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Abstract Although k-anonymity is a good way of publishing microdata for research purposes, it cannot resist several

common attacks, such as attribute disclosure and the similarity attack. To resist these attacks, many refinements of k-

anonymity have been proposed with t-closeness being one of the strictest privacy models. While most existing t-closeness

models address the case in which the original data have only one single sensitive attribute, data with multiple sensitive

attributes are more common in practice. In this paper, we cover this gap with two proposed algorithms for multiple sensitive

attributes and make the published data satisfy t-closeness. Based on the observation that the values of the sensitive attributes

in any equivalence class must be as spread as possible over the entire data to make the published data satisfy t-closeness,

both of the algorithms use different methods to partition records into groups in terms of sensitive attributes. One uses a

clustering method, while the other leverages the principal component analysis. Then, according to the similarity of quasi-

identifier attributes, records are selected from different groups to construct an equivalence class, which will reduce the loss

of information as much as possible during anonymization. Our proposed algorithms are evaluated using a real dataset. The

results show that the average speed of the first proposed algorithm is slower than that of the second proposed algorithm but

the former can preserve more original information. In addition, compared with related approaches, both proposed algorithms

can achieve stronger protection of privacy and reduce less.
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1 Introduction

It is common for various organizations, such as gov-

ernment agencies and hospitals, to release their micro-

data (e.g., census data or medical records) for research

and other purposes[1]. However, releasing the original

data unavoidably will expose the privacy of the indi-

viduals from whom the data were obtained, and this

could violate privacy laws 1○ and reveal sensitive per-

sonal information to malicious adversaries. Thus, be-

fore the original data are released to the public, explicit

identifier attributes, such as names, addresses, and so-

cial security numbers, should be erased or concealed to

protect personal privacy. However, according to one

study[2], approximately 87% of the population of the

United States can be identified by their 5-digit zipcode,

gender, and date of birth even in the absence of explicit

identifier attributes. This means that people’s identi-

ties still can be disclosed even if all explicit identifier

attributes are removed from the original data. There

are some major privacy models for preventing such dis-

closures, such as k-anonymity[2,3], l-diversity[4], and t-
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closeness[5]. In this section, first, we provide a brief

overview of these models, and second we describe the

problem addressed by this paper.

As one of the oldest privacy models, k-

anonymity[2,3] requires that the microdata be parti-

tioned into a set of equivalence classes each of which

contains at least k records, and all records within a

class be assigned the same generalized value over each

of their quasi-identifier attributes. Thus, each record

in a k-anonymity model cannot be identified success-

fully with a probability greater than 1/k. An example

of the patients’ original data is presented in Table 1,

and the anonymized version of the data that satisfies

3-anonymity is shown in Table 2. The Zipcode and Age

attributes are set as quasi-identifier attributes. From

Table 2, it can be seen that the Name attribute in

Table 1 has been erased and several equivalence classes

have been created, each of which has three records. All

records of each equivalence class have the same values

for the Zipcode and Age attributes and thus are indis-

tinguishable based on the two attributes. However, the

3-anonymity model shown in Table 2 cannot resist the

disclosure of attribute. For example, assume that Alice

knows that Bob is in his twenties and Bob’s record is

in Table 2. When the Disease attribute is sensitive, she

can conclude that Bob must have pneumonia disease.

Table 1. Patients’ Original Data

No. Name Zipcode Age Disease

1 Ackerley 47506 23 Pneumonia

2 Gael 47571 26 Pneumonia

3 Rehor 47575 21 Pneumonia

4 Jerzy 47603 34 Flu

5 Cade 47614 37 Colon cancer

6 Finley 47627 30 Bronchitis

7 Eartha 47709 45 Colitis

8 Keyon 47714 50 Colon cancer

9 Selby 47736 49 Stomach cancer

Table 2. A 3-Anonymity Version of Table 1

No. Zipcode Age Disease

1 475** 2* Pneumonia

2 475** 2* Pneumonia

3 475** 2* Pneumonia

4 476** 3* Flu

5 476** 3* Colon cancer

6 476** 3* Bronchitis

7 477** >45 Colitis

8 477** >45 Colon cancer

9 477** >45 Stomach cancer

The l-diversity model[4] extends k-anonymity. It re-

quires that each equivalence class has at least l different

“well-represented” values for the sensitive attribute,

and it also implies l-anonymity. The simplest explana-

tion of “well-represented” would be to make sure that

each equivalence class has at least l distinct values for

the sensitive attribute[5]. For example, Table 3 presents

another anonymized version of Table 1 that satisfies 3-

diversity. In Table 3, all records within each equiva-

lence class have the same values for the Zipcode and

Age attributes but different values for the Disease at-

tribute. In this way, an attacker cannot exactly tell

what disease some patient has even if he or she knows

the equivalence class that contains the patient’s record.

However, l-diversity does not consider the rareness of

each sensitive value. Suppose that Alice can make sure

that Bob’s record is in the second equivalence class of

Table 3. Even if she cannot tell what specific disease

Bob has, Alice can conclude that Bob has a respiratory

infection.

Table 3. A 3-Diversity Version of Table 1

No. Zipcode Age Disease

1 47*** [20, 45] Pneumonia

5 47*** [20, 45] Colon cancer

7 47*** [20, 45] Colitis

3 47*** [20, 35] Pneumonia

4 47*** [20, 35] Flu

6 47*** [20, 35] Bronchitis

2 47*** [25, 50] Pneumonia

8 47*** [25, 50] Colon cancer

9 47*** [25, 50] Stomach cancer

To address these limitations of the k-anonymity and

l-diversity models, Li et al.[5] introduced the concept

of t-closeness, which requires that the distribution of

the sensitive attribute values within each equivalence

class of indistinguishable records be similar to the dis-

tribution of the sensitive attribute values in the entire

data. For example, Table 4 presents a version of Ta-

ble 1 that satisfies 0.33-closeness. In addition to the

attacks mentioned above, t-closeness also can protect

published data against the skewness attack and the

similarity attack[5]. In this paper, we focus on the

t-closeness model because it has the strictest privacy

guarantee among the k-anonymity-like models. Most

existing algorithms for t-closeness[6-11] in the literature

deal with the original data that have only one single

sensitive attribute; however, data with multiple sensi-

tive attributes are more common in practice.

In this paper, we propose two algorithms that simul-

taneously can anonymize the original data with multi-

ple sensitive attributes and make the anonymized ver-

sion satisfy t-closeness. The two proposed algorithms
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are motivated by the observation that, if the values

of the sensitive attributes in each equivalence class are

spread to the maximum extent possible over all of the

data, there is a higher probability of minimizing the

distance between the distribution of the sensitive at-

tribute values within each equivalence class and the dis-

tribution of the sensitive attribute values in the entire

data, thereby meeting t-closeness. The first algorithm

partitions all records of the original data into different

clusters, and the records in these clusters are similar

in terms of their multiple sensitive attributes and dis-

similar to the records in other clusters. Then, records

that are similar in terms of their quasi-identifier at-

tributes are selected from different clusters to generate

an equivalence class, so that the loss of information

caused by anonymization can be minimized. Based on

the same idea of spreading the values of each sensi-

tive attribute in all equivalence classes, the second al-

gorithm first reduces the multiple sensitive attributes to

a one-dimensional data space, and then sorts the new

data in ascending order and partitions them into diffe-

rent groups. The second algorithm also selects the most

similar records in terms of the quasi-identifier attributes

from different groups to generate an equivalence class.

Table 4. A 0.33-Closeness Version of Table 1

No. Zipcode Age Disease

1 47*** [20, 45] Pneumonia

5 47*** [20, 45] Colon cancer

7 47*** [20, 45] Colitis

3 47*** [20, 50] Pneumonia

6 47*** [20, 50] Bronchitis

8 47*** [20, 50] Colon cancer

2 47*** [25, 50] Pneumonia

4 47*** [25, 50] Flu

9 47*** [25, 50] Stomach cancer

The rest of the paper is organized as follows. Some

general concepts used throughout the paper are pre-

sented in Section 2, and related work is addressed in

Section 3. The proposed algorithms are described in

Section 4, and the experimental results are analyzed in

Section 5. Section 6 presents our conclusions.

2 Background

Some general concepts and definitions in the litera-

ture are reviewed in this section because they are used

throughout the paper.

Microdata can be presented in a data table in which

each record(row) corresponds to one person and each

column to a specific attribute. Let TN×M be microdata

with N records, i.e., r1, r2, . . . , rN , and each one of the

N records has M attributes, i.e., A1, A2, . . . , AM . Ac-

cording to their different degrees of openness, attributes

A1, A2, . . . , AM in the original data can be divided into

the following four categories:

• explicit identifier attributes, which provide infor-

mation that clearly identifies individuals, such as name,

address, and social security number;

• quasi-identifier (QI) attributes, which are often

combined to determine the identification of the indi-

vidual, such as zipcode, gender, and date of birth;

• sensitive attributes (SAs), which individuals are

unwilling to release to the public, such as disease,

salary, and job;

• non-sensitive attributes, which can be released to

the public without causing individuals any concern.

When releasing the original data to the public, the

explicit attributes that identify all records should be

removed, and the non-sensitive attributes can remain.

Therefore, the technologies of anonymization mainly

are applied to the rest of the attributes, i.e., the QI

attributes and the SAs.

2.1 Definitions

Definition 1 (Equivalence Class, EC)[5]. An EC is

a set of anonymized records that have the same values

for all the QI attributes, i.e., all records in each equiv-

alence class are indistinguishable in terms of their QI

attributes[5].

Definition 2 (k-Anonymity)[2]. A data table satis-

fies k-anonymity if each record in any equivalence class

is indistinguishable from at least another (k−1) records

with respect to the QI attributes. Hence, the probability

of correct identification in a k-anonymity model is, at

most, 1/k.

Definition 3 (t-Closeness)[5]. An EC satisfies t-

closeness if the distance between the distribution of a

sensitive attribute in any equivalence class and the dis-

tribution of the same attribute in the entire data ta-

ble is no more than a threshold, t. A data table sat-

isfies t-closeness if all equivalence classes in it satisfy

t-closeness[5].

The distance between two distributions commonly

is calculated by the earth mover’s distance (EMD)[12],

but other distances also have been studied[10,11]. Intui-

tively, EMD(P ,Q) views one distribution P as a mass

of earth piles spread over a space, and the other distri-

bution, Q, is viewed as a collection of holes over the

same space. EMD(P ,Q) is defined as the minimum
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work needed to fill the holes with earth, i.e., transform-

ing one distribution P to the other distribution Q.

For a numerical SA, if P = (p1, p2, . . . , pm) and

Q = (q1, q2, . . . , qm) are probability distributions over

v1, v2, . . . , vm, where vi < vj (1 6 i < j 6 m),

EMD(P ,Q) between P and Q is calculated as:

EMD(P ,Q) =
1

m− 1

m
∑

i=1

|

i
∑

j=1

(pj − qj)|.

For a categorical SA, first, a generalization hierar-

chy, H , over the domain of each QI attribute should

be given (by the domain expert). For example, Fig.1

presents a hierarchy for digestive diseases. To calcu-

late the distance between P = (p1, p2, . . . , pm) and

Q = (q1, q2, . . . , qm) of the same categorical domain,

a recursive function of the collective extra earth that

should be moved into/out of node n first should be de-

fined as:

extra(n) =

{

pi − qi, if n is a leaf,
∑

c∈child(n) extra(c), otherwise,

where child(n) is the set of all leaf nodes below node

n. Further, another two functions that accumulate

amounts of earth to be moved in/out for an internal

node of H are defined as:

negExtra(n) =
∑

c∈child(n)∧extra(c)<0

|extra(c)|,

posExtra(n) =
∑

c∈child(n)∧extra(c)>0

|extra(c)|.

Digestive
Diseases

Colon
Diseases

Colitis
Colon
Cancer

Gastric
Flu

Gastric
Ulcer

Stomach
Cancer

Stomach
Diseases

Fig.1. Example of a hierarchy of digestive diseases.

Thus, the minimum of the above quantities means

the cost of all pending earth movements among the

leaves under node n after their cumulative earth ex-

cess/deficit has been corrected:

cost(n) =
h(n)

h(H)
×min(posExtra(n), negExtra(n)),

where h(n) is the height of n, and h(H) is the height

of H .

Then the EMD between P and Q is:

EMD(P ,Q) =
∑

n

cost(n),

where n is a non-leaf node in H .

2.2 Information Loss Metrics

We need an appropriate metric to measure the

discrepancies between the original data and their

anonymized outputs. Because a generalization method

is used to anonymize the original data in the proposed

algorithms, we use a generalized loss metric[8,13,14] to

compute the information loss.

We denote S = {A1, A2, . . . , Ad} as a set of QI at-

tributes. The range of the numerical attribute NAi ∈ S

is [L,U ]. Assume that v is one of the values of attribute

NAi and it is generalized as v′ that has the range of

[LNA, UNA]. Then, the information loss of v is defined

as:

ILNA =
UNA − LNA

U − L
.

For a categorical attribute CAi ∈ S, it is assumed

that H is a hierarchical tree of attribute CAi and v

is one of the values of attribute CAi. After generali-

zation, v becomes v′, which corresponds to node n in

the hierarchical tree, H . Then, the information loss of

v is defined as:

ILCA =
LNn − 1

LN − 1
,

where LNn is the number of leaf nodes in the subtree

of the root node, with n being the root node, and LN

is the number of leaf nodes in the hierarchical tree, H .

For a record r ∈ T , the information loss after

generalization of record r is defined as:

ILr =

d
∑

i=1

ILAi
,

where ILAi
is equal to ILNA if Ai is a numerical at-

tribute, or it is equal to ILCA if Ai is a categorical

attribute. As a result, the information loss of the en-

tire data table, T , after being generalized is defined as:

ILT =

∑

r∈T
ILr

|T |
, (1)

where |T | is the number of records in data table T .
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3 Related Work

Li et al.[5] first proposed the concept of t-closeness,

which requires that the distance between the distribu-

tion of a sensitive attribute in any equivalence class and

the distribution of the attribute in the entire data ta-

ble should be no more than a threshold t. EMD[5,12]

is used as a metric to measure the closeness between

two distributions, and the Incognito method[15] is ext-

ended for k-anonymity to meet t-closeness. However,

the method has low efficiency since its time comple-

xity is exponential when increasing the number of QI

attributes. To be more efficient, Li et al. proposed

an improved algorithm[16] that recursively divides the

combined domain of all QI attributes and carries out a

split only if the resultant partitions satisfy t-closeness

over the entire data table. Unfortunately, its data uti-

lity is low and it does not cater to some special features

of t-closeness. In this paper, we extend the previous

definition of t-closeness of a single attribute to a new

definition of multiple attributes. The corresponding

formula for calculating EMD also is extended to get

the distance between two distributions with multiple

SAs.

Cao et al.[8] proposed a sensitive attribute bucke-

tization and redistribution framework for t-closeness,

SABRE. First, the framework partitions the original

data into a set of buckets of similar sensitive attribute

values and then selects records from each bucket to

generate equivalence classes. It guarantees the diver-

sity of the values of the SAs in each equivalence class.

However, the limitation of the framework is that it may

create anonymized data with low quality because the

buckets in SABRE are iteratively generated, which may

lead to equivalence classes with more records by creat-

ing more buckets, thereby causing more losses of infor-

mation. In this paper, we also partition the original

data into different clusters/groups in terms of the SAs,

but, to avoid generating more buckets, we use a point-

assignment clustering method to get a modest number

of clusters.

Similar to the idea mentioned above, Soria-Comas et

al.[9] proposed two cluster-based algorithms using mi-

croaggregation to attain anonymized data that satisfied

t-closeness. One algorithm initially generates a cluster

in terms of the QI attributes and then checks to deter-

mine whether the cluster satisfies t-closeness. If that

is not the case, it selects the closest record outside the

cluster and swaps the record with a record in the clus-

ter. However, it has a heavy cost resulting from the

rearrangement of records required to fulfill t-closeness

after the creation of each cluster. The other algorithm

considers t-closeness from the very beginning by par-

titioning the ordered records in terms of the values of

the sensitive attribute. This algorithm sorts all records

first and then partitions them into different groups ac-

cording to a value interval. Although the algorithm is

suitable for anonymizing numerical values, it is difficult

to apply it to categorical values because the ranking of

categorical values is not straightforward. Because our

work is designed for the original data with multiple SAs

that may contain numerical and categorical attributes,

one of our proposed algorithms uses the principal com-

ponent analysis (PCA) to consider the properties of the

two kinds of attributes comprehensively, rather than

simply sorting records.

To the best of our knowledge, there are only a

few papers that really make multiple SAs satisfy t-

closeness because it is difficult to ensure strong close-

ness for every sensitive attribute. Fang et al.[17] intro-

duced a method called Complete Disjoint Projections,

CODIP, which deals with multiple SAs that may be

multi-valued. CODIP replaces each multi-valued sen-

sitive attribute with a mono-valued attribute first and

splits all sensitive attributes into some disjoint subsets

according to their associations. Then, CODIP deals

with each subset, respectively. By contrast, our pro-

posed algorithms publish the anonymous data in one ta-

ble with a higher data utility. Sei et al.[18] assumed that

several attributes have features of both QI attributes

and SAs, and they proposed a privacy model that in-

cludes an anonymization algorithm. In order to satisfy

t-closeness, the algorithm changes the original records

with a fixed probability and adds some completely ran-

dom records. Therefore, the reconstructed records are

affected significantly by these random records, and the

utility of the data is reduced.

4 Proposed Algorithms

Most existing t-closeness models[6-11] generate each

equivalence class only by considering the QI attributes;

however, keeping the focus on the QI attributes does

not make it easier to refine the equivalence class to

satisfy t-closeness. In this section, two algorithms are

proposed to deal with multiple SAs and generate each

equivalence class according to both QI attributes and

SAs. We are motivated to develop these algorithms by

the observation that the values of SAs in an equiva-

lence class must be spread to the maximum extent pos-
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sible over all of the data to make the class satisfy t-

closeness. Based on this observation, the main aim of

our proposed algorithms is to heterogenize the values

of the SAs in different equivalence classes. And the

more similar the QI attribute values of all records in

an equivalence class are, the lower the information loss

caused by anonymization should be.

Before we introduce the proposed algorithms, a defi-

nition of t-closeness of multiple SAs should be given.

Note that there are some different considerations for

t-closeness of multiple SAs. One approach is to con-

sider each attribute separately, namely, if an equiva-

lence class satisfies t-closeness, all sensitive attributes

of it should satisfy t-closeness, respectively. Another

is to consider the joint distribution of multiple sensi-

tive attributes, which needs a more complicate EMD

between two joint distributions. In this paper, the defi-

nition of t-closeness of multiple sensitive attributes is

based on the former approach, and the latter will be

handled in our future work.

Definition 4 (t-Closeness of Multiple Sensitive

Attributes). We denote EC = {QI attributes,

SA1, SA2, . . . , SAM ′} as an equivalence class with

multiple SAs. The distance between the distribu-

tion of a sensitive attribute SAi in this class and

the distribution of the attribute in the entire data

table is denoted as ti (i = 1, 2, . . . ,M ′). An

EC = {QI attributes, SA1, SA2, . . . , SAM ′} satisfies

t-closeness if max(t1, t2, . . . , tM ′) 6 t. A data table

with multiple SAs satisfies t-closeness if all equivalence

classes in it satisfy t-closeness.

Because Definition 4 is defined for the multiple SAs

in equivalence classes in each of which all records should

have the same values for the QI attributes (see Defini-

tion 1), it is necessary to make the QI attributes of

each equivalence class anonymized when satisfying the

t-closeness principle.

4.1 Cluster-Based Algorithm for Multiple

Sensitive Attributes Satisfying t-Closeness

The first proposed algorithm is based on a point-

assignment clustering, and thus it is vital to define the

similarity measure first. The distance between records

is chosen to evaluate the similarity between them. Be-

cause the QI attributes or multiple SAs may contain nu-

merical and categorical attributes, two different kinds

of distance metrics are given. For a numerical attribute,

first, the values of the attribute are sorted in ascending

order. Let the attribute domain be {v1, v2, . . . , vm},

where vi is the i-th smallest value. The distance be-

tween two values vi and vj is based on the number of

values between them in the total order, and it is defined

as[5]:

distNum(vi, vj) =
|i − j|

m− 1
.

The domain hierarchy, H , is predefined for a categori-

cal attribute. The distance between two leaf values, vi
and vj , in H is defined as[5]:

distCat(vi, vj) =
h(vi, vj)

h(H)
,

where h(vi, vj) is the height of the lowest common an-

cestor node of vi and vj , and h(H) is the height of the

domain hierarchy H . As a result, the distances of two

records,

r1 = (QInum11
, QInum12

, . . . , QInum1a
,

QIcat11 , QIcat12 , . . . , QIcat1b ,

SAnum11
, SAnum12

, . . . , SAnum1c
,

SAcat11 , SAcat12 , . . . , SAcat1d),

and

r2 = (QInum21
, QInum22

, . . . , QInum2a
,

QIcat21 , QIcat22 , . . . , QIcat2b ,

SAnum21
, SAnum22

, . . . , SAnum2c
,

SAcat21 , SAcat22 , . . . , SAcat2d),

in terms of the QI attributes and multiple SAs are, re-

spectively, defined as:

DistQIs(r1, r2) =

√

√

√

√

a
∑

i=1

distNum(QInum1i
, QInum2i

)2 +

b
∑

j=1

distCat(QIcat1j , QIcat2j )
2, (2)

DistSAs(r1, r2) =

√

√

√

√

c
∑

i=1

distNum(SAnum1i
, SAnum2i

)2 +

d
∑

j=1

distCat(SAcat1j , SAcat2j )
2. (3)
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Then, an improved fuzzy c-means clustering (FCM)

algorithm[19], called Equi-sized FCM, is used to par-

tition the original records. The Equi-sized FCM al-

gorithm yields approximately same-size clusters, with

minimal sacrifice of heterogeneity between them. For a

more detailed discussion of Equi-sized FCM, We refer

to [19].

Based on the discussion above, the first proposed

algorithm consists of three steps. First, we partition

the original records into k (which is equal to the para-

meter k in k-anonymity) clusters of approximately the

same size, so that records within the same cluster are

as similar as possible to each other in terms of the

multiple SAs but dissimilar to those records in other

clusters. Second, we select one record from clusteri
(i = 1, 2, . . . , k), respectively, to generate an equiva-

lence class and anonymize the class by generalization

(see Pseudocode 1). In each selection iteration, if the

size of any cluster is more than the minimum, we select

one more record from it. Third, we check whether each

equivalence class satisfies t-closeness; if not, we improve

its level of t-closeness by merging its closest equivalence

class in terms of the QI attributes (see Pseudocode 2).

A brief description of this algorithm is depicted in Al-

gorithm 1.

4.2 PCA-Based Algorithm for Multiple

Sensitive Attributes Satisfying

t-Closeness

Algorithm 1 proposes an approach of generating

equivalence classes by selecting records from different

clusters. The second algorithm (Algorithm 2) in this

subsection is based on the same idea. That is because,

instead of deferring the enforcement of t-closeness until

later, taking the dispersion of sensitive attribute values

into account at the time of the formation of equivalence

classes will minimize their size and reduce the loss of

information after anonymization as much as possible.

Inspired by [9], we assume that the values of the SAs

can be ranked or ordered in some way and we could

separate the original data into different groups based

on their values. For a single sensitive attribute, there

is only one ordering result according to the ascending

order; however, if we consider multiple SAs separately,

there will be multiple ordering results that may conflict

with each other. Thus, the joint order of these multiple

SAs should be specially designed. In our work, prin-

cipal component analysis (PCA)[20] is used to get the

joint-ordering result of multiple SAs. PCA has been

used extensively as a factor analysis method, the aim

of which is to change the representation of the data into

a low-dimensional space while preserving the structure

of the original data. For the second algorithm, the mul-

tiple sensitive attribute values are processed by PCA,

and their first principal component is sorted. For exam-

ple, suppose that each record that is represented by a

hollow dot in Fig.2 has two SAs. After PCA processing,

each hollow dot would be projected into a solid dot in a

new one-dimensional space. We sort these original hol-

low dots according to the values of their corresponding

solid dots.

Pseudocode 1 . GenerateEquivalenceClasses(C, k)

Input:
C: clusters of the original data /* C = {C1, C2, . . . , Ck} */
k: k-anonymity level

Output:
C′: set of equivalence classes

1: begin
2: C′ = ∅;
3: while |C1| 6= 0 do /* Assume that C1 is the minimum

cluster among C. */
4: EC = ∅;
5: r = randomly select a record from C1;
6: EC = {r};
7: C1 = C1 \ {r};
8: for i = 2, 3, . . . , k do
9: r′ = the record in Ci that is the closest to r in terms

of the QI attributes according to (2);
10: EC = EC ∪ {r′};
11: Ci = Ci \ {r′};
12: if |Ci| > |C1| then /* If it is ture, take one more

record from Ci. */
13: r′ = the record in Ci that is the closest to r in

terms of the QI attributes according to (2);
14: EC = EC ∪ {r′};
15: Ci = Ci \ {r′};
16: end if
17: end for
18: for each QI attribute in EC do
19: Replace attribute values with their lowest common

ancestor node in the predefined hierarchical tree of
the QI attribute;

20: end for
21: C′ = C′ ∪ EC;
22: end while
23: Return C′;
24: end

Pseudocode 2 . EnsureTCloseness(T , T ′, t)

Input:
T : original data table
T

′: anonymized data table
t: t-closeness level

1: begin
2: for each equivalence class EC in T

′ do
3: if EMD(EC, T ) > t do
4: EC′ = equivalence class in T

′ whose centroid is the
closest to the centroid of EC in terms of the QI
attributes according to (2);
/*A centroid of an equivalence class refers to a data
record whose attribute value of each QI attribute is
the lowest common ancestor node in the correspond-
ing hierarchical tree.*/

5: Merge EC and EC′ in T
′;

6: end if
7: end for
8: end



1238 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

Algorithm 1. Cluster-Based Algorithm for Multiple Sen-

sitive Attributes Satisfying t-Closeness

Input:

T : original data table, containing multiple SAs

k: k-anonymity level

t: t-closeness level

Output:

T
′: anonymized data table, satisfying k-anonymity and t-

closeness

1: begin

2: C = partition T into k clusters using Equi-sized FCM[19]

according to (3);

3: T
′ = GenerateEquivalenceClasses(C, k);

4: EnsureTCloseness(T , T ′, t);

5: return T
′;

6: end

SA1 

SA2

The First
Principle
Component
Direction

Fig.2. PCA example of one-dimensional projection of two-

dimensional data points.

As mentioned above, the multiple SAs may contain

both numerical and categorical attributes. To ensure

the effectiveness of PCA working on the mixed data,

we convert the categorical attributes to the numerical

attributes first. Specifically, a binary attribute would

be created for each value of a categorical attribute. For

example, the Gender attribute is a categorical attribute

with two values, i.e., male and female, then the pattern

for a male instance will be “0 1”, and “1 0” is for a

female. Note that such conversion is only executed for

the projection process, not the next processes.

All records are sorted in ascending order accord-

ing to the PCA results and are partitioned into k sets

with ⌊|T |/k⌋ records each, where |T | is the number of

records in the original data T , and k is the parameter

of k-anonymity. The remaining records will be r = |T |

mod k, and the remaining r records will be assigned to

one of the subsets. If r > ⌊|T |/k⌋, the number of one of

the subsets will be large, and there will be records that

are not assigned to any cluster (because only one or two

records will be selected from each cluster in the second

algorithm). To avoid this situation, k is adjusted as[9]:

k = k + ⌊
|T | mod k

⌊|T |/k⌋
⌋.

A brief description of this algorithm is provided in

Algorithm 2.

Algorithm 2 . PCA-Based Algorithm for Multiple Sen-

sitive Attributes Satisfying t-Closeness

Input:

T : original data table, containing multiple SAs

k: k-anonymity level

t: t-closeness level

Output:

T
′: anonymized data table, satisfying k-anonymity and t-

closeness

1: begin

2: k = k + ⌊
|T | mod k
⌊|T |/k⌋

⌋;

3: P = the first principal component of T using PCA in terms

of SAs;

4: Sort all records of T in ascending order according to P ;

5: C = split T into C1, C2, . . . , Ck subsets each of which

has ⌊n/k⌋ records, with n mod k records assigned

to the central subset(s); /* C = {C1, C2, . . . , Ck} */

6: T
′ = GenerateEqivalenceClasses(C, k);

7: EnsureTCloseness(T , T ′,t);

8: Return T
′;

9: end

5 Experimental Results and Analysis

In our experiments, the Adult dataset provided

by the UC Irvine Machine Learning Repository 2○ is

used to test the performance of both algorithms. This

dataset initially contains 48 842 census records with 15

attributes. After eliminating the records with missing

values, there are 45 222 valid records remaining. The

original attributes used in our experiments are shown in

Table 5. We treat the Occupation and Education Num

attributes as the SAs and the rest as the QI attributes.

We implement our Equi-sized FCM[19] for Algo-

rithm 1 by Java programming language and the PCA[20]

for Algorithm 2 with the help of Weka 3.6 tool 3○. In ad-

dition, according to Definition 4, the second algorithm

in [9] is adjusted to anonymize the data with multiple

SAs, and we refer to its adjusted version as the con-

trast algorithm in the following. The performance of

2○http://archive.ics.uci.edu/ml/datasets/Adult, Mar. 2018.

3○https://www.cs.waikato.ac.nz/ml/weka, Mar. 2018.
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the contrast algorithm will be compared with that of

our proposed algorithms based on the same dataset, ex-

perimental parameters, and measurements (i.e., equiv-

alence class size, information loss, and speed). The

experiments are performed on a PC with a 3.7 GHz

@Intel core i7 CPU, 16 GB of RAM, running Windows

7 (64-bit).

Table 5. Attributes of the Adult Dataset

Used in Our Experiments

Attribute Type Number of Values

Age Numerical 74

Work Class Categorical 7

Marital Status Categorical 7

Race Categorical 5

Sex Categorical 2

Native Country Categorical 41

Salary Class Categorical 2

Occupation Categorical 14

Education Num Numerical 16

5.1 Equivalence Class Size

By applying the proposed and contrast algorithms

to the Adult dataset for different values of k and t, we

obtained a series of experimental results. The values of

k are between 2 and 20, whereas the values of t are in

the range of [0.1, 0.5], which cover the range of different

privacy levels observed in existing studies. The results

provided by these algorithms are shown in Tables 6–8.

To minimize the loss of information, the closer the sizes

of all of the clusters are to k, the better.

Tables 6–8 show that the sizes of equivalence classes

become larger as the value of k is increased. When k

is small or medium, such as 2, 5 or 10, the sizes of

equivalence classes of Algorithm 1 and Algorithm 2 are

larger than those of the contrast algorithm. Because the

number of values of the SAs, Occupation and Educa-

tion Num, is larger than k, Algorithm 1 has to partition

similar records into different clusters (because all clus-

ters are required to have the same size). Similar to Al-

gorithm 1, Algorithm 2 always gets well-proportioned

groups by sorting. The equivalence classes generated

by records from these small clusters/groups have small

sizes as well, which is difficult to meet the desired t-

closeness principle. Thus, these classes have to be

merged with their closest classes to meet the t-closeness

principle, which in turn increases their sizes. On the

other hand, the contrast algorithm does not have such

limitation because it replaces clustered records by un-

clustered records, rather than merging clusters, if the

equivalence class does not meet the t-closeness. Only

if the replacement does not meet the condition, clus-

ters would be combined. When k is sufficiently large,

such as 15 or 20, the sizes of equivalence classes of Al-

gorithm 1 and Algorithm 2 are equal to k, and the

results of the contrast algorithm are inferior to those

of our proposed algorithms. This is because our pro-

posed algorithms analyze all records at first, instead of

considering them one by one and because they gene-

rate clusters without discarding similar records in this

case. It would be easier for both proposed algorithms

to gather more records of high similarity into the same

cluster when k is larger.

Table 6. Results of Algorithm 1 with Varying k and t

(Minimum/Maximum/Average Size of Equivalence Classes)

k t

0.1 0.2 0.3 0.4 0.5

2 8/14/12 8/10/9 8/10/9 6/10/8 6/8/7

5 10/25/18 10/20/16 10/20/13 5/15/10 5/15/8

10 10/30/25 10/20/18 10/20/14 10/20/12 10/20/12

15 15/15/15 15/15/15 15/15/15 15/15/15 15/15/15

20 20/20/20 20/20/20 20/20/20 20/20/20 20/20/20

Table 7. Results of Algorithm 2 with Varying k and t

(Minimum/Maximum/Average Size of Equivalence Classes)

k t

0.1 0.2 0.3 0.4 0.5

2 8/12/10 8/10/9 6/8/7 6/8/7 6/8/6

5 10/20/15 10/16/14 5/10/8 5/11/6 5/10/6

10 10/30/28 10/30/20 10/20/16 10/20/12 10/20/12

15 15/30/18 15/30/18 15/15/15 15/15/15 15/15/15

20 20/40/22 20/40/22 20/20/20 20/20/20 20/20/20

Table 8. Results of the Contrast Algorithm with Varying k and

t (Minimum/Maximum/Average Size of Equivalence Classes)

k t

0.1 0.2 0.3 0.4 0.5

2 8/10/9 8/10/9 6/10/8 6/8/7 6/8/7

5 10/20/14 10/20/12 5/10/8 5/10/8 5/10/6

10 10/30/25 10/20/15 10/20/14 10/20/12 10/10/10

15 15/30/23 15/30/21 15/15/15 15/15/15 15/15/15

20 20/40/27 20/40/24 20/20/20 20/20/20 20/20/20
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5.2 Information Loss

The information loss represents the discrepancies

between the original data and their corresponding

anonymized versions. It is calculated by (1). We also

set the values of k in the range of [2, 20] and the val-

ues of t in the range of [0.1, 0.5]. The performance of

the proposed and contrast algorithms is presented in

Figs.3–5, respectively. Fig.3 and Fig.4 show that the

average information losses of Algorithm 1 and Algo-

rithm 2 are approximately the same when k is 2, 5,

or 10. This indicates that the earlier we consider the

fulfillment of t-closeness during the formation of equiva-

lence classes, the less the information will be lost in the

anonymized output. Because the contrast algorithm is

based on the same consideration, the above trend can

also be obtained in Fig.5. However, Figs.3–5 also show

that when k is 15 or 20, the performance of Algorithm 1

is better than those of the others. Because the num-

ber of values of multiple SAs in the Adult dataset is

approximately equal to the parameter k, it is easier for

Algorithm 1 to get pure clusters that contain homo-

geneous records in terms of SAs. It can be seen from

Fig.4 and Fig.5 that Algorithm 2 is slightly inferior to

the contrast algorithm. The reason is that Algorithm

2 uses PCA to rank all sensitive attributes by the total

amount of variance that each sensitive attribute con-

tributes, and some noisy attribute values overshadow

the projection results. These projection results con-

tinue to influence the sorting order of multiple sensitive

attributes.

5.3 Speed

Fig.6 shows the runtime of the proposed and the

contrast algorithms, which consists of partitioning

original records into clusters/groups, generating equiv-

alence classes that satisfy t-closeness, and anonymizing

these classes. To fairly and clearly compare these al-

gorithms, we take k = 2 for k-anonymity with diffe-

rent values of t between 0.1 and 0.5 for t-closeness and

force them to create the greatest number of clusters,

which is the worst case from the perspective of run-

time. Fig.6 shows that Algorithm 2 is more efficient

than the other two algorithms in terms of runtime, be-

cause the Equi-sized FCM used in Algorithm 1 takes

more time to allocate records to their corresponding

clusters and gets the final result of the partition, and

the contrast algorithm requires repeatedly much rear-

rangement of records. This figure also shows that the

runtime of our proposed algorithms tends to decrease

with the increase of parameter t because clusters are

more likely to (nearly) fulfill t-closeness, thus requir-

ing less rearrangement of records after each iteration.

However, it is clear that the degree of data privacy is

reduced when the parameter t is large.
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From the above comparisons, we can conclude that

when the numbers of the values of SAs are approxi-

mately greater than or equal to the parameter k in k-

anonymity, Algorithm 1 would be capable of generating

homogeneous clusters so that the values of the multiple

SAs are spread to each equivalence class. When the

parameter k is small, Algorithm 2 is superior in gene-

rating homogenous clusters. The average speed of Al-

gorithm 2 is much greater than that of Algorithm 1, but

the average information loss of Algorithm 2 is greater

than that of Algorithm 1.

6 Conclusions

While most existing k-anonymity-like models mask

the original data that only have one sensitive attribute

and protect their corresponding anonymous version

from common attacks, they do not consider data with

multiple sensitive attributes. Thus, we proposed two

different algorithms to cover the gap between multi-

ple sensitive attributes and the t-closeness principle.

The first algorithm partitions all records into different

clusters and generates equivalence classes by selecting

records from these clusters separately. The second al-

gorithm processes the multiple sensitive attributes by

analyzing the principal components, sorts the original

records according to the results of the projection, and

partitions these records into different subsets by the

sorting order. Both algorithms take the t-closeness

principle into account when forming the equivalence

classes. The experimental results demonstrated that

the proposed algorithms achieved the purpose of data

anonymity with low loss of information. Future work

can investigate the techniques of distributed comput-

ing for dealing with t-closeness of multiple sensitive at-

tributes more efficiently. In addition, other appropri-

ate distance measures of multivariate distributions and

other data mining algorithms are under development to

facilitate data anonymization.
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