.084 2.084 2.084 2.099 P14 3.000 2.600 2.600 3.000

C15 1.408 1.448 1.457 1.457 P15 1.753 1.753 1.753 1.868

C16 1.680 1.686 1.680 1.686 P16 2.128 2.126 2.126 2.128

C17 3.260 3.260 3.260 3.260 P17 1.315 1.315 1.315 1.315

C18 1.481 1.481 1.481 1.481 P18 1.573 1.808 1.809 1.831

C19 1.373 1.406 1.432 1.432 P19 1.620 1.874 1.873 1.893

C20 1.328 1.328 1.328 1.328 P20 1.872 2.704 2.028 2.704

C21 1.767 1.767 1.767 1.767 P21 3.221 3.221 3.764 4.160

C22 2.440 2.364 2.364 2.440 P22 1.160 1.160 1.161 1.161

C23 2.764 2.764 2.880 3.041 P23 1.774 1.780 1.780 1.793

C24 3.147 3.147 3.182 3.182 P24 1.574 1.574 1.574 1.574

C25 3.009 3.311 3.030 3.311 P25 2.583 2.583 2.583 2.583

C26 1.824 1.867 1.855 1.922 P26 1.429 2.000 1.429 2.000

C27 1.714 1.789 1.751 1.827 P27 2.172 2.303 2.172 2.303

C28 1.686 1.704 1.705 1.753

C29 2.080 2.438 2.372 2.438

NEARLY respectively. NEARLY achieves the best average

proximity and the largest number of programs with the

same performance for BestALL. NEARLY achieves this

performance for 43.33% of cBench programs. However,

ELITE and JUST obtain 33.33% and 40.00% respectively.

In regard to Polybench programs, JUST approaches

9.40% of the average performance of BestALL, while

ELITE and NEARLY obtain a difference of 17.21% and

13.74% respectively. In addition, JUST and ELITE are

able to match the best performance of the knowledge

database for 39.29% of the TA sequences. However,

NEARLY achieves 21.43%.

Overall, the results show that JUST has an average

of 6.75% lower performance than BestALL. NEARLY and

ELITE reach 7.80% and 12.31% respectively. Thus, the

representation and the coefficient that parameterize the

retrieval of TA sequences, especially with JUST, yield re-

sults proximate to the best ones available.

ELITE and BestALL obtain the same performance,

36.21% of all evaluated programs. Other 31.03% of pro-

grams perform lower than 9.83%, while another 27.59%

of programs range from 11.29% to 57.69%. The remain-

ing 5.17% obtain a difference of 83.19% to 106.23%.

In terms of NEARLY, 32.76% of evaluated programs

achieve the best possible performance, 41.38% have

performance below 7.59% from BestALL, 15.52% have

performance that ranged from 11.41% to 28.16%, and

10.34% have distances that are between 31.92% and

67.59%.

JUSTmatches the performance of BestALL in 39.66%

of all programs. However, 36.21% of the programs

have a difference lower than 5.00% from the best possi-

ble performance. Furthermore, 13.79% of the solutions

have a performance lower than 15.00%. The largest

difference is achieved by 6.90% of the programs, which

vary from 27.74% to 57.69%. Finally, the remaining

3.45% (two programs) are non-standard because they

obtained a distance of 93.89% and 99.28% respectively.

954 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

4.1 Number of TA Sequences

Ideally, the performance of BestAll should be

achieved with few TA sequences; otherwise, additional

code evaluations (compilation + execution) will be re-

quired. In this subsection, we analyze the number of

evaluations necessary to achieve BestALL performance

for each recovery strategy.

It is important to remember that ELITE is a strat-

egy that does not parameterize the number of TA. This

strategy retrieves the number of TA sequences consi-

dered good for the test program, from the training pro-

gram with the highest similarity. Thus, there can be

situations that it does not achieve BestALL performance

because the best TA sequence may not be considered.

Fig.4 presents the ideal values of N, for each strategy

and test program, in order to obtain the performance

value of BestALL. If ELITE does not reach the value of

BestALL, the graph marks an X indicating where the

bar would be if ELITE achieved such a value.

In terms of cBench programs, the average TA se-

quences for achieving the best performance of the know-

ledge database are 10.90, 22.33, and 20.70 for ELITE,

JUST and NEARLY respectively. However, ELITE has a

coverage of 33.33%.

Considering the Polybench programs, the values of

the average distance to achieve BestALL are 12.55, 17.54

and 27.18 for ELITE, JUST and NEARLY respectively.

However, the coverage of ELITE is 39.29%.

The overall average number of TA sequences to reach

BestALL confirms that the results of JUST are superior,

achieving an average of 20.02. However, NEARLY obtains

23.83. ELITE has an average of 11.76 for TA sequences

that reach BestALL. However, such range covers only

36.21% of the evaluated programs.

The standard deviation of the samples is 13.74

and 17.07 for JUST and NEARLY respectively. This

means that although the values of the first strat-

egy are proximate to the average, the results are

highly non-standard. The Polybench.P00 program

C
0
0

C
0
1

C
0
2

C
0
3

C
0
4

C
0
5

C
0
6

C
0
7

C
0
8

C
0
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

C
1
8

C
1
9

C
2
0

C
2
1

C
2
2

C
2
3

C
2
4

C
2
5

C
2
6

C
2
7

C
2
8

C
2
9

D
is

ta
n

c
e

 t
o

 B
e
s
t
A
L
L

0

20

40

60

80

ELITE

X

X X X X X X X X X X X X X X X X X

X X XX X X X X X X X X X X X X X X

JUST NEARLY

P
0
0

P
0
1

P
0
2

P
0
3

P
0
4

P
0
5

P
0
6

P
0
7

P
0
8

P
0
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

P
1
7

P
1
8

P
1
9

P
2
0

P
2
1

P
2
2

P
2
3

P
2
4

P
2
5

P
2
6

P
2
7

D
is

ta
n

c
e

 t
o

 B
e
s
t
A
L
L

0

20

40

60

80

ELITE JUST NEARLY

(b)

(a)

Fig.4. Number of prior experiences required in order to reach BestALL performance. (a) cBench programs. (b) Polybench programs.

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 955

requires 67 evaluations to reach BestALL. However,

Polybench.P17 achieves BestAll when retrieving the

first TA sequence.

JUST achieves BestALL for 39.66% of the evaluated

programs, retrieving 10 TA sequences (maximum situa-

tion evaluated in Subsection 2.5). However, NEARLY

achieves 32.76%. NEARLY covers 46.55% of the best-

performing programs, retrieving 20 TA sequences. How-

ever, JUST covers half of the programs (50.00%) with

the said performance.

4.2 Average Distance

As discussed before, the number of TA sequences

evaluated to reach BestALL can be high for some pro-

grams. However, there are TA sequences that have per-

formance proximate to the best one possible.

The main question is how much it compensates to

carry out more evaluations in exchange for high perfor-

mance.

The knowledge database will have better perfor-

mance depending on how proximate it is to BestALL.

However, a high number of evaluations mean higher re-

sponse time.

Fig.5 presents the average speedup obtained after

retrieving N TA sequences. The value of N for NEARLY

and JUST ranged from 1 to 75, where 75 is the maximum

number of TA sequences of the knowledge database. In

terms of ELITE, the value depends on the number of

TA sequences that have a performance superior to the

most aggressive compiler optimization level, which in

this case is 53.

ELITE has limitations related to the TA sequences,

going up to 53. However, since there are 13.3 cases

per program on average, the number of TA sequences is

lower for most programs. Thus, this strategy maintains

a distance of 12.31% for BestALL until 53 TA sequences

are retrieved.

The distance for BestALL starts relatively high, ob-

taining a difference of 59.77% for N = 1. However,

performance is becoming more proximate for every in-

crement of N. The approximation is more significant

for some TA sequences. In addition, it is important to

highlight the final points of these approaches, which are

small variations related to the number of evaluations

that reach the best performance considerably.

Considering ∆x as the distance for BestALL, with

x retrieved TA sequences, the final points of significant

approximations with N retrieved TA sequences are those

that obtained the value of ∆N more than 15% less than

∆N−1 and that N + 1 is not a significant approxima-

tion point, being (5 6 N 6 75) and (∆N−1 > 1). It

is important to not consider N + 1 as a relevant point

because of its descent, in which the lowest value of ∆ is

obtained. In addition, values of ∆N−1 greater than 1

are considered because a significant increase in speedup

is obtained when a difference of 15% is reached.

Recovered TA Sequences

D
is

ta
n
c
e
 t

o
 B
e
s
t
A
L
L
 (

%
)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

90

100

D
is

ta
n
c
e
 t

o
 B
e
s
t
A
L
L
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

General cBench Polybench

General cBench Polybench

General cBench Polybench

5
D

is
ta

n
c
e
 t

o
 B
e
s
t
A
L
L
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

(a)

Recovered TA Sequences
0 10 20 30 40 50 60 705

(b)

Recovered TA Sequences
0 10 20 30 40 50 60 705

(c)

Fig.5. Average distances to BestALL versus the number of past
TA sequences retrieved. (a) ELITE. (b) JUST. (c) NEARLY.

956 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

The relevant points of ELITE, in terms of cBench

programs, are with 5 and 7 TA sequences. The value

of ∆ drops to 19.01%, obtaining an average speedup of

1.806, from 4 to 5 TA sequences. Furthermore, it drops

to 15.55%, obtaining a speedup of 1.829, from 6 to 7 TA

sequences.

Additionally, for cBench programs, JUST obtains

significant approximation points for N = 7, 10, and

22. However, the values of ∆ consequently decline to

15.78%, 27.33% and 67.68% respectively.

NEARLY obtains approximation points for 7, 10, 16,

26 and 35 prior TA sequences, considering cBench pro-

grams. The difference is 16.51% for 6∼7 recoveries.

However, the largest difference concerning ∆N−1 is

45.51% for ∆10. The values of such a difference for

N = 16, 26, and 35 were 23.31%, 15.16% and 27.15%

respectively.

In terms of Polybench programs, the points consi-

dered are for N = 7 and 9 with ELITE. The decline of

∆N−1 is 20.89% and 22.20% for N = 7 and N = 9

respectively.

For Polybench programs, JUST has significant ap-

proximation points for 7, 9, 12, 24 and 33. These points

decline 44.56%, 42.54%, 31.55%, 25.05% and 82.49% re-

spectively.

NEARLY has relevant approximation points for 7, 10,

45 and 48. The corresponding differences are as follows:

28.78%, 15.68%, 42.86% and 66.49% for ∆N−1.

Analyzing the overall average among the evalu-

ated programs, the significant approximation points for

ELITE that prevail are 7 (19.12%) and 9 (15.19%). For

NEARLY, the approximation points are 7 (25.11%), 10

(26.39%), 45 (36.27%) and 48 (69.48%). JUST has

the highest number of points with significant devia-

tions considering all evaluations, being 7 (35.49%), 10

(21.43%), 12 (16.75%), 22 (36.05%), 24 (21.71%), and

33 (62.41%) respectively.

It can been seen that JUST, with N > 12, has a

difference of less than 5% to BestALL, which decreases

to less than 2% for N > 23. This difference reaches ap-

proximately 1% for N > 30. However, the performance

of BestALL for every program is achieved with only 67

TA sequences. This is because of Polybench.P00, which

had the highest number of TA sequences to achieve the

best performance.

Although JUST has a relatively early approximation

to BestALL, NEARLYmaintains a difference of more than

5% with up to 25 TA sequences. However, ELITE cannot

reach more than 12.31% regardless of the number of TA

sequences.

This analysis continues to indicate that the best

strategy to retrieve similar TA sequences is to only re-

cover experiences of the program with the highest simi-

larity, even if the performance is below the best com-

piler optimization level. Therefore, the results confirm

that JUST should be considered as the default recovery

strategy for YaCoS because of three reasons as follows.

1) JUST obtains the best overall average speedup in

less than 10 evaluations.

2) JUST obtains the largest overall number of signifi-

cant approximations for performance differences, which

means that few evaluations affect the final performance.

3) JUST has an early approximation of average per-

formance with BestALL for the TA sequences evaluated.

5 Performance of Default Configuration

Two issues still need to be addressed. First, re-

garding to performance how is YaCoS compared with

other techniques? Second, what is the performance

of YaCoS when generating code for complex programs?

Both these issues are addressed in this section.

5.1 Performance of YaCoS Versus Other

Techniques

This subsection compares YaCoS with three tech-

niques in order to evaluate its effectiveness. These tech-

niques are as follows.

1) GA with Tournament Selection (GA50). It is simi-

lar to the technique described in Subsection 2.2, which

is an iterative compilation approach.

2) GA with Tournament Selection (GA10). It is simi-

lar to GA50; however, it executes over 10 generations

and 20 individuals.

3) 10 Good TA Sequences (Best10). It is a tech-

nique proposed by Purini and Jain[10]. They found 10

TA sequences that were considered good and capable of

covering several classes of programs. Thus, the unseen

programs are compiled with these 10 TA sequences and

the best target code is returned.

The first two techniques (GA50 and GA10) are chosen

to evaluate the performance of YaCoS against more ag-

gressive techniques, which belong to the first generation

of intelligent systems. Iterative compilation techniques

tend to provide good results because they evaluate a

considerable amount of search points. However, these

techniques possess high response time. Thus, the ob-

jective is to analyze if the performance of YaCoS, in

terms of quality of the results, is proximate to that of

more aggressive techniques. It is important to mention

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 957

that the response time of YaCoS is less than that of the

aforementioned iterative compilation techniques. This

is because YaCoS evaluates a smaller number of search

points. Consequently, it is expected that the response

quality of YaCoS is better than that of such techniques

and thus, YaCoS will be superior in terms of the result

and response quality.

Best10 is chosen because it has good performance

in terms of result quality, evaluating only 10 points in

the search space. Therefore, this technique has low re-

sponse time compared with GA50 and GA10. Thus, the

objective is to compare YaCoS with a technique that has

similar response time but produces good results. This

technique is recent, demonstrating that it is possible to

have good performance evaluating few search points.

The evaluation of YaCoS is done with its default con-

figuration: NF-FULL, CO, and JUST with 10 evaluations

from prior experiences.

Fig.6 presents speedups for YaCoS, Best10, GA10

and GA50.

GMS. YaCoS reaches a GMS of 1.919, which is sur-

passed by only GA50 (2.015). The values of Best10

P
0
0

P
0
1

P
0
2

P
0
3

P
0
4

P
0
5

P
0
6

P
0
7

P
0
8

P
0
9

P
1
0

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

P
1
7

P
1
8

P
1
9

P
2
0

P
2
1

P
2
2

P
2
3

P
2
4

P
2
5

P
2
6

P
2
7

S
p
e
e
d
u
p
 o

v
e
r
−
O
0

0

1

2

3

4

5 YaCoS Best10 GA10 GA50

−O3−O3 GMS

C
0
0

C
0
1

C
0
2

C
0
3

C
0
4

C
0
5

C
0
6

C
0
7

C
0
8

C
0
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

C
1
7

C
1
8

C
1
9

C
2
0

C
2
1

C
2
2

C
2
3

C
2
4

C
2
5

C
2
6

C
2
7

C
2
8

C
2
9

S
p
e
e
d
u
p
 o

v
e
r
−
O
0

0

1

2

3

4

5

YaCoS Best10 GA10 GA50

−O3−O3 GMS

(b)

(a)

Fig.6. Speedups for YaCoS, Best10, GA10 and GA50. (a) cBench programs. (b) Polybench programs. The speedup measure has -O0

compiler transformations as base.

958 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

and GA10 are 1.812 and 1.779 respectively. It is im-

portant to consider that YaCoS and GA possess different

premises. The first one consists of a machine learning

paradigm that returns a solution in few steps, while

GA is an iterative compilation process that evaluates

various TA sequences for the program. YaCoS achieves

performance similar to GA50, with a difference of only

3.95% in considerably shorter time (99%). In addition,

YaCoS outperforms the other strategies.

NPS. YaCoS does not reach the high speedups that

GA50 obtains; however, the value for NPS is higher, cov-

ering 87.93% of the programs. GA50 has a coverage of

68.97%. Although GA50 obtains high and non-standard

values in isolated programs, YaCoS achieves good per-

formance for more programs. Best10 and GA10 obtain

46.55% and 55.17% of coverage respectively.

IMP. Considering the level -O3, YaCoS obtains an

average improvement of 17.72% for covered programs.

Best10, GA10 and GA50 have averages of 15.82% 22.15%

and 43.20% respectively. The value that GA50 reaches

is overshadowed when considering uncovered programs.

Thus, there is an average decline of 27.88%. Best10

and GA10 have their programs declined by 25.11% and

43.93% respectively. YaCoS has a low average decline

of 1.98%, compared with -O3, because of the high cov-

erage.

NS. Since GA10 and GA50 are iterative compilation

techniques, they evaluate a high number of TA sequences

to search for a result and, thus, have averages of 57.1

and 259.3 for NS, respectively. Best10 evaluates the

same number of TA sequences as YaCoS (10 TA se-

quences). However, Best10 always evaluates the same

10 TA sequences and YaCoS recovers prior experiences

based on program features.

RT. GA50 is the most time-consuming strategy, tak-

ing over 69 018.0 s on average to provide a result. GA10

spents an average of 13 693.8 s for each input program.

However, Best10 provides a response after 390.7 s.

YaCoS is 17.89% faster than Best10, evaluating the

same number of TA sequences in an average time of

320.8 s. Theoretically, the response time is essentially

proportional to the number of TA sequences. However,

Best10 evaluates the same 10 TA sequences for each test

program. These sequences consume more time than

good TA sequences retrieved by YaCoS.

For cBench programs, Best10, GA10 and GA50 ob-

tain a GMS of 1.784, 1.882 and 2.022 respectively. YaCoS

reaches 1.919, which is surpassed only by GA50, con-

sequently, having a difference of 10.28%. In terms of

the coverage, YaCoS obtains the highest NPS, covering

83.33% of the programs. Best10, GA10 and GA50 cover

40.00%, 66.67% and 80.00% of cBench programs, re-

spectively.

Considering Polybench programs, YaCoS obtains

the highest average performance among the evaluated

strategies, with 2.038 for GMS. The results for Best10,

GA10 and GA50 are 1.841, 1.675 and 2.008, respectively.

The difference in the average performance for GA50 is

3.02%. However, YaCoS and GA50 obtain a coverage

of 92.86% and 57.14% respectively. Best10 and GA10

reach a coverage of 53.57% and 42.86% respectively.

The results indicate that iterative compilation

strategies can achieve good speedups. However, it can

consequently cause an increase in response time.

The metrics indicate that YaCoS is a good strategy

to find good TA sequences for an input program. In ad-

dition, YaCoS surpasses other strategies. The reasons

are as follows.

1) YaCoS provides good results in low response time.

2) YaCoS finds solutions based on features of the

input program.

3) YaCoS uses prior knowledge to return a TA se-

quence.

5.2 Performance of YaCoS Using a Complex

Benchmark

An evaluation using a complex benchmark is nece-

ssary in order to provide an effective evaluation of

YaCoS. Thus, the chosen programs are part of the SPEC

CPU2006 benchmark and possess more complexity than

those of cBench and Polybench. The train input was

used for these experiments. Table 11 presents the eval-

uated programs.

Table 11. SPEC CPU2006 Programs

Name Program Name Program

400.perlbench S00 453.povray S09

401.bzip2 S01 456.hmmer S10

403.gcc S02 458.sjeng S11

429.mcf S03 462.libquantum S12

433.milc S04 464.h264ref S13

444.namd S05 470.lbm S14

445.gobmk S06 471.omnetpp S15

447.dealII S07 473.astar S16

450.soplex S08 483.xalancbmk S17

The reasons for using the aforementioned programs

are as follows.

1) It is necessary to evaluate the proposed strategy

with more complex benchmarks in order to verify how

much the results benefited from these experiments.

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 959

2) It is necessary to have input programs with higher

runtime for evaluation purposes. These programs will

increase the system response time because the solution

executes target code.

3) It is necessary to evaluate different programs from

which the proposed system was not calibrated. This

needs to be done in order to demonstrate the results of

YaCoS with various benchmarks.

The experimental environment is the same as the

one utilized in Subsection 5.1.

Fig.7 presents the performance of Best10 and YaCoS

for each SPEC CPU2006 program. This experiment does

not consider continuous and background learning.

S
0
0

S
0
1

S
0
2

S
0
3

S
0
4

S
0
5

S
0
6

S
0
7

S
0
8

S
0
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
p
e
e
d
u
p
 o

v
e
r
−
O
0

0

2

4

6

8 YaCoS Best10
−O3 GMS −O3

Fig.7. Speedups obtained by applying the compared strategies.

GMS. The performance that YaCoS obtains is supe-

rior to that of Best10, achieving a GMS of 2.144. Best10

has a performance increase of 18.88%. However, it is

inferior to YaCoS, which obtains 1.944 for GMS.

NPS. Best10 does not outperform -O3 in the eval-

uated programs. YaCoS obtains a coverage of 50.00%.

IMP. YaCoS obtains an average improvement of

3.52% for programs that have performance gain re-

lated to -O3. There is only one case that there is

performance loss (SPEC.S17), which has a difference of

24.98%. Best10 does not improve in regard to -O3 and

declines by 25.55%.

NS. The number of TA sequences recovered, for

YaCoS, is parameterized with 10 evaluations. Best10

also evaluates 10 TA sequences.

RT. The programs in this experiment are more time-

consuming than those in Section 4. This is because of

the benchmark complexity. YaCoS gets an average of

1.963 02 s for 10 evaluations, and Best10 has an average

of 2.570 62 s. Thus, Best10 has response time greater

than YaCoS for the same number of evaluations. This

is because Best10 always evaluates the same 10 TA se-

quences. However, YaCoS evaluates 10 TA sequences

that are most appropriate for the input program.

5.2.1 Comparison with the Best Database Solutions

Fig.8 presents the performance difference obtained

by YaCoS compared with the best possible solutions in

the database.

S
0
0

S
0
1

S
0
2

S
0
3

S
0
4

S
0
5

S
0
6

S
0
7

S
0
8

S
0
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7D
if
fe

re
n
c
e
 t

o
 B
e
s
t
A
L
L

P
e
rf

o
rm

a
n
c
e
 (

%
)

0
5

10
15
20
25
30
35

YaCoS

Fig.8. Performance difference of YaCoS and BestALL.

The biggest difference for BestALL occurs at S17,

which has a distance of 32.77% to reach the best per-

formance found in the database.

The best possible solution is achieved for 50.00% of

the programs. Considering other 33.33% programs, the

performance difference for BestALL ranges from 0.20%

to 3.74%. The remaining 16.67% obtain a performance

difference ranging from 6.34% to 32.77%.

Furthermore, the average performance reaches a

difference of 3.53% with the best solution.

Fig.9 presents the average performance distance ob-

tained for various numbers of TA sequences.

Recovered TA Sequences

D
is

ta
n
c
e
 t

o
 B
e
s
t
A
L
L
 (

%
)

0 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

5

10

15

20

25

30

5

Fig.9. Average distance to reach the performance of BestALL.

An average speedup of 1.894 is obtained when re-

trieving only one prior experience and, consequently,

has a difference of 27.45% from the best possible result

of the knowledge database. This difference declines to

less than 7.68% when analyzing five experiences. In ad-

dition, it declines to 2.87% when analyzing nine prior

TA sequences.

It is possible to observe that from 12 to 13 retrieved

TA sequences, the distance for BestALL is reduced by

36.90%, reaching an average speedup of 2.156%. This is

960 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

because 13 is a sharp curve point for results of SPEC pro-

grams. Other curve points for the results are 7 (21.53%)

and 9 (33.81%).

The performance difference obtained by YaCoS and

the best possible solution in the database is only 0.96%.

This is for an experiment that evaluates 26 prior expe-

riences.

The complexity of SPEC CPU2006 programs gives

more complexity to obtain performance. Although

in previous experiments YaCoS reached a coverage of

87.93% for cBench and Polybench programs with 10

evaluations, it reaches 66.67% with 23 evaluations for

SPEC CPU2006. All speedups, including for BestAll,

have an improvement of 3.57%, which is proximate to

-O3 for SPEC programs. Furthermore, these sequences

have a 28.87% improvement for Polybench programs,

which is also proximate to -O3.

Despite the complexity of the evaluated programs,

YaCoS has been proved to be effective. This is because

it offers improvements using a small number of eval-

uations. However, these evaluations require code exe-

cution. Consequently, this provides a cost that can be

controlled only by user input. Thus, more complex pro-

grams demand higher response time, which is the case

with SPEC programs.

The strategy is adequate when a higher performance

is desired. Thus, it can be applied to programs for em-

bedded devices and network control. A balance must be

found between immediate user requirements and nece-

ssary performance of the generated code. The types of

programs mentioned tend to carry out executions with

limited resources and thus provide a long time period

to obtain performance gain.

5.2.2 Evaluating the Use of Continuous and

Background Learning

To evaluate the use of continuous and background

learning, ∆T time is considered between the compila-

tion of two programs. This variable represents the time

required to feed the database with knowledge about

the first program. In addition, the compile order of

programs can influence the performance because the

knowledge database will be different for each new com-

pilation.

It is not possible to determine the compile order of

the programs. Thus, this experiment considers that the

programs are compiled in alphabetical order.

Fig.10 presents the results of YaCoS, using continu-

ous and background learning.

S
0
0

S
0
1

S
0
2

S
0
3

S
0
4

S
0
5

S
0
6

S
0
7

S
0
8

S
0
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
p
e
e
d
u
p
 o

v
e
r
−
O
0

0

2

4

6

8 YaCoS −O3

−O3 GMS

Fig.10. Speedup obtained by YaCoS.

GMS. The average speedups are slightly higher (less

than 1%) compared with the results without feedback,

reaching 2.152 for GMS.

NPS. The coverage is 11.11% higher than an exe-

cution without feedback, reaching 61.11% of the evalu-

ated programs.

IMP. Although improvement is achieved for a large

number of programs, the average improvement related

to -O3 decreases to 3.22%. Consequently, this has a

difference of 0.3% for results without feedback. In terms

of the performance loss, concerning -O3, only S10 has

a loss of 0.15%. The system without feedback has a

single loss as well. However, S17 reaches 24.98%.

NS. The number of TA sequences is parameterized

and used as the system without feedback (10).

RT. The system response time decreases by 2.82%,

responding after 1 907.39 seconds for each program.

The response time does not increase considerably be-

cause of the compilation and background process re-

sponsible for adjusting solutions of the knowledge

database to the new program.

YaCoS has been proved to be effective in finding TA

sequences that provide performance gain for programs.

This can also be stated for programs unseen by the

compiler during its training and use.

The use of continuous compilation is interesting be-

cause it allows for continuous learning of the compiler,

associating features of new programs compiled with so-

lutions in the knowledge database.

In addition, background compilation allows the re-

sponse time of the strategy to remain the same and,

consequently, does not block the user’s response for ac-

quiring new knowledge about the system.

6 Related Work

The first generation of intelligent code-generating

systems employs iterative compilation techniques,

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 961

which consist of programs compiled with several TA se-

quences until the best target code is found. Based on

the search behavior, these systems can be classified as:

1) intelligent systems using partial search;

2) intelligent systems using random search;

3) intelligent systems using heuristic search.

Intelligent systems using partial search attempt to

explore a portion of possible results[8,27-28]. Intelligent

systems using random search aim to find a solution us-

ing statistical and/or random techniques, striving to

reduce the number of evaluated TA sequences[29-31]. In-

telligent systems using heuristic search use heuristics to

reduce the quantity of evaluated TA sequences[32-34].

In terms of first generation systems, Cohen et al.[35]

proposed a strategy to simplify the search through TA

sequences. This strategy was based on polyhedral rep-

resentations. This approach was implemented in a

framework, which was done for simplifying compar-

isons between TAs. This technique depends on a uni-

fied polyhedral representation that contains loops and

statements.

Based on polyhedral representations, Pouchet et

al.[36] proposed an iterative compilation system focus-

ing on loop transformations which reduces the search

space. Therefore, it is possible to apply an extensive

search and gain performance in small kernels. Although

there is high difficulty in applying the proposed sys-

tem to large programs, the implemented heuristic tech-

nique is capable of enumerating the initial search, con-

sequently, mapping performance distribution by trans-

formation spaces.

Pouchet et al.[37] proposed an iterative compila-

tion system for finding TA sequences. They focused

on nested loops, which are adapted for search space

properties of the polyhedral model. The system is im-

plemented with both heuristics and a genetic algorithm

with specialized operators, which further improves the

approaches. Furthermore, these strategies improve the

previous system, having performance gains in small ker-

nels and large benchmarks with either a small or big

search space.

Another interesting work was proposed by Purini

and Jain[10] in the context of the first generation sys-

tems. Purini and Jain reduced the system response

time by using TA sequences capable of covering multi-

ple programs. The process of finding such TA sequences

is as follows. First, the strategy applies heuristic and

random searches to select the best TA sequence for each

training program. Second, the TA sequences that do not

contribute to performance gain (exceeding the most ag-

gressive level of the compiler) are eliminated. Finally,

a coverage algorithm analyzes and extracts the 10 best

TA sequences. As a result, this strategy evaluates only

10 TA sequences to find the best one for a new program.

It is important to note that such studies focus on

finding a good configuration for the compiler, conse-

quently generating a high quality target code. Based

on this premise, Cui et al.[38] developed a methodol-

ogy in which the compiler is capable of identifying TA

sequences for a specific algorithm. This work is inter-

esting because they developed a methodology to en-

capsulate TAs in optimization patterns, which may be

reused in occurring scenarios. However, this work dif-

fers from the aforementioned work, including YaCoS, be-

cause the programmer annotates the code as patterns,

allowing the code-generating system to generate good-

quality target code.

Although the first generation of intelligent systems

performs well, it does not accumulate knowledge and

thus, possess high system response time. Because of

this, it is decided that an intelligent system based on

iterative compilation will not be implemented in this

work.

The second generation of intelligent code-generating

systems employs machine learning techniques. These

systems are designed to be capable of not only extract-

ing and classifying knowledge but also accumulating

and reusing it. Therefore, low system response time

will be provided to the user.

The second generation systems create a prediction

model in the training phase, based on the behavior of

training programs. Afterwards, a prediction model in

the test phase finds the best TA sequence for a program

unseen by the system[12,39-40].

The prediction model creates a relationship between

effective TA sequences and program features. The first

step consists in creating these relationships in order to

find good TA sequences for a set of training programs.

Therefore, it is necessary to apply an iterative compila-

tion technique. The second step consists in extracting

and classifying features of the training programs. These

features can be: performance counters[11-12], control

flow graphs[41], compilation data[13], features describing

loops and vector structures of the program[39], numeric

features[4,16], or a symbolic representation similar to a

DNA[17,42]. After defining the representation, it is pos-

sible to relate it to the TA sequences and, thus, build a

prediction model.

The test phase can be implemented using various

strategies, such as instance-based learning[39], logis-

962 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

tic regression[11] or case-based reasoning[12-13]. These

strategies provide TA that should be activated[11] and

utilized[12-13].

An interesting study was proposed by Tartara and

Reghizzi (2013)[4] based on the second generation sys-

tems. They presented an intelligent system that applies

a hybrid technique for long-term learning and, conse-

quently, eliminates the training phase. Additionally,

Tartara and Reghizzi proposed extracting the program

features first, and then the evolutionary algorithm pro-

vides the TA sequence to generate the target code.

Table 12 summarizes related work in order to dis-

tinguish our contribution from them.

As shown in Table 12, YaCoS can be classified as a

second generation system, which extracts, classifies and

accumulates knowledge. YaCoS can be parameterizable

and, thus, offers flexibility for different strategies. An-

other point worth highlighting is that YaCoS can employ

background compilation, while its goal is to exploit the

available computing resources in order to improve the

knowledge database.

7 Conclusions

This paper presented YaCoS, a flexible and low-cost

intelligent code-generating system capable of retrieving

good code transformation algorithms for test programs.

YaCoS is proved to be flexible to work with diffe-

rent program features, similarity coefficients and recov-

ery strategies for prior experiences. In addition, YaCoS

provides continuous and background learning.

7.1 Configuration

Knowledge extraction through NF, proposed by

Namolaru et al.[16] and considering the entire program,

has proved to be more efficient than other representa-

tions. NF obtains the best average for evaluating re-

actions and one of the smallest variances between the

similarity coefficient values.

Among the possible similarity coefficients, the intel-

ligent system can use four to obtain data numerically

and one to compare character strings. In the evalua-

tion, CO extensively presents the best results for a large

number of programs, thus being the best coefficient.

Table 12. Comparison of Intelligent Systems Selecting TA Sequences

Authors Year Techniques Architecture Benchmark Compiler

Cohen
et al.[35]

2005 Iterative compilation, polyhedral
model, TAs downsampling

AMD Athlon XP 2800+
2.08 GHz 512 MB RAM

SPECfp2000 GCC 3.4

Pouchet
et al.[36]

2007 Iterative compilation, polyhedral
model, TAs downsampling

Intel Xeon 3.2 GHz UTDSP GCC 3.4.2,
GCC 4.1.1,
ICC 9.0.1,
EKOPath 2.5

Pouchet
et al.[37]

2008 Iterative compilation, polyhedral
model

AMD Alchemy Au1500
500 MHz

UTDSP GCC 3.2.1,
GCC 4.1.1,
st200cc 1.9.0B

Cui
et al.[38]

2012 Pattern discovery, pragmas Intel Xeon, NVIDIA GTX285,
Godson-T

BLAS, SPEC
CPU2000,
NPB-3.3,
MGMRES,
CUDA-SDK

Open64

Purini
and
Jain[10]

2013 Iterative compilation, TAs down-
sampling

Intel Xeon W3550 3.06 GHz
12GB RAM

Polybench,
Mibench

LLVM 3.0

Lima
et al.[12]

2013 Machine learning, training phase,
case-based reasoning

Intel Core i7-3770 3.40 GHz
4 GB RAM

Polybench LLVM 3.1

Tartara
and
Reghizzi[4]

2013 Long-term learning, continuous
learning

Intel Xeon X7550 2.00 GHz
128 GB RAM

cBench,
Mibench

GCC 4.6.3

Queiroz
and
Silva[13]

2015 Machine learning, training phase,
case-based reasoning

Intel Core i7-3779 3.40 GHz
8 GB RAM

cBench,
SPEC CPU2006

LLVM 3.5

YaCoS 2017 Machine learning, TAs downsam-
pling, training phase, case-based
reasoning, system configuration,
continuous learning, background
compilation

Intel Core i7-3770 3.40 GHz
8 GB RAM

Polybench,
cBench,
SPEC CPU2006

LLVM 3.7.1

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 963

In terms of the strategy to recover prior experiences,

JUST presents the best results on two aspects as follows:

1) the performance achieved by JUST recovering 10

prior experiences,

2) the difference between performance achieved by

JUST and the best possible performance based on the

knowledge database.

This indicates that it is better to retrieve experi-

ences applied to similar programs even if they are not

good. This is a better alternative than either retriev-

ing experiences considered good for a specific training

program (ELITE), or training programs with proximate

similarity (NEARLY). In addition, increasing the number

of evaluations does not compensate for improving the

quality of the results. This is because the results will

not considerably improve without high response time,

consequently, making the use of the machine learning-

based system impractical.

7.2 Results

YaCoS is able to surpass other strategies by 21.36%,

and cover 50.00% of the programs using complex bench-

marks. These results indicate an improvement up to

17.72% in terms of the most aggressive compiler opti-

mization level of LLVM (-O3).

The use of continuous learning improved perfor-

mance results (slightly more than 1% better) and cov-

erage (superior by 11%).

The additional cost of continuous learning does not

result in long response time because of background

learning. This strategy is capable of using more effi-

ciently the resources available in the architecture, per-

forming tasks transparently to the user. Thus, in the

experiments with continuous and background learning,

the response time is quicker.

7.3 Future Work

Several issues can be improved in order to maxi-

mize the system efficiency and, consequently, its perfor-

mance. It is also possible to emphasize points about the

relationships between transformation algorithms and

structures of the source program, which would be help-

ful in choosing the best transformation algorithm se-

quences. Thus, the issues to be explored are as follows.

Construction of the Knowledge Database. The pro-

posed knowledge database is built by reducing the

search space that contains known transformation al-

gorithm sequences and results of iterative compilation

strategies. In addition to this strategy, others should

be explored, namely, the use of different benchmarks,

heuristic, and metaheuristic algorithms.

Learning Without an Initial Database. To avoid the

cost of building a knowledge database, an alternative is

to initialize the system without a database. In this case,

the system must permit the creation of new solutions

throughout its use, in addition to enabling continuous

learning. Thus, the system would create new solutions

on demand.

Static Evaluation. A static evaluation would avoid

executing generated code to measure performance,

which would lower the system cost. In this case, the

cost of evaluating a solution would be proportional to

the size of the source code, and not dependent on the

program’s runtime. One way to perform such an assess-

ment is to generate profiles of static code structures and

apply a static analysis.

Other Strategies for Continuous Learning. The pro-

posed continuous learning strategy consists in adjust-

ing the solutions in the knowledge database for a new

program. However, it is possible to use other forms of

learning, such as applying iterative compilation tech-

niques. Although iterative compilation techniques pos-

sess high response time, background compilation allows

the reduction of such a cost. In addition, the use of

background compilation does not add a cost to the user

response time.

Recovery of a Single Sequence. In order to avoid

evaluating several target codes, it is necessary to re-

cover only one transformation algorithm sequence (the

best according to the TA sequences of the knowledge

database). The retrieval of only one TA sequence re-

quires considerable maturity of the learning system.

Thus, it is necessary to improve the learning tech-

niques by providing additional details about the pro-

gram structures and their relationships with code trans-

formation algorithms.

Acknowledgments We thank CNPq (National

Council for Scientific and Technological Development)

of Brazil for the financial support towards this study.

References

[1] Ula M, Mursyidah, Hendriana Y, Hardi R. An expert sys-

tem for early diagnose of vitamins and minerals deficiency

on the body. In Proc. the International Conference on In-

formation Technology Systems and Innovation, Oct. 2016.

[2] Muntean M V, Donea A. A hybrid intelligent agent based

expert system for GPS databases. In Proc. the 8th Interna-

tional Conference on Electronics, Computers and Artificial

Intelligence, June 30-July 2, 2016.

964 J. Comput. Sci. & Technol., Sept. 2018, Vol.33, No.5

[3] Nascimento R J O, Fonseca C A G, Medeiros Neto F D.

Using expert systems for investigating the impact of archi-

tectural anomalies on software reuse. IEEE Latin America

Transactions, 2017, 15(2): 374-379.

[4] Tartara M, Reghizzi S C. Continuous learning of compiler

heuristics. ACM Transactions on Architecture and Code

Optimization, 2013, 9(4): 46:1-46:25.

[5] Aho A V, Sethi R, Ullman J D. Compilers: Principles, Tech-

niques and Tools. Prentice Hall, 2006.

[6] Cooper K, Torczon L. Engineering a Compiler (2nd edi-

tion). Morgan Kaufmann, USA, 2011.

[7] Muchnick S S. Advanced Compiler Design and Implemen-

tation. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1997.

[8] Pan Z, Eigenmann R. Fast and effective orchestration of

compiler optimizations for automatic performance tuning.

In Proc. the International Symposium on Code Generation

and Optimization, March 2006, pp.319-332.

[9] Park E, Kulkarni S, Cavazos J. An evaluation of different

modeling techniques for iterative compilation. In Proc. the

14th International Conference on Compilers, Architectures

and Synthesis for Embedded Systems, Oct. 2011, pp.65-74.

[10] Purini S, Jain L. Finding good optimization sequences cov-

ering program space. ACM Transactions on Architecture

and Code Optimization, 2013, 9(4): 56:1-56:23.

[11] Cavazos J, Fursin G, Agakov F, Bonilla E, O’Boyle M F

P, Temam O. Rapidly selecting good compiler optimiza-

tions using performance counters. In Proc. the International

Symposium on Code Generation and Optimization, March

2007, pp.185-197.

[12] Lima E D, Souza Xavier T C, Silva A F, Ruiz L B. Compil-

ing for performance and power efficiency. In Proc. the 23rd

International Workshop on Power and Timing Modeling,

Optimization and Simulation., Sept. 2013, pp.142-149.

[13] Queiroz Junior N L, Silva A F. Finding good compiler opti-

mization sets — A case-based reasoning approach. In Proc.

the 17th International Conference on Enterprise Informa-

tion Systems, Apr. 2015, pp.504-515.

[14] Lattner C, Adve V. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proc. the

International Symposium on Code Generation and Opti-

mization, Mar. 2004, pp.75-86.

[15] Martins L G A, Nobre R, Cardoso J M P, Delbem A C B,

Marques E. Clustering-based selection for the exploration

of compiler optimization sequences. ACM Transactions on

Architecture and Code Optimization, 2016, 13(1): 8:1-8:28.

[16] Namolaru M, Cohen A, Fursin G, Zaks A, Freund A. Prac-

tical aggregation of semantical program properties for ma-

chine learning based optimization. In Proc. the Interna-

tional Conference on Compilers Architectures and Synthe-

sis for Embedded Systems, Oct. 2010, pp.197-206.

[17] Sanches A, Cardoso J M P. On identifying patterns in

code repositories to assist the generation of hardware tem-

plates. In Proc. the International Conference on Field Pro-

grammable Logic and Applications, Aug.31-Sept.21, 2010,

pp.267-270.

[18] Wu Y, Larus J R. Static branch frequency and program

profile analysis. In Proc. the International Symposium on

Microarchitecture, Nov.30-Dec.2, 1994.

[19] Ball T, Larus J R. Branch prediction for free. ACM SIG-

PLAN Notices, 1993, 28(6): 300-313.

[20] Shafer G. A Mathematical Theory of Evidence. Princeton

University Press, 1976.

[21] Scholkopf B, Smola A J. Learning with Kernels — Sup-

port Vector Machines, Regularization, Optimization, and

Beyond. MIT Press, San Francisco, CA, USA, 2002.

[22] Needleman S B, Wunsch C D. A general method applica-

ble to the search for similarities in the amino acid sequence

of two proteins. Journal of Molecular Biology, 1970, 48(3):

443-453.

[23] Tanenbaum A S, Goodman J R. Structured Computer Or-

ganization. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1998.

[24] Patterson D A, Hennessy J L. Computer Organization and

Design: The Hardware/Software Interface (5th edition).

Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2013.

[25] Chen Y, Fang S, Eeckhout L, Temam O, Wu C. Iterative

optimization for the data center. ACM SIGPLAN Notices,

2012, 47(4): 49-60.

[26] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion

B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg

V, VanderPlas J, Passos A, Cournapeau D, Brucher M,

Perrot M, Duchesnay E. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 2011, 12:

2825-2830.

[27] Kulkarni P A, Whalley D B, Tyson G S, Davidson J W.

Practical exhaustive optimization phase order exploration

and evaluation. ACM Transactions on Architecture and

Code Optimization, 2009, 6(1): 1-36.

[28] Foleiss J H, Silva A F, Ruiz L B. An experimental evaluation

of compiler optimizations on code size. In Proc. the 15th

Brazilian Symposium on Programming Languages, Sept.

2011.

[29] Haneda M, Knijnenburg P M W, Wijshoff H A G. Gener-

ating new general compiler optimization settings. In Proc.

the Annual International Conference on Supercomputing,

June 2005, pp.161-168.

[30] Long S, Fursin G. A heuristic search algorithm based on uni-

fied transformation framework. In Proc. the International

Conference Workshops on Parallel Processing, June 2005,

pp.137-144.

[31] Cooper K D, Grosul A, Harvey T J, Reeves S, Subramanian

D, Torczon L, Waterman T. Exploring the structure of the

space of compilation sequences using randomized search al-

gorithms. Journal of Supercomputing, 2006, 36(2): 135-151.

[32] Kulkarni P A, Hines S R, Whalley D B, Hiser J D, David-

son J W, Jones D L. Fast and efficient searches for effective

optimization-phase sequences. ACM Transactions on Ar-

chitecture and Code Optimization, 2005, 2(2): 165-198.

[33] Che Y, Wang Z. A lightweight iterative compilation ap-

proach for optimization parameter selection. In Proc. the

1st International Multi-Symposiums on Computer and

Computational Sciences, Volume 1, June 2006, pp.318-325.

[34] Zhou Y Q, Lin N W. A study on optimizing execution time

and code size in iterative compilation. In Proc. the Inter-

national Conference on Innovations in Bio-Inspired Com-

puting and Applications, Sept. 2012, pp.104-109.

João Fabŕıcio Filho et al.: Yet Another Intelligent Code-Generating System 965

[35] Cohen A, Sigler M, Girbal S, Temam O, Parello D, Vasi-

lache N. Facilitating the search for compositions of program

transformations. In Proc. the 19th International Conference

on Supercomputing, June 2005, pp.151-160.

[36] Pouchet L N, Bastoul C, Cohen A, Vasilache N. Iterative op-

timization in the polyhedral model: Part I, one-dimensional

time. In Proc. the International Symposium on Code Gene-

ration and Optimization, March 2007, pp.144-156.

[37] Pouchet L N, Bastoul C, Cohen A, Cavazos J. Iterative

optimization in the polyhedral mode: Part II, multidimen-

sional time. In Proc. the ACM SIGPLAN Conference on

Programming Language Design and Implementation, June

2008, pp.90-100.

[38] Cui H, Xue J,Wang L, Yang Y, Feng X, Fan D. Extendable

pattern-oriented optimization directives. ACM Transaction

on Architecture and Code Optimization, Sept. 2012, 9(3):

Article No. 14.

[39] Long S, O’Boyle M. Adaptive Java optimisation using

instance-based learning. In Proc. the 18th International

Conference on Supercomputing, June 26-July 1, 2004,

pp.237-246.

[40] Agakov F, Bonilla E, Cavazos J, Franke B, Fursin G,

O’Boyle M F P, Thomson J, Toussaint M, Williams C K

I. Using machine learning to focus iterative optimization.

In Proc. the International Symposium on Code Generation

and Optimization, March 2006, pp.295-305.

[41] Park E, Cavazos J, Alvarez M A. Using graph-based pro-

gram characterization for predictive modeling. In Proc. the

International Symposium on Code Generation and Opti-

mization, March 2012, pp.196-206.

[42] Martins L G, Nobre R, Delbem A C, Marques E, Cardoso J

M P. Exploration of compiler optimization sequences using

clustering-based selection. ACM SIGPLAN Notices, 2014,

49(5): 63-72.

João Fabŕıcio Filho is currently

an IT analyst of Federal University

of Technology — Paraná, Campo

Mourão-PR, and a Ph.D. student in

computer science at the University of

Campinas, Campinas. He received his

Bachelor’s degree in informatics and

Master’s degree in computer science

from State University of Maringá, Maringá-PR, in 2014

and 2016, respectively. His research interests include high

performance computing, approximate computing, parallel

programming and compilers.

Luis Gustavo Araujo Rodriguez

is currently a Ph.D. student in computer

science at the University of São Paulo,

São Paulo. He received his Bachelor’s

degree in computer science from the

Catholic University of Honduras, La

Ceiba, in 2013. He then received his

Master’s degree in computer science

from the State University of Maringá, Maringá-PR, in

2016. His research interests include high performance

computing, parallel programming and compilers.

Anderson Faustino da Silva

is a professor in the Department of

Informatics of the State University

of Maringá, Maringá-PR, lecturing

courses in undergraduate and graduate

courses. He received his Bachelor’s

degree in computer science from the

State University of West Paraná, Foz do Iguaçu, in

2000. He then received his Master’s and Ph.D. degrees

in systems engineering and computer science from the

Federal University of Rio de Janeiro, Rio de Janeiro, in

2003 and 2006, respectively. His research interests include

parallel programming, compile techniques, and design and

development of programming languages.

