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Abstract Face de-identification has become increasingly important as the image sources are explosively growing and

easily accessible. The advance of new face recognition techniques also arises people’s concern regarding the privacy leakage.

The mainstream pipelines of face de-identification are mostly based on the k-same framework, which bears critiques of low

effectiveness and poor visual quality. In this paper, we propose a new framework called Privacy-Protective-GAN (PP-GAN)

that adapts GAN (generative adversarial network) with novel verificator and regulator modules specially designed for the face

de-identification problem to ensure generating de-identified output with retained structure similarity according to a single

input. We evaluate the proposed approach in terms of privacy protection, utility preservation, and structure similarity. Our

approach not only outperforms existing face de-identification techniques but also provides a practical framework of adapting

GAN with priors of domain knowledge.
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1 Introduction

Beneficial from the blooming development of media

and network techniques that make a vast amount of

images more approachable, image analysis techniques

bear their prosperity in the past decade and bring un-

precedented convenience to our daily life. Among those

image sources exposed to the public with or without our

awareness, a considerable number of them contain our

identity especially the biometric information. Not only

will the unprotected exposing cause the leak of privacy,

the common approaches of protection like blurring and

pixelization may also not be satisfied in thwarting face

recognition software[1,2]. The other extreme side is that

we simply mask identity area off, which is perfect for

identity removal. But it causes serious loss of data uti-

lity in application of visual understanding as the scene

information is changed with objects removal. Thus it

is critically important to build a framework that can

properly de-identify the privacy information from the

image while keeping its utility at the same time.

Specially for the face de-identification problem, the

dilemma is that on the one hand, the de-identified

images are required to look different from the origi-

nal image to ensure the removal of identity; on the

other hand, we expect the de-identified image to retain

as much structural information in the original image

as possible so that the image utility remains. Previ-

ous approaches on this problem are mostly based on

k-same algorithm[1,3−5] for the de-identification proce-

dure and some apply additional models like the Active

Appearance Models (AAMs)[6] to explicitly construct

faces preserving the utility attributes like gender, race,

and age[7,8]. Yet these models fail to make full use of

existing data and deliver fairly poor visual quality due

to the unnatural synthesis.

The generative adversarial networks (GANs) pro-

vide an inspiring framework on generating sharp

and realistic natural image samples via adversarial

training[9−11]. GAN can be naturally used for the

face de-identification as it can generate new samples

from the gallery following original input data distribu-
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tion. Since GAN implicitly models a dataset distribu-

tion, it cannot involve processing individual images. To

achieve an image-to-image face de-identification, condi-

tional GAN (cGAN) is intuitively leveraged here, which

is an extension of GAN that fits a conditional data dis-

tribution.

Unfortunately, cGAN is not directly applicable to

our scenario, which requires privacy protection as well

as data utility preservation. First, the generative loss

in cGAN is not specific for distinguishing identities;

thus the generated samples could be either too simi-

lar to each other to pass external face verification, or

visually ghosted as none-faces. Second, the structure

information is unensured to be preserved due to the in-

consistency in feature spaces between GAN-type and

structural losses.

Thus to make an adaptive GAN framework for

the de-identification problem, we introduce additional

mechanisms to enlarge the sampling range away from

the given samples in the identity-related embedding fea-

ture space properly and to constrain the variation of

the part of image structure from the full image fea-

ture space simultaneously. When unified in the GAN

loss, these two tasks are actually contradictory to each

other because the GAN loss is unable to explicitly tell

the embedding feature from the structure feature and

they contribute to the performance of distinguishing

two faces in the same direction. Thus here we ex-

plicitly express them as external losses to compensate

their contradiction in GAN and consequently achieve

a novel Privacy-Protective-GAN model (PP-GAN, see

Section 3), which can plausibly balance between id-

removal and structure retain. Fig.1 represents the orig-

inal images and corresponding de-identified images.

Indeed, in our PP-GAN model, we introduce two

additional types of external modules: the verificator

with contrastive loss[12] to allow cGAN’s generator for a

larger range of sampling exploration, and the regulator

with Structural Similarity Index (SSIM)[13] to account

for the structure preservation. Intuitively, the verifica-

tor adds the prior information of identity feature match-

ing in the embedding space to help remove biometic in-

formation while the regulator tells the generator how to

maintain similar image utility via luminance, contrast

and structural similarities. The involvement of these

two types of prior knowledge on what the identity infor-

mation versus the structure information is significantly

improves the model performance.

(b)

(a)

Fig.1. Illustration of face de-identification. (a) Original face
images. (b) Corresponding de-identified images synthesized by
our method.

In the experimental setting, we quantitatively

demonstrate the effectiveness of proposed method in

several aspects: 1) the generative de-identified image

can thwart the face verificator; 2) the de-identified im-

age is not simply switched with others in the training

data; 3) the luminance, contrast and structure can be

partially preserved; 4) the attributes utility can be pre-

served when training an attribute specific generator.

In summary, our contributions are as following.

• To the best of our knowledge, we are the first to

propose a GAN-based framework that is trainable in an

end-to-end manner directly for the face de-identification

task. The integrated framework can synthesize the de-

identified output for each single probe face.

• We manage to balance the trade-off between im-

age quality and privacy protection by introducing novel

modules, the verificator, and the regulator. The model

learns to retain the structure similarity with the original

image on the pix level, while distinguishing the input

and synthesized output in the identity-related feature

space. It is the first time that a de-identification metric

is properly aggregated into the objective function in a

controllable and measurable manner, which largely en-

sures the effectiveness of de-identification and privacy

protection.

• We are the first to propose a systematic plan of

evaluating the results of de-identification, where we em-

ploy a state-of-the-art face verificator[14] to determine

the de-identification rate and then a face detector[15] to

quantify the detection rate. These two measurements

cooperatively indicate how well the de-identification

procedure works in its target with utility retained. The

proposed method achieves promising de-identification

rate and obtains the best trade-off between identity re-

moval and visual similarity.

The rest of the paper is organized as follows. Re-

lated work about de-identification task is summarized
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in Section 2. In Section 3, we introduce our PP-

GAN framework. A quantitative evaluation on a pub-

lic dataset as well as visual illustrations is provided in

Section 4. The paper concludes with a discussion in

Section 5.

2 Related Work

Privacy protection in visual data has been drawing

increasing amount of research attention recently, with

focuses on different scenarios such as video analysis and

security and sampled studies in [16-22].

Face de-identification is an important tool for visual

privacy protection. The goal of face de-identification

has two folds: privacy protection and data utility

preservation. In such way, de-identified images con-

ceal the identity privacy of the original image, while

preserving non-identity-related aspects for further data

analysis. Earlier studies on face de-identification sim-

ply use masking, blurring, or pixelation[23]. While these

Ad Hoc methods are easily applicable, it is shown that

they provide no privacy assurance since they may fail

to thwart face recognition software[24]. Moreover, how

to conduct a sufficient blur itself is non-trivial[25].

To address this problem, Newton et al.[1] pro-

posed the k-same algorithm based on the k-anonymity

concept[26]. By applying the k-same algorithm, a given

image is represented by average face of k-closet faces

from the gallery. This procedure theoretically limits the

performance of recognition to 1/k, but usually suffers

from ghosting artifacts in de-identified images. Some

variants of k-same are proposed to improve the data

utility and the naturalness of de-identified face images.

The k-Same-Select algorithm[3] partitions the image set

into mutually exclusive subsets and applies the k-same

algorithm independently to each subset, aiming to pre-

serve the attributes of each subset. In order to over-

come undesirable artifacts due to misalignments and

produce de-identified images of better quality, the k-

Same-M algorithm[4] based on active appearance mod-

els (AAMs)[6] is proposed. This algorithm fits an AAM

to input images and then applies k-same to the AAM

model parameters. To further keep the data practically

useful, Du et al. explicitly preserved race, gender and

age attributes in face de-identification[7]. Jourabloo

et al. proposed to jointly model face de-identification

and attribute preservation in a unified optimization

framework[8].

The majority of sate-of-the-art approaches are de-

signed based on the k-same and implemented using

AAM models. However, these methods have notable

limitations. 1) The k-same assumes that each subject

is only represented once in the dataset, but this may be

violated in practice. The presence of multiple images

from same subject or images sharing similar biomet-

ric characteristics can lead to lower levels of privacy

protection. 2) The k-same operates on a closed set and

produces a corresponding de-identified set, which is not

applicable in situations that involve processing indivi-

dual images or sequences of images. 3) Generated im-

ages by AAM models do not yet look natural enough.

Recently, GANs have presented promising effective-

ness on image generating problems. It is a natural

tool to synthesize de-identified images. Brkic et al.[27]

built a GAN-based model to generate full body im-

ages for de-identification, but the quality in face areas

is not guaranteed. Blaž et al. used GAN to synthe-

size de-identified faces, but still based on the k-same

algorithm[22,28,29]. [22] leverages an auxiliary loss to

confound the gender attribute while retaining the bio-

metric recognition performance.

In this paper, we only focus on biometric informa-

tion, i.e., we do not remove soft biometric features

like age or race and non-biometric information like

hairstyles[2]. We propose a novel Privacy-Protective-

GAN framework to address the problems mentioned

above.

3 Method

Face de-identification can be formulated as a trans-

formation function δ which maps a given face image

x to a de-identified image x̂, i.e., δ(x) = x̂, aiming to

mislead the face verification. In this work, we propose

a PP-GAN model and adopt the final generator as the

de-identification function. First, we pretrain a verifica-

tor to determine whether two faces are from the same

subject. Next, we freeze this verificator and utilize it

to compute the contrastive loss in the whole system

training phase. In each iteration, the synthesized out-

put and the original image will be forwarded in: 1) the

identity-related feature space by the pre-trained veri-

ficator to enforce the removal of identity; 2) the pixel

level structure similarity by SSIM to preserve visual cor-

respondence. Then the contrastive loss and the SSIM

loss will be backpropagated to update the generator.

Fig.2 gives the big picture of the whole framework.

In the following subsections, we will describe the

structure of PP-GAN and explain its learning proce-

dure in detail. The overview of the whole system is il-

lustrated in Subsection 3.1. The detailed explanations
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Fig.2. Structure of the privacy-protective-GAN (PP-GAN) framework. The PP-GAN framework consists of four components: genera-
tor, discriminator, verificator, and regulator. (a) The generator is a “U-Net” based auto-encoder, synthesizing a de-identified image x̂

for given original image x. (b) The discriminator is adversarially trained with the generator to encourage the output to be sharp and
realistic. (c) The verifiactor is to determine whether two faces are from the same person. (d) The regulator is to determine how similar
the two faces are in pixel level.

of the generator vs the discriminator are given in Sub-

section 3.2. The verificator and the structure similarity

are introduced in Subsections 3.3 and Subsections 3.4

respectively.

3.1 Objective

Face de-identification is a complex task involving

multiple constraints at the same time. Specially, given

an original face, we generate a new face image accord-

ingly and hope that it meets three types of qualification.

1) The generated face should look natural and realistic,

i.e., it looks like a face. 2) The generated face should

not be discriminated as the same person with the origi-

nal face, i.e., it should be far enough from the original

one in the identity-related feature space. 3) The de-

identified image should be consistent with the original

image on the pixel level as much as possible, i.e., it

shares similar luminance, contrast, and structure with

the original image.

For the first objective, it can be achieved by utiliz-

ing the cGAN, which adversarially trains a generator

(G) taking the original image as input and producing

de-identified images versus the co-trained discrimina-

tor (D). The cGAN loss is denoted as LcGAN(G,D)

here. The details of cGAN settings will be clarified in

Subsection 3.2.

For the second goal, we pre-train a verificator to pro-

duce a verification loss in the identity embedding space

for each pair of original and de-identified images. The

verification loss for each generator G is then formula-

rized as the expected loss across subjects and denoted

as Lverif(G). This is used to guide the generator to

enforce that the output holds an enough distance with

the input in the identity-related feature space. The

details about the verificator will be elaborated in Sub-

section 3.3.

For the third objective, we adopt the structural

similarity index (SSIM)[13] to quantify the similarity be-

tween the original and the generated images. The SSIM

loss combines the luminance, contrast, and structural

differences in a product form with different power co-

efficients. Similarly, as the verification loss, the SSIM
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loss for the generator G is then formularized as the

expected loss across subjects and denoted as Lsim(G).

The details of structure loss will be discussed in Sub-

section 3.4.

Combining these three types of losses, our final ob-

jective of face de-identification is defined as

Lface(G,D)

= LcGAN(G,D) + λ1Lverif(G) + λ2Lsim(G), (1)

and the optimal generatorG∗ is solved through the min-

max procedure

G∗ = argmin
G

max
D

Lface(G,D),

where λ1 and λ2 are the hyperparameters for multiple

losses.

3.2 Architecture of GAN

The cGAN learns a mapping G : {x, z} → x̂ from

an observed image x with additional random noise z to

a synthesized image x̂, where x is referred to as a “real”

sample or the condition from the original dataset, x̂ is

referred to as a “fake” sample generated by the trained

generator G, and z is the random noise to ensure the

image variability. The adversarial procedure trains a

generator to produce outputs that can hardly be distin-

guished as a “fake” by the co-trained discriminator (D).

Mathematically, the objective function of the cGAN is

expressed as

LcGAN(G,D)

= Ex,x̂∼Pdata(x,x̂)(logD(x, x̂)) +

Ex∼Pdata(x),z∼Pz(z)(log(1 −D(x,G(x, z)))),

where G is the generator and D is the discrimi-

nator. The optimal G∗ minimizes this objective

against an adversarial D that maximizes it, and

it can be solved via a min-max procedure G∗ =

argminG maxD LcGAN(G,D).

In practice, we adapt our generator and dis-

criminator architectures from the Image-to-Image

translation[10]. As shown in Fig.3, both of them

use modules consisting of Convolution-BatchNorm-

ReLu[30]. The generator is a “U-Net”[31] by adding skip

connections between symmetric layers in the convolu-

tion and deconvolution steps. The stride keeps to be 2;

thus it resizes by 2 in the encoding part, and expands by

2 in the decoding part. The size of the embedding layer

is 1×1. Two drop-out layers in the middle serve as ran-

dom noise z. For the discriminator, instead of feeding

it with “real” or “fake” pairs, we follow the standard

approach from [9] and input either “real” image x or

“fake” image x̂ since there is no unique solution for the

de-identified G(x). Also, a patch-design[10] is adopted

in the discriminator; thus it outputs an N ×N patch,

rather than a single value to represent the probability

of current input to be “real”. Here we set N to 30 with

receptive field of size 34. The network architectures are

shown in Fig.3.

3.3 Face Verification

Face verification is to determine whether two im-

ages express the same person. Metric learning is

a widely used approach for this task, which learns

semantic distance measurements and the associated

embeddings[32−35] from the original image space to fea-

ture space. Motivated by FaceNet[34], we strive for an

embedding f(x) so that the squared distance among
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52 J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

all faces is independent of imaging conditions. In the

embedding spaces, samples with the same identity are

closer whereas those with different identities are further

apart.

Mathematically, the embedding is denoted as f :

data → R
d, which embeds an image x into a d -

dimensional Euclidean space. We adopt the following

contrastive loss function originally proposed by Hadsell

et al.[12] The loss function is defined as

Verif(xi, xj , ηxi,xj
, α)

=











1

2
‖f(xi)− f(xj)‖

2
2, if ηxi,xj

= 0,

1

2
max(0, α− ‖f(xi)− f(xj)‖2)

2, if ηxi,xj
= 1,

(2)

where α is the margin that is enforced between positive

and negative pairs, f is the embedding function, and

ηxi,xj
is the indicator where ηxi,xj

= 0 means positive

pairs, and ηxi,xj
= 1 means negative pairs.

For the network architecture, we choose the

new Light CNN-9 model[36], which introduces the

MaxFeature-Map (MFM) operation as an alternative of

ReLU and claims that MFM can play a role of feature

selection. With this design, the Light CNN-9 model

achieves state-of-the-art results with less parameters

and time-consumption. The Light CNN-9 model con-

tains five convolution layers, four Network-in-Network

(NIN) layers[37], Max-Feature-Map function, and four

max-pooling layers. The final layer is a fully connected

one that outputs a 256-dimensional representation. A

detailed explanation of this architecture can be found

in [36].

In the pre-training phase of the verificator, we ran-

domly sample 50% positive and 50% negative pairs as

train data to avoid data unbalance. These pairs are

separately fed to a shared weight Siamese network,

where the model is updated by the contrastive loss de-

fined in (2). Once the verificator training is finished,

parameters are frozen in the whole system training fol-

lowed.

Next in the PP-GAN training phase, the pair of

original image x and synthesized image x̂ is fed into

pre-trained verificator with ηx,x̂ = 1 to enforce their

different identities, i.e., the de-identification.

The term of verification loss in (1) is then defined

as

Lverif(G) = Ex∼Pdata(x),z∼Pz
(Verif(x,G(x, z), η, α)),

where x is the original input I, z is the noise, G(x, z)

is the generated image, η = 1 is the always false in-

dicator, and the margin is set to 2 on the normalized

feature vector to enforce a positive loss.

3.4 Structure Similarity

For the de-identification problem, we want to hold

the correspondence between original image x and syn-

thesized image x̂. The vanilla GAN simply generates

new samples from the data distribution. For cGAN,

although it samples under the condition of the input

image x, it does not ensure that the synthesized image

x̂ is close enough to x in the image space. For exam-

ple, if we have two images xi and xj with the same

condition, the cGAN would generate x̂i and x̂j with

the same distribution so that we cannot tell whether

x̂i is the de-identified image from xi or xj . Thus an

additional structural loss is necessary here to regulate

the generator to assure this matching. The two popu-

lar choices, the mean squared error (MSE) and the re-

lated quantity of peak signal-to-noise ratio (PSNR), are

not well suited because they do not match very well to

the perceived visual quality by humans, and the pixel-

level matching with the reference image is not what

we want to optimize. Instead we use the structural

similarity index (SSIM)[13], which has been used pre-

viously for privacy protection[38], as an objective mea-

surement for assessing perceptual image degradation af-

ter de-identification.

SSIM consists of three components including lumi-

nance similarity l(x, x̂), contrast similarity c(x, x̂), and

structural similarity s(x, x̂):

SSIM(x, x̂) = l(x, x̂)α × c(x, x̂)β × s(x, x̂)γ .

For a detailed explanation of SSIM, one can refer

to [13]. Here we define Lsim(x, x̂) =
1
2 (1− SSIM(x, x̂)).

Then in the GAN training, we have

Lsim(G) = Ex,∼Pdata(x),z∼Pz
(
1

2
(1− SSIM(x,G(x, z))),

where z is the noise, and G(x, z) is the generated image.

4 Experiments

4.1 Experimental Setup

We evaluate the proposed framework on a publicly

available MORPH[39] dataset, which contains 55 000

unique images of more than 13 000 individuals, with

diverse demographic information like age, gender, and
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race. Here we only use male data since the number

of female subjects is limited. The details of the demo-

graphic distribution of the MORPH dataset are shown

in Fig.4.
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Fig.4. Demographic distribution of the MORPH dataset. The
black group contains more samples than the white group, while
both have the similar age distribution.

To validate that our framework can preserve at-

tributes utility, data is divided into black and white

according to race, and then we divide each category into

three age groups: the youth (age6 25), the middle-aged

(25 < age < 40) and the senior (age > 40). We regard

these eight different data groups as black, white, black-

youth, black-middle, black-senior, white-youth, white-

middle, and white-senior. We randomly pick 90% from

each group for training and use the remaining for test-

ing. The training and the testing sets are consistent in

the verificator pretraining and the whole system train-

ing. For the data preprocessing, we use OpenFace 1○ to

detect, align, and crop face areas. During verificator

pretraining, we set initial learning rate to 1× 10−4 and

margin to 2. During the whole system training, the

learning rate is set to be 1 × 10−5. For all the experi-

ments, we use minibatch SGD and apply the Adam

solver[40].

For each group, we separately conduct four experi-

ments to analyze our objective function: cGAN, cGAN

with SSIM loss, cGAN with pretrained verificator, amd

cGAN with both pretrained verificator and SSIM con-

straint (i.e., ours). Here we regard these different set-

ups as: cGAN-only, cGAN+Sim, cGAN+Verif, and

cGAN+Sim+Verif.

4.2 Privacy Protection

To demonstrate the proposed framework that suc-

cessfully generates face images for privacy protection,

we need to prove that the produced face images nei-

ther remain the same as the corresponding raw images,

which means successful de-identification, nor simply

change the identity to other identities in the dataset,

which means no switching identity occurs.

De-Identification. To evaluate if the proposed model

successfully removes the identity of original images, we

assess if a pair of images are from the same identity in

a verification way. Specifically, given a verificator, for

each pair of images (x, x̂), it gives a distance value in-

dicating the similarity of the two images. If the value is

smaller than a threshold, the two images are treated as

the same identity, which means de-identification fails;

otherwise, the two images are determined as different

identities, and then de-identification successes. Here

we use de-identification rate (ERR rate) to represent

the effectiveness of privacy protection, i.e., (x, x̂) is not

determined as the same person.

To eliminate the overfitting caused by the pre-

trained verificator since it guides the training of the

whole system, we fine-tune the FaceNet[34] 2○ with

triplet loss as our evaluation verificator. FaceNet is

trained on the eight subgroups respectively. Specifi-

cally, the test data is grouped into numerous pairs with

half positive and half negative. Then the trained model

is evaluated on these pairs of images in a 10-fold way.

The finally gained optimal threshold is utilized in de-

identification evaluation.

Table 1 and Table 2 show our de-identification

performance. FaceNet achieves verification accuracy

greater than 97% on all black groups and 94% on white

groups. The overall de-identification rates are both very

high, and that of the black group is a bit higher due to

the larger sample size.

Table 1. De-Identification Rate (%) of Male/Black

Original De-Identified De-Identified

Test Train Test

Black 1.5 100.0 100.0

Black-Youth 1.6 100.0 100.0

Black-Middle 1.6 100.0 97.0

Black-Senior 2.7 97.2 93.7

Table 2. De-Identification Rate (%) of Male/White

Original De-Identified De-Identified

Test Train Test

White 1.8 100.0 100.0

White-Youth 2.8 96.2 94.4

White-Middle 3.3 89.7 90.8

White-Senior 5.9 91.7 84.7

1○https://cmusatyalab.github.io/openface, Dec. 2018.
2○https://github.com/davidsandberg/facenet, Dec. 2018.
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No Switching-Identification. In addition, in order

to demonstrate the yielded image does not possess the

identity of the other original images, for each generated

image, we compute its similarity, i.e., distance, with ev-

ery original image, and compare the distance of image

pair (xi, x̂j) with a threshold, where i, j are the identity

of the image. If the distance is smaller than the thresh-

old and i 6= j, identification switching occurs. If the

distance is smaller than the threshold and i = j, iden-

tification switching does not occur. We use the amount

of identification switches (IDS) as a measurement.

We conduct experiments on black-youth and white-

youth. As the data is unbalanced, to fairly compare

the IDS on both groups, we randomly sample the same

number of people from black-youth test as that in the

white-youth test. On both groups, we obtain 0 IDS,

which means no identification switching occurs.

4.3 Utility Preservation

Face-Like. The most important point for data uti-

lity is that the generated images should look natural

and realistic, i.e., they look like face. Here we utilize

a face detector MTCNN[15] to determine whether the

generated images are face or not. To alleviate the vari-

ance of the face detector, we conduct experiments on

both original and generated face images. Table 3 and

Table 4 show the detection rate on both the original

and the generated data. From the tables, we note that

the detection rates on original and de-identified data

are similar, proving that our system preserves the face-

like utility very well. As cropped face images are not

suitable for face detector trained on face image with

context, to alleviate the effects from the inconsistency,

we pad the cropped image with 50 pixels of 0 along

each axis. For some groups, the detection rate on de-

identified images is higher than that on original im-

ages, e.g., black-youth. This is because some original

face images are distorted, but yielded images have less

distorted images.

We show some representative bad cases in Fig.5.

The proposed method might fail when meeting images

with a non-frontal head pose or with a large beard (oc-

clusion) as the training data is normalized, and mostly

frontal and without occlusion.

Attributes Preservation. To examine the perfor-

mance of the proposed model for attribute preservation,

we train separate classifiers for each attribute and com-

pute the classification accuracy for the generated im-

ages. The classification accuracy rate is used as a mea-

surement to evaluate experimental results. From Fig.6,

we can see that the age-specific models well preserve

the group attributes compared with the age-nonspecific

group. The experiments on original images display

similar comparisons.

Table 3. Detection Rate of Male/Black

Data Setting Black Black- Black- Black-

Youth Middle Senior

Original w/o padding 0.733 0.817 0.767 0.598

De-identified w/o padding 0.719 0.847 0.715 0.570

Original w padding 0.988 0.993 0.994 0.977

De-identified w padding 0.956 0.995 0.990 0.969

Note: w: with; w/o: without.

Table 4. Detection Rate of Male/White

Data Setting White White- White- White-

Youth Middle Senior

Original w/o padding 0.758 0.808 0.738 0.621

De-identified w/o padding 0.784 0.767 0.739 0.499

Original w padding 0.973 0.967 0.979 0.975

De-identified w padding 0.975 0.940 0.988 0.902

Fig.5. Failed examples. We present some representative failed
examples here.

16.9%

86.9%

32.2%

87.3%

Black White

Age-Nonspecifc Age-Specific

Fig.6. Age classification accuracy. The blue bar displays
the classification accuracy of preserving attributes for age-
nonspecific group and the orange bar is for age-specific group.

4.4 Visual Similarity

For the de-identification problem, in addition to the

utility preservation, we want to hold the correspon-

dence between original image x and synthesized image

x̂ rather than just replace the face area randomly. In

other words, we only want to remove the privacy re-

lated characteristics, but keep the visual similarity, e.g.,

contours and luminous condition, as much as possible.
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As shown in Fig.7, the original and the generated im-

ages share consistent SSIM-consisting features like lu-

minance, contrast, and structure information while dis-

tinguishing privacy-related characteristics such as the

sizes and shapes of eyes, nose, and mouth. This indi-

cates the effectiveness of the regulator.

(b)(a)

Fig.7. Visualization of correspondence between original and de-
identified images. The upper row shows the original face images,
and the lower row shows the corresponding de-identified images
synthesized by our PP-GAN model. (a) ID: 325273. (b) ID:
090616.

To demonstrate that the proposed framework

achieves both de-identification and visual simila-

rity, we compute id-removal rate and SSIM of each

yielded image with the corresponding original im-

age on cGAN-only, cGAN+Verif, cGAN+Sim, and

cGAN+Verif+Sim (see Fig.8), and display representa-

tive results (see Fig.9). Overall, our framework main-

tains high id-removal rate and SSIM at the same time.

One can also visually tell that the PP-GANmodel maps

the original face to a different face while somewhat

keeping certain implicit relationship.

For the cGAN-only setting, it shows a high ID-

removal rate with uncertain SSIM for the black

(Fig.8(a)) and a low id-removal rate with high SSIM

for the white (Fig.8(b)), which may come from diffe-

rent sizes of samples. When the sample size is small,

the cGAN-only generates new images quite similar to

existing one (Fig.9(a)) and gains high SSIM. When the

sample size is large, the cGAN-only generator is able

to step away from the original figures but may generate

improper visualizations (Fig.9(b)), and provides low in-

surance for SSIM.

For the cGAN+Sim setting, the SSIM cost degener-

ates cGAN to the same manner of cGAN with limited

samples, which functions almost as an identity map-

ping (Fig.9). Thus it holds low id-removal rate and

high SSIM.

For the cGAN+Verif setting, the verification loss

here enlarges the cGAN’s sampling range and thus re-

sults in a high id-removal rate (Fig.8), while the incon-

sistency between the two feature spaces and the lack

of structure constraints may cause the visually strange

consequences (Fig.9(b)). An interesting phenomenon is

that when the sample size is small (the white group),

cGAN-Only cGAN+Verif+SimcGAN+Sim cGAN+Verif
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0.2 0.4 0.6 0.8 1.0

Structural Similarity Index

(b)

(a)

Fig.8. Trade-off between identity removal and visual similarity. The horizontal axis represents values of structural similarity index
(SSIM), and the vertical axis represents the de-identification rate.
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Original cGAN-Only cGAN+Sim cGAN+Verif cGAN+Verif+Sim

Original cGAN-Only cGAN+Sim cGAN+Verif cGAN+Sim+Verif

White-Youth

White

White-Middle

White-Senior

Black-Youth

Black

Black-Middle

Black-Senior

(b)

(a)

Fig.9. Visualized results of different objective designs on different groups. Our PP-GAN generates visually agreeable results beyond
all the other settings on every group.
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the cGAN+Verif indeed obtains a visually moderate re-

sult (Fig.9(a)) due to the enlarged sampling range from

the verificator.

These results confirm the necessity and efficiency of

simultaneously including the verificator and regulator

to balance the id-removal and utility retaining.

5 Conclusions

In this paper, we presented a new face de-

identification framework, Privacy-Protective-GAN,

which generates de-identified output according to a sin-

gle input. We explicitly integrated the de-identification

metric into the objective function to ensure the privacy

protection. Meanwhile, we tried to preserve visual

similarity as much as possible to retain data utility by

adding a regulator. In the experiments, we quantita-

tively demonstrated the effectiveness of the proposed

method in terms of privacy protection, utility preser-

vation, and visual similarity. More qualitative results

are shown in Fig.10 and Fig.11.

(b)

(a)

(c)

(d)

Fig.10. Visualized results of the black group. In each pair of double rows, the top one is for the original faces and the bottom one is
for the de-identified faces. (a) This panel shows the results for the whole black group. We can see that the age factor is not retained.
(b) shows the results of black-youth subgroup. (c) shows the results of black-middle subgroup. (d) shows the results of black-senior
subgroup.
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(b)

(a)

(c)

(d)

Fig.11. Visualized results of the white group. In each pair of double rows, the top one is for the original faces and the bottom one is
for the de-identified faces. (a) This panel shows the results for the whole white group. We can see that the age factor is not retained.
(b) shows the results of white-youth subgroup. (c) shows the results of white-middle subgroup. (d) shows the results of white-senior
subgroup.

Limitations and Future Work. Although our ap-

proach generates realistic de-identified output, and

achieves promising de-identification rates, it strug-

gles in applying on faces in the wild with head

poses, occlusions and so on as training data is mostly

frontal. Furthermore, we present a potential to preserve

soft-biometric attributes by training models on each

attributes-specific subgroup. It is reasonable to unify

the model and control attributes selection in the fu-

ture exploration. Finally, extending this work to videos

data, achieving temporal consistency would be an inte-

resting direction.
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