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Abstract Biological elements usually exert their functions through interactions with others to form various types of

biological networks. The ability of controlling the dynamics of biological networks is of enormous benefits to pharmaceutical

and medical industry as well as scientific research. Though there are many mathematical methods for steering dynamic

systems towards desired states, the methods are usually not feasible for applying to complex biological networks. The

difficulties come from the lack of accurate model that can capture the dynamics of interactions between biological elements

and the fact that many mathematical methods are computationally intractable for large-scale networks. Recently, a concept

in control theory — controllability, has been applied to investigate the dynamics of complex networks. In this article,

recent advances on the controllability of complex networks and applications to biological networks are reviewed. Developing

dynamic models is the prior concern for analyzing dynamics of biological networks. First, we introduce a widely used dynamic

model for investigating controllability of complex networks. Then recent studies of theorems and algorithms for having

complex biological networks controllable in general or specific application scenarios are reviewed. Finally, applications to

real biological networks manifest that investigating the controllability of biological networks can shed lights on many critical

physiological or medical problems, such as revealing biological mechanisms and identifying drug targets, from a systematic

perspective.
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1 Introduction

Biological systems are composed of biological ele-

ments that can interact with one another. The struc-

ture of biological systems can be described by biologi-

cal networks in which nodes are biological elements

and edges connect biological elements that have in-

teractions. Biological processes, which are vital for

living organisms to live, are usually carried out by

complicated interactions among a variety of biologi-

cal elements. Therefore, studying biological elements

and their interactions is critical for understanding the

roles of biomolecules within cells and uncovering the

mechanisms of biological processes. With the develop-

ment of biomedical techniques, such as high throughput

technologies and MRI (magnetic resonance imaging),

various types of biological data have been acquired in

a large amount, which benefits the reconstructions of

different types of biological networks[1−4]. Many ef-

forts have been devoted to excavating underlying rela-

tionships among biological elements based on the topo-

logy of biological networks and substantial progresses

have been made, such as drug target identification[5,6],

human disease gene prediction[7], and protein complex

identification[8].

One of the final goals for investigating a network

is to control its behaviour or state. For biological

networks, acquiring the ability of controlling their be-

haviours implies the capability of changing phenotypes

of biological systems as desired, which is vital for im-
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proving human lives. Control theory is a relatively well

established subject in engineering dealing with the con-

trol of dynamic systems. In 1960s, Kalman pioneered

the state-space approach to systems and introduced

the notions of controllability and observability[9], which

have become the bases of modern control theory. In the

state-space representation, individual nodes have their

own state variables which have specific physical mean-

ings (e.g., gene expression levels in gene regulatory net-

works). Because of the interactions among nodes in a

network, actuating the states of some nodes can affect

other nodes, which may change the state of the network.

Controllability, measuring the ability to steer a network

around in its state space by actuating certain steering

nodes, considers whether it is possible to achieve certain

control objectives by actuating the determined steering

nodes. Therefore, understanding controllability is crit-

ical in the implementation of controlling networks. It

should be mentioned that the problems related to the

actual control processes, such as the determination of

amplitude and frequency of control signals, control time

or control trajectories, are not related to controllability,

but in the scope of control theory.

In this review we focus on the controllability of

complex networks. Several fundamental questions are

raised naturally for the controllability of biological net-

works. 1) How to model the dynamics of complex bio-

logical networks? 2) To what extent the topology of

biological networks is related to the dynamics and con-

trollability? 3) How to select a set of steering nodes

in order to steer a network to a desired state? In this

review, steering nodes refer to the nodes which should

be directly actuated by input control signals in different

control scenarios (e.g., complete controllability, output

controllability, and transittability). 4) How to select

steering nodes under realistic constraints? 5) What in-

formation can we obtain from biological networks based

on network controllability? To answer these questions,

we review recent studies on the controllability of com-

plex networks. In addition, applications of network con-

trollability to biological networks are discussed specifi-

cally, though the developed network control methods

can be applied to other complex networks.

Fig.1 shows the topics and contents of the following

sections, which are based on the proposed questions

and flow for analyzing the controllability of biological
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Fig.1. Contents in the article and flow of analyzing controllability of biological networks. For the dynamic models, we first introduce
dynamic models for representation of biological networks. We illustrate the reasons of focusing on the linear dynamic model in this
article. Then we introduce control theorems related to the complete controllability and controllable subspace of complex networks.
Based on the control theorems, methods for identifying steering node sets for different control objectives are discussed. Finally, we
review studies of biological networks from the perspective of network controllability. Biological meanings of specific steering node sets
and individual nodes that play different roles in network controllability are discussed.
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networks. To address question 1, in Section 2, we intro-

duce the linear dynamic models and their correspond-

ing structural systems. Section 3 introduces the net-

work controllability theorems based on the structural

controllability of structural linear dynamic models[10].

Network topology and dynamic rules between network

elements are two fundamental factors for fully under-

standing the controllability of networks[11]. However,

dynamic rules between biological elements are usually

unavailable or unreliable due to the limits of know-

ledge and the difficulties of estimating model parame-

ters. Therefore, focusing on the structurally control-

lability, which investigates the controllability based on

the network topology, could give an answer to ques-

tion 2. Section 4 introduces the proposed methods to

identify steering node sets for different control objec-

tives, which provide solutions to question 3 and ques-

tion 4. In Section 5, recent studies on the controllability

of biological networks are reviewed, which correspond

to question 5. Applications demonstrate that analyz-

ing the controllability of biological networks provides

a novel perspective for many biological questions, such

as inferring disease associated pathways[12], identifying

drug targets[13], and predicting functions of biological

elements[14].

2 Dynamic Model of Biological Networks

To understand the controllability of biological net-

works, it is important to make clear the dynamic mod-

els. In this section, we present the linear dynamic mod-

els and the corresponding structural systems of biologi-

cal networks which are widely used in analyzing con-

trollability of complex networks.

2.1 Linear Model

In a dynamic network, each node has their own state

value. Assuming that the state change rate of one node

is a linear combination of the states of nodes pointing

to it, we can represent the dynamics of the network

by a set of linear equations. Although the dynamics

of biological systems are nonlinear, linear models have

been applied to describe the dynamics of many biologi-

cal networks such as gene regulatory networks[15]. To

study the controllability of biological networks, it is

reasonable to represent the dynamics of biological net-

works by linear dynamic models. First, there are a

large number of tools available from control theory to

study systems with linear dynamics. For example, a

sufficient and necessary condition for the controllabil-

ity of general linear systems has been developed by

Kalman[9]. Second, the controllability of nonlinear sys-

tems is structurally similar to that of linear systems in

many aspects. If a network is structurally controllable,

then it is controllable for almost all possible parameter

realizations[10]. Therefore, the structural controllabi-

lity of linear system can provide a sufficient condition

for the controllability of most nonlinear systems[11,16].

Actually, to develop strategies for controlling nonlinear

networks, the first step is to investigate the controlla-

bility of the locally linearized system[17]. Last but not

the least, there is an intuitive connection between the

network topology and the state transition matrix of a

linear dynamic model, which makes it possible to cre-

ate dynamic models for large-scale biological networks

based on their topology. Owing to the strong correla-

tions between the linear model and the network topol-

ogy, studying on the linear dynamic model can provide

a vision of a previously proposed question, which is how

much the controllability of biological networks is related

to their topological features.

According to reasons discussed above, in this article,

we will focus on the controllability of linear systems and

biological networks represented by linear dynamic mod-

els. For a linear time-invariant network with n nodes,

the dynamics can be described by the equation:

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) = (x1(t), ..., xn(t))
T

∈ R
n is an n-

dimensional vector that describes the states of all n

nodes in the network. A is an n × n state transition

matrix, whose structure is determined by the adjacent

matrix of the network, indicating the regulatory rela-

tionships between nodes in the network. Entry aij in

matrix A indicates the intensity of influence from node

j to node i. u(t) is an m-dimensional vector of m in-

dependent input control signals. The n×m matrix B

is an input matrix indicating nodes which are directly

actuated by input control signals. A network system

described by (1) is denoted as system (A,B).

2.2 Structural System and Graph

Representation of Linear Systems

When modeling the dynamics of complex networks,

the nonzero entries in matrix A indicate the strengths

of relationships between nodes in the networks. How-

ever, in many scenarios, it is not feasible to obtain the

values of nonzero entries in matrix A precisely. For ex-

ample, although it is feasible to qualify whether there is
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a regulatory relationship between two nodes in biologi-

cal networks, it is difficult to quantify the intensity

of the regulation. In addition, though Kalman’s con-

trollability rank condition has been proposed to test

the controllability of linear systems[9], calculating the

rank of controllability matrix of a large-scale network

is computationally intractable. Therefore, it is diffi-

cult to test the controllability of a network directly by

Kalman’s controllability theorem. To address these is-

sues, recent studies on the controllability of complex

networks are mainly based on the framework of struc-

tural systems, which was proposed by Lin in 1974[10].

In Lin’s study, the controllability of structural systems

was studied and the sufficient and necessary condi-

tion for completely structural controllability of struc-

tural systems was given. Lin’s result has been proved

in different ways[18−21] and generalized to controllable

subspaces[22−24].

When entries in matrices A and B are either fixed

zero or independent free parameters, matrices A and

B are called structural matrices and the correspond-

ing system (A,B) is called a structural system. A

structural system (A,B) is called completely struc-

turally controllable if the Kalman’s controllability con-

dition can be satisfied by freely choosing the val-

ues of the independent free parameters in matrices A

and B[10]. Besides completely structural controllabi-

lity, structural output controllability[24] and structural

transittability[25] have been studied, respectively. In

this review, the controllability of structural systems

(such as completely structural controllability, structural

output controllability, and structural transittability) is

referred to as structural controllability.

The rationale of investigating the controllability of

networks based on the structural system comes from

two aspects. First, the structural linear dynamic model

of a network can be created only based on its topol-

ogy and each nonzero entry in A corresponds to an

edge in the network. Therefore, for modeling biologi-

cal networks, there is no need to consider the types

of biological networks, the kinetic models regulating

the dynamics as well as plenty of unknown parame-

ters. Second, if a structural system (A,B) is struc-

turally controllable, most of its parameter realizations

which are denoted as admissible systems (Ã, B̃) are

controllable, where (Ã, B̃) can be obtained by assigning

some specific values to the free parameters of (A,B)[10].

Therefore, if a network is structurally controllable, no

matter how to choose the values of unknown regula-

tory strengths, the probability that the network is con-

trollable is almost 100%, except some cases that the

unknown regulatory strengths satisfy some constraints

(equations). Therefore, structural controllability anal-

yses can provide reliable results for real networks even

though their parameters are unknown. When a struc-

tural network is controllable with all combinations of

values assigned to the free parameters, the network

is called strong structurally controllable[26]. However,

studies based on strong structural controllability are

usually less computational efficient than methods based

on structural controllability, which are not suitable for

investigating large-scale complex networks[27]. There-

fore, we mainly focus on applications to biological net-

works in the sense of structural controllability in this

review.

Each structural system (A,B) can be represented

by a digraph G(A,B) = {V,E}, where V = VA

⋃
VU

is a node set and E is an edge set. Nodes in VA =

{v1, ..., vn} correspond to nodes in the network under

investigation and nodes in VU = {u1, ..., um} corre-

spond to the input control signals represented by u(t).

E = {vj → vi, uk → vl|aij 6= 0, blk 6= 0} consists of

edges among nodes and edges from control signals to

nodes. The subgraph of G(A,B) induced by the node

set VA is denoted as G(A), which is the original net-

work without input control signals. Fig.2 is an example

of the system (A,B) and its graph representation.
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Fig.2. Graph representation of a network system. (a) G(A,B)
corresponds to system (A,B). (b) State transition matrix A

and input matrix B of the system (A,B).

With graph representation of structural systems,

algebraic structural controllability conditions can be
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converted to graph-theoretic forms. Therefore, vari-

ous graph-theoretic algorithms can be applied to in-

vestigate the structural controllability of complex net-

works, which is more computationally feasible for large-

scale networks compared with algebraic methods. Tak-

ing the advantages of structural controllability, Liu et

al.[11] recently have applied the concept of completely

structural controllability to complex networks. Liu

et al.’s research inspired several research progresses

on network controllability, such as the controllabi-

lity of networks with edge dynamics (each edge has

a state variable)[28], nodal dynamics (each node has

a self-loop) controllability[29], robustness of network

controllability[30] and enhancing network controllability

(reducing input control signals) via minimal structural

perturbations[31] have also been studied. In addition,

a comprehensive platform has been developed for ana-

lyzing the controllability of complex networks[32].

3 Network Controllability Theorems

Since linear systems have been deeply studied in

control theory, a variety of controllability theorems

have been proposed, which paves the way to under-

stand the controllability of complex networks. In addi-

tion, taking the advantages of structural controllability,

connections between the network topology and control-

lability can be established. In this section, we introduce

some important theorems of network controllability.

3.1 Complete Controllability of Complex

Networks

A network is completely controllable if it can be

steered from any initial state x(0) to any desired final

state x(tf ) in finite time tf with appropriate control

signals. The condition for complete controllability is

given by the following theorem.

Theorem 1 (Kalman’s Controllability Theorem[9]).

System (A,B) is completely controllable if and only if

the n× nm controllability matrix

C = (B AB A2B ... An−1B),

has full row rank of n.

To interpret this criterion, (1) can be solved in the

following form:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ. (2)

On the right-hand side of (2), the first term corresponds

to the state that the network will be without any con-

trol signals and the second term represents the effect

of control signals on the network. eA(t−τ)B can be ex-

panded in series, which is a linear combination of the

columns in controllability matrix C. When a network is

completely controllable, the final state x(tf ) could be

any state in the n-dimensional state space. On the one

hand, if rank(C) < n, columns in C will not contain a

full basis to span the entire n-dimensional state space

(see Fig.3). Then there exist some final states xtf , such

that by letting x(tf ) = xtf , (2) has no solution for u.

On the other hand, if rank(C) = n, columns in C con-

tain a full basis. Given any desired final state xtf and

let x(tf ) = xtf , an appropriate input vector u can al-

ways be solved based on (2). Therefore, the system is

completely controllable.
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Fig.3. Uncontrollable network system (A,B). (a) G(A,B) cor-
responds to system (A,B). (b) Controllability matrix of system
(A,B). (c) Controllable subspace. Suppose x(0) = 0, the state
of the network will be kept in a subspace, which is the plane
a31x2(t) = a21x3(t), no matter how to choose the input control
signal u1(t).

For a structural system (A,B), the rank of C is a

function of independent free parameters in A and B.

The maximum value of the rank of C is defined as the

generic dimension of the controllable subspace of struc-

tural system (A,B) and denoted by GDCS(A,B).

A structural system (A,B) is completely structurally

controllable if and only if GDCS(A,B) = n, which

means it is possible to choose the values of the free

entries in matrices A and B such that the Kalman’s

controllability rank condition is satisfied.

A graph-theoretic condition for completely struc-

tural controllability (Theorem 2) has been developed

in previous studies[10,22,23]. Before presenting Theo-

rem 2, we introduce following two definitions (see Fig.4

for example).
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Fig.4. Inaccessible nodes and dilation. (a) There is no path
from u1 to v3. Therefore, node v3 is inaccessible. Nodes v1
and v2 are accessible. (b) Considering a set S = {v2, v3}, we
have T (S) = {v1}. Because |T (S)| < |S|, there exists a dilation.
Based on Theorem 2, systems in (a) and (b) are both structurally
uncontrollable.

Definition 1 (Accessibility[10,33]). In digraph

G(A,B), a node vi in VA is called accessible if and only

if there exists a directed path from the input vertices VU

to vi; otherwise vi is inaccessible.

Definition 2 (Dilation[10,33]). The digraph

G(A,B) contains a dilation if and only if there is a

subset S of VA such that |T (S)| < |S|, where T (S) =

{vj |(vj → vi) ∈ E and vi ∈ S} and E is the edge set

of G(A,B). The input nodes are not allowed to belong

to S but belong to T (S). |S| or |T (S)| is the cardinality

of set S or T (S), respectively.

Theorem 2 (Completely Structural Controllability

Theorem[10,33]). A structural system (A,B) is com-

pletely structurally controllable if and only if:

1) there is no dilation in the digraph G(A,B);

2) all nodes in VA are accessible.

There is an equivalent expression of condition 1:

all the nodes in VA can be covered by node disjoint

simple cycles or simple paths starting from nodes in

VU . In a graph, a simple path is a sequence of

edges {(v1 → v2), (v2 → v3), ..., (vk−1 → vk)} where all

the nodes {v1, v2, ..., vk} are distinct. If v1 = vk and

other nodes are distinct, the sequence of edges is called

a simple cycle.

3.2 Control in Subspaces

In many practical problems, it is neither feasible

nor necessary to completely control a network, which

prompts researchers to develop methods for controlling

parts of a network. Though a system may not be com-

pletely controllable sometimes, it remains controllable

within a subspace (see example in Fig.3(c)). Having

a system controllable within a subspace is enough for

many real applications. In addition, it is natural that

ensuring the controllability within a restricted subspace

will require fewer steering nodes being actuated by in-

put control signals than ensuring controllability within

the whole state space. Therefore, several approaches

have been proposed to investigate the controllability of

networks within subspaces.

3.2.1 Controllable Subnetwork

For structural system (A,B), the dimension of its

controllable subspace is measured by GDCS(A,B),

which is the maximum rank of the controllability ma-

trix C by arbitrarily choosing the values of independent

free parameters. Hosoe[22] proved that if all nodes in a

network system (A,B) are accessible, then

GDCS(A,B) = max
G∈G∗

{|E(G)|},

where G∗ denotes the set of subnetworks of G(A,B)

which can be spanned by a collection of vertex-disjoint

cycles and at most m simple paths (corresponding to

m control signals). |E(G)| is the number of edges in G.

Actually, each subnetwork in G∗ is completely control-

lable. Therefore, the dimension of its controllable sub-

space GDCS(A,B) equals the number of edges in the

largest controllable subnetwork in set G∗. Considering

the structural system (A,B) in Fig.3, the correspond-

ing G∗ consists of two subnetworks of G(A,B) induced

by node sets {u1, v1, v2} and {u1, v1, v3}, respectively.

Based on Hosoe’s controllable subspace theorem, the

GDCS(A,B) of system in Fig.3 is 2, which suggests

the whole network can be steered in a 2-dimensional

state space. Suppose the network is at the origin at

time t = 0, it can be observed that the states of nodes

v2 and v3 must satisfy the equation a31x2(t) = a21x3(t).

But if we only need to control the subnetwork induced

by nodes {v1, v2} or {v1, v3}, it is enough by actuating

node v1 alone.

Based on Hosoe’s controllable subspace theorem, re-

cent studies investigated the controllable subspaces or

completely controllable subnetworks from different per-

spectives, which supplement the theoretical foundation

of structural controllability of complex networks. Liu

et al.[34] defined the control centrality to measure the

ability of individual nodes to control a network. Con-

trol centrality of node i is defined as GDCS(A, b(i)),

where b(i) is a vector with a single nonzero i-th en-

try. The higher control centrality of node means by

actuating only the node with input control signal, the

whole network can be steered in a larger dimension of
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its state space or a larger subnetwork can be completely

controlled. Control centrality can be extended to cases

in which more than one node is actuated by control

signals. Based on this observation, Iudice et al.[35] in-

troduced the network permeability, which measures the

propensity of a network to be controllable. To calcu-

late the permeability, Indice et al.[35] solved a problem

related to control centrality at first: identifyingm steer-

ing nodes from a network with n nodes, such that the

correspondingGDCS(A,Bm) is maximized, whereBm

is an n ×m controllability matrix corresponding to m

steering nodes. Then the permeability is defined as

µ =

∫ n

0
(GDCS(A,Bm)−m)dm∫ n

0 (n−m)dm

=
2

n2

∫ n

0

(GDCS(A,Bm)−m)dm.

Based on the definition, for a network with a high per-

meability, a large controllable subspace can be obtained

or a large subnetwork can be completely controlled by

actuating a relatively small set of steering nodes. In or-

der to find a subnetwork which is easy to be controlled

with less steering nodes, Liu and Pan[36] proposed a

method to choose subnetworks that are important and

easy to be controlled in network systems. Then the

authors applied this method to multiple real networks

and discovered that nodes in the subnetworks chosen

by this method tend to be essential. In another study,

Commault et al.[37] claimed that though the dimension

of the controllable subspace is constant for almost any

parameter realization of a structural system (A,B), the

subspace itself is a function of these parameters. There-

fore, the authors defined a concept called fixed control-

lable subspace, which is the intersection of the control-

lable subspaces of all parameter realizations whose di-

mension of controllable subspace equals GDCS(A,B).

3.2.2 Output (Target) Controllability

In real applications, we are interested in controlling

a specific subset of nodes or a subnetwork of interest.

Since the subset of nodes can be considered as the out-

put of the network, Wu et al.[38] formulated the problem

of controlling a predefined subset of nodes in a network

as a network output controllability problem. Gao et

al.[39] proposed the same idea in an independent study,

in which they referred to as target control.

The outputs of a linear dynamic system (A,B) can

be described by the following equation:

y(t) = Cx(t), (3)

where y(t) = (y1(t), ..., yp(t))
T

is an output vector in

which each entry represents an output. C is a p × n

matrix that indicates the outputs of the network. A

system described by (1) and (3) is denoted by matrix

triplet (A,B,C). For target controllability, the out-

puts are defined as the states of a set of nodes in the

network. Then it is assumed that there is one and only

one nonzero entry in each row of C such that y(t) is

a p-dimensional vector that each entry corresponds to

the state of one node. Therefore, target controllability

is a special case of output controllability.

A network is output controllable if its outputs can

be steered from any initial state y(0) to any desired fi-

nal state y(tf ) in finite time tf with appropriate control

signals. To test the output controllability of a system

(A,B,C), a p × mn output controllability matrix is

defined as

oC = (CB CAB CA2B ... CAn−1B).

The condition of output controllability is given by the

following theorem in control theory.

Theorem 3 (Output Controllability Theorem[40]).

System (A,B,C) is output controllable if and only if

rank (oC) = p.

For a structural system, the rank of oC can reach

a maximum value by arbitrarily choosing the val-

ues of independent free parameters in A, B and C.

The maximum value is defined as the generic dimen-

sion of the controllable output subspace of structural

system (A,B,C) and denoted by GDCOS(A,B,C).

The structural system (A,B,C) is called struc-

turally output controllable if GDCOS(A,B,C) =

p[13,24]. Though Theorem 3 presents conditions for

output controllability, there is no method to calcu-

late GDCOS(A,B,C) of structural system (A,B,C).

Murota and Poljak[24] have developed a method

to determine the upper and the lower bounds of

GDCOS(A,B,C).

3.2.3 Transittability

Output controllability measures the ability of a pre-

defined subset of nodes that can be steered by input

control signals. However, the states of nodes out of

the predefined subset are not considered during con-

trol processes. On the other hand, Wu et al.[25] intro-

duced a new concept called the transittability of net-

works, which measures the ability of transition between

two specific states of complex networks. Transittability

takes the states of all nodes into consideration and re-

duces the required steering nodes compared with com-

plete controllability.
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For system (A,B), it is called transittable between

these two specific states x0 and x1 if there exist in-

put control signals u(t), t ∈ [0, tf ], by which the sys-

tem (A,B) can be transited between two specific states

x(0) = x0 and x(tf ) = x1. A sufficient and necessary

condition for transittability controllability is given by

the following theorem.

Theorem 4 (Transittability Theorem[25]). With ei-

ther specific state x0 or x1 ∈ span{C}, system (A,B)

is transittability between x0 and x1 if and only if

rank(C) = rank(C̄),

where C̄ = (B̄ AB̄ A2B̄ ... An−1B̄) and B̄ =

(x0 − x1,B).

Similar to completely structural controllability, a

structural system (A,B) is called structurally transit-

table between two specific structural states x0 and x1 if

there exists an admissible system (Ã, B̃) (with respect

to (A,B)) and admissible states x̃0 and x̃1 (with re-

spect to x0 and x1, respectively) such that the system

(Ã, B̃) is transittable between states x̃0 and x̃1. In

fact, for structure systems, the transittability between

two structure states actually measures the ability to

control a subset of nodes in the network without dis-

turbing other nodes.

4 Identification of Steering Node Sets

In order to control a network, the first step is to

identify a set of steering nodes which should be ac-

tuated by input control signals. A network system is

completely controllable if each node is directly actuated

by a distinct input control signal. However, it is costly

and impractical for large networks. Therefore, methods

are required to identify minimal steering node sets such

that the control objective can be satisfied. The identi-

fication of steering nodes for controlling networks can

be viewed as problems of determining appropriate con-

trol matrix B when a network, which is represented by

A, is given. Theorems 2–4 provide conditions to judge

if a structural system (A,B)/(A,B,C) is completely

structurally controllable, structurally output control-

lable or transittable between two specific states respec-

tively. However, for a given network (matrix A), con-

trollability theorems do not indicate a set of steering

nodes (matrix B) such that the network system is con-

trollable. A brute-force search for a minimal steering

node set would require checking the controllability con-

ditions for almost 2n distinct controllability matrices

B, which is computationally prohibited. In this section,

methods for identifying steering node sets for different

control objectives are reviewed.

4.1 Steering Nodes for Complete

Controllability

The minimum driver node set (MDS)[11] and the

minimum steering node set (MSS)[33] are two mostly

investigated steering node sets for completely control-

ling networks. Recently, graph-theoretic methods have

been proposed to identify MDSs and MSSs of networks

based on Theorem 2.

The MDS is a minimum set of nodes in which each

node should be actuated by an independent control sig-

nal such that the condition i (“no dilation” condition)

of Theorem 2 can be satisfied. However, applying inde-

pendent control signals to an MDS does not guarantee

complete controllability of the network and it is a nece-

ssary condition for completely controlling a network. In

[11], the identification of MDS has been formulated as a

maximum matching problem in an undirected bipartite

graph corresponding to the original network. A match-

ing on an undirected graph is a set of edges without

common nodes and a maximum matching is a match-

ing with the largest size. To identify an MDS, a bipar-

tite graph which contains node sets R = {r1, · · · , rn}

and C = {c1, · · · , cn} is constructed. The nodes ri and

ci correspond to the node i of G(A). If there is a di-

rected edge from node i to node j in G(A), there is

an edge in the bipartite graph connecting rj and ci.

A maximum matching in the bipartite graph can be

solved by the Hoproft-Karp algorithm[41]. Then the

MDS is corresponding to the nodes in R that are not

connected to any matching edges (see Fig.5(b)). It can

be verified that if each node in an MDS is actuated

by an input control signal, which means adding a con-

trol node ui for each node i in the MDS, the resulting

graph G(A,B) will have no dilation. Since MDSs of

a network are not unique, Zhang et al.[42] proposed a

preferential matching algorithm to identify MDSs that

have a specific degree property. Zhang et al.’s work

provides an inspiration that the MDS can be selected

with preference, by which realistic information can be

taken into consideration.

The MSS is a minimum set of nodes in a network

which should be actuated by control signals to com-

pletely structurally control the network. Compared

with the MDS, applying independent control signals

to an MSS guarantees the complete controllability of

the network and it is a sufficient and necessary condi-
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Fig.5. Identification of an MDS and an MSS by maximum matching and minimum cost maximum flow method, respectively. (a)
A network G(A) and its corresponding system state transition matrix. (b) The corresponding undirected bipartite graph and the
maximum matching. Nodes r4 and r7 in node sets R are not matched in the maximum matching, which suggests v4 and v7 make up
an MDS. (c) A directed graph constructed based on the structure of G(A) and the minimum cost maximum flow. The labels on edges
represent flow, capacity and cost per unit flow, respectively. There is no flow passing through r4 and r7, which suggests v4 and v7
belong to an MSS. The flow passes through one edge with cost 1, which means there is an additional steering node which should be
chosen from the corresponding source strong connective component (SCC). Then nodes v4, v7 and vi (i = 1, 2, 3) make up an MSS.

tion for completely controlling a network, which sat-

isfies both conditions of Theorem 2. Therefore, each

MSS contains a set of nodes which make up an MDS.

In [33], the bipartite graph for the identification of MDS

has been extended to a directed graph. The authors[33]

proved that a minimum cost maximum flow (MCMF)

in the constructed digraph corresponds to an MSS of

the network (see Fig.5(c)). The algorithm for solving

the MCMF problem can be found in [43]. Similar to

the MDS, MSSs of a network are not unique as well.

Therefore, Wu et al.[44] developed an approach to iden-

tify MSSs with preference, such that the average prefe-

rence value of nodes in the identified MSS is the maxi-

mum among all possible MSSs of the network. When

properly assigning preference values to the nodes in a

network, the algorithm is able to find a most suitable

MSS for controlling the states of the network in practi-

cal applications.

Several studies investigated the identification of

steering nodes under constraints, which are common

in real applications. Pequito et al.[45] proved that the

minimum constrained input selection (minCIS) prob-

lem, which selects the minimum number of inputs from

a given set of possible inputs, is NP-hard. When there

are n possible inputs and each input can actuate a dis-

tinct node of the network, the minCIS problem reduces

to the problem of the identification of MSS, which could

be solved in polynomial time.

Stepping out of structural controllability, some stu-

dies considered constraints from the aspects of input

control signals and control energy. Lindmark and

Altafini[46] studied the controllability of complex net-
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works with unilateral inputs, which assumes that an

input control signal is either negative or positive, but

not both. Conditions for unilateral controllability have

been formulated algebraically in terms of eigenspaces

of the system matrix A. Compared with uncon-

strained control, more steering nodes are required to

achieve complete controllability for unilateral control.

By studying several instances with randomly weights

assigned to the edges, they discovered that the num-

ber of additional steering nodes for unilateral control is

strongly related to the number of roots and dilations in

a network. Then a lower bound of the minimum number

of steering nodes required for unilateral controllability

can be determined by network structure alone. This

study provides methodology for having networks con-

trollable with unilateral control signals, which are com-

mon in real scenarios. For instance, input control sig-

nals of biological networks are usually drugs or chemical

molecules, which can only either activate or inhibit the

steering nodes.

In many cases, though actuating an MSS can com-

pletely control a network theoretically, the associated

control cost can be unbearably large, which prevents

actual control from being realized physically. The con-

trol cost can be measured by control energy, which is

defined as

E(tf ) =

∫ tf

0

(uT
t · ut)dt,

where ut represents input control signals[47]. Wang et

al.[48] proposed physical controllability which considers

the probability of achieving control practically. By in-

vestigating control energy for controlling chain struc-

tures in networks, they provided strategies to make

physically uncontrollable networks physically control-

lable by properly adding additional steering nodes. Li

et al.[49] studied the problem of identifying a fixed

number of steering nodes, such that a network can

be completely controllable with the minimum energy.

They formulated the original problem as an optimiza-

tion problem and developed two methods to solve it.

These studies take control energy into consideration

when identifying steering nodes, which can save the cost

of the control processes.

4.2 Steering Nodes for Output Controllability

It has been proved that identifying the minimum

number of steering nodes for structural output control-

lability is an NP-hard problem[50], where the outputs

are defined as the states of a set of nodes. In Wu et al.’s

study[13], the lower bound of GDCOS(A,B,C)[24] has

been applied to design an algorithm to identify steering

nodes for output controllability, which guarantees that

the network is output controllable by actuating iden-

tified steering nodes. Therefore, actuating the identi-

fied steering node set is a sufficient but may not be

a necessary condition for structural output controlla-

bility. The identification of steering nodes for output

controllability has been formulated to maximum weight

complete matching problem in a bipartite graph con-

structed based on network topology and a predefined

set of nodes to be controlled. The maximum weight

complete matching problem can be solved by the Kuhn-

Munkres (KM) algorithm[51]. Fig.6 is an illustrative

example for identifying steering nodes for controlling a

subset of nodes in a network.

In Gao et al.’s study[39], a greedy algorithm has

been developed to identify steering nodes which are

sufficient for target control. Several further studies

developed algorithms to identify steering nodes for tar-

get controllability by reducing the number of steering

nodes or considering realistic constraints. Instead of

using the greedy algorithm, Zhang et al.[52] developed

an algorithm which elaborately rearranges the match-

ing order of the nodes such that the required number

of steering nodes for target control can be significantly

reduced. The comparison results on model generated

networks and real networks indicate that the proposed

algorithm outperforms Gao et al.’s algorithm[39]. Be-

cause the functions of network systems intensively de-

pend on the connections between nodes, Liu et al.[53] in-

vestigated the target controllability of giant connected

components of directed networks by selecting target

nodes from giant connected components, which are the

connected components of networks that have constant

fractions of nodes in networks. In the study, the rela-

tionships between the number of steering nodes for con-

trolling giant connected components and the parame-

ters of model generated networks are explored. Piao et

al.[54] considered controlling a subnetwork called target

community of a complex network when the whole topo-

logical structure of the network is not available. They

argued that though a target community is controllable

with steering nodes identified by structural controllabi-

lity analysis, determining input control signals that are

able to achieve a given control goal can be very difficult.

It is because the process of controlling target communi-

ties would be influenced by signals from the remainder

network, but the topology and state of the remainder
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Fig.6. Identifying steering nodes for output controllability. (a) A network. The outputs of the system are the states of grey nodes
v1, v2 and v3. (b) A corresponding weighted bipartite graph. The weights of red lines, green lines and black lines are 1, 0 and −1,
respectively. (c) A maximum weight complete matching in (b). Since r1 matches a node in set U ′ = {u′

i|i = 1, . . . , 6}, node v1 makes
up a steering node set for output controllability, which suggests that the states of nodes v1, v2 and v3 can be controlled by actuating
node v1 only.

network is not available. To deal with this issue, they

defined a type of steering nodes, which refer to as im-

mune nodes, for blocking signals transmitting from the

remainder network. Then they proposed a method to

reduce the total number of steering nodes and immune

nodes such that the subnetwork is completely control-

lable and the signals from the rest parts of the network

can be blocked.

By considering some practical constraints, Guo et

al.[55] proposed the concept called constrained target

controllability of complex networks. Because not all

nodes are possible to be steering nodes in reality, the

constrained target controllability concerns the target

controllability by selecting steering nodes from a pre-

defined constrained node set. Then they developed an

algorithm to identify steering nodes from a constrained

node set for controlling a set of target nodes. Iudice et

al.[35] also investigated the target controllability of net-

works by not only considering the constraints on selec-

tion of steering nodes, but also introducing a set of un-

touchable nodes, whose states should not be perturbed

during the control process. Selecting steering nodes

from constrained node set improves the applicability

of control strategies while keeping states of untouch-

able nodes unchanged reduces side effects or undesired

effects during control processes.

4.3 Steering Nodes for Transittability

In addition, Wu et al.[25] developed an algorithm

to identify steering nodes with a given network G(A)

and a set of target nodes whose states are supposed

to be changed during state transition. Identification of

steering nodes for transittability has been formulated to

maximum weight complete matching problem in a bi-

partite graph constructed based on network G(A) and

structural states. Fig.7 is an illustrative example of

identifying steering nodes for state transittability. The

result indicates that by actuating nodes v1 and v3 with

input control signals, the states of nodes v1, v2 and v3

can be controlled without affecting nodes v4, v5 and v6,

which is different from the example of output control-

lability in Fig.6: the states of nodes v1, v2 and v3 can

be controlled by actuating v1; however, the state of v4

might be perturbed as well. Transittability usually re-

quires less steering nodes than completely controlling

the whole network, which is more efficient and practi-

cal. Compared with output controllability, transittabi-

lity needs more steering nodes for controlling the states

of target nodes but causes less undesired effects to the

non-target nodes, which makes a balance between con-

trol efficiency and side effects.
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Fig.7. Identifying steering nodes for state transittability. (a) A network. Grey nodes v1, v2 and v3 could be changed to any states in
finite time while states of white nodes would not be affected by control signals at the end of the control process. (b) A corresponding
weighted bipartite graph. The weights of red lines, green lines and black lines are 1, λ and 0, respectively, where λ is a small enough
positive number. (c) A maximum weight complete matching in (b). Since r1 and r3 match green lines, nodes v1 and v3 make up a
steering node set for state transittability.

5 Applications to Biological Networks

Studies introduced in Section 4 offer methods to

identify steering node sets for controlling biological

networks in different control scenarios. The steer-

ing nodes are identified based on the control theory,

which guarantees the controllability of networks theo-

retically. However, theoretical analyses on structural

controllability of complex networks do not explain how

to manipulate the steering nodes to steer networks from

one state to another, which depends on the details of

connections and interactions in the networks. Though

structural controllability methods are not able to pro-

vide explicit strategies to control complex networks,

they still offer useful approaches to investigate the con-

trollability of complex networks when only the network

topology is available. For biological networks, inves-

tigating the meanings of biological elements that play

different roles in controlling biological networks is a way

to interpret the controllability of biological network.

Conversely, reasonable functions of biological elements

could support the validity of controllability analyses. In

this section, we review recent studies that explored vari-

ous types of biological networks, including biomolecular

networks, neuronal networks and brain networks, based

on network controllability. Particularly, we mainly fo-

cus on understanding the functions of nodes in the vari-

ous biological networks from viewpoints of controllabil-

ity.

5.1 Steering Node Sets in Biological Networks

By applying input control signals to steering

node sets, networks can be steered to the desired

states. Therefore, recent studies explored the biologi-

cal meanings of steering node sets in biological net-

works for different control objectives, which are com-

plete controllability[11], output controllability[13], and

transittability[25].

5.1.1 Biological Properties of Steering Nodes

MDS and MSS of biological networks are two of the

most investigated steering node sets for completely con-

trolling networks. There are many studies identifying

MDSs or MSSs of biological networks and the biologi-

cal functions of biological elements in the steering node

sets are examined.

Khazanchi et al.[56] compared driver nodes in MDSs

and hub nodes of four different protein-protein inte-

raction (PPI) networks. They found that hub nodes are

more likely to be lethal proteins while driver nodes tend

to be transcription factors. In addition, they found that

driver nodes are enriched in first-degree neighbors of

hubs, which suggests that one should control the nodes

interacting with the hubs, instead of controlling the

hubs directly, to control networks. Khazanchi et al.’s

research indicates that when controlling PPI networks,

it is better not to perturb the lethal hub proteins, but

the proteins near the hubs.

Badhwar and Bagler[57] identified the MDS of C. el-

egans neuronal network, which consists of 302 neurons

that are connected through chemical synapses and gap

junctions. Based on the functions, neurons can be clas-

sified as sensory neurons, motor neurons and inter neu-

rons. By investigating the functional and the spacial

correlations of driver neurons in the MDS, they found

that most driver neurons are motor neurons that are lo-

cated in the ventral nerve cord. In addition, the driver

neurons mostly participate in the biological reproduc-
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tion. This study demonstrates the importance of driver

neurons and their ability of controlling the behaviours

of the organism.

Noori et al.[58] constructed a comprehensive neu-

rochemical network of the rat brain and identified an

MDS of the rat brain network. Interestingly, one of the

four steering nodes in the identified MDS, subthalamic

nucleus (STh), has already been proved to be crucial in

global circuit dynamics[59] and treatment of Parkinson

disease as well as other disorders[60] by numerous deep

brain stimulation studies. This observation manifests

an agreement between the structural controllability and

the function of neuronal networks.

For the MSSs of biological networks, Wu et al.[33]

applied their method of identifying MSS to the

S.cerevisiae cell cycle networks[61,62], Epithelial to Mes-

enchymal Transition (EMT) network[63] and myeloid

differentiation regulatory network[64]. It has been dis-

covered that steering nodes in MSSs of these net-

works play critical roles in triggering cell division pro-

cess, maintaining homeostasis of epithelial or regulat-

ing early myeloid development as well as hematopoie-

tic stem cells, respectively. Since the identified MSSs

in these networks are closely related to dynamic be-

haviours of the networks, it is fair to suggest their im-

portance in controlling the networks.

For transittability, Wu et al.[25] employed different

biological systems with different phenotypes to vali-

date the applicability of identified steering node sets for

transittability. For example, T helper cells (Th cells),

which play an important role in the immune system,

are a sub-group of lymphocytes. A network has been

constructed by Mendoza[65] to model the differentia-

tion of Th cells. Matured Th cells can be classified as

Th0 (precursor), Th1 and Th2 (effector) cells, which

correspond to three different states of Th differentia-

tion network. Steering node sets for state transitions

among these three phenotypes have been identified by

the proposed algorithm. According to the transittabi-

lity analyses, actuating steering nodes SOCS1 and T-

bet can steer the network between Th0 and Th1 and

actuating nodes IL-4 and GATA3 can steer the net-

work between Th0 and Th2, which is in agreement with

existing knowledge[66,67]. Actuating steering nodes T-

bet and GATA3 can cause the transition between Th1

and Th2, which is completely in agreement with the

experimental data[68]. The proof of applicability sug-

gests further applications for drug target identification

or medical treatments based on transittability: by ac-

tuating steering nodes with input control signals (e.g.,

drugs), the biological systems can be steered from dis-

ease states to healthy states.

5.1.2 Identification of Drug Targets

There is an intuitive application of identifying steer-

ing nodes for the controllability of biological networks,

which is drug target identification. By perturbing the

steering nodes, biological networks can be steered to

desired states. Therefore, steering nodes in a disease

related biological network could be potential drug tar-

gets.

Wu et al.[13] formulated the problem of drug target

identification as a problem of identifying steering node

set for output controllability of biological networks. In

the study, disease biomolecules and biomolecules whose

state changes would lead to side effects are defined as

the outputs of the network, which takes both efficiency

and safety into consideration. The steering nodes for

controlling these two types of biomolecules are consi-

dered as potential drug targets. The method has been

applied to several real biological networks. The identi-

fied potential drug targets are targets of approved drugs

or in agreement with existing research results, which in-

dicates the feasibility of the method.

By considering the constrained target controllabi-

lity, Guo et al.[55] applied the developed algorithm for

identifying steering nodes to a gene regulatory network

related to type 1 diabetes. By defining the five genes

related to type 1 diabetes as the target nodes and all

FDA-approved drug targets as the constrained node

sets, they found that FASLG and CD80 are steering

nodes for controlling the target nodes related to type

1 diabetes, which is supported by previous wet experi-

ments. In another study, Kanhaiya et al.[69] built three

PPI networks for breast, pancreatic and ovarian cancer,

respectively. They considered survivability-essential

proteins specific to each cancer type as control tar-

gets in each network. A method was also proposed to

identify steering nodes among FDA-approved drug tar-

get nodes. Different from the method in Guo et al.’s

study[55], the selection of steering nodes from FDA-

approved drug targets is not obligatory, but is preferred

in Kanhaiya et al.’s study[69]. The results indicate that

many steering nodes are known drug targets for cancer

therapies, but some of them are not the drug targets

corresponding to cancer types.

By considering a more realistic constraint, Wu et

al.[70] improved the algorithm of identifying MSSs by

considering the preference of individual nodes, such

that nodes in the identified MSS have higher preference
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values compared with nodes in other eligible MSSs of

a network. The algorithm has been applied to study

MSSs with drug binding preference of some biological

networks. The biomolecules in the MSSs with bind-

ing preference are enriched with known drug targets

and are likely to have more chemical-binding opportu-

nities with existing drugs compared with randomly cho-

sen MSSs, suggesting novel applications for drug target

identification and drug repositioning: steering nodes for

having a disease related network controllable could be

potential drug targets whereas drugs that can bind to

the steering nodes might be used for the treatment of

other diseases.

5.1.3 Prediction of Node Functions

Instead of analyzing known functions of steering

nodes, Yan et al.[14] predicted the involvement of neu-

rons in the C. elegans neuronal network by formaliz-

ing the responsive mechanism of C. elegans to exter-

nal stimuli as a target control problem. The predic-

tions based on the target control of network have been

validated by their experiments. For example, it has

been predicted that three neurons (DD04, DD05, or

DD06) in the DD motor neuronal class should affect lo-

comotion when ablated individually. Their experimen-

tal validation shows that ablations of DD04 or DD05

have impacts specifically on posterior body movements,

whereas ablations of other neurons in the DD motor

neuronal class (DD02 or DD03) do not affect the loco-

motion. Yan et al.’s study[14] not only provides a novel

method to unveil how the structure of neuron network

affects its functions based on controllability perspec-

tive, but also offers the first experimental proof of the

validity of network structural controllability analyses.

5.2 Roles of Individual Nodes in

Controllability

Instead of focusing on specific steering node sets

for different control objectives, several studies proposed

methods to quantify the importance or analyze the roles

of individual nodes in controlling networks and then in-

vestigated biological meanings of nodes based on the

proposed methods. The analyses were mainly based on

the importance of nodes in network controllability, con-

trol energy or control paths. Applications show that

nodes in biological networks with different biological

functions can be distinguished by certain network con-

trollability measures. Therefore, investigating the con-

trollability of biological networks provides new methods

for understanding the biological properties of nodes in

biological networks.

5.2.1 Qualifying and Quantifying Importance of
Nodes in Network Controllability

Since the MDSs or MSSs of a network are not

unique, the algorithms for identifying MSSs or MDSs do

not result in a unique set of MDS or MSS. Therefore,

some studies attempted to figure out the importance

of nodes in network controllability by classifying nodes

into different categories or assigning centrality values

to nodes according to certain rules.

Jia et al.[71] classified a node in the network as criti-

cal, intermittent or redundant if it acts as a driver node

in all, some or none of all possible MDSs, respectively.

By classifying nodes in a human signaling network,

Liu and Pan[72] discovered that critical nodes are en-

riched in the group of ligands, intermittent nodes are

enriched in cell surface receptors, and redundant nodes

are enriched in intracellular signaling proteins. They

also found that cancer-associated genes are enriched in

redundant nodes, which suggests that controlling the

regulators of the cancer-associated genes could be more

feasible than controlling the cancer-associated genes di-

rectly.

In a related work of the classification, Jia and

Barabási[73] proposed a concept called control capa-

city, which is defined as the likelihood that a node is

a driver node in an arbitrary MDS. Liu and Pan[74]

calculated the control capacity of nodes in a human

liver metabolic network and classified nodes into criti-

cal, high-frequency and low-frequency nodes based on

their control capacity values. They found that in the

metabolic network, critical metabolites are likely to be

essential metabolites while the high-frequency metabo-

lites tend to participate in different metabolic path-

ways.

Though the MDSs of a network may not be unique,

the cardinality of all the MDSs is the same. Vinayagam

et al.[75] classified a node in a network as indispensable,

neutral or dispensable, which is correlated to increas-

ing, no effect, or decreasing the cardinality of the MDSs

of the network by removing that node and edges which

are connected to the node. Then the authors[75] ap-

plied their classification strategy to a directed human

PPI network and found that indispensable proteins or

corresponding genes are enriched in essential genes, hu-

man virus targets, drug targets or disease-causing mu-

tations. Their study provides a novel classification stra-

tegy based on network controllability. Nodes in diffe-
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rent categories show distinct biological properties in the

context of essentiality, evolutionary conservation, and

regulation of translational or post-translational modifi-

cations. In fact, before the work of Vinayagam et al.[75],

Matsuoka et al.[76] identified the indispensable nodes,

which they called “critical node” in their study, of an

influenza A virus life cycle network. They found that

the indispensable nodes are important factors of the vi-

ral life cycle, which are known drug targets or could be

potential therapeutic targets. In another study, Uhart

et al.[77] studied a directed phosphorylation-based PPI

network by analyzing the biological characteristics of

indispensable nodes. Because post-translational modi-

fication and inhibition of transduction by miRNAs are

two important mechanisms of regulation in eukaryotic

cells, it is meaningful to evaluate the relationship be-

tween proteins that are important in controlling the

network and these two mechanisms. It has been dis-

covered that indispensable nodes are more enriched in

post-translational modifications and miRNA targets,

which indicates that indispensable nodes are targets of

intense biological regulation. Uhart et al.’s study[77]

provides a deeper understanding of the controllability

of biological networks and bridges the controllability

theorems and cell regulation processes, such as post-

translational modification, in a phosphorylation-based

PPI network.

In recent work, Ravindran et al.[78] combined two

types of classification strategies and investigated a can-

cer signaling network. Nodes are classified as criti-

cal, intermittent or redundant based on Jia et al.’s

classification strategy[71], and indispensable, neutral or

dispensable based on Vinayagam et al.’s classification

strategy[75]. Then the authors[75] analyzed the distribu-

tion of cancer genes and targets of anti-cancer drugs in

each node class. Enrichment analyses show that redun-

dant nodes, especially indispensable redundant nodes

are enriched in both cancer genes and anti-cancer drug

targets, which implies a strong correlation between in-

dispensable redundant nodes and cancer development

or cancer treatment. This study[78] indicates that the

two classification strategies can capture the roles that

individual nodes play in controlling a network from

different aspects. Therefore, it is likely to obtain more

comprehensive results by combining these two classifi-

cation strategies.

By investigating topological features of steering

nodes in MDSs, Ruths and Ruths[79] found that each

driver node in MDSs corresponds to one of three topo-

logical features: source nodes, external dilations and

internal dilations. Sources nodes are nodes that have

no incoming edges and the number of source nodes is

denoted as Nsource. External dilations appear when

sink nodes, which are nodes without outgoing edges,

outnumber source nodes. The number of sink nodes

is denoted as Nsink and then the number of external

dilations equals Nexternal = max(0, Nsink−Nsource). In-

ternal dilations are dilations other than external dila-

tions and the number of internal dilation is denoted

as Ninternal. Then the cardinality of MDSs NMDS =

Nsource + Nexternal + Ninternal, which is the sum of the

three topological features. Then the driver nodes can

be classified into three categories based on their cor-

responding topological features. The authors[79] disco-

vered that the MDSs of a network are usually domi-

nated by a specific topological feature. Based on the

proportions of each type of driver nodes, a network

can be classified as source dominated, external-dilation

dominated or internal-dilation dominated. The classi-

fication of networks has been tested on various of real

networks. The results offer insights into the relation-

ship between the topology and the functions of complex

networks. For example, neuronal networks are source-

dominated, which tend to allow relatively uncorrelated

behaviors and are suitable for distributed processing.

5.2.2 Control Energy

Control energy is another aspect needed to be consi-

dered in the controllability of biological networks. Gu

et al.[4] studied the controllability of a human brain net-

work, in which each node represents a region of interest

(ROI) of the human brain. Three types of measures

are developed to quantify the importance of nodes in

controlling the brain network: average controllability

measures the ability of brain regions to steer the system

state with less energy input, modal controllability iden-

tifies brain regions that steer the system to states which

require substantial input energy, and boundary control-

lability identifies brain regions that locate at boundaries

between network communities and control the segrega-

tion and integration of cognitive systems. Though Tu

et al.[80] have different opinions on the results of this

study, this study provides a novel perspective to un-

derstand the cognitive processes from the control en-

ergy and network controllability. The proposed meth-

ods and measures based on control energy could provide

insights into studies on the controllability of other types

of biological networks.
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5.2.3 Control Paths

To understand the disease etiology from the per-

spective of network control, Wang et al.[12] defined a

concept called perturbation influence, which is a subset

of nodes based on the control paths (vertex-disjoint cy-

cles and simple paths starting from steering nodes), to

identify and quantify the ways by which disease genes

perturb human regulatory networks. Intuitively, for a

certain disease, the perturbation influences of different

disease genes can be considered as the significant path-

ways related to the disease, which are etiologically es-

sential. In addition, perturbation influence can be ap-

plied to prioritize disease genes based on the similarities

of perturbation influences between nodes and known

disease genes. The validation of the prioritizing method

on 112 diseases shows that this method outperforms the

state-of-the-art method PRINCE[81]. Similar to per-

turbation influence, concepts such as control range[82]

or vertex domination centrality[83], which are defined

based on control paths as well, have been proposed

to study the controllable subspaces of nodes or mea-

sure the importance of nodes in controlling networks.

The proposed controllability concepts based on control

paths enrich analytical tools for understanding roles of

nodes in controlling network subspaces.

6 Conclusions

In this article, we reviewed recent advances on the

controllability of complex networks and the applica-

tions to biological networks. First, dynamic models of

complex networks were briefly reviewed. Though the

linear dynamic models are simple models that cannot

describe many behaviours of biological networks, the

structural control theorems based on the linear dynamic

models provide a frame to study the controllability of

biological networks solely from their underlying net-

work structures. Since nonlinear dynamics would en-

hance the controllability of biological networks, study-

ing the controllability based on the linear dynamics pro-

vides a sufficient condition for having biological net-

works controllable.

Started from the study of the completely controlla-

bility of networks based on structural linear dynamic

models, we then reviewed different control objectives

such as output controllability and transittability. Algo-

rithms to identify steering node sets for different control

objectives were reviewed. In order to make the inves-

tigation more useful and practical for real biological

networks, we introduced the studies that consider con-

trollability of biological networks under realistic con-

straints, such as selecting steering nodes (biomolecules)

based on drug binding preference, minimizing control

energy or controlling biological networks by using uni-

lateral control signals. When more constraints are

considered, the analyzing results are more reliable and

the developed methods are closer to real applications.

In network controllability studies, methods have

been proposed to identify steering nodes for hav-

ing biological networks controllable. Because the

controllability studies mainly based on the simple struc-

tural linear dynamic models, approaches to verifying

whether perturbing the steering nodes can steer biologi-

cal networks to desired states are lack. Therefore,

studying the biological meanings of nodes which play

different roles in controlling biological networks is a

practical way to verify the validity of the proposed

methods and to interpret the controllability of biologi-

cal networks. Studies on the controllability of biologi-

cal network showed that controllability is an innova-

tive perspective to analyze biological networks and sug-

gested a variety of promising applications.

In the future, other practical constraints such as

control trajectories can be considered in order to avoid

some forbidden or fatal states of biological networks

during control processes. Besides controllability, other

concepts in control theory could also shed lights on

our ability to understand or manipulate biological net-

works, which is worthy for future investigation. For

example, observability, which is a mathematical dual

problem of controllability, can be applied to measure

the states of biological networks by monitoring a spe-

cific set of biological elements. It is believed that con-

trolling biological networks will be increasingly feasible

and effective when our knowledge of control theory is

enhanced and our understanding of dynamics of biology

systems is deepened.
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