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Abstract In this paper, we investigate the problem of a size-constrained k-core group query (SCCGQ) in social networks,

taking both user closeness and network topology into consideration. More specifically, SCCGQ intends to find a group of

h users that has the highest social closeness while being a k-core. SCCGQ can be widely applied to event planning, task

assignment, social analysis, and many other fields. In contrast to existing work on the k-core detection problem, which

aims to find a k-core in a social network, SCCGQ not only focuses on k-core detection but also takes size constraints into

consideration. Although the conventional k-core detection problem can be solved in linear time, SCCGQ has a higher

complexity. To solve the problem of SCCGQ, we propose a Blast Scatter (BS) algorithm, which appoints the query node

as the center to begin outward expansions via breadth search. In each outward expansion, BS finds a new center through a

greedy strategy and then selects multiple neighbors of the center. To speed up the BS algorithm, we propose an advanced

search algorithm, called Bounded Extension (BE). Specifically, BE combines an effective social distance pruning strategy and

a tight upper bound of social closeness to prune the search space considerably. In addition, we propose an offline social-aware

index to accelerate the query processing. Finally, our experimental results demonstrate the efficiency and effectiveness of

our proposed algorithms on large real-world social networks.

Keywords group query, k-core, social analysis, social network

1 Introduction

The emergence of online social networks, which has

become an indispensable part of people’s lives, poses

significant research challenges for social network ana-

lysis. One of the fundamental frameworks used to an-

alyze social networks is the k-core model, and in this

paper, we propose a novel size-constrained k-core group

query (SCCGQ) problem based on this model. Specifi-

cally, given an underlying social network G = (V,E), a

query user uq ∈ V , a query group size constraint h, and

a core number k, SCCGQ aims to find a user group with

size h (including the query user uq) that constitutes a

k-core structure. That is, the induced subgraph of the

users in the h-size group is a connected graph, and the

degree, in the induced subgraph, of each user (the num-

ber of induced subgraph edges connecting to the user)

is no less than k. The user group returned by SCCGQ

should have the highest closeness among all the possible

groups satisfying the above conditions. SCCGQ has a
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wide range of applications, such as event planning[1−4],

task scheduling[5−9], and social analysis[10,11]. In the

following, we give two concrete application examples.

Scenario 1: Event Planning. Assume that Alice

wants to hold a dinner party for 10 people. Deciding

who should be invited is an annoying problem. Due

to the limited space, this party allows a maximum of

10 participants. The guests may feel isolated if they

are strangers to one another. Alice expects that each

participant knows at least three of the others, and the

group of 10 should be as close as possible. Thus, this

scenario can be modeled as an SCCGQ problem, which

will return a 3-core user group with size 10, including

Alice. This group should have the highest closeness

among all feasible groups.

Scenario 2: Task Scheduling. Suppose Bob is a con-

tractor who has a new project to complete. Bob wants

to find a group of workers to accomplish this project

together. Due to the limitations of project funding as

well as the deadline of the project, the group size is set

to 9 (including Bob). To guarantee good cooperation

among the project team, Bob expects that each mem-

ber knows at least three of the others, and the group

closeness should be as high as possible. Therefore, this

scenario can be modeled as an SCCGQ problem as well,

which will return a user group with size 9 and the high-

est social closeness while being a 3-core.

In this paper, we propose the SCCGQ problem not

only for its importance in real life but also for the signifi-

cance of the k-core structure in social network analysis.

The definition of “k-core” is that each node connects to

at least k other nodes, rather than to all other nodes

in the structure (clique structure). The k-core struc-

ture relaxes social topology constraints and makes the

SCCGQ results more diverse. Additionally, finding a

k-core structure provides an opportunity to expand the

social circle of each user in the core structure. Tak-

ing scenario 1 as an example, Alice invited nine people

to her party, which provided an opportunity for each

participant to become acquainted with new friends and

promoted the development of social relationships.

It is worth noting that the SCCGQ problem is diffe-

rent from the conventional k-core problem, which aims

to find a maximally connected subgraph with all ver-

tices having a degree of at least k. The main differences

are summarized as follows. 1) The SCCGQ problem has

a size constraint. The solution to the conventional k-

core detection problem is very likely to exceed the size

constraint of our SCCGQ problem and thus is not an

answer to our proposed problem here. 2) The SCCGQ

problem takes social closeness into consideration, which

makes it more interesting and meaningful. The k-core

involving the query user and satisfying the size con-

straint may not be unique in most cases. Among these

k-cores, the one with the highest closeness is the answer

to our query, as a higher social closeness can benefit the

development of social relationships. It is worth noting

that the group size constraint and the social closeness

are both important and meaningful in real-life applica-

tions.

A naive solution to SCCGQ can be readily described

as follows. First, via a k-core decomposition algorithm,

we obtain a node set, denoted by Gk, in which the core

number of each node is no less than k. Second, we

examine every subset of Gk with size h. These sub-

sets, whose induced graphs constitute k-core structures

and include the query node, can be seen as candidates.

Finally, the candidate with the highest closeness is re-

turned as the SCCGQ result. The time complexity of

the naive solution is O(nh×h2), where n is the number

of total nodes in the underlying social network. The

time taken to select h nodes is O(nh), and the time

taken to estimate whether the induced subgraph of a

set of h nodes constitutes a k-core structure is O(h2).

When h is a constant, SCCGQ can be solved in poly-

nomial time, while SCCGQ has exponential complexity

when h is a part of the input[12]. In this paper, we fo-

cus on the latter, that is, parameter h is a part of the

input.

Apparently, the naive solution is extremely time

consuming and inefficient. To address the SCCGQ

problem, we propose a Blast Scatter (BS) algorithm,

which appoints the query node as the center to start

outward expansions via a breadth search. In each out-

ward expansion, BS first selects a new center through

a greedy strategy and then selects multiple neighbors

of the center to guarantee that the number of nodes

connecting to the center in the current expansion is no

less than k and that the size of the group does not ex-

ceed h. When the size of an expansion reaches h, BS

checks whether the induced subgraph of the h nodes

constitutes a k-core structure. Finally, after all pos-

sible expansions have finished, the induced subgraph

with the highest closeness is returned as the result.

Moreover, to speed up the BS algorithm, we propose

an advanced search algorithm, called Bounded Exten-

sion (BE). Specifically, BE combines an effective social

distance pruning strategy and a tight upper bound of

social closeness to prune the search space considerably.

The social distance pruning strategy takes both social
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graph topology and the query group size constraint into

consideration. Meanwhile, for a possible result P , the

number of edges in the induced subgraph of P can be

bounded, as the size of P is constrained by h. Thus, a

tight upper bound of social closeness with respect to a

user group can be deduced.

Contributions. Our major contributions in this

work are summarized as follows.

• We are the first to propose the size-constrained

k-core group query (SCCGQ) problem for social net-

works.

• We propose a novel algorithm, Blast Scatter (BS),

which appoints the query node as a center to start out-

ward expansions via a breadth search and selects mul-

tiple neighbors of the center at a time to accelerate the

query process.

• To speed up the BS algorithm, we design an

advanced search algorithm, called Bounded Extension

(BE) that combines an effective social distance pruning

strategy and a tight upper bound of social closeness to

prune the search space considerably. In addition, we

propose an offline social-aware index to accelerate the

query processing.

• Extensive experiments are conducted to demon-

strate the efficiency and effectiveness of our proposed

algorithms on large real-world social networks.

The rest of this paper is organized as follows. We

formally define the SCCGQ problem in Section 2. In

Section 3, we give an elaboration of our Blast Scat-

ter (BS) algorithm, describe the social distance prun-

ing strategy, and present our Bounded Extension (BE)

algorithm. We present experimental evaluations in Sec-

tion 4, and provide an overview of the related work in

Section 5. We conclude this paper with some discus-

sions in Section 6.

2 Preliminaries and Problem Formulation

In this section, we describe the terms and notations

that we use throughout the paper and then formally de-

fine the problem of size-constrained k-core group query

(SCCGQ).

Let G = (V,E,W ) be an undirected weighted social

graph, where V is the set of nodes representing users

in the social network and E is the set of edges in G de-

noting social ties. Each edge e(u, v) ∈ E is associated

with a weight ω ∈ W indicating the closeness between

the two users. Currently, there are many measures to

estimate the closeness between two users, such as the

cosine similarity[13], the Jaccard coefficient[14], and ran-

dom walk[15]. In this paper, we adopt the Jaccard co-

efficient, which has been widely used to measure the

weight between two users. It is worth noting that our

method can be easily extended to other measures. The

weight between user u and its neighbor v, denoted as

ω(u, v), is the Jaccard coefficient between their neigh-

bor sets N(u) and N(v), where N(x) = {n|(x, n) ∈ E}.

Therefore, for (u, v) ∈ E, we have:

ω(u, v) =
|N(u) ∩N(v)|+ θ

|N(u) ∪N(v)|
. (1)

The numerator of (1) is θ plus the intersection of

the neighbor sets of two users, where θ is a positive

constant. In this paper, we set the value of θ as the

average number of neighbors. In this way, we can gua-

rantee that the closeness of two users is nonzero if there

exists an edge connecting them and the intersection of

their neighbor sets is empty.

The closeness of a connected graph G = (V,E)

is the sum of all the edge weights in G, denoted as

Co(G) =
∑

e∈E ω(e). Significantly, it is meaningless to

discuss the closeness of an unconnected graph, for in-

stance, when there is no connection between two user

groups, which can be modeled as an unconnected graph

G = (V1, V2, E1, E2). Discussing the closeness of each of

the two user groups is meaningful while discussing the

overall closeness of the unconnected graph is meaning-

less, as the two user sets are separated and independent

in a sense.

Definition 1 (Induced Subgraph). Given a graph

G = (V,E), for any subset V ′ of V and edge set E′:

E′ = {(u, v)|u, v ∈ V ′ and (u, v) ∈ E},

we call G′ = (V ′, E′) an induced subgraph of V ′ in G,

denoted as G[V ′].

The concept of a k-core was first proposed by Sei-

dman in [16]. It can be widely applied to describe the

complex topology of social networks and reveal the hie-

rarchical structures of networks.

Definition 2 (k-Core). A k-core of a graph G is

a maximal connected subgraph of G in which all nodes

have a degree of at least k.

Definition 3 (Coreness). If a node v belongs to a

k-core but does not belong to any (k + 1)-core, we call

k the coreness of v.

Definition 4 (Size-Constrained k-Core). Given a

social graph G = (V,E), a size constraint h, and a

node set C ⊆ V , we call an induced subgraph G[C] a

size-constrained k-core if G[C] is a k-core and |C| = h.

We call this an h-k-core.
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Definition 5 (Size-Constrained k-Core Group

Query (SCCGQ)). Given an undirected weighted graph

G = (V,E,W ), a size constraint h, a coreness k, and

a query user node uq, a size-constrained k-core group

query (SCCGQ) q can be modeled as a triple (uq, h, k),

which aims to find a user group of h nodes (including

the query user uq) that has the highest social closeness

while also being a k-core.

Example 1. Take Fig.1 as an example. G1 is an orig-

inal social graph displayed in Fig.1(a). Assume that

an SCCGQ q is denoted as (v5, 4, 2), which means v5

is the query user, the group size constraint is 4, and

the coreness is 2. There are two induced subgraphs

shown in Fig.1(b) and Fig.1(c). S1 is an induced sub-

graph of {v3, v4, v5, v7} in G1, and its closeness Co(S1)

is the sum of the weights of all the edges in S1, that

is, Co(S1) = 1.99. Analogously, S2 is an induced sub-

graph of {v2, v3, v4, v5} in G1, and its closeness Co(S2)

is 1.16. The two subgraphs are both 4-2-core struc-

tures, and both include v5. Finally, S1 is the result of

this SCCGQ query case, as S1 has the highest closeness

among all the groups that constitute 4-2-core structures

and include v5.
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Fig.1. Example of the SCCGQ problem. (a) Social network G1.
(b) Result S1. (c) Result S2.

Theorem 1. SCCGQ is NP-hard.

Proof. We establish the hardness by a reduction

from a well-known NP-hard problem, namely, the on-

line Steiner tree (OST) problem.

The Steiner tree problem (ST) is a network design

problem defined on a graph with edge costs. Its input

is a set of terminals that need to be connected to one

another. The online version of ST is the OST problem,

in which the terminals are revealed at one time and

each terminal needs to be connected to the current tree

before the next one arrives. Given an instance of OST,

we construct an instance of an SCCGQ q = (uq, h, k).

We consider the restricted case of SCCGQ when k = 1.

Note that SCCGQ aims to find a connected subgraph

including uq. Thus, the first terminal in the OST in-

stance is uq. The other terminals (users in SCCGQ)

are revealed at one time. As the size constraint h is

one part of the input of SCCGQ, the hardness can-

not be reduced. The k-core structure (in SCCGQ) can

be reduced to a tree structure (in OST) in polynomial

time. Thus, we have OST�PSCCGQ. �

In this paper, we tackle the problem of efficiently

processing SCCGQ in practical settings.

3 Query Processing

A naive solution to the SCCGQ problem can be

readily described as follows. First, we leverage the k-

core decomposition algorithm[17] to obtain a k-core of

the original social graph G, denoted as Gk, in which

the coreness of each node is no less than k. Second, we

examine each subset of Gk with size h. Those subsets

whose induced graphs constitute k-cores and include

the query node can be seen as candidates. Finally, the

naive solution selects the candidate with the highest

closeness as the result of SCCGQ.

Given a social graph G = (V,E,W ), |V | = n,

and |E| = m, in the worst case, the k-core of G

is itself. Additionally, the total number of combina-

tions needed to be enumerated is Cn−1
h−1 , where Cn−1

h−1 =
(n−1)!

(h−1)!×(n−h)! . The time complexity of the naive solu-

tion is O(m+nh×h2), where O(m) is the time comple-

xity of k-core decomposition, O(nh) is the time of se-

lecting h nodes from the k-core Gk, and O(h2) is the

time of estimating whether the induced subgraph of the

set of the h nodes constitutes a k-core. When h is a con-

stant, SCCGQ can be solved in polynomial time, while

SCCGQ has exponential complexity when h is a part

of the input[12].

To address the SCCGQ problem, we first propose

an efficient algorithm, Blast Scatter (BS), in Subsec-

tion 3.1. We propose an effective social distance prun-
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ing strategy in Subsection 3.2, which takes both the

social graph topology and the query group size con-

straint into account. In Subsection 3.3, we deduce the

upper bound of the closeness of a group. To speed up

BS, we propose an advanced search algorithm, called

Bounded Extension (BE), that combines the social dis-

tance pruning strategy and the upper bound.

3.1 Blast Scatter Algorithm

Apparently, the naive solution is extremely time

consuming and inefficient. To overcome these deficien-

cies and achieve a better efficiency, we propose an ef-

ficient algorithm, Blast Scatter (BS), which appoints

the query node as a center to start outward expan-

sions. That is, BS does breadth search starting from

the query node to perform expansions. In each expan-

sion, BS selects multiple neighbors of the center node

and selects a new node as the new center using a greedy

strategy. When the center node is the query node, the

number of selected neighbors lies in [k, h], where k is the

coreness and h is the size constraint. When the center

node is not the query node, there are two cases. 1) If

the number of neighbors of the center node (dcenter) in

the current expansion P is less than k, then the num-

ber of selected neighbors lies in [k − dcenter, h − |P |].

2) Otherwise, the number of selected neighbors lies in

[1, h − |P |]. In both cases, we utilize a method based

on breadth-first search (BFS)[18] to obtain all possible

expansions.

When the size (i.e., the number of nodes) of an ex-

pansion reaches h, BS analyzes whether the induced

subgraph of the h nodes in the original social network

constitutes a k-core. BS then computes the social close-

ness. After all possible expansions have finished, the in-

duced subgraph with the highest closeness is returned

as the result of SCCGQ. BS leverages the graph topol-

ogy to perform an expansion by selecting neighbors of

the center node. Thus, the induced subgraph of each

completed expansion must be a connected subgraph

and include the query node.

Although we take the BFS algorithm as a depar-

ture point for our BS algorithm, our algorithm greatly

improves upon and has many differences from the tra-

ditional BFS algorithm. 1) The BS algorithm selects

multiple nodes at a time in each expansion. 2) The BS

algorithm leverages a strategy to determine how many

nodes are to be expanded in each step.

The first phase of BS adopts a k-core decomposition

algorithm to obtain the k-core structure Gk of the origi-

nal social graph, which is the same as the first phase

of the naive solution. In the rest of this paper, discus-

sions are restricted to Gk, unless otherwise stated. We

focus uniquely on static social networks. In addition,

the weight of the social edge will not change with the

process of k-core decomposition.

Theorem 2. Given a k-core Gk of the original

social graph and an SCCGQ q = (uq, h, k), in each ex-

pansion, the search space of the candidate results is at

most Cd
k × Cn−d−1

h−(k+1) + Cd
k+1 × Cn−d−1

h−(k+2) + · · · + Cd
h−1

if d > h − 1 > k, while the search space is at most

Cd
k × Cn−d−1

h−(k+1) + Cd
k+1 × Cn−d−1

h−(k+2) + · · · + Cn−d−1
h−(d+1) if

h− 1 > d > k. Here, n is the size of Gk, i.e., the node

number of Gk is n, d is the degree of the query user in

Gk, and Cd
k = d!

k!×(d−k)! .

Proof. When d > h − 1 > k, to guarantee that

the degree of the nodes in the result is no less than

k, at least k nodes in the neighbors of the query user

should be selected. Meanwhile, at most h− 1 nodes of

the neighbors can be selected. If k nodes are selected

from the d neighbors, we only need to select h− (k+1)

nodes from the other n− d− 1 nodes. Therefore, there

are Cd
k × Cn−d−1

h−(k+1) combinations. Because d is not less

than h − 1, the d neighbors can satisfy the size con-

straint of the SCCGQ problem without selecting more

nodes from the non-neighbors of uq in Gk. In this way,

there are Cd
h−1 possible combinations.

Analogously, the proof process can be derived when

h− 1 > d > k. �

Algorithm 1 shows the pseudo code of the BS algo-

rithm. BS maintains two priority queues UQ and DQ.

UQ stores the intermediate results that have not been

extended. DQ maintains the intermediate results that

have been extended. Additionally, the nodes will be

put into DV if they cannot be included in any other

expansions except those that have already lain in UQ

and DQ. The BS algorithm performs expansions be-

ginning from the query node, i.e., UQ is initialized as

(uq, 0). In each expansion, BS selects the node with the

highest degree as the new center (line 12). By Theo-

rem 2, BS then selects multiple neighbors of the center

at a time. In this step, BS should guarantee that the

degree of the center node in the induced subgraph of

this expansion is no less than k and the subgraph size

does not exceed h (lines 14-17). Once the size of an

expansion reaches h, this expansion has already been

extended. The BS algorithm puts it into DQ and up-

dates the current result (lines 18–21). The following

example illustrates how the BS algorithm works.
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Algorithm 1. Blast Scatter (BS) Algorithm

Input: weighted undirected graph G = (V, E,W ),

positive integer k, size constraint h, query user uq

Output: an h-k-core group with the highest closeness

1 Initialize result set S ← ∅;

2 Initialize the closeness of current result set Co← 0;

3 Initialize priority queue UQ← (uq , 0), DQ← ∅, DV ← ∅;

4 Gk ← G;

5 while {v ∈ Gk : k > |deg(v)|} 6= ∅ do

6 Gk ← Gk/{v ∈ Gk : k > |deg(v)|};

7 if |Gk| < h or uq /∈ Gk then

8 Algorithm termination;

9 while UQ 6= ∅ do

10 H ← UQ.dequeue();

11 if |H| < h then

12 Select the node v ∈ H with the highest degree

and v 6∈ DV ;

13 DV ← DV ∪ v;

14 for each set V P ⊆ N(v)/H, k 6 |V P |+ dH (v)

and |V P |+ |H| 6 h do

15 Induce a subgraph Gi of H ∪ V P in Gk;

16 if Gi 6⊂ UQ ∪DQ then

17 UQ← UQ ∪ 〈Gi, Co(Gi)〉;

18 if |H| = h and H 6⊂ DQ then

19 DQ← DQ ∪H;

20 if {v ∈ H : k > |degH(v)|} = ∅ and Co(H) > Co

then

21 Co← Co(H), S ← H;

22 Return S;

Example 2. TakeG1 in Fig.1 as an example. Assume

an SCCGQ q = (v5, 4, 2), the steps of the BS algorithm

are shown in Fig.2. Initially, the result S is assigned as

∅, and its closeness Co is zero. The 2-core structure of

G1 is shown in Fig.2(a). The expansion will begin from

the query user v5. The degree of v5 in the 2-core of G1

is 3, as shown in Fig.2(b). Thus, there are four kinds of

combinations, as shown in Fig.2(c). Once the node v5

has already been extended, BS transforms the status of

v5. That is, BS puts v5 into DV and changes the color

of v5 to be gray. Meanwhile, BS computes the closeness

of the above four intermediate results and updates UQ.

In the next step, BS selects the intermediate result

with the highest closeness in UQ to perform more ex-

pansions. As shown in Fig.2(c), c1 is selected. It can

be seen that the size of c1 reaches the size constraint

4. Thus, BS updates the current result S as the node

set of c1 and its closeness Co. Then, BS puts c1 into

DQ, which indicates that c1 is not needed to perform

more expansions. In the following step, c3 in Fig.2(c)

is selected to perform more expansions, as it has the

highest closeness in UQ. The expansion process of c3 is

shown in Fig.2(d). d1 and d2 are intermediate results

extended from v3 in c3. The color of v3 is changed to

gray. Next, BS puts d1 and d2 into UQ. Note that d3,

extended from v7 in c3, will not be put into UQ, as d3
has already existed in DQ. When all intermediate re-

sults have already been extended, BS returns S as the

result of SCCGQ.
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Fig.2. Steps of the BS algorithm. (a) k-core of G1. (b) Query

node. (c) Expansions from v5. (d) Expansions from c3.

3.2 Social Distance Pruning

The BS algorithm tackles the SCCGQ problem over

the k-core of the original social network directly. The

k-core is likely to be the original social network itself,

as k is a part of the problem input. Thus, the reduc-

tion of the search space only by k-core decomposition

may not be significant. If we can identify the nodes

that must not be included in query results, then the

search space and computational complexity could be

greatly reduced. In this subsection, we design an effec-

tive pruning strategy based on social distance. In the

rest of this paper, we regard the shortest social distance

as the minimum edge number between two nodes, that

is, we discuss social distance without considering the

weight of edges.
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Theorem 3. Given G = (V,E,W ) and an SCCGQ

q = (uq, h, k), uq ∈ G, any v ∈ V must not emerge in

the query result if the shortest social distance from v to

uq is no less than (h− 1).

Proof. Suppose v is one of the nodes in the final re-

sult S. The shortest social distance from v to uq in the

induced subgraph of S is no less than (h−1). Note that

any social path with length (h − 1) contains h nodes.

Thus, the size of S has already reached h. If we want to

guarantee that the degree of v in the induced subgraph

of S is at least k, k > 2, we need to add more neighbors

of v into S. The size of S will violate the query group

size constraint. Therefore, the hypothesis is untenable,

that is, v must not emerge in the query result.

Based on Theorem 3, an effective social distance

pruning strategy can be proposed to accelerate SCCGQ

queries. Given an SCCGQ q = (uq, h, k), we first con-

struct a BFS tree rooted at the query user uq. Those

nodes with a tree height of at least (h−1) can be pruned

directly (the tree height starts from 0 at the root). With

node deletions using this pruning strategy, the degree of

the other nodes in the original graph will be changed.

After that, the k-core decomposition can be used to

prune more nodes.

Example 3. Take the social graph shown in Fig.3(a)

as an example. Assume an SCCGQ q = (v1, 4, 3), a BFS

tree rooted at v1 is constructed as shown in Fig.3(b).

By Theorem 3, nodes with tree height no less than

(4−1) can be pruned, that is, v7 can be pruned directly.

Moreover, v8 can be pruned by the k-core decomposi-

tion, as the degree of v8 in Fig.3(a) is changed from 3

to 2 after deleting v7. As shown in Fig.3(c), the k-core

is constructed after the social distance pruning.
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Fig.3. Steps of example 3. (a) Social graph. (b) BFS tree

rooted at v1. (c) k-core structure.

3.3 Bounded Extension

As shown in Algorithm 1, the BS algorithm puts

the intermediate results of each expansion into a prior-

ity queue. If some expansions can be previously iden-

tified that they cannot be included in the final query

result, the search space will be reduced. Consequently,

the query processing can be accelerated. In this subsec-

tion, we first deduce the upper bound of closeness with

respect to a user group. Then, we develop an advanced

search algorithm, called Bounded Extension (BE), that

combines the social distance pruning strategy and the

upper bound to reduce the search space considerably.

Lemma 1. Given a social graph G = (V,E), let P

be a user group in G and the size of P be |P | (|P | < h).

We denote the edge of G[P ] (remember that G[P ] is the

induced subgraph of P in G) as E(P ). If G[P ] can be

included in an h-k-core, then the number of additional

nodes is (h− |P |), and the number of additional edges

is at most C
h−|P |
2 + (h− |P |)× |P |.

Proof. By following Definition 4, the size of an h-

k-core is h. Thus, the number of additional nodes is

(h− |P |) if the induced subgraph of P can be included

in an h-k-core. Except for the edges in G[P ], the ad-

ditional edges should consist of two parts. The first

part contains the connections between any two nodes

in a set with size (h−|P |). The number of edges in this

part is at most C
h−|P |
2 , i.e., any two nodes in the h−|P |

set have a connection. Meanwhile, the second part con-

tains the edges that connect the nodes in a set with size

h − |P | and the nodes in P . Analogously, the number

of edges in the second part is at most (h−|P |)×|P |. �

Theorem 4. Given a social graph G = (V,E),

let P be a user group in G. The size of P is |P |

(|P | < h). We denote the edge of G[P ] (remember

that G[P ] is the induced subgraph of P in G) by E(P ),

and Co(G[P ]) is the closeness of G[P ]. Suppose that

the maximum weight in G is ωmax, then the upper

bound of the closeness with respect to this h-k-core is

(C
h−|P |
2 + (h− |P |)× |P |)× wmax + Co(G[P ]).

Proof. From Lemma 1, if a user group P with

a size less than h can be included in an h-k-core,

then the edge number of this h-k-core is at most

C
h−|P |
2 +(h−|P |)×|P |+|P |. Since the maximum weight

in the whole social graph is wmax, the upper bound of

the closeness with respect to this induced subgraph is

(C
h−|P |
2 + (h− |P |)× |P |)× wmax + Co(G[P ]). �

Based on Theorem 4 and the social distance prun-

ing strategy, we propose an advanced search algorithm,

namely, Bounded Extension (BE). Before the k-core
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decomposition process, BE adopts the social distance

strategy to reduce the search space. Then, for each in-

termediate result Gi in each expansion, BE compares

UC(Gi), the upper bound of the closeness of Gi, with

the closeness of the current result Co. Gi can be pruned

if UC(Gi) < Co. The pseudo code is showed in Algo-

rithm 2.

Algorithm 2. Bounded Extension (BE) Algorithm

Input: weighted undirected graph G = (V, E,W ),

positive integer k, size constraint h, query user uq

Output: an h-k-core group with the highest closeness

1 Initialize result set S ← ∅, the closeness of current result

set Co← 0;

2 Initialize priority queue UQ← (uq , 0), DQ← ∅, DV ← ∅;

3 Construct a BFS-tree rooted at uq;

4 Gk ← G/{v ∈ G : tree height of v is no less than (h− 1)};

5 while {v ∈ Gk : k > |degGk
(v)|} 6= ∅ do

6 Gk ← Gk/{v ∈ Gk : k > |degGk
(v)|};

7 if |Gk| < h or uq /∈ Gk then

8 Algorithm termination;

9 while UQ 6= ∅ do

10 H ← UQ.dequeue();

11 if |H| < h then

12 Select the node v ∈ H with the highest degree

and v 6∈ DV ;

13 DV ← DV ∪ v;

14 for each set V P ⊆ N(v)/H, k 6 |V P |+ dH (v)

and |V P |+ |H| 6 h do

15 Induce a subgraph Gi with H ∪ V P in Gk;

16 if Gi 6⊂ UQ ∪DQ then

17 Compute closeness upper bound

UC(Gi);

18 if UC(Gi) > Co then

19 UQ← UQ ∪ 〈Gi, Co(Gi)〉;

20 else DQ← DQ ∪Gi;

21 if |H| = h and H 6⊂ DQ then

22 DQ← DQ ∪H;

23 if {v ∈ H : k > |degH(v)|} = ∅ and Co(H) > Co

then

24 Co← Co(H), S ← H;

25 Return S;

Example 4. Take Fig.4 as an example. Assume an

SCCGQ q = (v6, 5, 2), where the query user is v6, the

size constraint equals 5, and the coreness is 2. Assume

that Fig.4(a) is a 2-core structure of the original social

graph after social distance pruning and k-core decom-

position processing.

In the i-th extension of the BE algorithm, the cur-

rent result is a set of nodes {v6, v7, v8, v9, v10},

and the induced subgraph of it in the k-core struc-

ture is illustrated in Fig.4(b). The closeness Co is the

sum of the weights of the edges in the induced sub-

graph, i.e., Co = 2.55. The induced subgraph of an

intermediate result, Si = {v4, v5, v6, v7}, is given in

Fig.4(c). The closeness Co(Si) equals 0.7. By The-

orem 4, the closeness upper bound of Si, denoted as

UC(Si), can be estimated. For wmax = 0.45, UC(Si) =

(C
h−|Si|
2 + (h − |Si|) × |Si|) × wmax + Co(Si) = 2.50,

which is lower than the closeness of the current result.

Thus, Si can be pruned without further processing.
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Fig.4. How the closeness upper bound works. (a) A k-core graph

after SD-pruning. (b) Current result. (c) The i-th extension.

3.4 Query Optimization

To further accelerate the query processing, we de-

velop an offline social-aware index (SAI).

Social-Aware Index (SAI). Given a coreness k, an

SAI structure of a user u is a set in which any user

group with u cannot be a k-core, denoted as SAIu,k.

We illustrate the idea of SAI in the following example.

Example 5. Consider the social graph in Fig.4.

Given k = 2, the SAI of user v6 is a set

{v1, v2, v3, v4, v5, v9, v10}. In this set, any user group

with v6 cannot be a 2-core. Note that for a given user

and coreness, SAI may not be unique. For instance, the

set {v1, v2, v3, v4, v7, v8, v10} is also an SAI of v6 with

k = 2.

Query Optimization Based on SAI. Given u and k,

SAI indexes a user set in which any user group with u

cannot be a k-core. Given an SCCGQ q = (uq, h, k), the

expansions consisting of the query user and the nodes

in SAI cannot be included in the final query result of q.

We can delete these expansions directly without further

processing. Therefore, the search space will be reduced

considerably.



178 J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

4 Experiments

In this section, we experimentally study the per-

formance of the proposed algorithms. We perform a

series of sensitivity tests to study the impact of query

parameters using real social graph datasets. In the fol-

lowing, we first describe the experimental settings and

then analyze the experimental results.

4.1 Experimental Settings

Algorithms. We study the performance of the fol-

lowing proposed algorithms and take the Naive algo-

rithm elaborated in Section 3 as a baseline.

1) BS. The Blast Scatter (BS) algorithm is elabo-

rated in Subsection 3.1. Based on the k-core of the

original graph, BS appoints the query node as a cen-

ter to begin outward expansions via a breadth search.

In each expansion, BS selects a new center through a

greedy strategy and then selects multiple neighbors of

the center.

2) BE. The Bounded Extension (BE) algorithm is

described in Subsection 3.3, which combines the social

distance pruning strategy and the upper bound of close-

ness to reduce the search space.

Datasets. We evaluate the proposed algorithms on

three real social graph datasets collected from Face-

book, Brightkite, and Gowalla 1○. The properties of

the three datasets are summarized in Table 1, where

|VG| and |EG| represent the number of nodes and edges,

respectively, dmax denotes the maximum degree, dave
indicates the average degree, and Dia represents the

diameter of the social graph, i.e., the distance of the

longest shortest path. Note that the median degree is

rather small due to the heavy tail of the power law

degree distribution observed in these graphs. In ad-

dition, we construct synthetic social graphs using the

R-MAT graph generator in the GT-Graph software[19],

which has been widely used to generate power law social

graphs[20].

Table 1. Some Statistics of Datasets

Dataset |VG| |EG| dmax dave Dia

Facebook 4 039 88 234 1 098 43.69 8

Brightkite 58 228 214 078 1 134 7.35 16

Gowalla 196 591 950 327 2 268 9.67 14

Setup. All experiments are implemented on a PC

with CPU AMD PhenomTM II N830 Triple-Core Pro-

cess (2.10 GHz), Memory 4.00 GB, SSD 128 GB. The

operating system is Microsoftr Windows 7 Ultimate

Edition. The development software is Microsoftr Vi-

sual Studio 2010, using the language C++ and its stan-

dard template library.

4.2 Experimental Results

We first test the performance of the proposed al-

gorithms with the index optimization (elaborated in

Subsection 3.4). The performance of the index will be

analyzed in Subsection 4.2.5.

4.2.1 Efficiency of Different Algorithms

The objective of this set of experiments is to study

the efficiency of the proposed algorithms with different

real datasets. We set the value of the size constraint

h to be 8, the coreness k to be 3, and the degree of

the query user to be 10. Fig.5 shows the runtime of

the three algorithms (Naive, BS, BE) on the three real

datasets, respectively. It can be seen that the BE al-

gorithm has the best efficiency among the three algo-

rithms, and BS runs faster than the Naive algorithm.

The reason is that the Naive algorithm adopts a brute

force method, which is time consuming. The BS algo-

rithm selects multiple neighbors of the center node at

a time, and leverages the size constraint to retrain the

number of selected neighbors in each expansion, which

can accelerate the query processing. The reason why

the BE algorithm runs faster than the BS algorithm is

that the BE algorithm adopts the social distance prun-

ing strategy and leverages the upper bound of closeness

to reduce the search space.
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Fig.5. Efficiency.

1○http://snap.stanford.edu/, Sept. 2018.
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4.2.2 Evaluation of the Pruning Strategy

In this set of experiments, we take the BS algo-

rithm and the BS+SD-pruning algorithm as contrast

algorithms to study the efficiency of the social distance

pruning strategy. The BS+SD-pruning algorithm is the

BS algorithm with the social distance pruning strategy

described in Subsection 3.2. The intuition of BS+SD-

pruning is that it processes SCCGQ by adopting the

social distance pruning strategy before k-core decom-

position over the original social graph. We set the value

for the size constraint h to be 8, the coreness k to be 3,

and the degree of the query user to be 10. The result

is shown in Fig.6. It can be seen that the performance

of the BS algorithm is improved by more than 30% by

leveraging the SD-pruning strategy.
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Fig.6. SD-pruning capability.

4.2.3 Scalability

We study the effect of graph size (vertex number)

on the performances of our proposed algorithms using

synthetic social graphs, which can be used to evaluate

the scalability of our proposed algorithms.

We implement the Naive algorithm and the BE al-

gorithm on synthetic datasets. Let the size constraint h

be 10, the coreness k be 3, and the degree of the query

user be 10. The results are shown in Fig.7. The runtime

of the BE algorithm increases slowly with the number

of vertices. Conversely, the runtime of the Naive algo-

rithm increases rapidly. These all prove that the BE

approach has good scalability.

4.2.4 Varying the Query Parameters

As mentioned in Section 2, an SCCGQ q is modeled

as a triple (uq, h, k), where uq is the query user, h is

the size constraint, and k is the coreness. We study the

effect of the three parameters on the performance of

our proposed algorithms. In particular, we regulate uq

for fixed coreness and size constraint pairs to estimate

the effect of the degree of the query user. Similarly, we

evaluate the impact of coreness (or the size constraint)

by fixing the other two parameters.
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Fig.7. Testing scalability.

Varying the Size Constraint. In this set of experi-

ments, we study the effect of the size constraint of a

query. Let the coreness k be 3. We alter the size con-

straint h from 10 to 50. We regard the average runtime

of 50 queries as the performance measure of our pro-

posed algorithms, where the degree of query users is 9.

Fig.8 shows the results on the Facebook, Brightkite and

Gowalla datasets.

For fixed coreness and degree of the query user, the

three algorithms run slower with the size constraint h

increasing. The reason is that a query with a larger

size constraint h is more likely to have a greater search

space, that is, all the algorithms are required to process

more intermediate results. It can also be seen that the

runtime of the Naive algorithm increases rapidly as the

size constraint h increases. The performance of the BS

algorithm is preferable to that of the Naive algorithm.

Finally, the runtime of the BE algorithm has a slow

growth as the size constraint h increases, as it lever-

ages the current best closeness and the upper bound of

closeness to prune intermediate results.

Varying k. In this set of experiments, we study the

effect of the coreness of a query. Let the size constraint

h be 20, and we vary the coreness k from 2 to 10. We

regard the average runtime of 50 queries as the perfor-

mance measure of our proposed algorithms, where the

degree of the query users is 10. The results on the three

real datasets are shown in Fig.9. The three algorithms
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Fig.8. Varying size constraint h with k = 3. (a) Runtime test on the Facebook dataset. (b) Runtime test on the Brightkite dataset.

(c) Runtime test on the Gowalla dataset.
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Fig.9. Varying coreness k with h = 20. (a) Runtime test on the Facebook dataset. (b) Runtime test on the Brightkite dataset. (c)

Runtime test on the Gowalla dataset.

run faster as the coreness k increases. The reason is

that a query with a larger coreness k is more likely to

have a stronger social constraint, which indicates that

the query has fewer intermediate results to process.

Varying the Degree of Query User. In this set of

experiments, we study the effect of the degree with re-

spect to the query user. Let the size constraint h be

20 and the coreness k be 6. We vary query users with

different degrees from 10 to 50. Fig.10 shows the run-

ning time of the three algorithms over the three real

datasets. For a fixed size constraint h and a fixed core-

ness k, the three algorithms run slower when the degree

of the query user increases. The reason is that a larger

query user degree leads to a larger search space. It also

can be seen that the runtime of the Naive algorithm in-

creases rapidly as the degree of the query user increases.

Finally, the runtime of the BE algorithm grows slowly

when the degree of the query user increases.
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Fig.10. Varying the degree of query user with h = 20, and k = 6. (a) Runtime test on the Facebook dataset. (b) Runtime test on the

Brightkite dataset. (c) Runtime test on the Gowalla dataset.
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4.2.5 Index Performance

In this set of experiments, we study the cost of

social-aware index (SAI) construction and the algorith-

mic efficiency based on SAI. Note that the construction

of SAI is an offline procedure. It has relevance to the

parameter k. As mentioned in Section 2, we address

the problem of efficiently processing SCCGQ in prac-

tical settings. Thus, we construct SAIs for each user

with k ∈ [2, 10].

Table 2 shows the building time and storage cost

of our index on the three datasets. To evaluate the

pruning capability of our index, we implement the BE

algorithm based on SAI, denoted as BE + SAI. We test

the running time on the three datasets (h = 20, the de-

gree of the query user is 10). The results are shown

in Fig.11. It can be seen that the BE + SAI algorithm

runs faster than the BE algorithm. The reason why

SAI speeds up the query efficiency can be summarized

as follows. SAIu,k maintains the users that cannot be

part of the answer when uq = u and the coreness is

k. Thus, the search space can be largely reduced by

removing these users in SAIu,k.

Table 2. Cost of SAI Construction

Dataset Time (min) Memory (MB)

Facebook 9.38 121.3

Brightkite 85.08 1 165.2

Gowalla 153.90 2 637.8

5 Related Work

With the rapid growth of social networks, close sub-

graph query[21] plays a key role in social network ana-

lysis and has attracted widespread attention. Many

studies related to close subgraph query have become

the focus of social network analysis. The main issue

regarding close subgraph query is clique[22] or maxi-

mal clique[23]. Cheng et al.[24] presented the external-

memory algorithm ExtMCE for maximal clique enu-

meration (MCE) computation on large real-world net-

works. ExtMCE recursively processes a small part of a

large graph at a time and ensures that the set of max-

cliques computed in the local steps is correct and com-

plete in the whole graph. ExtMCE bounds the memory

usage by the H∗-graph, a novel concept defined based

on the notion of the h-index.

In a clique, any two nodes should have a social edge,

which makes the formation condition very strict. Thus,

many studies were derived from the relaxation of clique

formation. Luce[25] presented a new concept named n-

clique, a maximal subgraph of G, in which the distance

in G between any two nodes is not larger than n. Sei-

dman and Foster[26] proposed a concept of a k-plex,

which consists of a set F of k nodes from a given graph

G, and all the nodes in G should be covered in the

neighbors of all the nodes in F . In addition, there are

many other clique-like structures studied widely, which

are omitted here due to the limited space.

Our work relates to the traditional k-core

problem[16,27], which is one of the fundamental tasks

in social network analysis. The k-core is the largest

subgraph in which vertices have at least k intercon-

nections. Core decomposition is essential for structure

analysis and visualization of networks[28−30]. Cheng et

al.[31] devised a novel top-down approach for core de-

composition, which begins from the smallest-size core,

i.e., the kmax-core, and recursively reduces the search

space and disk I/O cost for each k-core computation.

Wen et al.[32] proposed an I/O efficient core mainte-

nance algorithm to handle edge insertion, and an im-
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Fig.11. Performance of index. (a) Runtime test on the Facebook dataset. (b) Runtime test on the Brightkite dataset. (c) Runtime

test on the Gowalla dataset.



182 J. Comput. Sci. & Technol., Jan. 2019, Vol.34, No.1

proved algorithm to further reduce I/O and CPU cost

by investigating some graph properties. From a double

layer graph with social friendship and similarity, Zhang

et al.[33] aimed to find all maximal (k, r)-cores where

the similarity between each pair of selected nodes in the

similarity layer is at least r. Existing work on k-core

is different from our work, in which the query group

is size-constrained by a parameter h. The parameter

h and the coreness k are both part of the input, which

makes our problem have exponential complexity. In ad-

dition, a k-truss of a graph G is the largest subgraph

in which every edge is contained in at least (k − 2) tri-

angles within the subgraph[34], which is also a specific

structure for social network analysis and has already

attracted much attention[35−37].

Recently, several studies have been developed for

group queries. Deng et al.[38] studied the group nearest

group query that finds a subset ω(|ω| 6 k) of points

from a given data point set D such that the total dis-

tance from all points in query point set Q to the near-

est point in ω is not greater than the distance to any

other subset ω′(|ω′| 6 k) of points in D. This work fo-

cuses on the spatial distance between data points and

query points, which is different from our work to find

a user group with a specific social topology structure.

In addition, Li et al.[39] proposed a novel type of geo-

social query, which aims to find a minimum user group

in which the members satisfy certain social relation-

ships and the associated regions can jointly cover all

the query points. Yang et al.[40,41] proposed two in-

novative social-spatial group queries. They focused on

finding a set F of p vertices from a given graph G, and

considered acquaintance and distance constraints. If

the query is sent by diverse users with the same para-

meters, the results of these studies are identical to ours.

Our work focuses on personalized user group queries,

i.e., the results of different queries required by diffe-

rent users are variant. Our work is more appropriate

for users who want to organize private activities, which

makes full consideration of the unique social topology

of query users.

6 Conclusions

In this paper, we studied the novel problem of a size-

constrained k-core problem in a social network. We for-

mally defined the problem as a size-constrained k-core

group query (SCCGQ), which aims to find a user group

of h nodes (including the query user) that has the high-

est social closeness while also being a k-core. To address

the SCCGQ problem, we proposed a novel algorithm,

Blast Scatter (BS), which appoints the query user as

a center to begin outward expansions via a breadth

search. In each outward expansion, BS selects a new

center through a greedy strategy and then selects mul-

tiple neighbors of the center. Moreover, we proposed an

advanced search algorithm, called Bounded Extension

(BE), that combines an effective social distance prun-

ing strategy and a tight upper bound of social closeness

to prune the search space considerably. Experimental

studies on large real-world datasets demonstrated the

performance of our proposed algorithms.

Groups are a key characteristic of social networks,

and the size-constrained group queries have significant

influence in social network analysis and real-life appli-

cations. There are many potential future directions

of this work. The social trust mechanism can be fur-

ther explored to study group behaviors. In addition,

it is interesting to investigate how to execute personal-

ized group queries involving user preferences and group

preferences.
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