
Liang HL, Wu J, Jiang Z et al. A task allocation method for stream processing with recovery latency constraint. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 33(6): 1125–1139 Nov. 2018. DOI 10.1007/s11390-018-1876-6

A Task Allocation Method for Stream Processing with Recovery

Latency Constraint

Hong-Liang Li1,2,3, Member, CCF, IEEE, Jie Wu3, Fellow, IEEE, Zhen Jiang4, Member, ACM, IEEE
Xiang Li1, and Xiao-Hui Wei1,2,∗, Distinguished Member, CCF, Member, IEEE

1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education

Changchun 130012, China
3Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, U.S.A.
4Department of Computer Science, West Chester University of Pennsylvania, West Chester, PA 19383, U.S.A.

E-mail: lihongliang@jlu.edu.cn; jiewu@temple.edu; zjiang@wcupa.edu; {lxiang, weixh}@jlu.edu.cn

Received July 14, 2017; revised September 26, 2018.

Abstract Stream processing applications continuously process large amounts of online streaming data in real time or near

real time. They have strict latency constraints. However, the continuous processing makes them vulnerable to any failures,

and the recoveries may slow down the entire processing pipeline and break latency constraints. The upstream backup

scheme is one of the most widely applied fault-tolerant schemes for stream processing systems. It introduces complex

backup dependencies to tasks, which increases the difficulty of controlling recovery latencies. Moreover, when dependent

tasks are located on the same processor, they fail at the same time in processor-level failures, bringing extra recovery

latencies that increase the impacts of failures. This paper studies the relationship between the task allocation and the

recovery latency of a stream processing application. We present a correlated failure effect model to describe the recovery

latency of a stream topology in processor-level failures under a task allocation plan. We introduce a recovery-latency aware

task allocation problem (RTAP) that seeks task allocation plans for stream topologies that will achieve guaranteed recovery

latencies. We discuss the difference between RTAP and classic task allocation problems and present a heuristic algorithm

with a computational complexity of O(n log2 n) to solve the problem. Extensive experiments were conducted to verify the

correctness and effectiveness of our approach. It improves the resource usage by 15%–20% on average.

Keywords stream processing, task allocation, fault-tolerance, upstream backup, recovery latency

1 Introduction

Stream processing applications are a novel class of

“Big Data” applications that are able to continuously

process and analyze large-scale online data streams in

real time or near real time. High demands of such ap-

plications can be found in various areas, including an-

alyzing social networks, trading high-frequency stocks,

and monitoring and controlling production lines. This

has led to a rapid increase in the popularity of a new

computing paradigm known as the stream processing

model (SPM)[1−3].

Over the last decade, various stream processing

systems have been proposed in both academia and

industry[2,4−9] to implement SPM. In these systems,

stream processing applications take one or more data

streams as an input, perform a series of predefined func-

tions, and generate output in the form of data streams

again. A stream processing application is usually mod-

eled as a directed acyclic graph (DAG) of tasks and

Regular Paper

A preliminary version of the paper was published in the Proceedings of IEEE CLUSTER 2017.

This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFC1502306, the
National Natural Science Foundation of China under Grant No. 61602205, the China Scholarship Council, and the National Science
Foundation of the U.S. under Grant Nos. CNS 1629746, CNS 1564128, CNS 149860, CNS 1461932, CNS 1460971, CNS 1439672, CNS
1301774, and ECCS 1231461.

∗Corresponding Author

©2018 Springer Science +Business Media, LLC & Science Press, China

1126 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

their interconnections, i.e., stream topology[10]. Each

task consumes the data from upstream task(s), pro-

cesses the data, and emits results as data stream(s) to

downstream task(s)[11]. A task without an upstream

task is called a source, and one without a downstream

task is called a sink. The tasks in a stream topology ac-

complish in a pipeline manner and form one or multiple

paths from a source to a sink.

These stream processing applications share a com-

mon characteristic of the strict latency constraint, that

is, these applications must provide fast and accurate re-

sponse. The processing latency of a stream topology is

the end-to-end elapsed time from the entrance of a set of

input data to the emission of the corresponding output

data[10,12]. It equals the largest processing latency of all

paths in the stream topology[10]. Existing work focuses

on balancing the latencies among multiple paths by as-

signing each task with appropriate physical resources,

which is known as the task allocation problem[10,13−16]

for SPM. However, when extra time is needed for the

recovery of any failed task, especially when a hardware

issue, such as a core dump, occurs to force the recov-

ery of all tasks allocated to the same processor, the

slowdown of a single task and the possible accumulated

impact of all delayed tasks will suspend the process-

ing. This will slow down the entire processing and may

break the latency constraints, which is the focus of this

paper.

The inability to obtain complete data beforehand

has led to a computing paradigm entirely different from

the traditional “process-after-store” mode where SPM

performs “one-pass” processing over stream data on the

fly without storing them. Therefore, SPM can be more

vulnerable to failures than other big-data processing

schemes[6,7,17,18]. This unique characteristic poses a

novel fault-tolerant problem[1,19] due to new challenges

like strict recovery latency constraints[20] and complex

recovery dependencies[21−24]. In recent years, the up-

stream backup scheme[11,22,23,25] has been widely ap-

plied due to its smaller fault-tolerant (FT) overhead,

compared with the active replication scheme[26,27], and

reasonable recovery latency.

In the upstream backup model, each task is able

to maintain a backup of the output data for its down-

stream tasks. Upon failure, all of the upstream backup

tasks replay backup data, and the recovering task repro-

cesses those data to recover to its previous status, which

introduces task recovery latency[11,22]. The recovery

latency of a stream topology is the largest recovery la-

tency of its tasks[17,27]. Fig.1 shows some examples of

the recovery latencies of a stream topology under diffe-

rent failure scenarios. Fig.1(a) displays the required

recovery latency for each task. In the ideal situation,

the recovering task can obtain all the backup data from

its upstream task(s) (see the recovering task c and its

upstream task b in Fig.1(b)). However, the impact of

correlated failures is not considered here. During task

allocation, an allocation plan may put multiple tasks on

one processor to share the physical resource[10,28]. It is

considered very common in practice because a modern

CPU core can host a few stream processing tasks at one

time. In this case, tasks located on the same proces-

sor fail together during a processor-level failure (see the

correlated failures of tasks b and c in Fig.1(c)). In such

a case, the recovering task c must wait for its depen-

dent upstream task b to finish the recovery and then

it can obtain the backup data to start its own. The

recovery of these downstream tasks can be prolonged

and causes extra latency (see the accumulated delay in

the recovery of task c, hc = 6 > 2).

Fig.1. Examples of recovery latencies in different failure cases.
(a) Recovery latency. (b) Unrelated failures max{1, 2} = 2. (c)
Correlated failures max{4, 6} = 6.

The purpose of this paper is to study the rela-

tionship between recovery latency and task allocation

plan and to present a comprehensive approach to com-

pute task allocation plans that provide recovery latency

guarantee. The main contributions are summarized as

follows.

• We present a quantitative model that describes

the relationship between the recovery latency and the

task allocation plans of a stream topology. We intro-

duce the recovery-latency aware task allocation prob-

lem (RTAP) and discuss how it differs from classic task

allocation problems.

• We propose a heuristic algorithm based on the

topology information to compute task allocation plans

with recovery latency guarantee.

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1127

• We conduct extensive simulations to verify the

correctness and effectiveness of our approach with diffe-

rent applications and setups.

This paper further explores the RTAP problem

based on our earlier conference version[20]. We propose

an efficient approach to solve the problem and provide

extensive experimental results and analysis of difference

approaches. The remaining of the paper is organized as

follows. In Section 2, we summarize related work. Sec-

tion 3 presents the problem model and analysis. We

propose our approach in Section 4 and Section 5 dis-

cusses the experimental results. Finally, Section 6 con-

cludes the paper.

2 Related Work

2.1 Task Allocation for Stream Topology

A stream topology is usually modeled as a directed

acyclic graph (DAG) G(V,A) of tasks (V) and directed

connections (A). The task allocation problem is one

of the fundamental issues of stream processing systems

that allocate resources for each task according to its

resource requirement, avoiding either performance bot-

tleneck (under-provisioning) or the waste of resources

(over-provisioning). Earlier work focuses on the mod-

eling of task resource requirements and the relation-

ship between assigned resources and processing perfor-

mances (throughput and latency)[2,12,28]. The resource

requirement of each task, hereafter referred to as the

weight of a task, represents the share of resource (com-

putational, memory, and/or bandwidth capacity) that

is required to ensure the processing performance ac-

cording to its input speed. Eidenbenz and Locher[9]

gave a theoretical analysis of this problem and proved

its NP-hardness. They proposed an approach to com-

pute optimal resource assignments for each task in a

given stream topology when the stream topology is a

series-parallel decomposable graph.

Assuming the resource requirements of each task

are given as the input, other studies[13,14,29] investi-

gated the problem of allocating resources for tasks from

available resource pools. Chatzistergiou and Viglas[14]

presented a fast heuristic algorithm considering both

computational and bandwidth resource requirements

and used throughput as the performance metric. Re-

cent work focuses on enhancing the processing latency

for both static[13] and dynamic[29] task weights.

Most of these studies formulize the task allocation

problem based on the bin packing problem (BPP),

which is a well-studied combinatorial optimization

problem. We discuss related models and approaches of

BPP in Subsection 2.4. Related work has been focus-

ing on task allocation problem in a failure-free scenario

that does not take failures effects into account.

2.2 Reliable Stream Processing

Active replication and checkpoint/recovery are two

traditional FT mechanisms that have been widely stu-

died in distributed systems[30]. They both have appli-

cations in distributed stream processing systems. Ac-

tive replication maintains at least one active replica in-

stance to enable instant switches from its primary in-

stance to its replication when failure occurs[31]. This

ensures minimum response time but suffers from a

high overhead, at least doubling resource consump-

tions. It is applied in earlier stream processing sys-

tems or data engines[1,26] that are hosted by a cluster

of a small number of machines. With the application

scales increasing rapidly[8], the active replication model

becomes inefficient or even impractical to distributed

stream processing systems (DSPS)[6,11], which is why

most recent researches explore FT approaches based on

checkpoint/recovery[5,25,27,32].

Hwang et al.[11] introduced an upstream backup

model that takes advantage of the close upstream-

downstream dependencies. Upstream tasks keep output

buffers as backups for downstream tasks. If a down-

stream task fails, the backup data is replayed to gene-

rate correct results. It is an efficient approach for the

stream processing model but only supports applications

that depend on recent data rather than support those

that depend on the complete history of previous data.

Therefore, recent work improves the upstream backup

with the combination of checkpoint/recovery to solve

this problem[22,25,27,33], which becomes the most com-

monly used FT method for SPM.

2.3 Processing/Recovery Latency Modeling

Chain[11] is one of the earliest researches that stu-

died the processing latency model and task allocation

strategies. It presents a solution for minimizing the

makespan of a stream processing job in a single pro-

cessor. In recent years, the task allocation problem

for DSPS has been widely studied[10,13,14]. These stu-

dies use similar processing latency models and stream

topology models, which provide the background for our

work. Eidenbenz and Locher[10] presented strong the-

oretical results for a common type of stream topology

1128 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

(i.e., SPD). They proposed solutions to compute opti-

mal resource “slices” for stream processing tasks under

a continuous resource partitioning scenario. However,

they did not consider the extra cost from the failures

that occur dynamically. The recovery incurs latency

that would further trigger performance bottleneck.

The recovery latency of stream processing time is re-

lated to multiple parameters, such as state size, queue

length, window size, and checkpoint interval[27]. There

are two approaches to estimating recovery latency: ex-

perimental method and theoretical method. Heinze et

al.[27] designed a clustering method based on histori-

cal samples to estimate the recovery time. Salama et

al.[34] used a reliability model[35] to estimate the recov-

ery time. Given the failure rate of a task, one can com-

pute optimal checkpoint interval based on the method

in [35]. The reprocessing time can be estimated (ap-

proximately equal to 1/2 checkpoint interval)[11,34,35].

However, they assumed that there is no correlation be-

tween any pair of tasks. The estimation of reprocessing

time is independent. We studied the relationship be-

tween recovery latency and FT overheads[17]. A task-

level failure effect model was proposed, assuming tasks

are with independent failure rates.

These studies provide methods to estimate the re-

covery latency of individual tasks independently, but

are not suitable for stream processing applications with

correlated task failures. In the upstream backup model,

each task is able to maintain the backup data for its

downstream tasks, which introduces complex depen-

dencies among tasks. When tasks with dependencies

fail together, they have to recover sequentially accord-

ing to their dependency on the data existence. The

recovery latencies must be accumulated along such re-

lation. Moreover, tasks on the same processor will fail

at the same time in a processor-level failure. The re-

covery latencies are also related to the task allocation

plans.

In our earlier paper[20], we introduced the task

allocation problem considering recovery latency con-

straints. This paper further explores the problem and

proposes an new efficient approach to solve the problem.

To the best of our knowledge, this is the first time to

study the relationship between recovery latencies and

task allocation plans.

2.4 Bin Packing Problem

In the classic bin packing problem (BP), we are

given a list of items and the goal is to place them in a

minimal number of bins so that no bins are over-packed.

General BP and its variants are used to model resource

allocation[36] and job scheduling[37] problems. For the

general BP problem and the two-dimensional BP (2BP)

problem in particular, please refer to surveys of [38, 39].

If we consider the resource requirement (weight) of a

task as the first dimension of the bin packing problem,

and the recovery latency of a task as the second di-

mension, the problem we are facing is closely related to

the two-dimensional packing problems, such as the two-

dimensional bin packing problem (2BP) and the two-

dimensional strip packing problem (2SP). Both prob-

lems are strongly NP-hard. One of the most widely-

applied approaches is “level-oriented” heuristics[40],

such as next-fit decreasing height (NFDH), first-fit de-

creasing height (FFDH), and best-fit decreasing height

(BFDH). These algorithms pack items in rows form-

ing levels[39] to solve the 2SP problem. They differ in

the ways of choosing bins to put an item in. For de-

tails of these heuristics, please refer to [39]. Moreover,

these levels can be further packed into bins using one-

dimensional packing approaches[41] to solve the 2BP

problem[42].

We refer to the target problem as a single-level two-

dimensional bin packing problem (SL2BP), which is

derived from 2BP and 2SP when the width of a bin

represents the computational capacity of a processor in

which there is only one level allowed in each bin.

3 Problem Formulation

3.1 Task Allocation Problem for Stream

Topology

The stream processing application is usually mod-

eled as a directed acyclic graph (DAG) G(V,A), i.e.,

stream topology[10]. The vertices V = {vi|i ∈ 1, ..., n}

represent tasks (also denoted as processing elements[7])

and arcs A = {a(vi, vj)|vi, vj ∈ V } represent connec-

tions between tasks. For each arc a(vi, vj), vi and vj

are adjacent tasks, vi is vj ’s upstream task and vj is

vi’s downstream task. Each task consumes data from

upstream task(s), processes the data, and emits results

as data streams to downstream task(s)[11]. The task

without an upstream task is called source, and the one

without a downstream task is called sink. Note that we

assume, without loss of generality, there are one source

and one sink in each stream topology. When there are

multiple sources (sinks), we can add a dummy source

(sink) as the upstream (downstream) task of all sources

(sinks).

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1129

For each task in the stream topology, its resource

requirement (wv) is given, reflexing the computing ca-

pacity needed by a task according to the input data

rate[10]. When all tasks’ resource requirements are ful-

filled, all tasks can keep up with the pace of the input

data so that there is no data loss caused by delayed pro-

cessing. We consider the following problem that seeks

to map all tasks in a stream topology to a set of para-

llel processors, with all the resource requirements of the

tasks satisfied.

Problem 1 (Task Allocation Problem). Given a set

of parallel processors, P = {pi|i ∈ 1, ...,m} with a cer-

tain capacity. The task allocation of a stream topology

G(V,A) is to find a mapping Φ = V → P according to

task weight wv.

Problem 1 can be simplified as a one-dimensional

bin packing problem (1 BP)[41,43], where the resource

capacity of a processor corresponds to the bin capac-

ity ((0, 1]) and the task weight corresponds to the item

width (nominalized to 1). The goal is to place items in

a minimal number of bins so that the total weight of

items in each bin does not exceed 1.

Note that we only consider the computational costs

of tasks (weights of vertexes in G)[10] but not the

communications cost among tasks (weights of arcs in

G)[44]. This represents the case when the stream ap-

plication is computational-constrained[10] or the sce-

nario when the parallel processors are connected with

high speed/throughput networks that the communica-

tion costs are relatively lower than the computational

costs.

3.2 Fault-Tolerant Setups

Each task performs upstream backup[11,22,23,25], i.e.,

upstream tasks back up output data for adjacent down-

stream task(s). The input stream of the source of

the topology is assumed to be backed up into a log

system[32], such as Apache Kafka[45]. Both stateless

tasks and stateful tasks can perform upstream backup.

Each stateful task performs a periodical checkpoint of

its internal state into durable storage, e.g., in-memory

databases or file systems, which triggers a backup trim-

ming process on all adjacent upstream tasks to delete

outdated backup data.

Upon the failure, a task will get restarted and a

stateful task will get reset to its previous checkpointed

state. Corresponding backup data are then replayed

from upstream task(s) to the recovering task.

3.3 Correlated Failure Effect Model

The recovery process of a task introduces a recovery

latency (hv) that consists of two parts[17]: 1) upstream

latency (rv), the time consumed on retrieving backup

data, and 2) reprocessing latency (tv), the time spent

on reprocessing data.

hv = rv + tv. (1)

Note that this mode considers neither the restart

time nor the reset time of a failed task, because they

are much shorter compared with reprocessing latency.

The reprocessing latency tv of a task is related to its

checkpoint interval. Given the failure arrival rate and

the checkpoint cost (depending on the size of the in-

ternal state), the optimal checkpoint interval of a task

can be computed[35]. Both stateless tasks and state-

ful tasks can be involved in the recovering process and

cause recovery latencies. The reprocessing latency tv

can be estimated (approximately half the checkpoint

interval)[11,34,35]. In this paper, we assume the repro-

cessing latencies of each task are given as an input.

We propose the correlated failure effect model. Let

Uv denote the set of adjacent upstream tasks of task v.

When all tasks in Uv are healthy in the moment as v is

recovering, task v is able to obtain backup data right

away, i.e., there is no upstream latency (rv = 0). Oth-

erwise, when upstream task u ∈ Uv fails at the same

time as v, the backup data on u is lost. Upon such

correlated failures, downstream task (v) must wait for

its dependent upstream task (u) to finish recovery first

before the necessary backup data can become availa-

ble again. Let binary variable fv denote the healthy

status of a task whose value is equal to 1 when task v

has failed, and 0 otherwise. The upstream latency is

defined recursively as (2).

rv :=

{

0, if ∀u ∈ Uv : fu = 0,
max

u∈Uv ,fu=1
hu, otherwise. (2)

When multiple upstream tasks in Uv fail at the same

time as v, the upstream latency of v is equal to the

largest recovery latency among those tasks. Moreover,

when multiple adjacent tasks on the same path fail to-

gether, the effect of delay can be cascading. In Fig.2,

task e must wait until both c and d get recovered, that

is, when the reprocessing latencies of tasks c and d are 1

and 2 respectively, we have he = hd+4 and hd = hc+2.

The notations used in this paper are listed in Table 1.

1130 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

Fig.2. Recovery latency of a stream topology under multiple
correlated task failures.

Table 1. Notations

Notation Description

G(V,A) DAG that represents a stream topology

wv Weight of v ∈ V , reflexing the computational ca-
pacity needed by a task

P Set of processors

Φ Task allocation function, Φ(v) = p, v ∈ V, p ∈ P

tv Reprocessing latency of v ∈ V

rv Upstream latency of v ∈ V

hv Task recovery latency of v ∈ V

H(G) Recover latency of a stream topology

Uv Set of adjacent upstream tasks of v

Kp Set of tasks assigned to processor p

3.4 Recovery Latency Under Processor Failure

When a processor fails, all tasks located on the same

processor fail altogether. We assume that the proces-

sors have independent failure rates and multiple pro-

cessors may fail at the same time. Kp denotes the set

of tasks placed on processor p, Kp = {v|v ∈ V,Φ(v) =

p, p ∈ P}. Since tasks in Kp always fail together when

processor p fails, rv = max{ max
u∈Uv ,Φ(u)=Φ(v)

hu, 0}. The

recovery latency of a processor p under a failure is

H(p) = max
v∈Kp

hv. (3)

The reprocessing latency of a stream topology is equal

to the largest recovery latency of any processor, e.g.,

H(G) = max
p∈P

H(p) = max
v∈V

hv.

As shown in Fig.3, different task allocation plans

may lead to different recovery latencies. In case (a), all

tasks are packed into one processorK = {a, b, c, d}, and

it introduces no waste of the width of a bin. It illus-

trates how the 2SP approaches would pack items. How-

ever, putting adjacent tasks on one processor causes

correlated task failures. It introduces high upstream

latencies and increase the recovery latency of the pro-

cessor. In cases (b) and (c) tasks are spread to two

processors to avoid high upstream latencies. Case (c)

achieves the smallest recovery latency. As illustrated

in the figure, there is a trade-off between the recovery

latency of the stream topology and the number of re-

sources used. Using more processors gives the resource

manager more space to keep tasks with backup depen-

dencies apart and avoid extra recovery latencies but

introduces resource waste.

3.5 Task Allocation with Recovery Latency

Guarantees

Problem 2 (Recovery-Latency-Aware Task Allo-

caiton Problem (RTAP)). Given a stream topology

graph G(V,A), the available processor set P , and the

recovery latency upper bound H̄, find the task alloca-

tion Φ that occupies the minimum number of processors

while satisfying recovery latency constraints.

A processor and its resource capacity are hereafter

referred to as a bin and the width of the bin respec-

tively. A task and its weight are hereafter referred to

as an item and the width of the item respectively. The

height of a bin represents the recovery latency threshold

Task Allocation
p1

hv hv hv hv hv

ta

wa wa wb wc wcwa wb wdwdwb

K/ıa֒ b֒ c֒ d℘֒
H↼p↽/

K/ıa֒ b℘֒ H↼p↽/ K/ıa֒ c℘֒ H↼p↽/ K/ıb֒ d℘֒ H↼p↽/K/ıc֒ d℘֒ H↼p↽/

H↼G↽/maxıH↼p↽֒ H↼p↽℘/ H↼G↽/maxıH↼p↽֒ H↼p↽℘/

When K/ıa֒ b֒ c֒ d℘֒
H↼G↽/

When K/ıa֒ b℘ and
K/ıc֒ d℘֒ H↼G↽/

When K/ıa֒ c℘ and
K/ıb֒ d℘֒ H↼G↽/

wc wd

ta ta
tb td

rb

tb tb

rb
rd

tc

tc tc

td

td

rc
rd

tv   





wv

p1 p2 p1 p2a c

c

c










c

b

b

d

d

a

a

d

d

b

d

a

a a







b

b b

c

c





d

a b c d

Stream Topology

Recovery
Latency

Case (a) Case (b) Case (c)

Fig.3. Different task allocation plans.

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1131

H̄ . The height of an item corresponds to the reprocess-

ing latency (tv) of a task. We assume, without loss of

generality, that the height and the width of a bin (item)

are both normalized to 1. We use a set of binary de-

cision variables xij to represent task assignments. xij

is equal to 1 if task vi is assigned to processor pj, i.e.,

Φ(vi) = pj , and 0 otherwise. We use a set of auxiliary

binary variables yj to represent whether a processor pj
is assigned with at least one task. Then a valid model

for the RTAP corresponds to (4)–(9).

min Y =

m
∑

j=1

yj, (4)

subject to
n
∑

i=1

wixij 6 1, j ∈ {1, ...,m}, (5)

m
∑

j=1

xij = 1, i ∈ {1, ..., n}, (6)

H(G) = max
v∈V

hv 6 H̄, (7)

yj ∈ {0, 1}, ∀j ∈ {1, ...,m}, (8)

xij ∈ {0, 1}, ∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m}. (9)

The objective function seeks to minimize the num-

ber of occupied processors. Constraint (5) guarantees

that if a processor is used, then the sum of the weights

of the tasks allocated to that processor does not exceed

its capacity. Constraint (6) states that each task must

be assigned to exactly one processor. Constraint (7)

ensures that the recovery latency of the stream topol-

ogy does not exceed the upper bound H̄. The recovery

latency of a processor is computed based on the failure

effect model proposed in Subsection 3.4. Constraints

(8) and (9) impose variables to be binary.

For the sake of better understanding, we use items

(bins) and task (processors) interchangeably hereafter.

The width of a bin corresponds to the resource capac-

ity of a processor. The width of an item corresponds to

the weight of a task. The height of a bin represents the

recovery latency threshold H̄ . The height of an item

corresponds to the reprocessing latency (tv) of a task.

We assume, without loss of generality, that the height

and the width of a bin (item) are all normalized to 1.

3.6 Assumptions

In this paper we make the following assumptions.

Firstly, we assume the reprocessing latency of each task

is given as input. They can be estimated based on

methods proposed in [11, 34, 35], given certain system

parameters, based on the method proposed in [27] us-

ing historical data. Secondly, we do not consider the FT

overhead and its relationship with the recovery latency,

which is studied in our previous work[17]. Finally, we

only consider the computational costs of tasks in this

paper. This is motivated from the related work[10,44]

for computational-constrained applications and the low

communication cost scenario. We plan to further con-

sider communication costs among processors in our fu-

ture work.

4 Approach

4.1 Overview

The RTAP problem is NP-hard since it generates

the classic bin packing problem (BPP) when H̄ in (7) is

sufficiently big. The RTAP problem also generates the

bin packing problem with conflicts (BPPC)[46], when

∀A(i, j) ∈ A, ti + tj > max
v∈V

tv and H̄ = max
v∈V

tv. How-

ever, RTAP is different from BPCC where packing

conflicts in RTAP are non-rigid and tasks can be put

into the same processor when the recovery latency con-

straint (7) holds. For example in case (b) of Fig.3,

putting a and b on the same processor increases the

recover latency of task b. But a and b can be put

together without breaking the overall recovery latency

constraint.

In this paper, we aim to solve the RTAP in the

general case. Let CG denote the set of all paths from

the source to the sink in stream topology G. Let

HMaxPath(G) = max
C∈CG

∑

v∈C tv denote the largest re-

covery latency of a path. When min
v∈V

tv 6 H̄ 6

HMaxPath(G), the most similar variation of the packing

problem to RTAP is the two-dimensional strip packing

problem (2SP)[39]. The main difference between RTAP

and 2SP is two-fold: 1) there are no height constraints

on 2SP on each level but RTAP puts an extra constraint

of maximum height; 2) the recovery height of each item

in RTAP is not fixed but related to the task allocation

plan. In RTAP, each bin contains at most one level;

therefore we call it a single-level two-dimensional bin

packing problem (SL2BP).

There are few efficient exact algorithms for BPP.

Any exhaust search algorithm for RTAP will also be im-

practically time-consuming. We focus on the approach

of the problem using a fast heuristic algorithm for the

offline scenario, where the width and the initial height

of each item are given as input. The main challenge is

that the item heights (recovery latency) are related to

1132 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

both the partial solution (task allocation plan) and the

stream topology (G). We first propose three greedy al-

gorithms based on well-known 2SP approaches (NFDH,

FFDH and BFDH)[39], which are used as benchmarks in

later experiments, and then propose a topology-aware

heuristic algorithm.

4.2 2SP-Based Algorithms

Next-fit decreasing height (NFDH), first-fit de-

creasing height (FFDH), and best-fit decreasing

height (BFDH) are widely-applied “level-oriented”

algorithms[40] for the 2SP problem. For details of these

algorithms, please refer to [39]. We design greedy al-

gorithms based on these 2SP algorithms. These algo-

rithms sort items in descending order according to their

heights, put them into a queue, and pack one item at a

time into rows, forming levels. They differ in the ways

of choosing bins to put an item in.

We use the similar sorting methods to sort items

and break ties by decreasing the width. These algo-

rithms then pack one item at each step based on the

2SP strategies. At each round, before putting an item

into a bin, a function is applied to update the current

level height according to (3), which is the height of the

highest item in the bin. This function introduces an

extra O(log n) time complexity. Then, the estimated

recovery latency of the current item is examined ac-

cording to (7).

These greedy algorithms are called ANFDH, AFFDH,

and ABFDH according to the 2SP strategies they

use. The time complexities of these algorithms are

O(n log2 n). Note that these greedy algorithms ensure

recovery latency.

4.3 Heuristic Algorithms

The proposed approach is based on similar frame-

work as popular approaches for 2SP where items are

sorted and put into a queue and the item at the head

of the queue is packed to a bin at each round. The

proposed heuristic AlgorithmRTAP (Algorithm 1) sorts

items in descending order according to packing “hard-

ness”. It is designed according to the observation that

tasks with more adjacent tasks are more likely to cause

correlated failures.

We introduce a new metric for sorting the items:

the weighted upstream degree (WUD) ((10)). Fig.4

displays the WUD values of the tasks in the exampled

stream topology. The sorting metrics are listed in Ta-

ble 2. Item 3 is ordered in front of item 2 because it is

harder to pack.

WUD =
|Uv|

n
×

∑

u∈Uv

tu. (10)

Algorithm 1. AlgorithmRTAP (G,P, H̄)

Input: a stream topology graph G(V, E), processor

set P , and recovery latency constraint H̄

Output: task allocation Φ

1 Sort items according to (10)

2 Group items into {G′1, G′2, ..., G′

q}

3 foreach i ∈ {1, ..., q}, Group G′

i do

4 Apply 1SP algorithm to G′

i according to (1) and

constraint (7) to compute Φi

5 Φ := Φ ∪ Φi

6 end

7 return Φ

3

3

10 8

9 5
3

6

7

Item Queue
Queue
Head

Processor

Tail

4
2

1

2

2

7

7

6

6

5

5

4

4

9 98 81 110 10

(b)(a)

Fig.4. Example of stream topology and packing process. (a)

Stream topology and item queue. (b) Packing.

Table 2. Sorting Metrics in Fig.4

v tv WUDv

1 0.5 0.08

2 0.2 0.32

3 0.2 0.48

4 0.8 0.20

5 0.8 0.20

6 0.5 0.20

7 0.5 0.20

8 0.5 0.90

9 0.5 0.90

10 0.9 0.00

When a task is packed into a bin with its adja-

cent upstream tasks, its upstream latency increases and

extra height is introduced into itself according to (1),

which may make it unfit for the bin. Even worse, when

a task is packed with its adjacent downstream tasks, ex-

tra heights are introduced to downstream those tasks.

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1133

This may result in changes in the current partial solu-

tion and in the backtracking of tasks as they become

unfit for the bin. Fig.4(b) shows an example of this

situation. In order to pack item 9 into the current bin,

extra heights will be added to items 7, 6, 5, and 4, which

makes them unfit for the bin. They will be picked out

and put back into the item queue for further decisions.

Note that this backtracking is caused by both cor-

related failures and the recovery latency constraints, as

shown in (7). In order to avoid these situations and ac-

celerate the packing process, items are first ordered by

their WUD values, breaking ties by breadth-first traver-

sal orders, and then partitioned into groups. The parti-

tioning seeks to avoid putting tasks that may break re-

covery latency in the same group. Fig.5 illustrates two

cases where tasks are partitioned into one group and

two groups respectively according to different latency

constraints. We will discuss the effects of the number

of groups on packing results in Subsection 5.3.3.

(b)(a)

3 32 27

7

6

6

5

5

4

4

9 98 81

1

10

10

H/⊲
֓ H/⊲

֓

Fig.5. Examples of sorting and partitioning items. (a) One

group. (b) Two groups.

Computing the weighted upstream degree for each

item and sorting items in step 1 of Algorithm 1 in-

troduce O(log n) computations. It also takes O(log n)

computations to pack each item, including examining

current packing solution and updating items’ estimated

heights. Therefore, the computational complexity of

Algorithm 1 is O(n log2 n). We omit the details in this

paper.

5 Experimental Results

We conduct several simulations to illustrate: 1) the

performance of the proposed algorithms compared with

2SP-based algorithms, 2) the efficiency of our approach

for different types of stream topologies and various

parameter settings (resource requirements and recov-

ery latencies), and 3) the scalability of the proposed

approach and how it can cope with real-world applica-

tions.

5.1 Experimental Settings

In this subsection, we use both 2SP-based greedy

algorithms and group-based heuristics, as listed in Ta-

ble 3. For the complexity of the BP problem, we use

2SP-based algorithms (A∗DH) as benchmarks. More-

over, we implement the heuristic algorithm in combina-

tion with three level-oriented strategies to explore the

effects of different packing methods.

Table 3. Compared Algorithms

Algorithm Description

AExhaust An exact search algorithm

ANFDH Next fit decreasing height

AFFDH First fit decreasing height

ABFDH Best fit decreasing height

ARTAPNF Next-fit group

ARTAPFF First-fit group

ARTAPBF Best-fit group

We choose four types of stream topologies for the

experiments. “Tree” topology (Fig.6(a)) is a dummy

topology where each task has at least one upstream

task and exactly one downstream task. The degrees

(b)(a) (c)

Task

Connection

Auto-Scale TaskHot Topics
p/⊳

Filter
p/⊳

Sentiment
p/⊳

Fig.6. Stream topology examples. (a) Tree topology. (b) Sequential-dominated topology. (c) Parallel-dominated topology.

1134 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

of each task can be easily controlled. This topology

can be used to collect data in a monitor network.

We choose two topologies from real stream process-

ing applications in the literature. “Guru” topology

(SignalGuru[47]) is a sequential-dominated topology. It

collects traffic signals from mobile phones and pre-

dicts traffic signal schedules. As shown in Fig.6(a),

it has longer paths than other test instances. We use

this topology to demonstrate how our approach copes

with scenarios where multiple adjacent tasks placed on

the same processor introduce large upstream latencies.

“Senti” topology (Twitter Sentiment[15]) is a parallel-

dominated topology with a large number of parallel

tasks and edges caused by auto-scaling. This topology

is used to demonstrate the scenarios where tasks in the

stream topology DAG have higher in-degrees or out-

degrees and are therefore more likely to introduce ex-

tra upstream latencies. As shown in Fig.6(c), “Senti”

topology contains three auto-scale tasks (hot topics, fil-

ter, and sentiment). Finally, we generate random topo-

logy instances to test the same topology with different

item sizes.

Each of the four topologies is further extended into

two test cases with different numbers of tasks (|V |)

and edges (|A|). We use task auto-scale to generate

test cases for “Guru” and “Senti” topologies. We test

two instances for “Senti” topology, where the auto-scale

parameters are set to (50, 20, 20) and (30, 30, 30) re-

sulting in 560 edges and 1 050 edges respectively. Note

that the numbers of tasks in both cases are kept the

same to illustrate the effect of different cases of paral-

lelism.

Furthermore, we introduce three more parameters

to control the topology:

• the average width of tasks, denoted by α =

Ave(wv);

• the average height of tasks, denoted by β =

Ave(tv);

• the average degree of tasks, denoted by γ.

A topology with smaller α and β means the items

have smaller sizes. They are more likely to be placed in

a small number of bins. As discussed in Subsection 3.5,

the bin’s width and height are set to 1 for simplicity

and the item’s width and height are normalized to 1

accordingly. Instead of changing the maximum recov-

ery latency (7), we fix the bin height to 1, represent-

ing the recovery latency threshold, and change different

item heights (β) in each test instance. Note that β de-

notes the original height (reprocessing cost) of an item.

Putting tasks with backup dependency on the same pro-

cessor will introduce upstream latency and increase the

heights of items. Parameter γ represents the possibility

of such a case, which is decided by |A| and |V |. The

test instances we use are listed in Table 4.

Table 4. Stream Topology Instances

Type |V | |A| α β γ

S-Tree 33 32 0.3 0.4 2.0

L-Tree 220 219 0.2 0.3 2.0

S-Guru 55 95 0.3 0.5 3.1

L-Guru 127 239 0.2 0.2 3.6

S-Senti 93 560 0.2 0.2 7.0

L-Senti 93 1 050 0.2 0.2 22.5

S-Rnd 200 400 0.2 0.2 4.0

L-Rnd 200 400 0.6 0.6 4.0

5.2 Simulation Data

We test the proposed algorithms on all test instances

to measure performance, in terms of the number of pro-

cessors (#b) used and the algorithm execution time

(AET), as shown in Table 5. Then, we show the quality

of the proposed algorithms with the resource waste of

each test case. We offer detailed results on the wastes

of width, height, and area of each bin. Note that in

our tests, item width and item height, as well as bin

width and bin height are normalized to 1 to simplify

the results. Moreover, we show the results and high-

light the relationship between the number of groups

and the number of processors to illustrate the effect of

the grouping function (step 1 of Algorithm 1).

5.3 Results and Analysis

5.3.1 Number of Processors

The objective of RTAP is to compute a task allo-

cation plan (Φ) for the given stream topology under

recovery latency constraints. The number of proces-

sors used by Φ is the primary evaluation metric for

different algorithms. Table 5 lists the performance re-

sults of all six algorithms on eight topology instances.

Among the three greedy 2SP-based algorithms, ANFDH

performs the worst while ABFDN has the best result.

Using a group function based on topology information,

the heuristic algorithms proposed in this paper out-

perform the 2SP-based algorithms. ARTAPBF uses the

best-fit strategy after a grouping process and has the

best results. Overall, the proposed group-based heuris-

tics use 15%–25% fewer processors than the 2SP-based

benchmarks.

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1135

Table 5. Performance of Different Algorithms

Algorithm S-Tree L-Tree S-Guru L-Guru S-Senti L-Senti S-Rnd L-Rnd

#b AET #b AET #b AET #b AET #b AET #b AET #b AET #b AET

AFFDN 30 22 125 130 32 22 82 14 38 22 45 23 101 45 184 49

ANFDN 36 98 149 93 38 12 89 12 47 13 54 13 125 34 198 35

ABFDN 29 11 113 131 32 17 81 14 38 18 45 16 100 49 178 50

ARTAPFF 23 37 135 329 27 68 72 37 32 33 40 48 92 147 179 139

ARTAPNF 44 51 165 268 39 40 84 49 43 38 56 47 142 131 201 130

ARTAPBF 21 37 101 305 25 33 71 42 30 35 41 48 90 141 169 128

Note: The unit of algorithm execution time (AET) is millisecond. #b: the number of bins.

The grouping function involves an extra searching

procedure in each task, and this can be time-consuming

when the degree of the topology (γ) is large. How-

ever, the proposed algorithms have a polynomial time

complexity so that they can compute task allocation

plans for the test instances in milliseconds.

5.3.2 Resource Waste

Next we analyze the resource waste introduced by

each algorithm. We assume each bin has a unit width,

height, and area. Item width and item height are given

as parameters α and β respectively in Table 4. We

measure three waste results, W, H and A denoting the

waste of bin width, height, and area respectively. Ta-

ble 6 and Table 7 show the result on each topology

instance. ARTAP∗ has better #b results in Table 5 and

has less width and area waste. For example, ARTAPFF

and ARTAPBF both introduce a small resource waste.

On the contrary, ARTAPNF and ANFDH do not look

through current bins for the best result, which leads

to more resource waste. Note that S-Senti and L-Senti

topologies have the same number of vertices but diffe-

rent numbers of edges. More edges lead to larger γ,

which means tasks on the same processors are more

likely to have backup dependencies. Therefore, L-Senti

wastes more resources than S-Senti on all algorithms.

We can find similar results in S-Rnd and L-Rnd for

a different reason. These two topologies are the same

except that the items in L-Rnd have larger sizes than

the ones in S-Rnd, which makes L-Rnd harder to pack

and introduces more resource waste.

Table 6. Resource Utilization (Tree and Guru Topologies)

Algorithm S-Tree L-Tree S-Guru L-Guru

W H A W H A W H A W H A

AFFDN 14 78 11 6 84 6 12 68 9 12 81 9

ANFDN 28 75 21 22 84 19 24 72 17 26 84 22

ABFDN 11 79 9 5 84 4 10 74 7 10 82 8

ARTAPFF 11 78 9 5 84 5 10 78 7 10 83 8

ARTAPNF 41 81 34 38 85 33 26 68 18 28 84 23

ARTAPBF 11 72 8 3 85 2 7 74 5 7 81 5

Note: W, H and A denote the resource waste percentage of the width, height and area of a bin respectively.

Table 7. Resource Utilization (Senti and Random Topologies)

Algorithm S-Senti L-Senti S-Rnd L-Rnd

W H A W H A W H A W H A

AFFDN 2 43 1 4 83 5 7 76 4 6 91 6

ANFDN 34 44 14 22 84 18 24 70 17 23 89 21

ABFDN 2 44 1 4 82 4 4 75 3 6 81 4

ARTAPFF 2 41 1 3 80 2 5 73 3 3 89 4

ARTAPNF 37 43 16 20 80 19 32 76 24 32 89 29

ARTAPBF 2 41 1 3 75 2 3 62 2 4 79 3

Note: W, H and A denote the resource waste percentage of the width, height and area of a bin respectively.

1136 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

5.3.3 Number of Groups

The grouping procedure in step 1 of Algorithm 1

partitions items into different groups that share no in-

terconnections with one another. Only items in the

same group can be packed into one bin. Fig.7 illus-

trates the relationship between the number of groups

and the number of bins. Four topologies are tested and

we show the best and the worst case (with *) of each

test instance. We show the results from large topolo-

gies. As we can see, the packing results are worse when

items are partitioned into more groups. This is because

tasks that are partitioned into different groups will not

be packed into the same processor. Let G′
g denote a

group, and then vi can be put into G′
g if and only if

∀vj ∈ G′
g, hj + ti 6 H̄. Two tasks in two groups are

not necessarily backup-dependent and there is a possi-

bility that they can be packed into the same processor.

As a result, more partition groups lead to much stricter

constraints and therefore can waste more resource.

L-
T
re
e

L-
G
ur
u

L-
G
ur
u*

L-
Se

nt
i*

L-
Se

nt
i

L-
R
nd

L-
R
nd

*

L-
T
re
e*

250

200

150

100

50

0

30 21
9

71
89

41
56

201

56

169

33

6 3 2

101

164

Number of Groups Number of Bins

Fig.7. Relationship between the number of groups and the num-

ber of bins. ∗ indicates the worst cases.

5.4 Application Senario

The algorithms proposed in this paper are able to

compute results within milliseconds, which makes them

practical in real production environments. First, they

can be used to generate efficient task allocation deci-

sions with guaranteed reliability. For example, if the

user wants to analyze the sentiment of the latest tweets

using “Senti” topology[15], the user can submit a DAG

topology representing the requirements and the ap-

proach proposed in this paper can be used by a stream

processing platform to make task allocation decisions.

Second, although our method is based on static para-

meters, such as task weight and reprocessing latency,

the proposed algorithms can also be applied to make

fast reallocation decisions on the fly in dynamic envi-

ronments, e.g., data streams with fluctuate workloads.

The proposed algorithms are time-efficient. They can

be executed periodically to evaluate the task allocation

and make fast adjustments accordingly. Finally, the

proposed method can also be used as a tool to analyze

the performance of a system. For example, when we fix

the number of processors, representing limited resource,

there is a trade-off between the failure-free processing

performance and the recovery performance when a fai-

lure occurs. We plan to study this issue in our future

work.

6 Conclusions

This paper focuses on a task allocation strategy

for distributed stream processing systems. We pro-

posed a novel, quantitative, correlated failure effect

model to describe the relationship between the recov-

ery latency and task allocation plans (the packing of

tasks into processors) of a stream topology. We intro-

duced the recovery-latency aware rask allocation prob-

lem (RTAP) based on the failure effect model. We

showed that RTAP is closely related to 2BP and 2SP

but with unique characteristic of variable item heights.

We proposed an approach to compute the task alloca-

tion plan with a recovery latency guarantee and a time

complexity of O(n log2 n). We showed that the pro-

posed method is more efficient (15%–20% on average)

compared with related 2BP and 2SP methods.

References

[1] Stonebraker M, Çetintemel U, Zdonik S. The 8 requirements

of real-time stream processing. ACM SIGMOD Record,

2005, 34(4): 42-47.

[2] Arasu A, Babcock B, Babu S, Datar M, Ito K, Nishizawa I et

al. STREAM: The Stanford stream data manager (demon-

stration description). In Proc. ACM SIGMOD Interna-

tional Conference on Management of Data, June 2003,

pp.665-665.

[3] Hesse G, Lorenz M. Conceptual survey on data stream

processing systems. In Proc. the 21st IEEE International

Conference on Parallel and Distributed Systems, January

2015, pp.797-802.

[4] Chandrasekaran S, Cooper O, Deshpande A et al. Tele-

graphCQ: Continuous dataflow processing. In Proc. the

2003 ACM SIGMOD International Conference on Mana-

gement of Data, June 2003, pp.668-668.

[5] Akidau T, Balikov A, Bekiroğlu K, Chernyak S et al. Mill-

Wheel: Fault-tolerant stream processing at Internet scale.

Proceedings of the VLDB Endowment, 2013, 6(11): 1033-

1044.

[6] Toshniwal A, Taneja S, Shukla A, Ramasamy K et al.

Storm@ Twitter. In Proc. ACM SIGMOD International

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1137

Conference on Management of Data, June 2014, pp.147-

156.

[7] Neumeyer L, Robbins B, Nair A, Kesari A. S4: Distributed

stream computing platform. In Proc. IEEE International

Conference on Data Mining Workshops, Dec. 2010, pp.170-

177.

[8] Kulkarni S, Bhagat N, Fu M, Kedigehalli V et al. Twit-

ter heron: Stream processing at scale. In Proc. ACM SIG-

MOD International Conference on Management of Data,

May 2015, pp.239-250.

[9] Zhao J, Ou S, Hu L, Ding Y, Xu G. A heuristic placement

selection approach of partitions of mobile applications in

mobile cloud computing model based on community collab-

oration. Cluster Computing, 2017, 20(4): 3131-3146.

[10] Eidenbenz R, Locher T. Task allocation for distributed

stream processing. In Proc. the 35th Annual IEEE Inter-

national Conference on Computer Communications, April

2016.

[11] Hwang J, Balazinska M, Rasin A, Cetintemel U, Stone-

braker M, Zdonik S. High-availability algorithms for dis-

tributed stream processing. In Proc. the 21st IEEE Interna-

tional Conference on Data Engineering, April 2005, pp.779-

790.

[12] Babcock B, Babu S, Motwani R, Datar M. Chain: Ope-

rator scheduling for memory minimization in data stream

systems. In Proc. ACM SIGMOD International Conference

on Management of Data, June 2003, pp.253-264.

[13] Cardellini V, Grassi C, Presti L F, Nardelli M. Optimal

operator placement for distributed stream processing appli-

cations. In Proc. the 10th ACM International Conference

on Distributed and Event-Based Systems, June 2016, pp.69-

80.

[14] Chatzistergiou A, Viglas S D. Fast heuristics for near-

optimal task allocation in data stream processing over

clusters. In Proc. the 23rd ACM International Conference

on Information and Knowledge Management, Nov. 2014,

pp.1579-1588.

[15] Lohrmann B, Janacik P, Kao O. Elastic stream processing

with latency guarantees. In Proc. the 35th IEEE Distributed

Computing Systems, June 2015, pp.399-410.

[16] Li H, Wu J, Jiang Z, Li X, Wei X, Zhuang Y. Integrated

recovery and task allocation for stream processing. In Proc.

the 36th IEEE Performance Computing and Communica-

tions Conference, Dec. 2017.

[17] Li H, Wu J, Jiang Z, Li X, Wei X. Minimum backups for

stream processing with recovery latency guarantees. IEEE

Transactions on Reliability, 2017, 66(3): 783-94.

[18] Sun D, Zhang G, Wu C, Li K, Zheng W. Building a fault tol-

erant framework with deadline guarantee in big data stream

computing environments. Journal of Computer and System

Sciences, 2017, 89: 4-23.

[19] Krempl G, Žliobaite I, Brzeziński D, Hüllermeier E et al.

Open challenges for data stream mining research. ACM

SIGKDD Explorations Newsletter, 2014, 16(1): 1-10.

[20] Li H, Wu J, Jiang Z, Li X, Wei X. Task allocation for

stream processing with recovery latency guarantee. In Proc.

IEEE International Conference on Cluster Computing,

Sept. 2017, pp.379-383.

[21] Ananthanarayanan R, Basker V, Das S, Gupta A, Jiang H,

Qiu T, Reznichenko A, Ryabkov D, Singh M, Venkataraman

S. Photon: Fault-tolerant and scalable joining of continu-

ous data streams. In Proc. ACM SIGMOD International

Conference on Management of Data, June 2013, pp.577-

588.

[22] Qian Z, He Y, Su C, Wu Z, Zhu H, Zhang T, Zhou L, Yu

Y, Zhang Z. TimeStream: Reliable stream computation in

the cloud. In Proc. the 8th ACM European Conference on

Computer Systems, Apr. 2013, pp.1-14.

[23] Su L, Zhou Y. Tolerating correlated failures in massively

parallel stream processing engines. In Proc. the 32nd IEEE

International Conference on Data Engineering, May 2016,

pp.517-528.

[24] Upadhyaya P, Kwon Y, Balazinska M. A latency and fault-

tolerance optimizer for online parallel query plans. In Proc.

ACM SIGMOD International Conference on Management

of Data, Jun. 2011, pp.241-252.

[25] Fernandez C R, Migliavacca M, Kalyvianaki E, Pietzuch P.

Integrating scale out and fault tolerance in stream process-

ing using operator state management. In Proc. ACM SIG-

MOD International Conference on Management of Data,

June 2013, pp.725-736.

[26] Balazinska M, Balakrishnan H, Madden S R, Stonebraker

M. Fault-tolerance in the Borealis distributed stream pro-

cessing system. ACM Transactions on Database Systems,

2008, 33(1): Article No. 3.

[27] Heinze T, Zia M, Krahn R, Jerzak Z, Fetzer C. An adaptive

replication scheme for elastic data stream processing sys-

tems. In Proc. the 9th ACM International Conference on

Distributed Event-Based Systems, June 2015, pp.150-161.

[28] Stanoi I, Mihaila G, Palpanas T, Lang C. WhiteWater: Dis-

tributed processing of fast streams. IEEE Transactions on

Knowledge and Data Engineering, 2007, 19(9): 1214-1226.

[29] de Matteis T, Mencagli G. Proactive elasticity and energy

awareness in data stream processing. Journal of Systems

and Software, 2017, 127: 302-319.

[30] Wu J. Distributed System Design. CRC Press, Inc., 2017.

[31] Wu J, Huang K. The balanced hypercube: A cube-based

system for fault-tolerant applications. IEEE Transactions

on Computers, 1997, 46(4): 484-90.

[32] Carbone P, Katsifodimos A, Ewen S, Markl V, Haridi S,

Tzoumas K. Apache FlinkTM: Stream and batch process-

ing in a single engine. Bulletin of the IEEE Computer Soci-

ety Technical Committee on Data Engineering, 2015, 36(4):

28-38.

[33] Zhuang Y, Wei X, Li H, Wang Y, He X. An optimal check-

pointing model with online OCI adjustment for stream pro-

cessing applications. In Proc. the 27th IEEE International

Conference on Computer Communication and Networks,

July 2018.

[34] Salama A, Binnig C, Kraska T, Zamanian E. Cost-based

fault-tolerance for parallel data processing. In Proc. ACM

SIGMOD International Conference on Management of

Data, May 2015, pp.285-297.

[35] Young J W. A first order approximation to the optimum

checkpoint interval. Communications of the ACM, 1974,

17(9): 530-531.

1138 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

[36] Xu H, Xing L, Huang L. Regional science and technology

resource allocation optimization based on improved genetic

algorithm. KSII Transactions on Internet & Information

Systems, 2017, 11(4): 1972-1986.

[37] Jin Z, Xu G, Li Y, Liu P. A novel cloud scheduling algo-

rithm optimization for energy consumption of data centres

based on user QoS priori knowledge under the background

of WSN and mobile communication. Cluster Computing,

2017, 20(2): 1587-1597.

[38] Christensen H I, Khan A, Pokutta S, Tetali P. Approxima-

tion and online algorithms for multidimensional bin pack-

ing: A survey. Computer Science Review, 2017, 24: 63-79.

[39] Lodi A, Martello S, Monaci M. Two-dimensional packing

problems: A survey. European Journal of Operational Re-

search, 2002, 141(2): 241-252.

[40] Coffman Jr E G, Csirik J, Galambos G, Martello S, Vigo D.

Bin packing approximation algorithms: Survey and classifi-

cation. In Handbook of Combinatorial Optimization, Parda-

los P A, Du D Z, Graham R L (eds.), Springer, 2013, pp.455-

531.

[41] Johnson D S. Approximation algorithms for combinatorial

problems. Journal of Computer and System Sciences, 1974,

9(3): 256-278.

[42] Chung F R, Garey M R, Johnson D S. On packing two-

dimensional bins. SIAM Journal on Algebraic Discrete

Methods, 1982, 3(1): 66-76.

[43] Garey M R, Graham R L, Ullman J D. Worst-case analysis

of memory allocation algorithms. In Proc. the 4th ACM

Symposium on Theory of computing, May 1972, pp.143-

150.

[44] Jiang Y, Huang Z, Tsang D H. Towards max-min fair re-

source allocation for stream big data analytics in shared

clouds. IEEE Transactions on Big Data, 2016, 4(1): 130-

137.

[45] Kreps J, Narkhede N, Rao J. Kafka: A distributed messag-

ing system for log processing. In Proc. the 6th Workshop

on Networking Meets Databases, June 2011.

[46] Sadykov R, Vanderbeck F. Bin packing with conflicts: A

generic branch-and-price algorithm. INFORMS Journal on

Computing, 2013, 25(2): 244-255.

[47] Koukoumidis E, Peh L S, Martonosi M R. SignalGuru:

Leveraging mobile phones for collaborative traffic signal

schedule advisory. In Proc. the 9th ACM International

Conference on Mobile Systems, Applications, and Services,

June 2011, pp.127-140.

Hong-Liang Li received his Ph.D.

degree in computer application tech-

nologies from the College of Computer

Science and Technology (CCST), Jilin

University, Changchun, in 2012. He

is currently an associate professor of

CCST and a visiting scholar in the De-

partment of Computer and Information

Sciences at Temple University, Philadelphia. His research

interests include resource scheduling and fault tolerance in

HPC systems. He is a member of CCF and IEEE.

Jie Wu received his Ph.D. degree in

computer engineering from Florida At-

lantic University, Boca Raton, in 1989.

Dr. Wu is the Associate Vice Provost for

International Affairs at Temple Univer-

sity, Philadelphia. He also serves as the

Chair and Laura H. Carnell professor in

the Department of Computer and Infor-

mation Sciences, Temple University, Philadelphia. Prior

to joining Tempe University, he was a program director at

the National Science Foundation of USA and was a dis-

tinguished professor at Florida Atlantic University, Boca

Raton. His current research interests include mobile com-

puting and wireless networks, routing protocols, cloud and

green computing, network trust and security, and social

network applications. Dr. Wu regularly publishes in schol-

arly journals, conference proceedings, and books. He serves

on several editorial boards, including IEEE Transactions

on Service Computing and Journal of Parallel and Dis-

tributed Computing. Dr. Wu was general co-chair/chair

for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS

2013, and ACM MobiHoc 2014, as well as program co-chair

for IEEE INFOCOM 2011 and CCF CNCC 2013. He was

an IEEE Computer Society Distinguished Visitor, ACM

Distinguished Speaker, and chair for the IEEE Technical

Committee on Distributed Processing (TCDP). Dr. Wu is

a CCF Distinguished Speaker, an overseas board member

of CCF, and a fellow of IEEE. He is the recipient of the 2011

China Computer Federation (CCF) Overseas Outstanding

Achievement Award.

Zhen Jiang received his B.S. degree

in computer engineering from Shanghai

Jiao Tong University, Shanghai, in 1992,

his M.S. degree in computer engineering

from Nanjing University, Nanjing, in

1998, and his Ph.D. degree in computer

engineering from Florida Atlantic Uni-

versity, Boca Raton, in 2002. Currently,

he is an associate professor in the Department of Com-

puter Science at West Chester University of Pennsylvania

(WCU), West Chester, the director of National Security

Agency (NSA) Certified Information Security Center at

WCU, and an adjunct professor at Temple University,

Philadelphia. His research interests are in information

system development and wireless communication. He won

the Best Paper Award for Protocols and Algorithms in

the 7th IEEE International Conference on Mobile Ad-hoc

and Sensor Systems in 2010. Dr. Jiang is also active in

many committees, and he holds membership in IEEE and

ACM where he is involved in the organization of many

conferences and workshops.

Hong-Liang Li et al.: Stream Processing Task Allocation with Recovery Latency Constraint 1139

Xiang Li is a Ph.D. candidate and

a faculty member of the College of

Computer Science and Technology

(CCST), Jilin University, Changchun.

Her research interests include cloud

computing and distributed systems.text

text text text text text text text text

text text text text text text text text

text text text text text text text text text text text text

text text text text text text text text text text text text

text text text text text text text text text text text text

text

Xiao-Hui Wei is a professor and

the dean of the College of Computer

Science and Technology (CCST), Jilin

University, Changchun. He is currently

the director of the High Performance

Computing Center of Jilin University,

Changchun. His current research inter-

ests include resource scheduling for large

distributed systems, infrastructure level virtualization,

large-scale data processing systems, and fault-tolerant

computing. He has published more than 50 journal and

conference papers in the above areas. He is a distinguished

member of CCF and a member of IEEE.

