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Abstract Software modularization is a technique used to divide a software system into independent modules (packages)

that are expected to be cohesive and loosely coupled. However, as software systems evolve over time to meet new require-

ments, their modularizations become complex and gradually loose their quality. Thus, it is challenging to automatically

optimize the classes’ distribution in packages, also known as remodularization. To alleviate this issue, we introduce a new

approach to optimize software modularization by moving classes to more suitable packages. In addition to improving design

quality and preserving semantic coherence, our approach takes into consideration the refactoring effort as an objective in

itself while optimizing software modularization. We adapt the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

of Deb et al. to find the best sequence of refactorings that 1) maximize structural quality, 2) maximize semantic cohesiveness

of packages (evaluated by a semantic measure based on WordNet), and 3) minimize the refactoring effort. We report the

results of an evaluation of our approach using open-source projects, and we show that our proposal is able to produce a

coherent and useful sequence of recommended refactorings both in terms of quality metrics and from the developer’s points

of view.

Keywords remodularization, search-based software engineering, refactoring effort, multi-objective optimization, seman-

tics dependency

1 Introduction

In industry, most object-oriented software systems

are large and complex because they contain hundreds

of inter-dependent classes. To cope with this comple-

xity, packages are used for organizing a software system

into subsystems. We can define packages as software

modules used to separate the functionality of a pro-

gram and to allow developers to group classes together.

The original software modularization may be well de-

signed. However, software systems evolve by adding

new functions and modifying existing functionalities

over time. Through this evolution process, system ar-

tifacts (classes, methods, etc.) are added, modified,

and removed[1,2]. Therefore, some classes may not be

placed in appropriate packages resulting in a bad mod-

ularization that is characterized by a large number of

inter-dependencies (high coupling) and a small number

of intra-dependencies (low cohesion)[3]. Thus, the opti-

mization of class organization into packages to improve

software modularization, widely known as remodular-

ization, is required[4]. There has been much research

devoted to optimizing software modularization[3,5−18].

Most of them[5−8,16,19] aimed to find the best system

decomposition in terms of clusters rather than to im-

prove the existing modularization. Thus, they did not

take into account the original modularization and pro-

pose a whole new organization of classes in packages

(better than the original one according to various cou-

pling and cohesion metrics) which can be difficult to in-

terpret by software developers. In addition, proposing

a completely new modularization is useful only when

the original system modularization is too degraded to

be restructured[4]. In another category of the existing

work[9−14], researchers considered the initial structure

of a system and optimized the current organization of

classes by moving them into other more appropriate

packages.

The proposed approach can be classified in the sec-

ond category of approaches since our objective is to re-

structure software design by recommending Move Class

refactoring operations. In general, the majority of ex-

Regular Paper

©2018 Springer Science +Business Media, LLC & Science Press, China



Rim Mahouachi: Search-Based Cost-Effective Software Remodularization 1321

isting contributions have formulated the remodulariza-

tion problem as an optimization problem (mono or

multi/many objective) where the aim is to support the

principle “packages are designed to be loosely coupled

and cohesive to a certain extent”[4]. However, a re-

cent empirical study[20] shows that minimizing coupling

and maximizing cohesion are not enough to suggest

meaningful remodularization solutions and so other im-

portant quality factors (e.g., modules complexity, size)

should be taken into account during the optimization

procedure. Also, the semantic coherence of the design is

not considered by most of the existing work. In fact, the

definition of semantic dependency is only limited to the

cohesion measures without any consideration of seman-

tic relationships (e.g., the names of packages, classes,

methods, attributes and variables). Consequently, the

restructured program could improve structural metrics

but it becomes semantically incoherent and difficult to

understand since classes are moved to other packages

based on structural metrics (measuring mainly intra-

and inter-package connections) but without any con-

sideration of semantic dependencies. It is important to

consider semantic coherence to respect/produce a co-

herent modularization after applying suggested refac-

torings. For this, some techniques have been proposed

in this context to optimize the distribution of classes

using both structural and semantic measures[11,13,21].

Another important issue is the inconsideration of the

refactoring effort by the majority of the existing ap-

proaches. In fact, in a real-world scenario, developers

would have preferred remodularization solutions with

small refactoring effort to tools producing “Big-Bang”

remodularization (i.e., the number of required changes

is in the order of thousands of lines of code)[22]. Since a

big-bang remodularization is not a viable solution, it is

important to minimize code changes when we optimize

software modularization. Indeed, a recent study has

shown that “in some specific cases, quite a few refac-

toring operations could provide a sensible improvement

of the modularization quality”[20]. Currently, only few

existent approaches take the refactoring effort as an ob-

jective while optimizing software modularization. In

particular, as stated by a recent empirical study[17],

only seven over 31 publications in search based mod-

ularization between 1998 and 2017 treated this prob-

lem and only five of them[13,17,18,23,24] considered the

effort (or disruption) as an objective in their proposed

multiobjective optimization techniques.

In this article, we consider automated modular-

ization improvement as a multi-objective optimization

problem where the objectives are 1) maximizing the

modularization quality, 2) maximizing the semantic co-

hesion of packages, and 3) minimizing the refactoring ef-

fort. The aim of our work is to find the compromise be-

tween the mentioned objectives in order to recommend

optimal refactoring solutions that maximize/minimize

each of them. To find a good modularization, we select

and use, from the existing heuristic search algorithms,

the NSGA-II algorithm[25]. We decide to use NSGA-II

since it is one of the most efficient genetic algorithms

proposed in the literature and it has been used success-

fully in many search-based software remodularization

approaches[13,23,26]. The primary contributions of the

paper can be summarized as follows.

• We introduce a novel approach for identifying the

best refactoring operations sequence that optimizes the

original modularization based on NSGA-II. The ap-

proach uses cohesion (package internal dependencies)

and coupling (package external dependencies) measures

to estimate the quality improvement.

• In addition to structural dependencies, we propose

to exploit a semantic measurement to identify concep-

tual dependencies between elements of code.

•We consider the refactoring effort estimated by the

rate per refactoring of achieved improvement (RRAI)

measurement[23] as an objective to minimize. We note

that only few existent approaches take this factor into

consideration, and that in the most of them, the num-

ber of code changes has been used as an indicator of a

refactoring effort.

• We report the results of an evaluation of our ap-

proach using 21 releases of four software systems to

verify if the refactoring suggestions are able to improve

packages’ quality and if they are meaningful.

The rest of the paper is organized as follows. Sec-

tion 2 is dedicated to the background and challenges.

Section 3 describes the details of our approach. Sec-

tion 4 explains the experimental method and its results.

Section 5 introduces related work. Section 6 exposes

the threats to validity, and the paper is concluded in

Section 7.

2 Background and Challenges

2.1 Background

We define the software modularization M as a dis-

tribution of the set of object-oriented software classes

C = {ci, i ∈ [1..|C|]} into a set of packages P = {pi, i ∈

[1..|P |]}. We distinguish two main types of dependen-

cies between packages:
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• package external dependencies (inter-edges depen-

dencies) related to classes belonging to different pack-

ages: EDp(pi, pj) =
|pi|
∑

l=1

|pj |
∑

s=1
EDp(cl, cs), where cl ∈ pi,

cs ∈ pj , and pi, pj ∈ P ;

• package internal dependencies (intra-edges de-

pendencies) related to classes in the same package:

IDp(pi) =
|pi|
∑

l=1

|pi|
∑

s=1
IDp(cl, cs), where cl, cs ∈ pi, and

pi ∈ P .

A dependency can be a method, a field or a class

access. Fig.1 shows an example of software modular-

ization. It consists of the distribution of six classes

over three packages. We define a package size by the

number of its classes.

As showed in Fig.1, there are four external

dependencies (EDp(c1, c4), EDp(c4, c5), EDp(c5, c3),

and EDp(c2, c5)), and five internal dependencies

(IDp(c1, c2), IDp(c2, c3), IDp(c3, c1), IDp(c3, c2), and

IDp(c6, c5)).

c

P

P P

c

c

c c

c

Extermal Dependencies
Internal Dependencies

Fig.1. Modularization example.

2.2 Challenges in Optimizing Software

Modularization

In this subsection, we emphasize on the specific

problems that are addressed by our approach. We can

summarize the principal remodularization issues as fol-

lows.

• Classes are not well distributed into packages. In

addition, the coupling between classes from different

packages increases the coupling between these packages.

Therefore, most of the packages are dependent on some

dominant ones (i.e., packages that contain a big number

of classes).

• Optimizing a quality modularisation can produce

semantic incoherencies: it is necessary to consider both

structural and semantic dependencies[11,13,21].

• The vast majority of existing studies ignore the

refactoring effort and produce a big-bang remodular-

ization that implies developers to change thousands of

lines of code, even for modest systems. In fact, Hall et

al.[22] estimated that developers would have to change

up to 10% of their code when they adapted solutions

proposed by automated remodularization approaches.

To address these challenges, we propose a multi-

objective approach in order to optimize the software

modularization quality with respect to semantic con-

straints. The proposed approach also aims to minimize

the modification degree in produced solutions with re-

gard to achieved improvements. We describe in Section

3 how to consider the optimization of modularization as

an optimization problem using a quality model evalua-

tion.

3 Multi-Objective Optimization Approach for

Software Remodularization

This section shows how the above-mentioned issues

can be treated and describes the principles that underlie

the proposed method to improve the software modular-

ization quality. Therefore, we first present an overview

of the approach and subsequently provide the details of

our adaptation of NSGA-II to suggest refactorings.

3.1 Approach Overview

In this paper, an automated approach is proposed to

optimize the original software modularization based on

some quality attributes. The general structure of our

approach is introduced in Fig.2. The approach takes as

input a code to re-modularize. It generates as output

the best combination of refactoring operations (limited

to Move Class operations) that improves software mod-

ularization quality (evaluated by quality evaluator (B)),

preserves semantic domain (evaluated by semantic eval-

uator (A)), and minimizes refactoring effort (evaluated

by RRAI (C)). In this case, a solution is defined as the

sequence of refactoring operations that find a compro-

mise between the three objectives. We use Soot[27] (a

Java framework to analyze, instrument, optimize, and

visualize Java applications) in order to parse and ex-

tract from the original source code the relevant code

elements (i.e., packages, classes, methods, attributes,

etc.) and the existing relationships among them. This

tool generates a parsed code in a specific representa-

tion and a call graph that will be used for calculating

semantic constraints and quality metrics.
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Source Code to
Refactor

Source Code Parser
(SOOT)

Code Model+
Call Graph

WordNet
Semantic
Evaluator

Software Quality

Evaluator

(Package Level)
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Effort
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List of
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Refactorings

Multi-Objective

Re-Modularization

(NSGA-II)

Proposed

Refactorings

A

B

Fig.2. Overview of proposed approach.

According to Mitchell and Mancoridis[6], the soft-

ware remodularization problem is a graph partitioning

problem, which is known to be an NP-hard problem[28].

Due to the large number of possible refactoring combi-

nations, an enumerative approach is infeasible; thus a

heuristic method should be used to explore the space

of possible solutions. To this end, we adapt and use

the Elitist Non-dominated Sorting Genetic Algorithm

(NSGA-II)[25] to perform a global heuristic search. This

algorithm and its adaptation to the remodularization

problem are described in Subsection 3.2.

3.1.1 Semantic Evaluator (A)

1) Main Idea. In order to quantify semantic co-

hesiveness, we consider classes, methods, and fields’

names as class/package vocabulary, and we calculate

the semantic similarity between two vocabularies us-

ing a similarity function based on a variety of Jiang

and Conrath distance[29] relying on WordNet infor-

mation content (IC). In fact, two software packages

can be semantically related if they implement a simi-

lar/common vocabulary (names of methods, fields, vari-

ables, parameters, declaration types, etc.). Indeed,

the name of a variable, method, or class, reveals the

developer intent and it corresponds on internal indica-

tors for the meaning of a program[30]. Many authors

focused their attention on source code identifiers and

showed their importance for various tasks in software

comprehension[31−37].

Thus, when a class has to be moved from one pack-

age to another, using the refactorings “Move Class”, the

target package should be appropriate to contain the se-

lected class[4]. Consequently, the refactoring may make

sense if both target package and source class implement

a similar vocabulary.

2) Identifier Extracting and Splitting. We extract

the data required to compute the semantic similarity

in three steps.

• Data Extracting. First, we extract the identi-

fiers (names) found in classes (e.g., names of attributes

and methods, user defined types) and packages (e.g.,

classes, names of attributes and methods) concerned

by the refactoring operation. Extracted identifiers (e.g.,

causesIllegalSymlinkLoop) are composed of terms (e.g.,

causes, Illegal, Symlink, and Loop).

• Identifier Splitting. This step aims at splitting

identifiers into their composing terms. We use a Camel-

Case splitter to build the term dictionary. The output

of this phase is the lists of terms composing each name.

For example, the identifier addDefaultExcludes is split

into {add, Default, and Excludes}.

• Term Filtering. This step consists in removing

common terms (e.g., words shorter than three charac-

ters and stop words in Java).

3) Semantic Similarity Evaluation. For our pro-

posal, we use the similarity measure of Jiang and

Conrath[29] to estimate the semantic similarity between

code elements (in our case classes and packages). We
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choose, in particular, the similarity measure of Jiang

and Conrath[29] redefined by Seco et al.[38] to calculate

the semantic similarity of refactorings in order to eva-

luate the given solution. Indeed, according to several

similarity measures evaluations[29,39,40], the measure of

Jiang and Conrath[29] obtained the best results corre-

lation into human judgments. This measure is based

on information content (IC) defined by Resnik[41] and

calculated by combining knowledge of a hierarchical

structure like WordNet with statistics on a large cor-

pus. Seco et al.[38] expressed the IC value using only

WordNet without the need for external corpora. They

reported that similarity measures using this IC corre-

late more closely with human assessments than classic

measures of IC based on corpus analysis. In this work,

we use the similarity function of Jiang and Conrath[29]

transformed by Seco et al.[38] defined as follows.

simjcn(c1, c2)

= 1− (
icwn(c1) + icwn(c2)− 2× simres′(c1, c2)

2
), (1)

where:

• c1 and c2 are two concepts (i.e., senses or synsets

in WordNet),

• simres′(c1, c2) = max
c∈S(c1,c2)

icwn(c), where S(c1, c2)

are the set of concepts that subsume c1 and c2, and

• icwn(c) is the information content (IC) in Word-

Net defined by Seco et al.[38] as a function of the hy-

ponyms where the concept c has:

icwn(c) =
log(

hypo(c) + 1

maxwn

)

log(
1

maxwn

)
= 1−

log(hypo(c) + 1)

log(maxwn)
.

The function hypo returns the number of hyponyms

of a given concept, and maxwn is a constant that is set

to the maximum number of concepts that exist in the

taxonomy[38]. Note that a hyponym is a word whose

semantic field is included within that of another word.

For example the word car is the hyponym of the word

vehicle.

4) Illustrated Example. To illustrate the use of simi-

larity measurement in our refactoring context, let us

take the example of “Move Class”. This refactoring

has to be applied when a package is more appropriate

to contain a class than the one containing it.

For instance, let us take an example of a Move Class

refactoring candidate in JHotdraw 5.2.

ROi: MoveClass

Class to move: PaletteButton

From: CH.ifa.draw.util

To: CH.ifa.draw.framework

The output of the textual information (terms) ex-

tracting and splitting phases is the following three vo-

cabularies having sizes n, m and p respectively:

• V ocabulary1 = {term”j, j ∈ [1, n]} correspond-

ing to CH.ifa.draw.util vocabulary,

• V ocabulary2 = {term′
k, k ∈ [1,m]} correspond-

ing to CH.ifa.draw.framework vocbulary, and

• V ocabulary3 = {terml, l ∈ [1, p]} corresponding

to PaletteButton vocabulary.

As showed in Fig.3, considering the source code

of PaletteButton, identifiers are extracted to compose

Vocabulary3. On the other side, Vocabulary2 contains

the set of terms {Tool, DrawingView, setTool, selection-

ZOrdered, selectionCount, addToSelection, DrawingEd-

itor, ...}.

PaletteButton
Class Vocabulary

Fig.3. Source code snippet example.

The target package (CH.ifa.draw.framework) is

considered as more appropriate to contain the class un-

der analysis (PaletteButton) if the target package is

closer related to it conceptually (i.e., if Vocabulary3

indicates similar domain semantics) than its original

package (CH.ifa.draw.util).

We calculate the semantic similarity sem sim(ROi)

as follows.

sem sim(ROi) =
1

p

p
∑

l=1

(
1

m

m
∑

k=1

sim(terml, term
′
k)−

1

n

n
∑

j=1

sim(terml, term”j)),



Rim Mahouachi: Search-Based Cost-Effective Software Remodularization 1325

where:

sim(term1, term2)

=

{

1, if term1 = term2,

simjcn(term1, term2), otherwise.

For instance, the similarity between the two terms

{term1 = mousePressed, term2 = setT ool} is equal

to 0.518 according to the values obtained in Table 1.

Table 1. Semantic Similarity Calculation Example

Term Set Tool

Mouse 0.367 0.496

Press 0.644 0.610

3.1.2 Quality Evaluator (B)

Modularization quality is measured using cohesion

and coupling metrics. The package cohesion consists

of the relatedness among classes of a package (i.e., the

number of intra-edges dependencies of a package). The

package coupling consists of the number of classes (from

other packages) that a class is directly related to.

3.1.3 Refactoring Effort Evaluator (C)

In order to assess refactoring effort, we choose to use

the RRAI (rate of achieved improvement) measurement

calculating the modification degree related to achieved

improvements and defined by Abdeen et al.[23] as fol-

lows.

RRAI(m) = RPMC(m)
RPC(m) , and in our context m ∈

{package coupling, package cohesion}.

• RPMC(m) = δm
|Cmove|

, where δm is the increased

(decreased) value of m in the new resultant modular-

ization and |Cmove| is the number of classes to move.

The RPMC(m) value consists of the average contribu-

tion of each moved class to the achieved improvement

to m.

• RPC(m) = mor

|C| , where mor is the value of m in

the original modularization, and |C| is the number of

all classes in the system. The RPC(m) value consists

of the average contribution of all classes to the value of

m in the original modularization.

For example, if the proposed solution recommends

to move 20 classes and improve the structural co-

hesion by 0.5 (the value is normalized), we obtain

RPMC(cohesion) = δcohesion
|Cmove|

= 0.5
20 = 0.025. Let us

suppose further that RPC(cohesion) = cohor

|C| = 0.01.

In this case, RRAI(cohesion) = RPMC(cohesion)
RPC(cohesion) = 2.5

which is bigger than 1. In other words, we can say

that RPMC(cohesion) > RPC(cohesion) which means

that if they are moved to the determined packages, the

20 selected classes have an average contribution to the

cohesion improvement in the resultant modularization

better than the average contribution of all classes to the

value of cohesion in the original modularization.

3.2 NSGA-II Algorithm Adaptation

NSGA-II (Elitist Non-dominated Sorting Genetic

Algorithm)[25] is an algorithm designed to find a set of

optimal solutions, called non-dominated solutions, also

Pareto set. A feasible solution is non-dominated when

there is no other feasible solution better than the cur-

rent one in terms of some objective functions without

worsening other objective functions.

A high level view of NSGA-II adapted to the re-

modularization problem using structural and seman-

tic information is described in this subsection. The

algorithm takes as input a code to re-modularize. It

starts by creating a random population P0 of indi-

viduals. Then, a child population Q0 is generated

from the population of parents P0 using selection and

change operators (crossover and mutation). Both pop-

ulations are merged into an initial population R0 of size

Max size, and a subset of individuals is selected, based

on the dominance principle (RRAI, structural and se-

mantic modularization quality improvement are the ob-

jectives) and crowding distance (for solutions having

the same dominance) to create the next generation.

This process will be repeated it Max iterations. The

output of the algorithm is the best combination of refac-

torings that improve the software modularization qua-

lity (evaluated by structural and semantic metrics) with

regard to their effort.

The following three subsections describe more pre-

cisely our adaptation of NSGA-II to the remodulariza-

tion problem.

3.2.1 Solution Representation

We consider the potential solution as a vector of

refactoring operations, in other words, a set of ordered

operations. The order of applying a combination of

refactorings composing a potential solution corresponds

to their vector position. In this work, only the refac-

toring “Move Class (source class, source package, target

package)” is considered, but other types of refactorings

can be supported in future work. This refactoring con-

sists of moving a source class from the source package to

a more appropriate target package. A possible 3-sized

solution could be, for example:
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1) Move Class (org.w3c.HTMLDocument, org.w3c,

simpletype),

2) Move Class (org.apache.xerces.ASModel, org.ap-

ache.xerces, xni),

3) Move Class (org.w3c.dom.ls.DOMBuilder, org.w-

3c.dom.ls, sax).

The execution of these refactorings must conform

to certain semantics pre- and post-conditions (to avoid

conflicts and incoherence semantic errors). For exam-

ple, let us consider the following remodularization ope-

ration.

RO : MoveClass

Class to move : XSGroupDecl

From : xs

To : xpath

To apply this refactoring, a number of necessary

preconditions should be satisfied:

• xs and xpath should exist and should be packages,

• XSGroupDecl should exist and should be a class,

and

• the class XSGroupDecl should be implemented in

the package xs.

Postconditions are as follows:

• XSGroupDecl, xs and xpath should exist,

• XSGroupDecl class should be in the package xpath

and should not exist any longer in the package xs.

To generate an initial population, we start by fix-

ing the minimum and the maximum vector length in-

cluding the number of refactorings. Thus, the individu-

als have different vector lengths (structures) since lower

and upper bounds of the chromosome length depend on

the studied system and are fixed experimentally. Then,

for each individual we randomly assign one refactoring,

with its parameters, to each dimension.

After applying the proposed refactorings to the ini-

tial remodularization, we obtain a new modularization

that will be evaluated using the fitness functions.

3.2.2 Fitness Functions

The objectives of our optimization approach are

1) maximizing modularization quality, 2) maximizing

packages semantic cohesion, and 3) minimizing refac-

toring effort.

• Quality Objective. To evaluate the impact of ap-

plying the refactorings on the modularization quality

of the refactored system, we define the quality gain QG

(∈ [0..1]) as follows.

QG =
1

2
(v(i)after refactoring − v(i)before refactoring),

where v(i) is the normalized value of quality attribute

i and i ∈ {Cohesion, Coupling}.

After applying a generated solution (the proposed

refactorings) to the initial software system, this fitness

function calculates the quality of the resultant modu-

larization.

• Semantic Coherence Objective. In our case, we

consider the semantic similarity of a solution (∈ [−1..1])

as the average of semantic similarity scores of refactor-

ing operations that constitute it.

sem sim(sol) =
1

| sol |

|sol|
∑

i=1

(sem sim(ROi)).

• Refactoring Effort. To assess the refactoring effort

we consider the arithmetic mean, (RRAI), of RRAI val-

ues (for every quality attribute improvement) in NSGA-

II solutions. When the rate average of the achieved

improvement RRAI is larger than 1, it indicates that

the suggested modifications have a considerable impact

on quality improvement. Therefore, the objective is to

maximize RRAI.

• Normalization. Since objective functions have

different scales, we use the normalization procedure

proposed by Deb and Jain[42] to normalize them. For

that, the minimal and the maximal values for each ob-

jective function value are recorded and then used by

the normalization procedure.

3.2.3 Operators

Selection. To guide the selection process, NSGA-II

sorts the population using the dominance rank and the

crowding distance rank[25] to select individuals of the

new population Pt+1. Then, to generate an offspring

population Qt+1, the selection of individuals to which

genetic operators (crossover and mutation) are applied

is based on the tournament selection operator.

Crossover. We use the one-point crossover operator.

For each crossover, two parents are selected randomly.

The crossover operator allows creating two offspring P’1

and P’2 from the two selected parents P1 and P2. First,

a random position k is selected, then the first k refactor-

ings of P1 becomes the first k elements of P’1, and the

first k refactorings of P2 become the first k refactorings

of P’2.

Mutation. The mutation operator consists in ran-

domly changing one or more dimensions (refactoring)

in the solution. Given a selected individual, the muta-

tion operator first randomly selects some dimensions in

the vector representation of the individual. Then the
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selected dimensions are replaced by other refactorings

generated randomly.

4 Validation

To evaluate the feasibility of our approach, we con-

duct an experiment with different open-source projects.

We start by presenting our research questions and our

settings. Then, we describe and discuss the obtained

results.

4.1 Goals and Objectives

Our study involves five research questions, which

we define here, explaining how our experiments are de-

signed to address them. The goal of the study is to

evaluate the efficiency of our approach for the refactor-

ing recommendation from the perspective of a software

maintainer conducting a quality audit. We present the

results of the experiment that aims at answering the

following research questions.

• RQ1. To what extent can the proposed approach

improve the structural quality of packages in the stu-

died software systems?

• RQ2. To what extent can the proposed approach

minimize the refactoring effort?

• RQ3. To what extent can the proposed approach

preserve the semantics while improving the packages

structure?

• RQ4. How does the proposed approach perform

compared with other existing search-based remodular-

ization approaches?

• RQ5. To what extent can the consideration of

refactoring effort improve the effectiveness of the pro-

posed refactorings?

To answer RQ1, we evaluate the structural quality

improvements of systems after applying the best solu-

tion using a set of structural metrics:

• QG = 1
2 (v(i)after refactoring − v(i)before refactoring),

• total number of external dependencies (TEDp =
|P |
∑

i=1

EDp(pi)),

• total number of internal dependencies (TIDp =
|P |
∑

i=1

IDp(pi)),

• the structural coupling between packages:

StC = StructuralCoupling(pi, pj)

=

|pi|
∑

l=1

|pj |
∑

s=1

MPC(cl, cs)

|pi| × |pj |
,

where cl ∈ pi, cs ∈ pj, and MPC(cl, cs) is the message

passing coupling between cl and cs which is directly

correlated with the maintenance effort[12].

To answer RQ2, we analyzed the RRAI results ob-

tained for each system. To evaluate the effort of each

recommended remodularization solution, we used also

the MoJoFM distance[43]. This metric calculates the

number of “move” and “join” operations, needed to

transform one partition A into another one B. In this

paper, a Move operation represents moving a class from

its original package to another package, when the par-

tition A represents the original modularization, and B

the obtained modularization after applying the set of

recommended refactorings. Therefore, the MoJoFM

formula is:

MoJoFM(A,B) = (1 −
mno(A,B)

max(mno(∀A,B)
)× 100%,

where:

• mno(A,B) is the minimal number of “move” and

“join” operations needed to transform A in B, and

•max(mno(∀A,B)) is the maximum number of pos-

sible “move” and “join” operations to transform any

partition A into B.

To answer RQ3, six Ph.D. students verified manu-

ally the feasibility and meaningfulness (having seman-

tic sense) of the proposed refactoring solutions. All

students have significant experience in Java program-

ming (ranging from 5 to 10 years). They are members

of the SBSE (Search-Based Software Engineering) Lab

and students at the University of Michigan (USA), Uni-

versity of Montreal (Canada), and Missouri University

of Science and Technology (USA). The students are un-

aware of the proposed technique (but of course know

that they are going to evaluate the semantic coherence

of refactoring operations) in order to guarantee that

there will be no bias in their judgment.

Each subject received 1) the source code of four se-

lected releases of studied object systems, and 2) the

questionnaire. For each recommended refactoring ope-

ration, participants had to answer to the question:

“would you apply the proposed refactoring?” The an-

swer is one of these three possibilities: yes, no, and

maybe. Since the application of remodularization solu-

tions is a subjective process, it is normal that not all the

programmers have the same opinion. In our case, we

consider the majority of votes to determine if suggested

solutions are correct or not.

We report the percentage of proposed refactorings

that were semantically correct (ratio of the number of
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coherent refactoring operations over the number of eval-

uated refactoring operations) which we note the refac-

toring semantic precision (∈ [0..1]) and define as fol-

lows:

RP =
number of coherent refactorings

number of proposed refactorings
.

To answer RQ4, we compare our results with those

produced by two other search-based engineering ap-

proaches: the one of Abdeen et al.[23] whose objective is

to automatically reduce package coupling and cycles by

moving classes over the existing packages, and that of

Mkaouer et al.[13], a many-objective search-based ap-

proach using NSGA-III to find refactorings that im-

prove packages structure, the semantic coherence of

the restructured program, and minimize the number

of changes.

To answer RQ5, we compare our results of with and

without considering refactoring effort as an objective in

our algorithm.

4.2 Systems Studied

We used a corpus of 21 releases of four open source

Java projects, namely Apache Ant 1○, JHotDraw 2○,

JFreeChart 3○, and Xerces-J 4○. Apache Ant is a tool

and library specifically conceived for Java applications.

Xerces-J is a family of software packages for parsing

and manipulating XML, and implements a number of

standard APIs for XML parsing. JHotdraw is a frame-

work used to build graphic editors. JFreeChart is a

powerful and flexible Java library for generating charts.

Table 2 reports characteristics of the analyzed systems.

We selected Xerces-J and Apache Ant because they are

medium-sized open-source projects and are analyzed in

related work. The initial versions of Apache Ant are

known to be of poor quality, which has led to major

revised versions.

Table 2. Systems Studied

System Number of Number of Number of

Releases Classes [Min, Max] Packages [Min, Max]

Xerces-J 14 [560, 969] [34, 57]

Apache Ant 1 [384, 384] [18, 18]

JHotdraw 3 [173, 585] [11, 24]

JFreeChart 3 [646, 696] [30, 32]

4.3 Algorithm Settings

Parameters tuning influences significantly the per-

formance of a search algorithm on a particular prob-

lem. However, there is no generic best configuration

which can be adopted in all situations; in contrast, it

is different from one search problem to another. For

example, a larger number of operations in a solution

do not necessarily mean that the results will be bet-

ter. For this reason, for each system, we performed a

set of experiments using several configurations (vary-

ing population size, and the maximum of chromosome

length) and we selected the best one (i.e., producing

the best results). Ideally, a small number of operations

should be sufficient to provide a good trade-off between

the objectives. In a solution, the maximum number of

refactorings can also be specified by the user. In this

case, the user can select a smaller number of changes, if

he/she wants to make minor revisions or a larger num-

ber of changes, or if he/she wants to make major re-

visions in his/her code. In our experiments, we chose

these setting parameters: population size = 100, termi-

nation criterion = 10000, crossover probability = 0.7,

mutation probability = 0.3, and individual size = 50.

Another important point to clarify is that our approach

is stochastic by nature which means that two different

executions on the same system and with the same con-

figuration generally lead to different sets of suggested

refactorings. Therefore, in order to confirm the vali-

dity of the obtained results, our experimental study is

performed based on 31 independent simulation runs for

each problem instance. In this paper, we consider soft-

ware remodularization as a multiobjective optimization

problem and we adopt NSGA-II. Hence, the output is

a set of non-dominated solutions. The developers can

choose one solution from the set of Pareto depending on

their preferences in terms of compromise. For example,

a developer can prefer a solution producing the best

score of quality improvement but needing much more

maintenance effort than the others. However, for the

validation of our approach, we need to select only one

solution from the set of Pareto. Since the ideal solution

consists in the one with the best value of quality im-

provement in terms of cohesion and coupling (equal to

1), design semantic coherence (equal to 1), and refactor-

ing effort (normalized value equal to 1), we selected the

1○http://ant.apache.org, Aug. 2018.
2○http://www.jhotdraw.org, Aug. 2018.
3○http://www.jfree.org/jfreechart/, Aug. 2018.
4○http://xerces.apache.org, Aug. 2018.
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nearest solution to the ideal one in terms of Euclidian

distance.

4.4 Results and Discussions

In this subsection, we present the answer to each

research question in turn, indicating how the results

answer them.

4.4.1 Results for RQ1

Table 3 shows the changes in terms of the structural

coupling (StC ) achieved while applying Move Class

operations suggested by NSGA-II. We also report the

deviation (delta with the initial design) median val-

ues of internal and external packages dependencies ob-

tained after applying refactoring operations suggested

by NSGA-II.

Table 3. δStC, δTEDp, and δTIDp Median Values

of 31 Independent Runs of NSGA-II

System Release δStC (%) δTEDp δTIDp

JFreeChart 0.9.12 −6 −12 +7

0.9.13 −13 −4 +22

1.0.9 −5 −9 +18

Apache Ant 1.8.4 −19 −21 +143

JHotDraw 5.1 −13 −8 +69

5.2 −21 −18 +149

6.1 −24 −7 +131

Xerces 2.9.0 −17 −21 +100

2.8.1 −29 −37 +101

2.8.0 −25 −25 +97

2.7.1 −22 −33 +126

2.7.0 −18 −26 +174

2.6.2 −28 −12 +180

2.6.1 −32 −14 +183

2.6.0 −18 −10 +44

2.5.0 −15 −5 +141

2.4.0 −21 −52 +159

2.3.0 −11 −17 +100

2.2.1 −29 −14 +148

1.2.1 −60 −4 +102

1.2.0 −60 −13 +68

As shown in Table 3, we note that our approach

improves all evaluated structural metrics. In Xerces

v2.4.0, for example, the refactored solution has a cohe-

sion value (TIDp) of 268 and a coupling value (TEDp)

of 202 while the original developers’ implementation has

a cohesion value of 427 and a coupling value of 254,

which corresponds to an improvement of +159 and −52

respectively.

Also, both structural cohesion (TIDp) and cou-

pling (TEDp) of packages for all studied systems are

strongly improved. Our approach succeeds to min-

imize the maintenance effort required by developers

(δStructuralCouplingavg) by 24% for all systems. In

conclusion, the obtained results are very convincing,

and the resultant modularizations are clearly better

than the original ones according to obtained quality

metrics values. Therefore, we can conclude that the

proposed approach can find solutions that improve the

modularity of the software system, as assessed by cohe-

sion and coupling.

4.4.2 Results for RQ2

To answer RQ2, we evaluated the effort needed to

apply the suggested remodularization solutions. We be-

lieve that optimizing the number of required changes is

a difficult and very important objective to reach. In

our approach, we considered RRAI, the modification

degree related to achieved improvements, in order to

minimize this number. Considered as an objective to

maximize, this measure means that a set of refactorings

is preferred rather than another one if the number of

classes to move and the improvement achieved are bet-

ter. For example, a solution that recommends moving

20 classes and improves the structure quality by 10% is

better than another one moving 30 classes to improve

the quality by 12%. Table 4 presents the (RRAI) ob-

tained on different systems. We find that our approach

succeeds in suggesting solutions that improve consid-

erably structural packages quality and do not require

high code changes to achieve it.

In fact, NSGA-II moved in average 30 classes (which

corresponds to less than 1% of total classes’ number)

for JfreeChart achieving a consistent improvement in

terms of quality with an average QG score of 0.59. For

JHotdraw 5.3, moving only 16 classes (less than 6% of

the total number of classes) allowed to achieve an ave-

rage of QG score of 0.68 in terms of quality gain.

In addition, our experiments show that the arith-

metic mean, (RRAI), of RRAI values in NSGA-II solu-

tions is larger than 1 for all studied systems. This indi-

cates that the suggested modifications have a considera-

ble impact on quality improvement. For all systems,

the rate average of the achieved improvement values is

about 21.62.

In addition, we report in Table 4 the obtained Mo-

JoFM values. For instance, for Xerces v2.9.0, it is pos-

sible to have a modularization improvement (36%) even

considering a lower modularization effort (3.31%). We
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Table 4. Quality Improvement vs Needed Modifications

System Release QG Number of Moved Classes RRAI MoJoFM(%)

JFreeChart 0.9.12 0.49 27 1.59 95.33

0.9.13 0.44 28 21.17 95.63

1.0.9 0.59 30 40.74 95.39

Apache Ant 1.8.4 0.43 25 41.87 93.17

JHotDraw 5.1 0.39 12 13.34 91.98

5.2 0.48 13 8.77 92.78

6.1 0.68 16 112.69 94.27

Xerces 2.9.0 0.36 45 10.39 96.69

2.8.1 0.53 43 23.48 97.63

2.8.0 0.29 44 10.04 97.73

2.7.1 0.57 48 19.80 94.67

2.7.0 0.68 46 32.90 96.95

2.6.2 0.59 49 19.25 96.65

2.6.1 0.59 45 22.63 96.10

2.6.0 0.24 46 6.54 94.21

2.5.0 0.11 47 4.24 96.95

2.4.0 0.25 44 12.54 95.21

2.3.0 0.34 46 13.60 95.78

2.2.1 0.36 47 14.86 94.88

1.2.1 0.39 31 20.31 94.01

1.2.0 0.26 31 21.98 94.22

can cite also the example of JfreeChart v0.9.12, where

it is possible to improve the structural quality by 49%

by changing only 4.67% of the original modularization.

To conclude, for all considered systems, MoJoFM

is about 95.2%, which means that the developers need

to change, in average, 4.8% of the original implemen-

tation if they consider the remodularization solution.

We think this is a very interesting result since the main

goal of this work is to improve the structure of pack-

ages while minimizing the effort needed to apply the

suggested remodularization solutions. Thus, we believe

that our proposal can be used by developers at diffe-

rent moments during the software lifecycle when they

are planning a major release of the software system as

well as a minor or bug-fixing release. According to their

needs, they have to choose, from the set of Pareto, the

modularization solution which best fits their expecta-

tions.

4.4.3 Results for RQ3

To answer RQ3, we report results of the manual val-

idation elaborated by a group of potential users of our

remodularization tool. The ratio of meaningful ope-

rations, in terms of semantic coherence from the sug-

gested ones, is described in Table 5. For Xerces, 77%

of the set of the evaluated refactorings has been ap-

preciated by participants (29 out of 48 answered yes),

17% (8 out of 48) has been considered as probably co-

herent, and 23% (11 out of 48) has been rejected. For

JfreeChart, 19 refactoring operations have been consi-

dered to be absolutely or probably coherent when only

eight out of 27 have been completely rejected by most

of subjects. To conclude, most of the suggested ope-

rations are feasible and make sense semantically from

the participants’ point of view.

Table 5. Collected Results for Refactoring Meaningfulness

Studied System Release Yes (%) No (%) Maybe (%) RP (%)

Xerces-J v2.7.0 60 23 17 77

Apache Ant v1.8.4 48 20 16 64

JHotDraw v6.1 50 25 20 70

JFreeChart v1.0.9 63 28 9 72

To conclude, almost 71% of the proposed refactor-

ings are semantically feasible and do not affect the se-

mantic coherence of the refactored program from the

point of view of potential users.

4.4.4 Results for RQ4

Since in this paper we are limited to Move Class

refactoring while Mkaouer et al.[13] considered eight

other refactoring types, we do not compare the num-

ber of code changes suggested by each approach. We

limit our comparison to the structural cohesion and

coupling obtained by the best proposed remodulariza-

tion solutions for three different systems. As described

in Fig.4, we find that our proposal provides, in average,

similar structural improvements to the other techniques
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Fig.4. Coupling and cohesion improvement median values of NSGA-II, NSGA-III by Mkaouer et al.[13] and NSGA-II by Abdeen et
al.[23] over 31 independent simulation runs. (a) Xerces v2.7.0. (b) JFreeChart v1.0.9. (c) JHotDraw v6.1.

(Mkaouer et al.[13] and Abdeen et al.[23]) in terms of

modularization cohesion and coupling. We can consider

that the NSGA-II performance in terms of improving

the distribution of classes into packages is similar to

that of the existing approaches.

4.4.5 Results for RQ5

To investigate the effect of the consideration of the

refactoring effort, we compared the obtained results of

with and without considering RRAI as an objective in

NSGA-II. According to Fig.5, we note that in most

of the systems when the refactoring effort is combined

with other objectives, our approach succeeds in recom-

mending remodularization solutions that maximize the

rate average of achieved improvement. In fact, approx-

imately, the same number of the refactoring operations

is proposed but with a relatively stable and better qua-

lity improvement than the refactorings proposed by the

algorithm without considering the effort. For example,

for Apache Ant, δT IDp is +48 and δTEDp is −2 when

only quality and semantics are considered; however,

when the refactoring effort is included, δT IDp is im-

proved to +143 and δTEDp is −21 with approximately

the same number of proposed refactorings (about 25

refactoring operations).

5 Related Work

There are several studies that have recently focused

on optimizing modularization in software using diffe-

rent techniques. These techniques range from cluster-

ing to evolutionary or search-based algorithms. We can

distinguish two categories of approaches: those consi-

dering the original modularization and existing pack-

ages, and those not considering them.

Fig.5. Remodularization results of NSGA-II with and with-
out effort in terms of (a) coupling improvement (δTEDp), (b)
cohesion improvement (δTIDp), and (c) RRAI .
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5.1 Remodularization Approaches Without

Consideration of the Original

Modularization

In this category of approaches, the original mod-

ularization is not considered, and the aim is to find

the best modularization according to the cohesion and

coupling principles. These approaches produce a new

modularization completely different from the original

with new classes’ distribution into clusters (new pack-

ages). Mitchell and Mancoridis[6] proposed the first

search-based approach to address the problem of soft-

ware modularization using a single-objective function.

Their approach consists on a search-based clustering

technique using hill-climbing to optimize clusters or-

ganization. The input of the clustering algorithm is

a system that is represented by MDG as a (weighted

or unweighted) graph where nodes represent entities to

be clustered and edges the relationships among them.

The output is a partition of this graph that is composed

of clusters of nodes having high cohesion and low cou-

pling. The algorithm aims to increase cluster internal

dependencies by moving randomly classes to new clus-

ters and calculating the modularization quality metric.

In another work, Seng et al.[7] proposed a search-based

technique using a genetic algorithm to partition soft-

ware classes into subsystems. They used a set of refac-

toring operations to modify the population of modular-

izations. The fitness function is based on weighted met-

rics measuring coupling between program components.

Some other work[21,44] exploited semantic dependencies

between classes in their used clustering techniques in or-

der to divide a system into new clusters containing se-

mantically related classes. All approaches cited above

produce a whole new decomposition of classes in pack-

ages that is useful only when the system structure is

too degraded and needs a deep restructuration. How-

ever, it is important to note that to minimize this issue,

some approaches were proposed to solve specific design

problems such as those of Bavota et al.[8] and Palomba

et al.[15] aiming to remove Promiscuous Packages by de-

composing them in new more cohesive ones (using Split

Package refactoring).

5.2 Remodularization Approaches Optimizing

Original Software Modularization

In this category of approaches, the original distribu-

tion of classes is considered and its aim is to optimize

the existing modularization. Sahraoui et al.[45] used

some metrics as indicators for automatically detecting

situations where the system can be refactored to im-

prove its quality. They analyzed the impact of various

transformations on these metrics using the quality es-

timation models. In a previous work[46], we proposed

an automated bad-smell correction approach to refac-

toring based on the structural similarity between refe-

rence examples and the code to correct. In another

work, Harman and Tratt[9] introduced the concept of

Pareto optimality to combine two metrics into a fit-

ness function in order to optimize many aspects of the

system. They proved how Pareto can usefully be ap-

plied to search-based refactoring. Doval et al.[16] used a

combination of quality metrics (coupling, cohesion, and

complexity) to improve the subsystem decomposition.

In their approach, the structure of a software system is

expressed as a module dependency graph (MDG). An

automatic clustering GA is applied to find a “good”

partition of MDG. Related modules are regrouped into

clusters. Bavota et al.[10] used Interactive Genetic Algo-

rithms to integrate the developer’s knowledge (decisions

to group together (or not) some components) in a re-

modularization task. The main limitation of this work

is that the user’s feedback is requested in each iteration

of the remodularization process. Therefore, the applica-

bility of this approach is still limited to small/medium

size software projects. In our approach, we do not

consider the decision maker feedback but we think it

can be an interesting perspective to make our approach

interactive. Abdeen et al.[14] used a search-based al-

gorithm to automatically reduce package coupling and

cycles by moving classes over the existing packages. In

another work, Abdeen et al.[23] adapted NSGA-II to

optimize software modularization. Four objectives are

considered in their approach: 1) maximizing package

cohesion (i.e., intra-package connections), 2) minimiz-

ing packages’ coupling (i.e., inter-package connections),

3) minimizing cyclic connectivity of packages, and 4)

minimizing modification number. The algorithm takes

also as input some preferences specified by maintainers

like the maximum number of classes that may move to

other packages. However, both proposed approaches do

not consider semantic cohesiveness within packages.

The first attempt that addresses this issue was by

Bavota et al.[11] who proposed a mono-objective ap-

proach to split an existing package into more cohe-

sive ones. In their approach, the structural and se-

mantic relationships between classes in a package are

analyzed in order to identify the set of strongly re-

lated ones to split together. In another work, Bavota

et al.[12] introduced a software remodularization ap-
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proach based on semantic and structural information

to recommend Move Class refactorings. The proposed

approach uses RTM (Relational Topic Models) to an-

alyze natural language topics in classes and packages

in order to identify their responsibilities. Besides se-

mantic information, their algorithm considers struc-

tural relationships (calls and dependencies) between

classes. Both structural and semantic information are

used to identify a set of highly similar classes and

then to move each class to the package containing the

larger number of similar classes. Another approach

called MethodBook[47] shares some similarities with

this approach[12] in terms of used techniques. But the

MethodBook approach[47] differs from the approach us-

ing RTM[12] by supporting moveMethod refactoring.

Tsantalis and Chatzigeorgion[48] also proposed a tech-

nique for suggesting Move Method refactoring oppor-

tunities that purely rely on structural analysis. It

is important to note that Bavota et al.’s[47], Tsan-

talis and Chatzigeorgion’s[48] and our approach work

at different granularities (method vs class). Also, none

of them consider the refactoring effort when propos-

ing remodularization solutions. Other approaches have

been proposed to ensure the semantic of recommended

refactorings by exploiting semantic information from

the source code[13,49,50]. Mkaouer et al.[13] proposed

a many-objective search-based approach using NSGA-

III to find the remodularization solution that mini-

mizes the number of changes and improves packages

structure (by optimizing some metrics such as cou-

pling and cohesion), and the semantic coherence of

the restructured program (using vocabulary similarity

and dependency-based similarity). Several metrics have

been used to quantify the module’s quality. Neverthe-

less, only a few related studies consider the refactoring

effort (only 5[13,17,18,23,24] over 31 publications in Search

Based Modularization between 1998 and 2017) while

optimizing software modularization. In [13] and [23],

the effort is measured by the number of the required

modifications/changes. Hence, the estimated modu-

larization effort of operations at different granularity

levels (class/package), such as extract method and ex-

tract class, is considered as the same while they have a

different impact in the systems modularity. In another

work, Ouni et al.[18] presented a Multi-Criteria Code

Refactoring approach aiming to minimize the number

of design defects, and code changes required to fix them,

to preserve design semantics, and to maximize the con-

sistency with the historic of changes. In this work, the

authors propose a based-code changes score model that

classifies the refactoring operations into low and high

level. Furthermore, this model weights them according

to their code fragment complexity, and their change

impact. Paixao et al.[17] introduced a multiobjective

evolutionary approach that minimizes disruption while

maximizing cohesion and coupling improvement. They

used DisMoJo, a disruption metric based on MoJoFM,

to assess the percentage of code changes in the original

modularization required by developers when adopting

proposed modularization solutions. However, the pro-

posed approach does not ensure the design coherence

of the refactored program.

6 Threats to Validity

6.1 Construct Validity

In our experiments, construct validity threats con-

cern the quantitative measures used in our results. Con-

cerning the structural metrics, we used the cohesion and

coupling quality attributes. For textual metrics, we ex-

tracted lexical information from source code identifiers.

To validate our proposal, we evaluated our results using

QG and other independent structural metrics in order

to have a better vision in structural improvement of

packages quality. To mitigate this threat, we also in-

spected manually and validated the remodularization

solutions by a set of experts. Also, the used seman-

tic measure, as currently defined, does not take into

account terms undefined in WordNet. In fact, each

term can be a dictionary word or an abbreviation, or

an acronym (e.g., teacher, Max, and XML), and only

dictionary words are indexed by WordNet. In our case,

the similarity between two terms is 1 if they are equals

and 0 if one/both of them is/are not indexed. In addi-

tion, developers use sometimes identifiers that seman-

tically do not make any sense. One of the existing so-

lutions in the research literature consists in extending

the conceptual measure to include the similarity with

prior changes[13]. We are planning to incorporate this

solution in our future work.

6.2 Internal Validity

The internal threat to validity is related to the use

of the stochastic algorithm. We took into consideration

the influence of the NSGA-II randomness since our ex-

perimental study was performed on the base of 31 in-

dependent simulation runs for each problem instance.

However, the parameter tuning of the optimization al-

gorithm (namely NSGA-II) used in our experiments

creates another internal threat that we need to evaluate



1334 J. Comput. Sci. & Technol., Nov. 2018, Vol.33, No.6

in our future work. In fact, in our work, we tested some

possible configurations (varying the size of population,

the solution dimension, and the number of iterations),

and we selected for each system the best configuration

(i.e., achieving the best quality improvement ratio).

6.3 External Validity

In this study, we limited our experiments to 21

releases of four different open-source systems, Java-

written and medium-sized. However, we cannot assert

that our results can be generalized to industrial applica-

tions or systems exploiting specific architectures (e.g.,

JEE, .NET) or written in other programming languages

(e.g., C++, C♯). Future replications of this study are

necessary to confirm the generalization of our findings.

In addition, our experiment has been conducted with

external developers (students), but these students were

not the original developers of the subject systems which

represent the main threat. However, we recalled that

the least experienced participants involved in our study

have five years experience in Java programming since

subjects are composed of Master and Ph.D. students

in software engineering. Indeed, in the future work, we

need to involve the original developers of the studied

systems. Another limitation of our results is the selec-

tion of the best solution from the Pareto front (which

consists in selecting the closest solution to the ideal

point in terms of Euclidian distance).

7 Conclusions

In this paper, we introduced a novel search-based

approach to automate software remodularization. To

this end, we used NSGA-II to evolve better refactor-

ing solutions which find a compromise between three

objectives: improving modularization quality criteria,

optimizing the semantic coherence of the restructured

program, and minimizing the refactoring effort task.

We evaluated our approach on 21 releases of four real-

world, open source software applications. We reported

the results on the efficiency of our approach based on a

quantitative and qualitative evaluation, and we showed

that our approach improves the modularization quality

by in average 43% with less than 5% of needed effort

to apply the suggested remodularization solutions. We

also showed that more than 70% of the recommended

refactorings are considered to be meaningful from the

developer’s point of view. Compared with the existing

work, we could conclude that the obtained results are

very promising.

As future work, we will investigate other seman-

tic measurements inspired from the information search

field, in order to improve the meaningfulness of the rec-

ommended refactorings. Finally, we plan to test our

approach in larger open source systems and to involve

original developers as expert participants during the

qualitative evaluation process.
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