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Abstract With the advent of the big data era, the amounts of sampling data and the dimensions of data features are

rapidly growing. It is highly desired to enable fast and efficient clustering of unlabeled samples based on feature similarities.

As a fundamental primitive for data clustering, the k-means operation is receiving increasingly more attentions today. To

achieve high performance k-means computations on modern multi-core/many-core systems, we propose a matrix-based fused

framework that can achieve high performance by conducting computations on a distance matrix and at the same time can

improve the memory reuse through the fusion of the distance-matrix computation and the nearest centroids reduction. We

implement and optimize the parallel k-means algorithm on the SW26010 many-core processor, which is the major horsepower

of Sunway TaihuLight. In particular, we design a task mapping strategy for load-balanced task distribution, a data sharing

scheme to reduce the memory footprint and a register blocking strategy to increase the data locality. Optimization techniques

such as instruction reordering and double buffering are further applied to improve the sustained performance. Discussions on

block-size tuning and performance modeling are also presented. We show by experiments on both randomly generated and

real-world datasets that our parallel implementation of k-means on SW26010 can sustain a double-precision performance of

over 348.1 Gflops, which is 46.9% of the peak performance and 84% of the theoretical performance upper bound on a single

core group, and can achieve a nearly ideal scalability to the whole SW26010 processor of four core groups. Performance

comparisons with the previous state-of-the-art on both CPU and GPU are also provided to show the superiority of our

optimized k-means kernel.

Keywords parallel k-means, performance optimization, SW26010 processor, Sunway TaihuLight

1 Introduction

Clustering is an essential task with a wide range

of applications in data mining and machine learning.

Among many clustering algorithms, k-means is a widely

utilized and most well-known choice. Given a set of

n sampling data in d dimensions, k-means is used to

partition it into k groups, with the data inside each

group closest to the centroid. As one of the most popu-

lar machine learning algorithms[1], it is often used as

a pre-processing building block for many other ma-

chine learning algorithms, such as the computation of

k Nearest-Neighbors (kNN)[2], the computation of dis-

tributed parallel CA-SVM algorithm[3], and the model
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compression in Deep Neural Networks (DNN)[4]. With

the rapid emergence of massive datasets in high dimen-

sions, data pre-processing together with model train-

ing has become increasingly time-demanding for the de-

ployment of a machine learning application. Therefore,

it is of great importance to accelerate the computing of

the k-means algorithm.

In the past, programmers usually relied on the in-

crease of CPU clock frequency to get ready-made per-

formance improvement. However, limited by the power

and heat dissipation, hardware vendors are focusing

more on designing high-performance computers with

multi-core and many-core architectures that often come

with massive parallelism and complex memory hierar-

chies. It is therefore often a challenging task to de-

ploy an efficient parallel k-means algorithm on hard-

ware platforms with such kind of complexity. To tackle

this obstacle, extensive research has been conducted

to optimize the k-means algorithm on both multi-core

CPUs[5−7], and many-core based platforms such as the

Graphic Processing Units (GPUs)[8−19] and the Intel

Many Integrated Cores (MICs)[20]. Meanwhile, existing

optimization work has some design deficiencies, for ex-

ample, the work of [8–12] poses restriction on the scale

of n, d and k, and the state-of-the-art work[14] suffers

from redundant memory usage; all will ultimately limit

the performance improvements for deploying k-means

on future architectures.

The Sunway TaihuLight supercomputer is the

world’s first system with a peak performance greater

than 100 Pflops, and a parallel scale of over 10 million

cores. As the major horsepower of Sunway TaihuLight,

the SW26010 processor[21,22] is designed based on a

Chinese homegrown many-core architecture that comes

with a number of unique hardware features, such as the

encapsulation of one management processing element

and dozens of computing processing elements in a same

core group, the utilization of scratchpad memory to

serve as a local device memory for each computing pro-

cessing element, the support of direct memory access to

transfer data between the main memory and the local

device memory, and the design of register communica-

tion channels to exchange data among different comput-

ing processing elements. For performance-critical ker-

nels like k-means, achieving high performance on the

SW26010 processor is a demanding task and requires

in-depth study.

In this paper, we propose a matrix-based fused

framework for parallel k-means computation and con-

duct systematic performance optimizations on the

SW26010 many-core processor. In particular, we de-

sign a task mapping strategy for load-balanced task

distribution, a data sharing scheme to reduce the mem-

ory footprint, and a register blocking strategy to in-

crease the data locality. Techniques such as instruc-

tion reordering and double buffering are also applied

to further improve the performance. Unlike previous

state-of-the-arts, our implementation of k-means on the

SW26010 processor poses no restriction on the scale of

n, d, and k as long as data can be accommodated in

the main memory. Performance evaluations are done

on both randomly generated and real-world datasets.

The test results show that our k-means implementa-

tion can sustain a double-precision performance of over

348.1 Gflops, which is 46.9% of the peak performance

and 84% of the theoretical performance upper bound

on a single core group, and can achieve a nearly ideal

scalability to the whole SW26010 processor of four core

groups. Performance comparisons with the previous

state-of-the-arts on both CPU and GPU are also pro-

vided to show the superiority of our optimized k-means

kernel.

The remainder of the paper is organized as follows.

In Section 2, we give a brief overview of the SW26010

many-core processor. Then after a short review of the

basic k-means algorithm, we propose a matrix-based

fused framework for parallel k-means computations in

Section 3. Details on how the k-means framework is

implemented and optimized on the SW26010 many-

core processor are presented in Section 4. Further dis-

cussions on the block size and the performance upper

bound are provided in Section 5. We provide perfor-

mance evaluations through tests conducted on both

randomly generated and real-world datasets in Sec-

tion 6. Some related work can be found in Section 7.

And the paper is concluded in Section 8.

2 SW26010 Many-Core Processor

As shown in Fig.1, the SW26010 processor[21,22] is

comprised of four core groups (CGs), each of which

has one management processing element (MPE) and

64 computing processing elements (CPEs). The four

core groups are usually used as four independent nodes.

The CPEs within each core group are arranged in an

8 × 8 mesh and each CPE is equipped with a local 64

KB software-controllable local device memory (LDM)

as well as 32 256-bit vector registers. From the perspec-

tive of the CPE mesh, horizontal/vertical data buses

connect the 8 CPEs in a row/column and thus any
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Fig.1. Architecture of SW26010 many-core processor[21,22].

two directly connected CPEs can exchange data mu-

tually through a register communication mechanism,

i.e., several special registers act as buffers for send-

ing/receiving message via the connecting buses. Due to

these connections, the whole CPE mesh can be treated

as one fat core so that the cached data in the whole set

of LDM can be shared. As for one CPE, the explic-

itly controllable LDM poses programming difficulties

to users, but the memory footprint of programs can

be effectively coordinated and higher data-reuse ratio

can be potentially achieved through elaborated algo-

rithm design. Besides directly accessing main mem-

ory, the CPEs can transfer data chunk from memory

to the LDM back-and-forth through high-bandwidth

DMA channels. When the data chunk is large in vol-

ume and physically contiguous in memory, the DMA

bandwidth is usually much more preferable. In addi-

tion, the DMA request is essentially asynchronous that

can be fulfilled together with other operations by the

CPEs and thus computation and memory access can be

overlapped to improve the overall performance.

From the perspective of micro-architecture, two

execution pipelines are embedded in each CPE. Both

pipelines can issue integer arithmetic instructions. But

one of them (pipeline 0) only supports floating-point

arithmetic operations while the other (pipeline 1) is

only able to handle load/store and register communica-

tion operations. Therefore, fine-tuned assembly codes

usually try the best to issue two independent instruc-

tions concurrently to fully utilize the two pipelines.

Each CPE has 256-bit wide SIMD components with

fused multiplication-add (FMA) instruction. For com-

puting intensive kernels, the efficiency usually relies on

the floating point instructions occupancy ratio of the

pipeline 0, the degree of vectorization, and the ratio of

FMA instructions.

A light-weight effective thread library, named

Athread, is available to exploit the parallelism of the

many-core processors. The Athread library prima-

rily supports plain Fork-and-Join parallelism, where

athread spawn() is used for MPE to initiate new ker-

nels that will be executed by at most 64 light-weight

threads (one thread per CPE), each of which runs

the same sequential code. A set of interfaces for

DMA operations are also provided, such as dma get()

and dma put(). These interfaces are by default asyn-

chronous and dma wait() is used to make sure the is-

sued requests are completely fulfilled. Due to the lack

of basic mutex control tools such as lock or semaphore,

users need to customize them by the CPE atomic ope-

rations such as fetch-and-add when accessing exclusive

resources.
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3 k-Means Algorithm and Parallelization

In this section, we first introduce the basic k-

means algorithm, and propose a new matrix-based

fused framework for parallel k-means. Then we com-

pare our approach with existing work and show the

benefits of our new design.

3.1 Basic k-Means Algorithm

A well-known NP-hard problem[23] is to partition

the large set of samples into a number of clusters so that

a given cost function is minimized. The cost function

is usually defined by the sum of squared error (SSE):

SSE =

k−1∑

i=0

∑

xj∈Ci

‖xj − ci‖
2
,

where k is the number of clusters, xj is the j-th sam-

ple in the i-th cluster Ci, and ci is the centroid of Ci

defined as:

ci =

∑
xj∈Ci

xj

|Ci|
.

Among various methods for data clustering, Lloyd’s

algorithm, which serves as a basic k-means algorithm,

is a widely utilized choice[1]. At the beginning of

the algorithm, the centroid of each cluster is decided

based on a certain rule, such as random assignment[24],

distribution-based assignment[25], or some specialized

initialization algorithm such as k-means++[26]. Then

the algorithm iteratively attempts to form the k clus-

ters by gathering all the samples around their nearest

centroid respectively. Each cluster is defined by:

Ci = {xj : ‖xj − ci‖
2
6 ‖xj − cl‖

2
, ∀ l, 0 6 l 6 k − 1},

where xj is assigned to exactly one cluster when there

is more than one centroid with equal minimal distance.

The algorithm is terminated when the absolute incre-

mental of SSE between two consecutive iterations is

smaller than a given criterion ε > 0. Alternatively,

the convergence criterion can be replaced with a fixed

number of iterations.

Algorithm 1 lists Lloyd’s basic serial k-means al-

gorithm, in which yi represents the label of the near-

est centroid for the i-th sample. For ease of reference,

we decompose each iteration in the main loop into two

phases: clustering (lines 5–7) and centroid updating

(lines 8–10). In the clustering phase, all the samples

are assigned to the closest cluster and the SSE is ac-

cumulated. In the centroid updating phase, clusters

update their centroids based on the current samples in

each cluster.

Algorithm 1. Serial k-Means Algorithm

Input: sample set {x0, x1, ..., xn−1}

Output: centroid set {c0, c1, ..., ck−1},

label vector {y0, y1, ..., yn−1}

1 prevSSE, curSSE ← 0.0

2 Initialize centroids

3 repeat

4 prevSSE ← curSSE

5 for j ← 0 to n− 1 do

6 (yj , curSSE)← Clustering( )

7 end

8 for i← 0 to k − 1 do

9 ci ← UpdateCentroid( )

10 end

11 until |curSSE − prevSSE| 6 ǫ;

3.2 Matrix-Based Fused Framework

In the k-means algorithm, the clustering phase is the

most time-consuming one, especially when the number

of data samples n and the size of the feature dimen-

sions d are large. Therefore we focus on discussing the

parallelization of this phase. To that end, we propose

a matrix-based fused framework which relies on high-

performance distance matrix computations and at the

same time can reduce the memory access cost greatly.

Instead of computing the cluster results individu-

ally, we introduce a distance matrix D = {dij , i ∈

[0, n− 1], j ∈ [0, k − 1]}, in which the distances between

all the samples and all the centroids are calculated and

stored. Each element dij represents the distance be-

tween the i-th sample and the j-th centroid. D can be

obtained by a matrix computation D = S ⊗C, where

symbol ⊗ represents the pairwise distance of two ma-

trices, i.e.,

di,j =

d−1∑

z=0

(Si,z − Cz,j)
2, 0 6 i < n, 0 6 j < k.

S is an n×dmatrix and C is a d×k matrix, which store

the samples and centroids respectively. After getting

D, a minimum reduction is then applied on every row

of D to get the label of the samples. For the ease of ex-

pression, we call this method as matrix-based method.

An analogous idea was used in [14].

Based on the distance matrix, we further refac-

tor the clustering phase by fusing the distance ma-

trix calculations[27−29] and the nearest centroid search.

The reduction of the nearest centroid can be performed

right after a small block of distance matrix has been

computed, which increases the reuse rate of the data.
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By combining the reduction with the matrix compu-

tations, the distance matrix can be discarded with-

out being written back to the main memory, which

reduces a significant amount of memory access. This

framework can be applied to a multi-core CPU or a

many-core processor. In the following discussion, we

name a processor with software-controllable cache as

processor-A, and a processor with transparent cache as

processor-B. For example, SW26010 processor equipped

with a software-controllable LDM belongs to processor-

A, while x86 processors with a transparent cache belong

to processor-B.

The pseudo code of the matrix-based fused frame-

work can be found in Algorithm 2. The sample-matrix

S, the centroid-matrix C, and the resultant distance-

matrix D are partitioned into blocks of bn× bd, bd× bk
and bn× bk respectively. Thus the original matrices are

laid out as coarser grid of N ×D′, D′ ×K and N ×K,

where N = n/bn, D
′ = d/bd and K = k/bk. As shown

in the pseudo code, the overall framework is arranged

in the N -K-D′ order, where δX(i, j) denotes the (i, j)-

th block of matrix X. In the innermost loop, δD(i, j)

records the distances between the samples from i × bn
to (i + 1) × bn − 1 and the centroids from j × bk to

(j + 1) × bk − 1. Benefiting from this organization,

once the δD(i, j) block is computed, the nearest clus-

ters of samples within the block can be selected; there-

fore δD(i, j) does not need to be written back and be

accessed again. And the space can be used for the next

block. It is obvious that in our fused framework, we do

not need to allocate space for the entire distance matrix

D. For processor-A, a small block D is only required in

the cache and no allocation in the main memory. And

for processor-B, only a small block of D needs to be

allocated in the main memory.

Algorithm 2. Matrix-Based Fused Framework

1 for i← 0 to N − 1 do

2 for j ← 0 to K − 1 do

3 Set block δD(i, j) to zero

4 for z ← 0 to D′ − 1 do

5 Read block δS(i, z) from main memory

6 Read block δC(z, j) from main memory

7 δD(i, j)+ = (δS(i, z)) ⊗ (δC(z, j))

8 end

9 Reduce the nearest centroid of samples in

δD(i, j)

10 and Accumulate SSE

11 end

12 Save labels and SSE

13 end

Fig.2 presents more details about the computation

pattern of the fused framework (lines 4-8 in Algo-

rithm 2). As seen in Fig.2(a), the inner-most loop, the

distance is cumulatively computed. A block of D, i.e.,

δD, is acquired by blocks of S in a same row and blocks

of C in a same column. As an illustrative example, the

case for n = 6, d = 4, k = 4, bn = 3, bd = 2 and bk = 2

is shown in Fig.2(b).

In the outer-most loop, the computation iterates

twice with i = 0 (computation for the first three sam-

ples) and i = 1 (computation for the last three sam-

ples). We only elaborate on the computation for i = 0,

since the case of i = 1 shares the same computation

flow. It is responsible to compute the nearest centroid

for the first three samples for i = 0. This is completed

with the intermediate loop with j = 0 and then j = 1.

Here δD(0, 0) (δD(0, 1)) stores the distance between

the three samples and the first (last) two centroids.

For j = 0 (j = 1), the data of δD(0, 0) (δD(0, 1))

is acquired by iterating over blocks in the inner-most

loop with z = 0 and z = 1. Then a minimum reduction

on the same row is carried out to get the nearest cen-

troid’s index and distance value between the first (last)

two centroids. And then each corresponding element in

these two minimum values is compared to get the final

minimum value, which is the nearest centroid among

all.

Two high-performance computation kernels are re-

quired in Algorithm 2, namely the distance matrix com-

putation kernel (line 7) and the light weight nearest cen-

troid reduction kernel (lines 9–10). The distance ma-

trix computing kernel computes δD = δS ⊗ δC, where

δS, δC, and δD are bn × bd, bd × bk and bn × bk ma-

trices respectively, and these three block matrices can

be accommodated in the cache. And the nearest cen-

troid reduction kernel searches the nearest centroid for

a batch of samples in δD and accumulates the overall

nearest distance for the SSE computation.

3.3 Comparison with Existing Work

Most of the existing studies[8−12] on the paralleliza-

tion of k-means focus on computing the pairwise dis-

tances per sample point using a single loop over all

centroid points. This naive implementation does not

need to store the resultant distance matrix D, thereby

it needs the least memory usage. But it ignores the

reuse of matrixC in computation, and its computation-

once-reduction-once pattern may have a more serious

pipeline stall and lead to an insufficient instruction-level

parallelism.
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example.

As a current state-of-the-art, matrix-based method,

such as the work of Li et al.
[14], can improve the

performance of clustering through a high-performance

matrix multiplication kernel that resembles to the fa-

mous dense matrix-matrix multiplication (GEMM) ker-

nel except that the inner product is replaced by a

distance computation. It is well known that kernels

like GEMM can be parallelized efficiently with a data-

parallel scheme, because of the volume-to-surface fea-

ture, i.e., O(n3) computation is done on O(n2) data[30].

Therefore, this approach produces much higher per-

formance than the naive counterparts. However, the

matrix-based method suffers from extra memory usage

and redundant memory footprint. The distance matrix

obtained from the GEMM kernel not only occupies non-

negligible memory space and limits the problem size on

the main memory side, but also has to be read again to

compute the label of each sample and update the SSE

in the follow-on computation. Our matrix-based fused

method catches the key insight that k-means only re-

quires to store the labels of each sample point’s nearest

centroid. All of the pairwise distances can be immedi-

ately discarded once we have reduced them. By design-

ing a fused framework, we remove the memory space

for the global distance matrix, resulting in a new k-

means approach with both reusing matrix information

and reducing memory footprint.

We compare the aforementioned three methods

from four aspects: overall memory usage, main memory

access volume, data reuse, and instruction-level paral-

lelism (ILP); the analysis is summarized in Table 1,

where β represents the size of block δD. The proposed
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Table 1. Comparison with Previous Methods

Method Memory Usage Memory Access Data Reuse ILP

Naive method nd+ kd nd+ kd+ n No Insufficient

Matrix-based method nd+ kd+ nk nd+ kd+ 2nk + n Yes Sufficient

Our method on processor-A nd+ kd nd+ kd+ n Yes Sufficient

Our method on processor-B nd+ kd+ β nd+ kd+ n+ β Yes Sufficient

matrix-based fused method has the advantages from

both methods. On the one hand, it has the same data

reuse degree and instruction-level parallelism as the

matrix-based method, which is better than the naive

method. On the other hand, it improves the matrix-

based method by saving nk memory space and avoid-

ing two times of traversals to distance matrix D, i.e.,

totally 2nk memory access time. On processor-B, an-

other β memory space is required on the main memory,

but it is still much less than nk.

4 Implementation and Optimization on

SW26010

As mentioned earlier, SW26010 can provide high

computing throughput but the memory bandwidth is

relatively low. In order to fully exploit the comput-

ing capability of this many-core processor, special ef-

forts should be made. In this section we will take the

distance matrix computation kernel as an example to

elaborate the detailed techniques we employ for the

implementation and optimization of the k-means algo-

rithm on SW26010. Additional considerations for other

parts of the algorithm will be mentioned briefly at the

end of this section.

4.1 Task Mapping

The computation of the distance matrix is in gene-

ral compute-bound. But the data movement cost will

easily become a bottleneck if not carefully designed.

Thanks to the interconnected data buses on the CPE

mesh, the whole set of LDM from all the CPEs can

be logically shared. To make a collective utilization of

the entire LDM resource, for a given z in Algorithm 2,

all of δD(i, j), δS(i, z) and δC(z, j) are physically di-

vided into 64 tiles and mapped to the 64 CPEs, as

shown in Fig.3. Specifically, the CPE at (µ, ν) ini-

tially holds ǫS(µ, ν) of tn × td and ǫC(µ, ν) of td × tk,

and is responsible for updating ǫD(µ, ν) of tn × tk.

Since ǫD(µ, ν) =
∑7

l=0 ǫS(µ, l)⊗ ǫC(l, ν), the update

of ǫD(µ, ν) can be done collectively by all the 64 CPEs.

Task
Mapping:

δS

δC

δD

CPE (0, 0) CPE (0, 1) CPE (0, 7)

CPE (1, 7)

CPE (7, 7)CPE (7, 1)CPE (7, 0)

CPE (1, 0)

S(µ, v)

D(µ, v)
C(µ, v)

CPE(µ, v)

Fig.3. Task mapping strategy for the distance matrix compu-

tation kernel.

4.2 Data Sharing

To update ǫD in each CPE effectively, we design a

tile exchange scheme based on the register communica-

tion mechanism. The tile exchange scheme is illustrated

in Fig.4, where a simplified 3×3 CPE mesh is used for

ease of discussion. Initially each CPE holds a green tile

of S and a red tile of C. The green tiles in each row of

the CPE mesh are labeled by 0, 1 and 2, and the same

for the red tiles in each column. The overall procedure

can be done in three steps, each of which is responsi-

ble for multiplying a pair of tiles. At the i-th step, the

CPE at (µ, ν) requires to multiply a green tile labeled

i in row µ and a red one with the label i in column

ν and then accumulate the result to ǫD(µ, ν). This

can be done by the register communication, specifically

by the row/column broadcast. CPE(i, i) broadcasts its

local green tile to other CPEs in the same row, and

broadcasts the local red tile to the other CPEs in the

same column; CPE(i,−) (CPEs in the i-th row except

CPE(i, i)) only broadcast the local red tile to other

CPEs in the same column. CPE(−, i) (CPEs in the

i-th column except CPE(i, i)) only broadcast the local

green tile to other CPEs in the same row. After finish-

ing the broadcast, all the CPEs hold the required tiles

and are able to update the local ǫD in parallel.
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Fig.4. Data sharing method based on the register communication among different CPEs.

4.3 Register Blocking

On each CPE, ǫD(µ, ν) is computed as ǫD(µ, ν)

+= ǫS(µ, l) ⊗ ǫC(l, ν) for a given l ∈ [0, 7]. To allevi-

ate the memory access latency gap between LDM and

registers, and to improve the data reuse in registers, we

adopt a register blocking technique so that ǫS(µ, ν),

ǫC(µ, ν) and ǫD(µ, ν) are further divided into smaller

rn × td, td × rk, and rn × rk panels respectively. The

register blocking technique requires another triple-loop,

in which the innermost one conducts the computation

on a small column panel of S and a small row panel of

C, resulting in an output matrix of rn × rk.

4.4 Instruction Reordering

To make full utilization of the double pipeline pro-

vided by the SW26010 processor, we manually reorder

the instructions in the performance-critical kernels at

the assembly language level. The instruction reorder-

ing is conducted according to three major principles.

• Adjust the order of instructions to reduce read-

after-write dependencies as much as possible.

• Pair up floating-point instructions and LDM

load/store or integer operations whenever possible.

• Occupy the first pipeline by floating-point instruc-

tions as much as possible.

Under the guidance of the above principles, the in-

struction reordering for the innermost loop can be done

as in Fig.5. In the figure, regA and regB represent the

register communication instructions to exchange ma-

trix elements of S and C respectively. Variants rA,

rB, rS and rC represent the registers, in which rS is

used to store the temporary subtraction result and rC

to store the distance. Considering that the instruc-

tion latency of vsubd is seven cycles, the follow-up in-

structions that use its results should be issued after at

least seven cycles, so that the instruction stall caused

by the dependency can be avoided. For example, to

avoid the read-after-write dependency denoted by ar-

rows in the picture, we keep a reasonable instruction

interval by first doing all subtraction and then execut-

ing the FMA instruction. In addition, we pair up the

addl and regA/regB instruction with the vsubd/vmad

instruction to maximize the usage rate of the double-

pipeline.

Fig.5. A sample pseudo code of the instruction reordering.

4.5 Double Buffering

To further reduce the cost of DMA data transfer,

a double buffering technique is applied. As shown

in Fig.6, for a given z in the innermost loop of Al-

gorithm 2, while the computation of δD(i, j) +=

δS(i, z) ⊗ δC(z, j) is being performed collectively by

all the CPEs, δS(i, z + 1) and δC(z + 1, j) are being



Min Li et al.: Enabling Efficient k-Means Computations on SW26010 Processor of Sunway TaihuLight 85

loaded by the DMA read operation. Thus the compu-

tation and memory access can be overlapped, leading

to improved performance.

Single
Buffer:

DMA
Read

DMA
WriteComputation

Overlapping

Time

z/

z/

z/

z/

z/

z/

z/

z/ z/

z/

z/

z/

Double
Buffer:

Fig.6. Illustration of the double buffer technique for overlapping

the DMA operation with computation.

4.6 Additional Considerations

4.6.1 Nearest Centroid Reduction Kernel

When the computation on block δD(i, j) is done, re-

ductions are applied to get the nearest centroid for the

samples and the accumulated SSE. To get the nearest

centroid for the samples, we use a two-step reduction

approach depicted in Fig.7. In the first step, all the

eight CPEs perform minimum reduction on its own ǫD

(local reduction). And in the second step, CPEs in

the same row conduct a binary reduction using the row

register communication (RRC reduction). After that,

CPEs in the first column obtain the label of the cen-

troid with the minimum distance. Based on the results,

CPEs in the first column update the corresponding seg-

ments of the labels of samples’ nearest centroid. For the

SSE accumulation, the first two steps are the same as

the nearest centroid acquisition process, but with an

accumulation reduction operation. Besides, we carry

out the accumulation reduction for the CPEs in the

first column using the column register communication

(CRC reduction). After the reduction operations, the

labels of the samples and the accumulated SSE are then

transferred back to the main memory.

4.6.2 Centroid Updating Phase

The centroids in matrix C are updated according

to the newly computed clusters. The new centroid for

a given cluster is computed as the average of the sam-

ples within the cluster. To avoid race condition, we

let one working thread deal with the updating of each

centroid. However, during the execution, load imba-

lance occurs frequently due to the varying number of

samples in each cluster. To handle this issue, we de-

ploy a dynamic work-sharing strategy based on atomic

operation. The tasks of updating all the k centroids are

labeled with a unique label corresponding to the cluster

index. Then we put all the tasks in a task pool with a

shared task counter that represents the label of the next

task to process. By using the atomic fetch-and-add in-

struction to update the counter, a CPE can obtain the

label of a new task immediately without waiting.
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Data Exchange

DMA Write
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Fig.7. Two-step nearest centroid reduction based on the row

register communication among CPEs in the η-th row.

4.6.3 Extension to the Whole Processor

As mentioned earlier, the SW26010 processor con-

sists of four core groups, each with one MPE and 64

CPEs. To fully exploit the computing capability of the

whole processor, we need to further extend our parallel

k-means implementation to the four core groups. To

that end, we partition the sample data into four parts

and assign each core group with one MPI process to

handle the data evenly. The overall centroid data is

duplicated across all four core groups. During the clus-

tering phase, every core group assigns their allocated

samples to the closest cluster by using the nearest cen-

troid reduction framework introduced in Subsection 3.2.

In the centroid updating phase, all core groups need to

communicate with each other to get the newest cen-

troids. The communication volume is roughly (dk +

k) log(P ), and the communication-to-computation ra-

tio is (dk + k)/(3ndk + nk+ nd+ dk) log(P )[31], which

has a strong correlation to the parallel scalability of

the implementation. Our experiments in Subsection 6.1

will demonstrate that in most cases such a method can

generally achieve satisfactory scalability among the four

core groups in the whole SW26010 processor.
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5 Block-Size Tuning and Performance

Modeling

In this section, we focus on tuning the block size

to maximize the sustained performance. We also pro-

vide a simple performance model for the analysis of the

theoretical performance upper-bound of our k-means

implementation on SW26010.

5.1 Block-Size Tuning

Three levels of data blocking are employed in the im-

plementation of the k-means algorithm on the SW26010

processor, including the main memory blocking in the

parallel algorithm framework, the LDM blocking in the

task mapping, and the register blocking at the inner-

most level. Zero padding is applied when n, d, or k is

not a multiple of its corresponding block size. For ex-

ample, when loading block δC from main memory (line

6 in Algorithm 2), it is required to check whether the

memory access is within the boundary (the row index

should be in the range of (0, d) and the column in the

range of (0, k)). If the condition is not satisfied, the

thread should not load the element. Instead, it places

value 0.0 in the corresponding position, which does not

change the result when computing the distance.

For each level of the data blocking, we need to find

an appropriate block size based on both analysis and

experimental searching. For register blocking, rn and

rk registers are required to hold the elements of S and

C respectively. In addition, we need rn × rk registers

to store the temporary substraction results and another

rn × rk registers to store the corresponding distances.

There are two constraints in determining the block

size for register blocking. First, the registers used

should not exceed the total number of registers, i.e.,

2rnrk + rn + rk < 32. Second, we should maximize

computation/memory-access ratio (CMR) which is de-

termined by CMR = 3rnrk/(rn + rk) here, so that the

memory access time can be hidden. Based on the above

considerations, we set rn = 4 and rk = 2, indicating

that the block size for register blocking is 4× 2.

Since the CPE mesh is fixed to be 8 × 8, the block

size for LDM blocking should be 1/8 of the block

size for the main memory blocking, i.e., tn = bn/8,

td = bd/8 and tk = bk/8. In addition, under the

limitation of the LDM capacity, the number of ma-

trix elements in double precision stored on each CPE

should be less than 64 KB/8 B = 8192, which means

tntk + tktd + tdtn + 4tn < 8 192. Here, 4tn item is used

for reducing the nearest centroids in the distance ma-

trix. And given the 4×2 register blocking size, tn needs

to be a multiple of 16, and td and tk need to be divisible

by 2.

For main memory blocking, in order to hide the

memory access time, we also need to make the CMR as

large as possible. According to Algorithm 2, the sam-

ple matrix is fetched K times and the centroid matrix is

fetched N times. Therefore, the overall memory-access

volume is Knd+Ndk + n, where n represents the vol-

ume of labels being written back, which is the same as

the number of samples. Therefore, the CMR constraint

is CMR = 3ndk/(Knd+Ndk + n). With some simple

mathematical deduction, we can get an approximation

formula CMR ≈ 3/(1/bn + 1/bk). When taking double

buffering into consideration, the formula in LDM block-

ing should be tntk + 2tktd + 2tdtn + 4tn < 8 192. Para-

meter combinations satisfying the above constraints are

all feasible. An extensive parameter searching was per-

formed to find the most appropriate choice, which is

tn = 96, td = 16, tk = 32, and correspondingly

bn = 768, bd = 128, bk = 256.

5.2 A Simple Performance Model

We analyze the performance upper bound for k-

means in each phase. In the clustering phase, since the

computation has the similar pattern as dense-matrix

multiplication, it is reasonable to assume that this

phase is compute-bound. The CPE mesh consists of 64

CPE cores and each one includes four double-precision

pipelined fused-multiply-add (FMA) data paths (i.e.,

256-bit SIMD), running at 1.45 GHz. Thus the the-

oretical peak performance of all 64 CPEs in a core

group is 1.45 × 2 × 4 × 64 = 742.4 Gflops. Though

the squared distance computing kernel can be fully

vectorized, it can only achieve 3/4 of the peak, i.e.,

Pcluster = 556.8 Gflops. This is because the computa-

tion of each distance has one FMA and one minus, with

the former counting for 2 operations and the latter for

only 1, losing 1/4 of the operation count. Given the to-

tal number of floating-point operations, which is 3ndk,

the ideal time spent in the clustering phase is therefore

Tcluster = (10−9 × 3ndk)/Pcluster seconds.

The computation overhead in the centroid updating

phase is very small. And for the sake of simplicity, we

assume that the centroid updating phase is memory-

bound and ignore the time for computation. The total

number of data bytes transferred through DMA can be

given by V = sizeof(double)×(nd+dk)+sizeof(int)×n
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and the practical DMA bandwidth is measured to be 22

GB/s[32]. Thus the ideal time for the centroid updating

phase is Tupdate = 10−9V/22 seconds.

Based on the modeling above, a performance upper

bound for the k-means computation on a single core

group of SW26010 can be calculated as

Pideal = (10−9 × 3ndk)/(Tcluster + Tupdate)Gflops,

in which we have dropped all lower-order terms.

6 Experimental Results

In this section, we focus on examining the perfor-

mance of the proposed parallel k-means on SW26010.

We first provide test results to see how various opti-

mization techniques affect the overall performance and

then conduct both the strong and the weak scalability

tests on the whole processor of four core groups. After

that, we compare our method with the previous state-

of-the-arts on both CPU and GPUs. Without loss of

generality, the basic data type in all tests is the double-

precision floating point. And the source code is com-

piled with -O3 optimization.

To study the effectiveness of different implementa-

tion and optimization methods, we first conduct experi-

ments on a single core group and focus on examin-

ing the performance of five code variants, including

a naive implementation without using matrix-based

method (baseline), the matrix-based version based on

distance-matrix computation with simple data blocking

(MAT), the improved version that fuses the distance-

matrix computation and the nearest centroid reduction

(FU), the code with further instruction reordering (IR),

and double buffering (DB).

6.1 Performance Evaluations

The input data is randomly generated to span in a

wide range of data and dimension sizes, and the num-

ber of clusters is fixed to 256. Fig.8 shows the perfor-

mance results of the five versions. The native matrix-

based method can achieve around 8x speedup compared

with the baseline, which indicates the benefits of data

blocking and data reuse. The fusion of the distance-

matrix computation and the nearest centroid reduction

improves the performance by around 40%, indicating

that the fused framework is able to successfully improve

the memory reuse. When the instruction reordering is

applied to the fused version, the performance is boosted

by nearly 2.3x. This is because the assembly kernel can

avoid extra instruction dependencies and hide the LDM

accessing overhead. The double buffering technique can

further contribute roughly 30% performance enhance-

ment thanks to the overlapped cost of DMA operations.
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Fig.8. Performance improvement with various optimization

techniques.

Next we extend the performance tests to several

real-world datasets selected from the UCI Machine

Learning Repository 1○. The meta information of the

datasets[33−37] is listed in Table 2. Unlike n and d, the

parameter k in k-means is often not explicitly known

and problem-dependent. We consider both large val-

ues and small values of k. For the large value case, we

choose k = 256, which is beneficial for achieving high

performance. The measured performance as well as the

corresponding Pideal for each dataset is plotted in Fig.9.

We can see from the figure that the better performance

can be sustained as the number of samples or the fea-

ture dimensions is larger. In particular, our k-means

implementation can sustain performance of 175.94 to

348.1 Gflops in double precision and reach 47%–84% of

the performance upper bound.

Table 2. Meta Information of the Real-World Datasets

Dataset n d

PEMS-SF 440 138 672

Amazon 1 500 10 000

Greenhouse 2 921 5 232

sEMG 3000 2 500

Daily 9 120 5 625

Note: For simplicity, we use abbreviation name of the datasets.

The full names are as follows: PEMS-SF, Amazon Commerce

Reviews, Greenhouse Gas Observations, sEMG for Basic Hand

Movements, Daily and Sports Activities.

1○http://archive.ics.uci.edu/ml/index.php, Nov. 2018.
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It is also possible that k is very small, e.g., less than

16. Under this circumstance, the k-th dimension needs

to be padded with zeroes to reach the minimum block-

ing size for our matrix-based fused framework; other-

wise the overall performance would severely deteriorate.

And when the blocking size in the k-th dimension is set

to be the minimum value rather than the optimal, as

we have analyzed in Subsection 5.1, the k-means com-

putation will become memory-bound.
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Fig.9. Practical performance of our k-means compared with the

theoretical performance upper bound.

Then we investigate the scaling performance of the

optimized k-means code on a whole SW26010 proces-

sor of four core groups. We test both strong and

weak scalability. Three randomly generated datasets

are used, i.e., sample 1 (n = 1 000 000, d = 8, k = 400),

sample 2 (n = 51 200, d = 64, k = 32), and sample 3

(n = 51 200, d = 128, k = 32). For the strong scala-

bility test, we gradually increase the number of core

groups (CGs) from 1 to 4. It is expected that the com-

putation time is reduced accordingly. We record the

execution time and calculate the parallel efficiency in

the strong scaling sense; the results are listed in Table 3.

From the table, we can see that our parallel implemen-

tation can deliver satisfactory speedup as the number of

core groups is increased. The parallel efficiency is main-

tained above 89.5% and 87.8% for data samples 2 and

3 respectively and is ideal for data sample 1. According

to the analysis in Subsection 4.6.3, the communication-

to-computation ratio of data sample 2 (6.61 × 10−6)

and sample 3 (6.67 × 10−6) is larger than that of data

sample 1 (3.2×10−6), which explains why better strong

scalability is observed for data sample 1. For the weak

scalability test, the number of samples is increased in

proportion to the number of core groups. It is expected

that the computation time does not increase together

with the number of core groups. We again record the

execution time for the three data samples and calcu-

late the parallel efficiency in the weak scaling sense.

The results provided in Table 4 clearly show that our

parallel implementation can achieve nearly ideal weak

scalability in the tests.

6.2 Performance Comparison with Previous

State-of-the-Art Approaches

To see whether the proposed k-means implemen-

tation is competitive with algorithms that avoid com-

puting all point-centroid distances, we design a set

of experiments to compare it with three novel ap-

proaches based on the triangle inequality[38], namely

the Exponion algorithm with the norm of a sum bound

(exp-ns), the simplified Elkan’s algorithm (selk), and

Table 3. Strong Scaling Results

CGs Sample 1 Sample 2 Sample 3

Time (s) Efficiency (%) Time (s) Efficiency (%) Time (s) Efficiency (%)

1 1.838 – 0.026 – 0.029 –

2 1.838 100.0 0.026 100.0 0.029 100.0

3 1.840 99.9 0.026 100.0 0.029 100.0

4 1.840 99.9 0.026 100.0 0.030 96.7

Table 4. Weak Scaling Results

CGs Sample 1 Sample 2 Sample 3

Time (s) Efficiency (%) Time (s) Efficiency (%) Time (s) Efficiency (%)

1 1.838 – 2.613 – 2.908 –

2 0.919 100.0 1.326 98.5 1.479 98.3

3 0.614 99.8 0.905 96.2 1.015 95.5

4 0.461 99.7 0.735 89.5 0.828 87.8



Min Li et al.: Enabling Efficient k-Means Computations on SW26010 Processor of Sunway TaihuLight 89

the simplified Yinyang algorithm (syin), which are

all available as source codes 2○. We remark that al-

though these state-of-the-art methods can greatly re-

duce the computation complexity, their parallelization

is very difficult because of the complicated conditional

branch statements and irregular memory access pat-

terns. The speedup of 48 threads as compared with the

single thread version is only around 2x-7x. We carry

out the tests of these methods on an Intelr Xeonr

CPU E5-2630 CPU and run several randomly gene-

rated datasets. In each of the test sets, we measure

the execution time for each of the three novel methods

with 48 threads and compare them with that of our k-

means on a single core group. The experimental results

are shown in Fig.10. The speedup of our method with

respect to the fastest of the three is shown in the fig-

ure, from which we can clearly see the advantage of our

k-means implementation in most cases.
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Fig.10. Performance comparison with novel k-means methods

based on triangle inequality.

Many efforts have been made on optimizing k-means

on GPUs. It is therefore meaningful to compare our

k-means implementation on SW26010 with the state-

of-the-art on GPUs. For the later, we choose two

typical implementations. One is based on all-prefix-

sum sorting and updating steps[13], which corresponds

to the native method as discussed in Subsection 3.3.

And the other is a matrix-based method[14]. Since

we do not have source codes of these two implemen-

tations, we pick up some of the testing results di-

rectly from the papers[13,14], in which the former was

tested on both an NVIDIAr GeForce 9600MGT GPU

and an NVIDIAr Tesla T10 GPU, and the latter on

an NVIDIAr GTX280 GPU. To eliminate the perfor-

mance discrepancy of different hardware and conduct a

fair comparison, we convert all results to the sustained

floating-point computation efficiency with respect to

the peak performance of the corresponding platform.

The comparison results are summarized in Table 5. It

can be seen that our implementation on SW26010 out-

performs the state-of-the-art implementation on GPUs

in all tested datasets.

7 Related Work

There have been many efforts focusing on acce-

lerating the k-means computation. The existing ap-

proaches can be divided into two categories. One is

by utilizing the triangle inequality to reduce the dis-

tance computation[38−42]. The other is by paralleliz-

ing the original Lloyd’s algorithm on multi-core/many-

core processors. Wu and Hong[43] explored the effec-

tiveness of parallelism of triangle inequality based k-

means algorithm. The results revealed that on diffe-

rent input data, the parallel k-means based on trian-

gle inequality may not provide better performance as

compared with the Lloyd’s parallel k-means because of

the increased difficulty of parallelization. This suggests

that the parallelization of the original k-means is worth

studying, especially on many-core processors with pow-

erful computation ability yet poor execution logics, such

as SW26010.

The parallel k-means algorithm has been exten-

sively studied on various kinds of HPC hardware such

as GPU and FPGA. In references [8–12], some initial

explorations of parallel k-means on GPU were made;

but the focus was only on the case of low-dimensional

data, which is impractical in many data mining ap-

plications today. Later, other researchers made con-

tinuous efforts to further improve the performance of

k-means on GPU. For example, Kohlhoff et al.[13] im-

plemented a parallel k-means without the limitation on

n, d and k. The work employed a novel all-prefix-

sum sorting method to accelerate the centroid up-

dating phase. However, little attention was paid to

the clustering phase, which ultimately took most of

the execution time. Li et al.[14] observed the impor-

tance of data dimensionality and proposed two diffe-

rent algorithms to deal with low-dimensional and high-

dimensional datasets separately. The similarity be-

2○https://github.com/idiap/eakmeans, Nov. 2018.
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Table 5. Performance Comparison with State-of-the-Art Implementations on GPU

n d k 9600MGT-Efficiency[13] (%) T10-Efficiency[13] (%) GTX280-Efficiency[14] (%) SW26010-Efficiency (%)

500 100 60 8.6 4.8 n/a 9.6 (1.1)

2 000 100 60 11.4 6.9 n/a 12.9 (1.1)

8 000 100 60 4.8 5.3 n/a 18.1 (3.4)

12 000 100 60 9.0 12.9 n/a 44.2 (3.4)

51 200 34 32 n/a n/a 6.8 7.7 (1.1)

494 080 34 32 n/a n/a 19.4 22.8 (1.2)

Note: In the last column, the values in brackets indicate the improvement of the sustained efficiency on SW26010 as compared with

the best available work among 9600MGT[13], T10[13], and GTX280[14].

tween k-means and matrix-matrix multiplication was

discovered in their work and they therefore borrowed

the ideas of the parallel matrix-matrix multiplication

algorithm to make full use of shared memory and regi-

sters. FPGA-based k-means computations were also

studied in, e.g., [44–46], in which special attentions were

made due to the limited hardware resources of FPGA.

Our work in this study is to propose a highly efficient

k-means implementation on SW26010 that can be ap-

plied to any number of n, d, k as long as the input data

can be accommodated in the memory, and can fully ex-

ploit the computing and memory accessing abilities of

the hardware.

Our work also got inspirations from the research on

the generic all-pair computation problem[27], which was

first proposed by Sarje et al. in 2011. He first gave a

high-level abstract over the pairwise computation re-

lated problems and gave an initial implementation on

the Cell processor. Then in 2013, a more thorough

study was conducted on the GPU implementation with

efficient mapping techniques and architecture-specific

tuning methodologies[28]. And in 2014, Steuwer et

al.[29] implemented an all-pairs skeleton for multi-GPU

systems with a more convenient interface for users. Our

distance-matrix kernel in the k-means implementation

can be seen as a special case of the generic all-pair com-

putation problem.

In addition, some optimization methods we use on

SW26010 are similar to several previous studies on op-

timizing other types of operations, such as the three-

level blocking method used in the dense-matrix multi-

plication kernel[47], the customized register communi-

cation scheme, and the strategy of instruction reorder-

ing for designing the most suitable instructions pipeline

for the convolution kernel[48]. There are also some ef-

forts on the optimization of k-means on distributed

parallel systems such as the GPU-based clusters[15−19],

and the MapReduce-enabled Hadoop platforms[49−51].

Our method to extend the k-mean implementation from

a single core group to the full SW26010 of four core

groups is inspired by the method proposed in [31].

8 Conclusions

In this paper, we proposed a matrix-based fused

framework for parallel k-means computation and

deployed the k-means algorithm on the emerging

SW26010 many-core processor. Unlike the standard

matrix-based method, we fused the distance matrix

computation with the nearest centroid reduction to im-

prove the memory reuse. Implementation techniques

such as task mapping, data sharing and register block-

ing were applied to distribute the computation to diffe-

rent CPEs, collectively make use of the entire LDM re-

source, and alleviate the memory latency gap between

LDM and registers. A set of optimization methodolo-

gies such as instruction reordering and double buffer-

ing were employed to further improve the performance.

Discussions on the appropriate block-size and the per-

formance upper bound were also provided. Experimen-

tal results on both randomly generated and real-world

data, as well as comparisons with the previous state-

of-the-art, were presented to show the effectiveness and

superiority of the proposed methods and techniques.

In the future, we plan to extend our study of parallel

k-means to other main-stream HPC platforms such as

GPU and Intelr Xeonr Phi. Besides, we also would

like to extend some basic ideas of the parallel k-means

to problems with a similar pattern, such as the kNN

algorithm.
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