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Abstract The 3-ary n-cube, denoted as Q3
n, is an important interconnection network topology proposed for parallel

computers, owing to its many desirable properties such as regular and symmetrical structure, and strong scalability, among

others. In this paper, we first obtain an exact formula for the minimum wirelength to embed Q3
n into grids. We then

propose a load balancing algorithm for embedding Q3
n into a square grid with minimum dilation and congestion. Finally, we

derive an O(N2) algorithm for embedding Q3
n into a gird with balanced communication, where N is the number of nodes

in Q3
n. Simulation experiments are performed to verify the total wirelength and evaluate the network cost of our proposed

embedding algorithm.

Keywords 3-ary n-cube, embedding algorithm, grid, interconnection network

1 Introduction

Interconnection networks take an important role

in parallel computer systems. Selecting an appropri-

ate interconnection network is crucial because it can

greatly affect the parallel computer’s communication,

fault tolerant capability, and hardware cost. The topol-

ogy of an interconnection network specifies the way pro-

cessors are connected in a parallel computer system. It

determines the network’s bandwidth, delay, reliability,

scalability, and adaptability. Therefore, the selection of

the interconnection network is a vital decision in para-

llel computer design. When evaluating the performance

of an interconnection network, embeddability and fault-

tolerability are two critical metrics.

The hypercube is one of the most popular intercon-

nection networks for parallel computing systems[1] due

to its many attractive properties, such as regularity, re-

cursive structure, node symmetry and edge symmetry,

and efficient routing and broadcasting. The 3-ary n-

cube, denoted as Q3
n, is proposed, and soon considered

as an important extension of hypercube. Q3
n not only

preserves the excellent properties of the hypercube, but

also adds new desired properties, such as reduced mes-

sage latency and ease of implementation[2,3]. Because

of Q3
n’s excellent properties, it has attracted the inte-

rest of many researchers since its proposal. Hsieh et al.

studied the embedding of paths and cycles into Q3
n, and

proved that Q3
n is edge-pancyclic[4]. Dong et al. studied

the embedding of paths and cycles into 3-ary n-cubes

with faulty nodes/links[5]. Lv et al. worked on Hamil-

tonian cycle/path embedding in 3-ary n-cubes with the

fault of structure K1,3
[6]. Yuan et al. investigated the

g-good-neighbor conditional diagnosability of Q3
n under

the PMC and MM* models, which facilitated accurate

reliability measurements in parallel systems using Q3
n

as the underlying network[7].

Q3
n has not only attracted research interest in

Regular Paper

This work is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003201, the
National Natural Science Foundation of China under Grant Nos. 61572337, 61602261, 61672296, and 61872257, Jiangsu High Technology
Research Key Laboratory for Wireless Sensor Networks Foundation under Grant No. WSNLBKF201701, the Scientific & Technological
Support Project of Jiangsu Province of China under Grant Nos. BE2016777, BE2016185, and BE2017166, China Postdoctoral Science
Foundation under Grant No. 172985, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under
Grant No. 17KJB520036, and Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No. 1701172B.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China



Wei-Bei Fan et al.: Optimally Embedding 3-Ary n-Cubes into Grids 373

academic community, but also been practically used

to build parallel computers. The Blue Gene/L and

the Cray XT5 supercomputers are two prominent

examples[8]. In Blue Gene/L computer, the proces-

sors are interconnected through five networks and con-

structed through a 3D torus topology. This super com-

puter has the highest total bandwidth and manages

a large quantity of communications. Moreover, Q3
n

has also been used in the construction of data cen-

ter networks such as CamCube[9] and NovaCube[10].

CamCube is designed to make it easier to develop ser-

vices in data centers, which uses the 3D torus topology

as an alternative to the traditional switch-based net-

work, with each server directly connected to six other

servers. CamCube solves the problem of building dis-

tributed programs running in data centers, and builds a

much simpler platform to implement these applications.

When multiple routing is performed on CamCube, the

application is more efficient and the extra performance

cost is extremely low. NovaCube is also a data cen-

ter network topology based on Q3
n, which has added

the connection between servers on the basis of regular

torus.

An interconnection network can generally be mod-

eled by a graph in which vertices (nodes) represent

processors, and edges represent communication links

between processors. We usually denote a graph by

G = (V,E), where V is the vertex set and E the edge

set. Graph embedding is the operation of mapping a

guest graph into a host graph. Given a guest graph

G and a host graph H , an embedding f from G to H

can be defined as an injective mapping from V (G) to

V (H). The quality of an embedding can be measured

by certain cost criteria. Some common ones are conges-

tion, dilation, expansion, and load. We will define these

parameters in Section 2. In addition to these parame-

ters, wirelength is another criterion for embedding, and

is widely used in VLSI design[11]. The wirelength is the

total wire length required to complete the entire VLSI

layout.

Most researches on graph embedding consider

paths, cycles, meshes and trees as guest graphs be-

cause these are the structures widely used in parallel

computers[12−15]. In [16], Fan et al. studied the em-

bedding of paths with all possible lengths between any

two vertices into crossed cube. Fan et al. also proved

that the cycles of all possible lengths can be embedded

into the twisted cube[17]. Han et al. studied the em-

bedding of three different types of special meshes into

locally twisted cubes[18]. In all these embeddings, the

guest graphs (paths and cycles) are less complex than

the host.

Another set of embedding problems focus on embed-

ding guest graphs into linear arrays and grids. That is,

the guest graphs are more complex than the host. Em-

bedding the graph into a linear array is also called linear

layout (or linear arrangement) problem. The minimum

linear layout problem was first stated by Harper in 1964

and has been proved to be NP-complete[19]. Nakano

proposed a linear layout of generalized hypercube[20].

Fan et al. solved the minimum linear arrangement

problem for exchanged hypercube in linear time[21].

Miller et al. studied the minimum linear arrangement

of incomplete hypercubes[22]. Interconnection networks

can also layout into optical linear arrays. In [23], Chen

and Shen discussed embeddings of bidirectional and

unidirectional hypercubes on a class of optical networks

which include linear arrays. Yu et al. proposed an

embedding of 3-ary n-cubes into optical linear arrays

with minimum congestion[24]. In [25], Liu studied the

embedding of exchanged hypercubes into optical linear

arrays with optimal congestion.

The grid embedding is concerning not only the

grid’s ability to simulate other structures, but also

different structures’ layout on chips. Network-on-chip

(NoC) is a new communication mode of system-on-chip

(SoC)[26−28]. The topological structure of NoC largely

refers to the structure of the macro network, that is,

the interconnection network made into the chip. NoC

topology can be classified into two categories. One is

direct network topology, such as mesh[29] and torus[30].

The other is indirect network topology, such as fat-

tree[31] and butterfly. Due to the restriction of the

chip area, the embedded network’s total wirelength be-

comes a crucial issue that affects the NoC’s communi-

cation performance. In [11], Bezrukov et al. obtained

approximate results and the lower bound estimate of

wirelength for embedding hypercube into a grid. They

also studied the exact congestion for embedding the

hypercube into a rectangular grid[32]. Heckmann et al.

stated an optimal embedding of complete binary trees

into lines and grids with optimal dilation[33]. In [34],

Manuel et al. proposed an embedding of hypercube

into a grid with minimum wirelength. Wei et al. pro-

posed a new distributed congestion control mechanism

for NoC[35]. Experiments showed that their congestion

control mechanism alleviated performance degradation

for loads beyond saturation, and maintained adequate

levels of throughput at high loads.

When laying out interconnection networks into
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square grids, smaller layout area means faster commu-

nication. Two important factors affect layout on chips:

the number of tracks and the quality of communica-

tion. A track is a continuous horizontal or vertical

line on which the wires are placed without overlapping

any other wires[36]. For a given network, a good lay-

out should minimize the number of tracks. In commu-

nication among components, load balancing improves

the distribution of workloads across multiple comput-

ing resources. Load balancing aims to optimize re-

source use, maximize throughput, minimize response

time, and avoid overload of any single resource.

Most existing embedding results focused on optimiz-

ing just one single parameter, without considering other

parameters. In this paper, we try to achieve multiple

optimization targets while embedding Q3
n into grids.

We first investigate the embedding of Q3
n into a linear

array (a special, 1-dimensional grid) and a grid, respec-

tively, with minimum wirelength. We then propose a

layout of Q3
n into a square grid. We will present an

algorithm for embedding Q3
n into a grid with balanced

communication while minimizing dilation and conges-

tion. The major contributions of the paper are as fol-

lows.

1) We prove that the minimum wirelength of Q3
n

into a linear array is 1
2 (3

2n − 3n)(3n+1 − 2n × 3n−1),

and the minimum wirelength of Q3
n layout into grid

M(3n1 , 3n2).

2) We prove that Q3
n can be embedded into a 2-

dimensional square grid with dilation 2×3
n
2
−1 for even

n, 3⌈
n
2
⌉−1 for odd n, and with congestion







3⌈n/2⌉+1 − 1

8
, if ⌈n/2⌉ is odd,

3⌈n/2⌉+3 − 3

8
, if ⌈n/2⌉ is even.

3) We will present an O(N2) algorithm for em-

bedding Q3
n into a grid with balanced communication,

where N denotes the number of vertices in Q3
n.

The rest of this paper is organized as follows. Sec-

tion 2 gives definitions and notations used in the paper.

Section 3 presents the embedding of Q3
n into a linear ar-

ray and a grid, respectively, with minimum wirelength.

Section 4 gives an embedding of Q3
n into a square grid,

and proposes an embedding algorithm with balanced

communication. Section 5 concludes the paper.

2 Preliminaries

In this section, we will give some definitions used in

this paper. All graphs in this paper are simple undi-

rected graphs. Given two graphs G1 = (V1, E1) and

G2 = (V2, E2), if V2 ⊆ V1 and E2 ⊆ E1, G2 is said to

be a subgraph of G1. The subgraph induced by V
′ ⊆ V1

in G1 is denoted by G1[V
′

], where V
′ ⊆ V1. Further-

more, we use G − V ′ to denote G[V (G)\V ′]. For a

graph G = (V,E), a (u, v)-path of length l from vertex

u to vertex v is denoted by P = (u0, u1, ..., ul−1), where

u0 = u and ui = v are called the two end vertices of

path P , and all the vertices u0, u1, ..., ul−1 are distinct.

A Hamiltonian path is defined as a path which traverses

each vertex of graph G exactly once. If there exists a

Hamiltonian path between any two distinct vertices of

graph G, we say that graph G is a Hamiltonian con-

nected graph.

Graph embedding can be defined as: for two graphs

G1 = (V1, E1) and G2 = (V2, E2), where G1 repre-

sents the graph to be embedded, and G2 represents

the graph into which other graphs are to be embed-

ded, an embedding from G1 to G2 is an injective map-

ping ψ : V (G1) → V (G2). There are four common

parameters used to measure the quality of an embed-

ding. The congestion of an embedding ψ is defined as

cong(G1, G2, ψ) = max{cong(e)|e ∈ E2}, which mea-

sures queuing delay of messages, where cong(e) denotes

the number of edges of G1 whose image paths in G2 in-

clude the edge e.

Definition 1[11]. Let ECf (e) denote the number of

edges (u, v) of G such that e is in the path Pf (u, v) be-

tween vertices f(u) and f(v) in H. The edge congestion

of an embedding f of G into H is given by,

ECf (G,H) = max{ECf (e)|e ∈ E(H)}.

Then, the minimum edge congestion of G into H is de-

fined as

EC(G,H)) = min{ECf (G,H)|f is an embedding
from G to H}.

The smaller the congestion of an embedding is,

the lower the queuing delay that the graph G2 simu-

lates the graph G1. The expansion of an embed-

ding ψ of G1 into G2 is defined as exp(G1, G2, ψ) =

|V1|/|V2|, which measures processor utilization. The

smaller the expansion of an embedding is, the more

efficient the processor utilization that the graph G2

simulates the graph G1. Obviously, the expan-

sion of the embedding is at least 1. The dila-

tion of embedding ψ is defined as: dil(G1, G2, ψ) =

max{dist(G2, ψ(u), ψ(υ)) |(u, v) ∈ E1}, which measures

the communication delay, where dist(G2, ψ(u), ψ(υ))

denotes the distance between the two vertices ψ(u) and
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ψ(υ) in G2. The smaller the dilation of an embed-

ding is, the shorter the communication delay that the

graph G2 simulates the graph G1. The processing time

of tasks is another crucial factor to measure the com-

munication performance, referred as to the load in the

embedding. The load of an embedding ψ is denoted

by load(G1, G2, ψ) = max{load(v)|v = ψ(u), u ∈ V1},
where load(v) denotes the number of vertices of G1

mapped on v. For graph G1 with N vertices and G2

with M vertices, we say an embedding has a balanced

load when the load of every vertice of G1 is at least

⌊N
M ⌋ and at most ⌈N

M ⌉.
Definition 2[34]. The wirelength of an embedding

f of G into H is given by

WLf(G,H) =
∑

(u,v)∈G

dH(f(u), f(v)),

where dH(f(u), f(v)) denotes the length of the path

Pf (u, v) in H. Then, the minimum wirelength of G

into H is defined as

WL(G,H) = min{WLf(G,H)|f is an embedding
from G to H}.

The wirelength problem is to find an embedding of

G into H that induces the minimum wirelength, and

thought to be cost-effective.

A graph G1 is isomorphic to another graph G2 (rep-

resented by G1
∼= G2) if there exists a bijection f :

V (G1) → V (G2), such that (u, v) ∈ E(G1) if and only

if (f(u), f(v)) ∈ E(G2). For two graphs G1 = (V1, E1)

andG2 = (V2, E2), and a subset S ⊆ V1, let f be a map-

ping from V1 to V2. Let T = {x ∈ V (G2)|there is y ∈
S, such that y = f(x)}. Then we write T = f(S)

and S = f−1(T ). Given graphs G1 = (V1, E1), G2 =

(V2, E2), ..., Gk = (Vk, Ek), we define the cross product

of G1, G2, ..., Gk, denoted by G1 ⊗G2 ⊗ ...⊗Gk, where

V = {(v1, v2, ..., vk)|vi ∈ Vi, 1 6 i 6 k} and E =

{((u1, u2, ..., uk), (v1, v2, ..., vk))|such that (ui, vi) ∈
Ei and uj = vj for 1 6 i 6 k, j 6= i}. We define

a k-ary cycle of length k, denoted by Ck, as a graph

consisting of k vertices and k edges. Then we give the

definition of 3-ary n-cube as below.

Definition 3. The 3-ary n-cube can be seen as cross

product of n 3-cycles:

Q3
n = C3 ⊗ C3 ⊗ ...⊗ C3

︸ ︷︷ ︸

n

.

Therefore, Q3
n can also be defined as follows:

Q3
n =

{
C3, if n = 1,
C3 ⊗Q3

n−1, if n > 2.

For any integer n > 1, a binary string x of length

n will be written as xn−1xn−2...x1x0, where xi ∈ {0, 1}
for any integer i ∈ {0, 1, ..., n − 1}. Given any x =

xn−1xn−2...x1x0, for any inter i ∈ {0, 1, ..., n − 1},
xi is said to be the i-th bit of x and xn−1xn−2...xk
(0 6 k 6 n − 1) is called a prefix of x. Besides, x0
is called the first bit of x, and xn−1 is called the last

bit of x. We have another definition of 3-ary n-cube as

below.

Definition 4[4]. The 3-ary n-cube Q3
n (n > 1) has

N = 3n vertices, each of the form x = (xn−1...x1x0),

where 0 6 xi 6 2 for every 0 6 i 6 n − 1. Two

vertices x = (xn−1...x1x0) and y = (yn−1...y1y0) are

adjacent if and only if there exists an integer j with

0 6 j 6 n − 1, such that xj = yj ± 1(mod 3) and

xi = yi for i ∈ {0, 1, 2, ..., n− 1} − {j}.
Furthermore, the i-th position, from the right to

the left, of the n-bit string xnxn−1...x1 is called the

i-dimension. The edge (x, y) is called a j-dimensional

edge or simply a j-edge. A vertex incident to a j-edge

is called a j-dimensional vertex.

Let Q3
n−1(p) denote the subgraph of Q3

n induced

by {(un−1un−2...ui...u0) ∈ V (Q3
n)|ui = p}, where

0 6 p 6 2. We may divide Q3
n into three disjoint sub-

graphs: Q3
n−1(0), Q

3
n−1(1), Q

3
n−1(2) along dimension i

for any i with 0 6 i 6 2. By Definition 4, we have

Q3
n−1(j)

∼= Q3
n−1, for any integer j with 0 6 j 6 2. Ac-

cording to the definition of Q3
n, there are exactly 3n−1

edges, which form a perfect matching between Q3
n−1(j)

and Q3
n−1(j + 1) for 0 6 j 6 2. We call Q3

n−1(j) and

Q3
n−1(j+1) to be adjacent subcubes, and call the edges

between two adjacent subcubes “bridges”. Figs.1(a)–

1(c) demonstrate Q3
1, Q

3
2, and Q

3
3, respectively. Similar

to the n-dimensional hypercube, the n-dimensional Q3
n

is 2n-regular.

3 Embedding the 3-Ary n-Cube into a Linear

Array and a Grid

In this section, we propose embeddings of Q3
n into

a linear array and a grid with minimum wirelength,

respectively. Before discussing the issue, we first intro-

duce the following definitions. The wirelength problem

is solved by edge isoperimetric problem.

3.1 Edge Isoperimetric Problem for 3-Ary

n-Cube

In this subsection, we investigate the optimal set

and the edge isoperimetric problem of 3-ary n-cube.
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Fig.1. (a) 3-ary 1-cube Q3
1. (b) 3-ary 2-cube Q3

2. (c) 3-ary 3-cube Q3
3.

The maximum induced subgraph of Q3
n is crucial for

calculating the edge congestion. Therefore, the primary

purpose in this subsection is to prove the maximum in-

duced subgraph of Q3
n.

The following two definitions of the edge isoperi-

metric problem of a graph G = (V,E) have been

studied in [37]. The first problem is to find a sub-

set of vertices of a given graph, such that the edge

cut separating this subset from its complement has

minimum size among all subsets of the same cardi-

nality. Mathematically, for a given positive integer

m, if θG(m) = minA⊆V,|A|=m|[A, V − A]G|, where

[A, V − A]G = {(u, v) ∈ E|u ∈ A, v ∈ (V − A)}, then
the problem is to find A ⊆ V such that |A| = m and

|[A, V −A]G| = θG(m), which is called an optimal set.

Another problem is called maximum induced sub-

graph problem[37], which is to find a subset of ver-

tices of a given graph, such that the number of edges

in the subgraph induced by this subset is maximum

among all induced subgraphs with the same number

of vertices. Mathematically, for a given positive in-

teger m, if IG(m) = maxA⊆V,|A|=m|TG(A)|, where

TG(A) = {(u, v) ∈ E|u, v ∈ A}, then the problem is to

find A ⊆ V such that |A| = m and TG(A) = |IG(m)|.
For regular graphs, the optimal set problem and the

maximum subgraph problem are equivalent.

Lemma 1[38]. Let V be the set of vertices of Q3
n,

and Q3
n−1(0), Q

3
n−1(1) and Q3

n−1(2) are three disjoint

subgraphs. Then |E(Q3
n[Vi+j ])| 6

2∑

i=0

|E(Q3
n[Vi])| +

∑

06i<j62

min{|Vi|, |Vj |}.

Definition 5. For any integer m > 1 and S ⊆
V (G) with |S| = m, if G[S] is the subgraph with the

maximum number of edges among all induced subgraphs

with m vertices, then G[S] is called the maximum in-

duced graph with m vertices in G.

Definition 6. Let f : V (Q3
n) → {1, 2, ..., 3n} be a

mapping, where for arbitrary vertex u = un−1un−2...u0
in Q3

n,

lex(u) =
n−1∑

i=0

ui3
i + 1.

which is actually the decimal number of u.

Lemma 2. Let ILi denote the incomplete Q3
n

on i vertices, and then Li is isomorphic to ILi for

1 6 i 6 3n.

Proof. Let f : Li → ILi by f(l) = 3n − l − 1.

Therefore, if (l1l2...ln) is the ternary representation of

l, then (l′1l
′
2...l

′
n) is the ternary representation of f(l),

where l′i = 1 − li. Then (x, y) is an edge in Li ⇔ the

ternary representations of u and v differ in exactly one

bit, and the same holds for f(u) and f(v). Thus (u, v)

is an edge in Li and (f(u), f(v)) is an edge in ILi. �

Lemma 3. Let K be a subgraph of Q3
n isomorphic

to Lk where k 6 3n−1. Let K1, K2 and K3 be disjoint

segments induced by k1, k2 and k3 consecutive vertices

of Q3
n−1(0), Q

3
n−1(1) and Q3

n−1(2), respectively such

that k1 + k2 + k3 = k. Then |E(Q3
n[K1 ∪K2 ∪K3])| 6

|E(Q3
n[K])|.

Proof. By the definition of Q3
n, we can partition

Q3
n into three disjoint subgraphs: Q3

n−1(0), Q
3
n−1(1),

Q3
n−1(2) along dimension i for any i with 0 6 i 6 2.

Let E(Q3
n[Kj ∧ Kj+1]) denote the set of edges in Q3

n

with one end in Kj and the other end in Kj+1. With-

out loss of generality, we assume that k3 6 k2 6 k1.

We have the following cases.

Case 1. 1 6 |V | 6 3n−1.

Case 1.1 K1 ⊆ Q3
n−1(0).

Assume k
′

= l1 + l2 be the number of non-

consecutive vertices in K
′

that lie in Q3
n−1(0) where

k
′

= k1. Let L1 and L2 be two disjoint segments

induced by l1 and l2 consecutive vertices in Q3
n−1(0).
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Clearly, |E(Q3
n[K

′

])| 6 |E(Q3
n[Lk′ ])|. This implies that

|E(Q3
n[K

′

])| = |E(Q3
n[l1])| + |E(Q3

n[l2])| + |E(Q3
n[l1 ∧

l2])| 6 |E(Q3
n[Ll1 ])| + |E(Q3

n[Ll2 ])| + l1. By Lemma 1,

we get |E(Q3
n[L1 ∪ L2])| 6 |E(Q3

n[K
′

])|.
Case 2. 3n−1 < |V | < 2× 3n−1.

Case 2.1 K1 ⊂ Q3
n(i), 0 6 i 6 2.

Let k1 and k2 be the vertices that lie in Q3
n−1(0)

and Q3
n−1(1), respectively, inducing subgraphs K1 and

K2, respectively. Since there is only one edge between

K1 and K2, |E(Q3
n[K1 ∧ K2])| 6 k2. Let H1 = Lk1

.

Then |E(Q3
n[H1])| = |E(Q3

n[Lk1
])|. Let H2 be the sub-

graph of Q3
n induced by the vertices in Q3

n−1(1) la-

beled as 3n−1 − 1, 3n−1 − 2, ..., 3n−1 − k2. This implies

that |E(Q3
n[K1 ∪K2])| = |E(Q3

n[K1])|+ |E(Q3
n[K2])|+

|E(Q3
n[K1 ∧K2])| 6 |E(Q3

n[Lk1
])|+ |E(Q3

n[Lk2
])|+ k2.

By Lemma 1, we get |E(Q3
n[K1 ∪K2])| 6 |E(Q3

n[Lk1
+

Lk2
])| = |E(Q3

n[H1 ∪H2])|.
Case 2.2 K1 ⊂ Q3

n(i) ∪Q3
n−1(i + 1), 0 6 i 6 2.

Let k1, k2 be the number of consecutive vertices

in K1, K2 that lie in E(Q3
n[K1 ∧ K2] respectively.

Then |E(Q3
n[K1])| 6 |E(Q3

n[Lk1
])|, |E(Q3

n[K2])| 6

|E(Q3
n[Lk2

])| and |E(Q3
n[K1 ∧ K2])| 6 2k2. Hence

|E(Q3
n[K1∪K2])| 6 |E(Q3

n[Lk1
])|+ |E(Q3

n[Lk2
])|+2k2.

Let H1 = Lk1
. Then |E(Q3

n[H1])| = |E(Q3
n[Lk1

])|. Let

H2 be the subgraph of Q3
n induced by the vertices in Q1

s

labeled as 3n−1−1, 3n−1−2, ..., 3n−1−k2. This implies

|E(Q3
n[H2])| = |E(Q3

n[Lk2
])| and |E(Q3

n[H1 ∧ H2])| >
2k2. Therefore |E(Q3

n[H1 ∧ H2])| > |E(Q3
n[Lk1

])| +
|E(Q3

n[Lk2
])| + 2k2 and hence |E(Q3

n[K1 ∪ K2])| 6

|E(Q3
n[H1 ∪ H2])|. Let k2 ∪ k3 = p + q be the

number of vertices in K2 that lie in Q3
n \ Q3

n−1(i).

Then |E(Q3
n[K1 ∧ K2])| 6 k2. But |E(Q3

n[K1])| 6

|E(Q3
n[Lk1

])|. Similarly |E(Q3
n[K2])| 6 |E(Q3

n[Lk2
])|.

This implies that |E(Q3
n[K1 ∪ K2])| = |E(Q3

n[K1])| +
|E(Q3

n[K2])| + |E(Q3
n[K1 ∧ K2])| 6 |E(Q3

n[Lk1
])| +

|E(Q3
n[Lk2

])| + k2. By Lemma 1, we get |E(Q3
n[K1 ∪

K2])| 6 |E(Q3
n[H1 ∪H2])|.

Case 3. 2× 3n−1 + 1 < |V | 6 3n.

Let k1, k2 and k3 be the number of con-

secutive vertices in K1, K2 and K3 that lie in

Q3
n−1(0), Q

3
n−1(1) and Q3

n−1(2) respectively. Then

|Q3
n[K1])| 6 |E(Q3

n[Lk1
])|, |E(Q3

n[K2])| 6 |E(Q3
n[Lk2

])|
and |E(Q3

n[K3])| 6 |E(Q3
n[Lk3

])|. Then |E(Q3
n[K1 ∧

K2]| 6 2k2, |E(Q3
n[K2 ∧ K3])| 6 2k3 and

|E(Q3
n[K3 ∧ K1])| 6 2k3. Hence |E(Q3

n[K1 ∪ K2])| 6
|E(Q3

n[Lk1
])|+ |E(Q3

n[Lk2
])|+2k2, |E(Q3

n[K2∪K3])| 6
|E(Q3

n[Lk2
])| + |E(Q3

n[Lk3
])| + 2k3, and |E(Q3

n[K1 ∪
K3])| 6 |E(Q3

n[Lk1
])| + |E(Q3

n[Lk3
])| + 2k3. Let H1 =

Lk1
. Then |E(Q3

n[H1])| = |E(Q3
n[Lk1

])|. Let H2 be the

subgraph of Q3
n induced by the vertices in Q3

n−1(1) la-

beled as 3n−1 − 1, 3n−1 − 2, ..., 3n−1 − k2, and H3 be

the subgraph of Q3
n induced by the vertices in Q3

n−1(2)

labeled as 3n−1−1, 3n−1−2, ..., 3n−1−k3. This implies

|E(Q3
n[H2])| = |E(Q3

n[Lk2
])| and |E(Q3

n[H1 ∧ H2])| >
2k2, |E(Q3

n[H3])| = |E(Q3
n[Lk3

])| and |E(Q3
n[H2 ∧

H3])| > 2k3. Therefore |E(Q3
n[H1 ∪ H2 ∪ H3])| >

|E(Q3
n[Lk1

])|+ |E(Q3
n[Lk2

])|+ |E(Q3
n[Lk3

])|+2k2+2k3
and hence |E(Q3

n[K1 ∪K2 ∪K3])| 6 |E(Q3
n[H1 ∪H2 ∪

H3])|. �

Definition 7. For any integer m > 1 and S ⊆
V (G) with |S| = m, if G[S] is the subgraph with the

maximum number of edges among all induced subgraphs

with m vertices, then G[S] is called the maximum in-

duced graph with m vertices in G.

Lemma 4. For any integer 1 6 m 6 3n, let

S ⊆ V (Q3
n) with S = {x ∈ V (Q3

n)|lex(x) 6 m}. Then

Q3
n[S] is a maximum induced subgraph with m vertices.

Proof. Let X be a set of m consecutive vertices

on S. Let Y be a set of m non-consecutive ver-

tices on S. Then Y =
⋃j

i=1 Si where j > 2, S
′

is

are mutually disjoint and each Si is a set of consec-

utive vertices such that
∑j

i=1 |Si| = k. We claim that

|E(Q3
n[Y ])| 6 |E(Q3

n[X ])|. We prove this claim by in-

duction on τ . When τ = 2, by Lemma 1, we get

|E(Q3
n[Y ])| 6 |E(Q3

n[X ])|. Assume that the claim is

true for τ − 1. Then |E(Q3
n[
⋃τ

i=1Ki])| 6 |E(Q3
n[K])|

where K is induced by k − |Kτ | consecutive vertices.

And |E(Q3
n[
⋃τ

i=1Ki])| = |E(Q3
n[
⋃τ−1

i=1 Ki ∪ Kp])| 6

|E(G[K ∪Kp])| 6 |E(G[X ])|. �

Lemma 5. For 1 6 i 6 3n−1, Li is an optimal set

in Q3
n−1.

Proof. Let S be an induced subgraph of Q3
n which

is isomorphic to Lj, j 6 3n−1. Let N be a set of k non-

consecutive vertices in Q3
n. Then N =

⋃p
i=1Ai where

p > 2, Ai’s are equally disjoint and each Ai is a set of

consecutive vertices in Q3
n such that

∑p
i=1 |Ai| = s.

In case an Ai contains vertices labeled as 3n−1 − 1

and 3n−1, then we split Ai into two sets such that one

set ends with label 3n−1 − 1 and the other set begins

with label 3n−1. By induction and Lemma 4, we get

|E(Q3
n[N ])| 6 |E(Q3

n[S])|. Thus Li is an optimal set in

Q3
n−1. �

Theorem 1. For 1 6 i 6 3n, Li is an optimal set

in Q3
n.

Proof. By Definition 4, Q3
n can be partitioned into

Q3
n−1[0], Q

3
n−1[1] and Q

3
n−1[2]. By Lemma 5, Li is an

optimal set for 1 6 i 6 3n−1. Now let i > 3n−1. Then

we have L′
i = Q3

n − Li
∼= L3n−i . Since 3n − i < 3n − 1,

by Lemma 5, L′
i is an optimal set in Q3

n. �
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3.2 Embedding the 3-Ary n-Cube into a Linear

Array

In this subsection, we will give an embedding of Q3
n

into a linear array with minimum wirelength. When the

host graph is a linear array, we call the wirelength of

the embedding as linear wirelength, and the dilation of

the embedding is most commonly called the bandwidth.

The bandwidth problem, which is NP-complete[19], can

be defined as follows.

Definition 8. For any integer n > 1, the linear

array of n vertices, denoted by Ln, is a graph such that

V (Ln) = {1, 2, ..., n} and where E(Ln) = {(i, i+ 1)|i ∈
[1, n− 1]}.

Definition 9. Let lex : V (Q3
n) → {1, 2, ..., 3n} be a

mapping, where for arbitrary vertex u = un−1un−2...u0
in Q3

n,

lex(u) =

n−1∑

i=0

ui3
i + 1,

which is actually the decimal number of u.

Let G be a graph and Ln be a linear array with n

vertices. Let f be an embedding from G to Ln. The

bandwidth of the embedding f of G into Ln is defined

as

Bf (G) = max{|f(v)− f(u)|(u, v) ∈ E(G)}.

Furthermore, the minimum bandwidth from all embed-

dings from G to Ln is defined as

B(G) = min{Bf(G)|f is an embedding from G to Ln}.

The bandwidth problem is to find an embedding of

G into Ln such that it has the minimum bandwidth.

Theorem 2. Q3
n can be embedded into L3n with

dilation 2× 3n−1.

Proof. Let f = lex. For an arbi-

trary vertex α0 in Q3
n−1(0), let its incident edges

be (α0, α1), (α0, α2), (α0, α3), (α0, α4), (α0, β0), and

(α0, γ0), where α1, α2, α3, α4 ∈ V (Q3
n−1(0)), β0 ∈

V (Q3
n−1(1)) and γ0 ∈ V (Q3

n−1(2)) (see Fig.2).

Clearly, max{dist(L3n , f(x), f(y))|x, y ∈ {α0, α1, α2,

α3, α4, β0, γ0}} = max{|f(γ0) − f(α0) |(α0, γ0) ∈
Q3

n} = 2× 3n−1. Therefore, the dilation of embedding

Q3
n into L3n can be formulated as follows:

dil(f,Q3
n, L3n)

= max{dist(L3n , f(u), f(v))|(u, v) ∈ V (Q3
n)}

= 2× 3n−1. �

Lemma 6. The lex embedding of Q3
n into a linear

array L3n induces a minimum wirelength.

Qn֓♭♯ Qn֓♭♯ Qn֓♭♯


a

f↼a↽ f↼a↽ f↼a↽ f↼a↽ f↼a↽ f↼β↽ f↼γ↽

a

a
a

a

β

γ

1 2 3 4 7 3n֓+1 2Τ3n֓+1 3n

Fig.2. Adjacent vertices of α0.

Proof. Let f = lex and G = Q3
n. For 1 6 i 6 3n, let

Si be the i-th edge of L3n . Removal of Si leaves L3n into

two components Xi and X
′

i where V (Xi) = {0, 1, ..., i}
and V (X

′

i ) = {i + 1, i + 2, ..., 3n}. Then Si parti-

tions E(L3n) − Si, i = 1, 2. Then S1, S2 are disjoint

sets and S = S1 ∪ S2 is an edge cut of L3n . For

each j, E(L3n) − Sj has three components Hj1, Hj2

and Hj3 induced by consecutive vertices on C3n with

|Hj1| = 3n−1, |Hj2| = 3n−1 and |Hj3| = 3n−1. Let Gi

and G
′

i be the inverse images of Xi and X
′

i under f , re-

spectively. By Lemma 4,
⋃3i

i=1[Gi] is isomorphic to Q3
i

with 1 6 i 6 n. It can be further verified that {(i−1, i)}
satisfies Lemma 3, and the edge congestion ECf (Si)

is minimum under embedding lex for i = 1, 2, ..., 3n.

Thus the wirelength WLf(Q
3
n, L3n) of embedding Q3

n

into L3n is minimum. �

Lemma 7. The minimum wirelength of Q3
n into

L3n under f is:

WLf(Q
3
n, L3n) =

1

2
(32n − 3n)(3n+1 − 2n× 3n−1).

Proof. Let f = lex and Sj = {(j, j + 1)}. Then Sj

is an edge cut of L3n , 2 6 j 6 3n−2, which disconnects

L3n into two linear arrays Lj and L
′

j, where V (Lj) =

{1, 2, ..., j} and V (L
′

j) = {j + 1, j + 2, ..., 3n − 2}. By

Lemma 4, f−1(Lj) is a maximum subgraph with k ver-

tices where k = |V (f−1(Lj))|. Thus the edge conges-

tion T n
j for edge cut Sj is as below:







T n−1
j + 2j, 1 6 j < 3n−1,

2× 3n−1, j = 3n−1, j = 2× 3n−1,

T n−1
j−3n−1 + 2× 3n−1, 3n−1 + 1 6 j < 2× 3n−1,

T n−1
j−2×3n−1 + 2× (j − 2× 3n−1),

2× 3n−1 + 1 6 j 6 3n.
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It can be further verified that the edge congestion

ECf (Sj) in {(i − 1, i)} is minimum under embedding

lex. Thus the wirelength of embedding Q3
n into L3n

is minimum. Thus ECf (Sj) = 3j+1 − 2j × 3j−1. Let

S1, S2, ..., Sj be j edge cuts of L3n , 1 6 j 6 3n − 1.

Therefore

WLf (Q
3
n, L3n)

=

3n−1∑

j=1

ECf (Sj)

=
1

2
(32n − 3n)(3n+1 − 2n× 3n−1). �

3.3 Embedding the 3-Ary n-Cube into Grid

M(3⌊n/2⌋, 3⌈n/2⌉)

In this subsection, we propose an embedding of Q3
n

into a grid with minimum wirelength. The proposed

embedding of Q3
n into L3n in Subsection 3.1 is actually

an embedding of Q3
n into the special grid, which is a

1 × n grid. In the following, we will give an embed-

ding of Q3
n into grid M(3⌊n/2⌋, 3⌈n/2⌉) with minimum

wirelength. Firstly, the definition of grid is given as

below.

Notation 1. An m×n grid M(m,n) is denoted by

an m× n matrix








α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

...
...

αm1 αm2 · · · αmn







,

where V (M) = {αij |1 6 i 6 m , and 1 6 j 6 n},
(αi,j , αi,j+1) ∈ E (M) for 1 6 i 6 m and 1 6 j 6 n−1,

and (αk,l, αk+1,l) ∈ E (M) for 1 6 k 6 m − 1 and 1 6

l 6 n. 〈α11, α12, · · · , α1n〉 and 〈αm1, αm2, · · · , αmn〉
are called the row-borders, while 〈α11, α21, · · · , αm1〉
and 〈α1n, α2n, · · · , αmn〉 are called the column-borders.

Definition 10. Let π : Q3
n → M(3⌊n/2⌋, 3⌈n/2⌉)

be an embedding, which is defined as follows. The first

column is labeled from 1 to 3⌈n/2⌉ from top to bottom.

The i-th column is labeled from 1 to (i − 1)3⌊n/2⌋ +

1, (i− 1)3⌊n/2⌋ +2, ..., i3⌊n/2⌋ from top to bottom where

i = 1, 2, ..., 3⌈n/2⌉. Then, for any v ∈ V (Q3
n), let

π(v) = lex(v).

Then, we first prove the edge congestion problem

and the wirelength problem of Q3
n into a grid can be

solved by using the embedding π.

Lemma 8. Rlex
i = {1, ..., i3⌈n

2
⌉} is an optimal set

in Q3
n for i = 1, 2, ..., 3⌊

n
2
⌋ and ⌊n

2 ⌋+ ⌈n
2 ⌉ = n.

Proof. This proof can be obtained directly from

Theorem 1. �

Lemma 9. For j = 1, 2, ..., 3⌊
n
2
⌋,

Clex
j

=







1, 1× 3⌊
n
2
⌋, 2× 3⌊

n
2
⌋, ..., 3⌈

n
2
⌉ × 3⌊

n
2
⌋,

2, 1× 3⌊
n
2
⌋ + 1, 2× 3⌊

n
2
⌋ + 1, ...,

3⌈
n
2
⌉ × 3⌊

n
2
⌋ + 1,

...
j, 1× 3⌊

n
2
⌋ + j − 1, 2× 3⌊

n
2
⌋ + j − 1, ...,

3⌈
n
2
⌉ × 3⌊

n
2
⌋ + j − 1







is an optimal set in Q3
n where 3⌈

n
2
⌉ + 3⌊

n
2
⌋ = n.

Proof. Let f : Clex
j → L

j×3⌊
n
2

⌋ with f(k × 3⌈
n
2
⌉ +

l) = l × 3⌊
n
2
⌋ + k. We use u1u2...un in Clex

j to denote

the ternary string of l × 3⌊
n
2
⌋ + k. Since the ternary

string representations of two numbers u and v differ in

exactly one bit, the same holds for f(u) and f(v). Thus

(u, v) is an edge in Ri and (f(u), f(v)) is an edge in L2i .

Therefore, Ri is isomorphic to Li. By Theorem 1, Clex
j

is an optimal set of Q3
n. �

Next, we will give the minimum wirelength of em-

bedding Q3
n into the grid M(3n1 , 3n2), for n1 + n2 = n

and n > 4.

Theorem 3. Let G = Q3
n and H = M(3n1 , 3n2),

where n1 + n2 = n. Let S1, S2, ..., Sp be p edge cuts

of M(3n1 , 3n2), 1 6 p 6 3n2−1, which consists of

edges between the columns j and j + 1 of M(3n1 , 3n2),

1 6 j 6 3n2−1. Furthermore, let f = π. Then

3n2−1∑

j=1

ECf (Sj) =
1

2
3n1(32n2−3n2)(3n2+1−2n2×3n2−1).

Proof. Let Hj1 and Hj2 denote two connected com-

ponents of M(3n1 , 3n2) − Sj , where f(Gj1) = Hj1 and

f(Gj2) = Hj2, as depicted in Fig.3. According to

Lemma 4, the subgraph induced by V (Gj1 ) is maxi-

mum. Therefore, ECf (Sj) is minimum, 1 6 j 6 3n2−1.

Thus we have:

3n2−1∑

j=1

ECf (Sj) =

3n2−1∑

j=1

ECf (Sj)

=

3n2−1∑

j=1

λG(j × 3n1)

=
1

2
3n1(32n2 − 3n2)(3n2+1 − 2n2 × 3n2−1). �

Theorem 4. Let G = Q3
n and H = M(3n1 , 3n2),

where n1 + n2 = n. Let f = π and S1, S2, ..., Sp

be p edge cuts of M(3n1 , 3n2), 1 6 p 6 3n2−1. Fur-

thermore, let Hj1 and Hj2 denote two connected com-

ponents of M(3n1 , 3n2) − Sj, where f(Gj1) = Hj1 and
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f(Gj2) = Hj2. For any 1 6 j 6 p, if ECf (Hj1) is

minimum, then f−1(Hj1) is a maximum subgraph in

G.

(5, 1)

(4, 1)

(3, 1)

(2, 1)

(1, 1)

(3n, 1)

(5, 3n)

(3n, 3n)

(4, 3n)

(3, 3n)

(2, 3n)

(1, 3n)
(1, 2) (1, 3) (1, 4) (1, 5)

Hj HjSj

...

Fig.3. Edge cut of M(3n1 , 3n2 ).

Proof. Suppose ECf (θH(j1)) is minimum with

V (Hj1) = m. We will prove that the subgraph in-

duced by Gj1 = f−1(Hj1) is maximum in Q3
n on m

vertices. Otherwise, there exists V (G
′

j1) ⊆ V (Q3
n) such

that |E(Gj1)| < |E(G
′

j1)|. Since Q3
n is 2n-regular,

ECf (θH(j1)) = nm − 2|E(Gj1)| > nm − 2|E(G
′

j1)| =
ECf (θH(f(G

′

j1))), which is a contradiction to our as-

sumption. Therefore, f−1(Hj1) is a maximum induced

subgraph of Q3
n. �

Theorem 5. The minimum wirelength of embed-

ding Q3
n into the grid M(3n1 , 3n2) is

WL(Q3
n,M(3n1 , 3n2))

=
1

2
3n1(32n2 − 3n2)(3n2+1 − 2n2 × 3n2−1) +

1

2
3n2(32n1 − 3n1)(3n1+1 − 2n1 × 3n1−1).

Proof. Let f : Q3
n → M(3n1 , 3n2) be the em-

bedding π, where n1 + n2 = n and n1 6 n2.

Let Ci = {(αi,j , αi,j+1)|1 6 j 6 3n2} and Rj =

{(αi,j , αi+1,j)|1 6 i 6 3n1}, where 1 6 i 6 3n1 and 1 6

j 6 3n2 . Let Hj1 and Hj2 denote two connected com-

ponents of M(3n1 , 3n2)−Rj , where f(Gj1) = Hj1 and

f(Gj2) = Hj2. Let Hi1 and Hi2 denote two connected

components of M(3n1 , 3n2) − Ci, where f(Gi1) = Hi1

and f(Gi2) = Hi2. Obviously, each edge of Ci has the

same edge congestion. Thus the sum of edge conges-

tion of each column is equal. By Lemma 7, the sum

of edge congestion of each column of M(3n1 , 3n2) is
1
2 (3

2n1 − 3n1)(3n1+1 − 2n2 × 3n1−1). Similarly, it is

easy to verify the sum of edge congestion of each row is

3n2(32n1−1 − 3n1). Let Gj1 and Gi1 be the inverse im-

ages of Rj1 and Ci1 under the embedding f respectively.

Clearly, Gi1 is a subgraph induced by V (f−1(Hi1)).

By Lemma 4, it is certain that Gi1 is a maximum in-

duced subgraph of Q3
n. Thus ECf (Ci) is minimum for

i = 1, 2, ..., 3n1. Therefore, Gi1 is a maximum subgraph

induced by Rj1. Thus ECf (Rj) is minimum, where

j = 1, 2, ..., 3n2. Therefore, the wirelength of embed-

ding Q3
n into M(3n1 , 3n2) is:

WL(Q3
n,M(3n1 , 3n2))

=

3n1

∑

j=1

λG(j × 3n2) +

3n2

∑

i=1

λG(i × 3n1)

=
1

2
3n1(32n2 − 3n2)(3n2+1 − 2n2 × 3n2−1) +

1

2
3n2(32n1 − 3n1)(3n1+1 − 2n1 × 3n1−1). �

Let N = 3n be the number of vertices of Q3
n.

By Theorem 5, the number of edge cuts is (3n2 − 1)

and deleting each edge cut needs one time unit, and

thus deleting all edge cuts takes (3n2 − 1) time units.

Consequently, the total time for embedding Q3
n into

M(3n1 , 3n2) with minimum wirelength is O(N + 3n2 −
1 + 1) 6 O(2N), n1 + n2 = n, which is linear.

4 Square Grid Layout of 3-Ary n-Cube

In this section, we discuss an embedding of Q3
n into

a square grid. Subsection 4.1 gives an embedding of Q3
n

into a square grid with a balanced load that minimizes

the dilation and the congestion. In Subsection 4.2, an

embedding algorithm of Q3
n into a grid with balanced

communication is proposed and the correctness of this

algorithm is also analyzed.

4.1 Embedding Q3
n into a Square Grid

In this subsection, we first propose an embedding of

Q3
n into a 2-dimensional square grid with minimum con-

gestion, and then obtain the required number of tracks

for implementing Q3
n into a chip. It is different be-

tween the dilation problem and the wirelength problem

to some extent that an embedding with the minimum

dilation needs not have the minimum wirelength and

vice versa. Since the wirelength problem itself is NP-

complete[39], the question arises whether it is possible
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to obtain a lower bound for dilation without considering

the wirelength of an embedding.

Theorem 6. For any integer n > 3, Q3
n can be

embedded into the square grid M(h, h) with dilation:

dil(Q3
n;M(3

n
2 , 3

n
2 )) = 2× 3

n
2
−1, n = 2k, k > 1,

dil(Q3
n;M(⌈

√
3n⌉, ⌈

√
3n⌉)) = 3⌈

n
2
⌉−1,

n = 2k + 1, k > 1.

Proof. Let f = π, G1 = Q3
n−1(0), G2 = Q3

n−1(1),

and G3 = Q3
n−1(2). Furthermore, for any integers h

and w, let h and w be the number of columns and rows

of M respectively. Clearly, the grid M(h,w) has 3⌊n/2⌋

columns. Each subcube Q3
n−1(k)(0 6 k 6 2) is embed-

ded into its each column by using the method presented

in Theorem 2. For any (u, v) ∈ Q3
n, we have the follow-

ing two cases in M(h,w).

Case 1. n is even. The vertex number of Q3
n is a

quadratic number. Thus Q3
n can be embedded into a

grid M(h, h), where h = 3
n
2 . We have to estimate the

distances between image vertices within the subcubes

of Q3
n and have the following cases.

Case 1.1. (u, v) ∈ E(Q3
n−1(k)), 0 6 k 6 2. Let Cj

be the set of vertices of the j-th column ofM(3
n
2 ×3

n
2 ),

1 6 j 6 3n1 . Since the maximum value of the distance

between f(u) and f(v) in M is equal to the dilation of

embedding Q3
n−2 into a linear array with 3n−2 vertices,

the maximum value of the distance between f(u) and

f(v) is 2× 3
n
2
−1.

Case 1.2. u ∈ V (Q3
n−1(k)) and v ∈ V (Q3

n −
Q3

n−1(k)), 0 6 k 6 2. Let Ej = {((i, j), (i, j + 1))|1 6

i 6 3⌊
n
2
⌋−1}, 1 6 j 6 3⌈

n
2
⌉. Clearly, the subcubes G1

and G3 are mapped to columns 1, 2, ..., 3⌊n/2⌋−1 and

2 × 3⌊n/2⌋−1 + 1, 2 × 3⌊n/2⌋−1 + 2, ..., 3⌊n/2⌋ in M , re-

spectively. By Theorem 2, the maximum value of the

distance between f(u) and f(v) in M is 2× 3⌊
n
2
⌋ + 1.

Case 2. n is odd. We firstly embed Q3
n into a rect-

angular grid M(h, 3h) by using Theorem 5. Firstly, we

apply the same embedding method as case 1 and make

use of the result of Theorem 2. Secondly, we transform

grid M(h, 3h) into a square grid M ′ = (⌈
√
3h⌉, ⌈

√
3h⌉)

by compressing the columns of M . Algorithm 1 per-

forms the process of compressing.

Fig.4 shows the transformation of grid M(9, 3)

into grid M(6, 6). For embedding Q3
n into M ′ =

(⌈
√
3h⌉, ⌈

√
3h⌉), we have the following two cases.

Case 2.1. (u, v) ∈ E(Q3
n−1(k)), 0 6 k 6 2. For

any vertex (i, j) ∈ V (M), we embed it into one of

columns ⌈
√
3(j−1)⌉−1, ⌈

√
3(j−1)⌉, ⌈

√
3(j−1)⌉+1 or

⌈
√
3(j−1)⌉+2 ofM ′. Then the maximum value of the

distance between f(u) and f(v) is 3 in row direction.

Since the vertex (i, j) ∈ V (M) is embedded into one of

the rows ⌈(i− 2)/
√
3⌉,...,⌈(i+4)/

√
3⌉ ofM ′, 1 6 i 6 h,

1 6 j 6 2h, then the maximum value of the distance

between f(u) and f(v) is 3⌈n/2⌉ − 1.

Algorithm 1. Constructing a Square Grid M(
√

3h,
√

3h)
for Q3

n

Input: grid M(h, 3h), where h = 3⌊
n
2
⌋ and n is odd

Output: an embedding f of Q3
n into M(

√
3h,

√
3h)

1: for i = 1 to 3h do

2: Let (1, i) be a vertex in the 1st column;
3: if ⌈i/

√
3⌉ 6= ⌈(i − 1)/

√
3⌉ then

4: Embedding (1, i) into (1, ⌈i/
√
3⌉) ∈ V (M ′)

5: else

6: Embedding (1, i) into (2, ⌈i/
√
3⌉) ∈ V (M ′)

7: end if

8: end for

9: for j = 2 to h do

10: Label the j-th column of M ′ as n1(j), n2(j), ..., n√
3h(j)

from top to bottom, where ni(j) ∈ {1, 2} is the number of
vertices of the j-th column which are embedded into the i-th
row of M ′

11: Embedding the (j+1)-th column of M into M ′ as
n((1+j)mod⌈

√
3h⌉)+1(1), n((2+j)mod⌈

√
3h⌉)+1(1),...,

n((⌈
√
3h⌉+j)mod⌈

√
3h⌉+1)(1)

12: /*(j+1)-th is the 1st column cyclically shift by j rows.*/
13: end for

14: return f
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Fig.4. Transforming (a) grid M(9, 3) into (b) grid M(6, 6).

Case 2.2. u ∈ V (Q3
n−1(k)) and v ∈ V (Q3

n −
Q3

n−1(k)), 0 6 k 6 2. For any vertex (i, j) ∈ V (M), we

embed it into one of rows ⌈(i−2)/
√
3⌉,...,⌈(i+4)/

√
3⌉ of

M ′, 1 6 i 6 h, 1 6 j 6 2h. Then the maximum value

of the distance between f(u) and f(v) is ⌈7/
√
3⌉ = 4

in column direction. Since the vertex (i, j) is embed-

ded into one of columns ⌈
√
3(j − 1)⌉ − 1, ⌈

√
3(j − 1)⌉,
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⌈
√
3(j − 1)⌉ + 1 or ⌈

√
3(j − 1)⌉ + 2 of M ′, the maxi-

mum value of the distance between f(u) and f(v) is

3⌈n/2⌉ − 1.

Hence, the dilation of embedding Q3
n into M ′ is:

dil(Q3
n;M(3

n
2 , 3

n
2 )) = 2× 3

n
2
−1, n = 2k, k > 1;

dil(Q3
n;M(⌈

√
3n⌉, ⌈

√
3n⌉)) = 3⌈

n
2
⌉−1,

n = 2k + 1, k > 1. �

Lemma 10[37]. Let G and H be two graphs with

V (G) = V (H). For any integer l, 0 6 l 6 |V |,

EC(G,H) > max
16l6|V (G)|−1

θG(l)

θH(l)
.

Theorem 7. The minimum edge congestion cong =

(Q3
n,M(3⌊n/2⌋, 3⌈n/2⌉)) of embedding Q3

n into the grid

M(3⌊n/2⌋, 3⌈n/2⌉) is







3⌈n/2⌉+1 − 1

8
, if ⌈n/2⌉ is odd,

3⌈n/2⌉+3 − 3

8
, if ⌈n/2⌉ is even.

Proof. Let f = π and l = 3n−1− 3n−2+3n−3− ...+

(−1)n−⌊n/2⌋+1 × 3⌊n/2⌋ with 3n−2 6 l < 3n−1. For any

integer β, let l = β×3⌊n/2⌋. Furthermore, letMs denote

the subgrid Ms(3
⌊n/2⌋, β). Then it can be obtained

θM(3⌊n/2⌋, 3⌈n/2⌉)(l) 6 θM(3⌊n/2⌋, 3⌈n/2⌉)(|V (Ms)|)
= 3⌊n/2⌋.

Also

θQ3
n
(l) =







3n−1 + 3n−2 + ...+ 3⌊n/2⌋,
if ⌈n/2⌉ is odd,

3n−1 + 3n−2 + ...+ 3⌊n/2⌋+1,
if ⌈n/2⌉ is even.

Therefore

θQ3
n
(l)

θM(3⌊n/2⌋, 3⌈n/2⌉)(l)

>
1

3⌊n/2⌋







3n−1 + 3n−3 + ...+ 3⌊n/2⌋,

if ⌈n/2⌉ is odd,

3n−1 + 3n−3 + ...+ 3⌊n/2⌋+1,

if ⌈n/2⌉ is even

=

{

1 + 32 + ...+ 3⌈n/2⌉−1, if ⌈n/2⌉ is odd,

3 + 33 + ...+ 3⌈n/2⌉+1, if ⌈n/2⌉ is even

=







3⌈n/2⌉+1 − 1

8
, if ⌈n/2⌉ is odd,

3⌈n/2⌉+3 − 3

8
, if ⌈n/2⌉ is even

By Lemma 8, the minimum congestion of embed-

ding Q3
n into M(3⌊n/2⌋, 3⌈n/2⌉) under f is







3⌈n/2⌉+1 − 1

8
, if ⌈n/2⌉ is odd,

3⌈n/2⌉+3 − 3

8
, if ⌈n/2⌉ is even. �

To compute the required number of tracks, the para-

meter trisection width is considered. Trisection width

is defined as the number of links interconnecting three

subgraphs having the same number of vertices. We have

the following theorem.

Theorem 8. The required number of tracks for con-

necting an array of Q3
n with N vertices is N − log3N .

Proof. Let N = 3n denote the vertex number of Q3
n.

Construct a hamiltonian path in Q3
n, and let this path

be a base track. By Definition 4, Q3
n can be divided into

three subcubes Q3
n(0), Q

3
n(1) and Q

3
n(2) with N/3 ver-

tices each. Considering that any vertex in one subcube

has only one neighbor in the other subcube, there are

2N/3 links between the two subcubes. Then the trisec-

tion width of the first partition is 2N/3. We continue to

divide each subcube into three equal sub-subcubes with

N/9 vertices, and the trisection width of this division

is 2N/9. We repeat this division n times. The trisec-

tion width of Q3
3 is illustrated in Fig.5. Let ti denote

the number of required tracks for Q3
n, which can be ob-

tained by summing the trisection width in each proce-

dure. Based on the above division, it can be obtained as

bellow. It needs one track for constructing the Hamil-

tonian path. Then the first trisection needs 2×3n−1−1

tracks, the second trisection needs 2×3n−2−1 tracks,...,

the (n−1)-th trisection needs 2×31−1 tracks, and the

n-th trisection needs 2× 30 − 1 tracks.

Thus, the required number of tracks is,

ti = 2 + (2× 3n−1 − 1) + ...+ (2× 31 − 1)

= 2(3n−1 + 3n−2 + ...+ 1)− (n− 1)

= 2× 1

2
(3n − 1)− n+ 1

= 3n − n

= N − log3N. �

By Theorem 6 and Theorem 7, we can get Theorem

9 as below.

Theorem 9. When n is odd with n > 5, Q3
n can

be embedded into a square grid with balanced load and

minimum congestion and dilation.



Wei-Bei Fan et al.: Optimally Embedding 3-Ary n-Cubes into Grids 383
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2nd
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1st Trisection 1st TrisectionHamiltonian
Path

Fig.5. Trisection of Q3
3.

4.2 Algorithm for Embedding 3-Ary n-Cube

into a Grid

In this subsection, we first present an algorithm for

embedding Q3
n into a grid with balanced communica-

tion, and then analyze the time complexity of this algo-

rithm. We propose an embedding of V (Q3
n) → V (M)

considering communication volume, which keeps a load

balancing communication among all processors.

Let G = Q3
n and H = M(3⌊n/2⌋, 3⌈n/2⌉). Let

f(u) =
∑

(u,x)∈E(G)w(u, x) for any u ∈ V (G), where

w : E(Q3
n) → R+ denotes the weight function, and

w(u, v) represents the communication volume between

u and x. Moreover, let g(v) =
∑

x∈V (H) dist(v, x) for

any v ∈ V (H), where dist(H, v, x) denotes the commu-

nication distance between v and x. An algorithm for

embedding Q3
n into a grid with balanced communica-

tion is given below.

Theorem 10. There exists an O(N2) algorithm for

embedding Q3
n into a grid with balanced communication,

where N = 3n is the number of vertices in Q3
n.

Proof. By Algorithm 2, an embedding considering

communication of Q3
n into grid is proposed. We state

our embedding and prove that this embedding has bal-

anced communication performance.

Our algorithm has the following steps. 1) Let

G0 = Q3
n, and suppose f(u0) = max{f(u)|u ∈ V (G0)},

i.e., u0 is a vertex that has maximum communication

with neighbour vertices among all vertices in G0. Let

H0 = M(3⌊n/2⌋, 3⌈n/2⌉), suppose g(v0) = min{g(v)|v ∈
V (H0)}, i.e., v0 is the vertex with the minimum sum of

distances between it and all other vertices of H0. Then

we assign the vertex u0 to v0 in H0. 2) For any integer

i, with 1 6 i 6 3n − 1, let Gi = Q3
n − {u0, u1, ..., ui−1}.

Suppose f(ui−1) = max{f(u)|u ∈ V (Gi−1)}, i.e., ui−1

is a vertex that has maximum communication with

other vertices in Gi. Let Hi = M(3⌊n/2⌋, 3⌈n/2⌉) −
{v0, v1, ..., vi−1}. Suppose g(vi−1) = min{g(v)|v ∈
V (Hi)}, i.e., vi−1 is the vertex with the minimum sum

of distances between it and all other vertices of Hi. At

last, mapping the last vertex ui to vi, with i = 3n − 1.

Algorithm 2 . Algorithm of Embedding Q3
n into Grid

M(p, q)

Input: Q3
n and grid M(p, q), with p = 3⌊

n
2
⌋, q = 3⌈

n
2
⌉

Output: an embedding h of Q3
n into M(p, q) with balanced com-

munication

1: Let max = −1;
2: Let maxIndex = −1;
3: Let min = +∞;
4: Let minIndex = −1;
5: Choose u0 ∈ V (Q3

n) with maximum
∑

(ui,x)∈E(Q3
n) w(ui, x);

6: S1 = {u0};
7: Choose v0 ∈ V (M(p, q)) with minimum∑

(vi,x)∈V (M(p,q)) dist(vi, x);

8: S2 = {v0};
9: for i = 1 to 3n − 2 do

10: for all (ui, x) ∈ E(Q3
n), with x ∈ S1 and ui ∈ V (Q3

n)−S1

do

11: if
∑

(ui,y)∈E(Q3
n) w(ui, y) > max then

12: max =
∑

(ui,x)∈E(Q3
n) w(ui, x);

13: maxIndex = i;
14: S1 = S1 ∪ {ui};
15: end if

16: end for

17: for all (vi, x) ∈ E(M(p, q)), with x ∈ S2 and vi ∈
V (M(p, q))− S2 do

18: if
∑

(vi,y)
dist(vi, y) < min then

19: min =
∑

(vi,y)
dist(vi, y);

20: minIndex = i;
21: S2 = S2 ∪ {vi};
22: end if

23: end for

24: Let h(ui) = vi;
25: end for

26: return f
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Let t(N) denote the running time of Algorithm 2.

It takes one time unit to traverse a weight edge, and

thus the total number of time units is 3n. Since

the grid M and Q3
n has the same number of vertices,

it takes 3n time units for choosing the vertices with

minimum sum distance. Therefore, it takes one time

unit for mapping vertex ui of Q3
n to vertex vi of grid

M ; thus the total execution time of Algorithm 2 is

t = O(3n(2× 3n + 1) = O(32n)) = O(N2). �

5 Simulation and Experiments

With the increase of the interconnection network

scale, the delay of message passing seriously affects the

communication efficiency between nodes. Network cost

is the most crucial factor to measure an interconnec-

tion network. Especially the redundant search mes-

sages will increase exponentially, which would seriously

influence the efficiency of the interconnection network

search schemes. Congestion and dilation directly af-

fect the queuing delay of messages and communication

delay in the embedding process.

We perform the embedding schemes with experi-

ments on a server. The configuration of the server is as

follows: NVIDIA GTX 1060 GPU, Intelr Xeonr E5-

2670 CPUs with 16 processors running at 3.3 GHz, 1

disk with 3 TB and 64 GB of physical memory. The

operating system is Linux ubuntu 16.04 LTS. In the

process of executing the algorithms, we monitor the re-

source status of the server with Ganglia[36]. We analyze

the algorithm’s network cost by monitoring the state of

resources usage. It mainly calculates the consumption

of computing resources during the execution of algo-

rithms, such as CPU and memory.

We compare our embedding algorithm comb with

the natural embedding[40] and the random embedding.

The natural embedding (natural for short) is a bijection

f : {1, ..., n} → {1, ..., n} such that f(x) = (x+ 1), x <

n, and f(n) = 1. The random embedding (random for

short) is a random bijection f : {1, ..., n} → {1, ..., n}.
Fig.6 illustrates the network cost of three embed-

ding schemes. When the number of nodes is less than

32, the cost of the three algorithms is relatively close.

As the number of nodes increases, the random’s cost

becomes larger than those of the other two algorithms.

Due to the random mapping of nodes, the congestion

and the dilation of some links become quite large. This

will increase the communication cost.
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Fig.6. Network cost of three embedding schemes.

As shown in Fig.7, the comb embedding induces

the lower wirelength compared with the other two em-

beddings. Obviously, random is the worst embedding

with the maximum wirelength required. As the number

of nodes increases, comb embedding has better perfor-

mance than natural embedding.

6 Conclusions

We proposed optimal embedding of 3-ary n-cube

into linear arrays and grids. We first proved that a

Q3
n can be embedded into linear arrays and grids with

minimum wirelength. We then showed that a Q3
n can

be embedded into a square grid with minimal dilation

and congestion. Finally, we proposed an algorithm for

embedding Q3
n into a grid with balanced communica-

tion. The main contribution of this work is that our

Q3
n embedding into square grid is the first embedding

with multiple optimized targets.

The k-ary n-cube is an underlying network model of

both theoretical and practical importance, of which the

cubes of lower k are particularly important in practice.

Therefore it is a worthwhile undertaking to investigate

the embedding of Q3
n into simpler platforms, optimiz-

ing single/multiple objectives. The results of this pa-

per provide more attributes of Q3
n to take into account

when considering it as a candidate for interconnection

network.
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