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Abstract We propose a human avatar representation scheme based on intrinsic coordinates, which are invariant to

isometry and insensitive to human pose changes, and an efficient pose transfer algorithm that can utilize this representation

to reconstruct a human body geometry following a given pose. Such a pose transfer algorithm can be used to control the

movement of an avatar model in virtual reality environments following a user’s motion in real time. Our proposed algorithm

consists of three main steps. First, we recognize the user’s pose and select a template model from the database who has

a similar pose; then, the intrinsic Laplacian offsets encoded in local coordinates are used to reconstruct the human body

geometry following the template pose; finally, the morphing between the two poses is generated using a linear interpolation.

We perform experiments to evaluate the accuracy and efficiency of our algorithm. We believe our proposed system is a

promising human modeling tool that can be used in general virtual reality applications.

Keywords human body pose transfer, local intrinsic coordinates, avatar control in virtual reality

1 Introduction

An important component of virtual reality (VR) en-

vironments is the modeling of human body. While the

motion of a human character in virtual scenes could be

generated automatically, a flexible way in its modeling

is still through users’ direct input/control. In many

VR applications, it is desirable to build an avatar that

can automatically mimic a user’s motion and pose[1−3].

For example, in multiplayer VR games, this would al-

low different users’ avatars to see others’ behaviors and

interact with them. Therefore, this paper aims to build

such a human body avatar, whose movement is con-

trolled by a user with motion tracked in real time.

Human body animations can be defined by three

main components: shape, pose, and motion. The mo-

tion component of human body animation is a sequence

of human geometries in different poses. Hence, we

study how to transfer the pose from a user to a digital

avatar model in the virtual scene in real time. The dig-

ital avatar may either have a same geometry of the user

(e.g., acquired from body scanning) or have a different,

pre-designed geometry (e.g., built by modeling software

or obtained from templates in database).

Performing such a pose transfer efficiently and re-

alistically is, however, challenging. Humans have a re-

markable variety of poses[4]. But having the avatar re-

producing the user’s motion authentically is important

because this is the main way for the users in the VR

environment to communicate.

A direct way to achieve this is through real-time

motion capturing, such as the system developed in [5].

It uses a system including multiple RGB and infrared

cameras to capture and transmit the dynamic 3D geo-

metry of the moving human body and the surrounding

scene. However, due to the expensive stitching and re-

construction cost involved in performing such a Holo-

portation, in real-time applications, a trade-off between
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geometric accuracy and computational efficiency is in-

evitable.

Another strategy to generate the avatar’s motion

is through animations. Two widely adopted anima-

tion algorithms are direct mesh deformations[6−8] and

skinning-based animations[9,10]. The direct deforma-

tion strategy converts the tracked motion to positional

constraints, following which the deformation should

also preserve local geometric detail as much as possi-

ble. Such a mesh deformation is usually formulated as

a nonlinear optimization. While it is capable of repro-

ducing complex deformation with desirable details, its

solving is usually expensive and hard to finish in real

time[11].

Skinning-based methods have been widely adopted

as a more efficient character manipulation tool, as it in-

tuitively reduces the deformation to a skeleton subspace

in which the computation can be very quick. However,

skinning-based methods also have their shortcomings

such as the need of tweaking of vertex weights, inca-

pable of describing complex deformation[12], and rely-

ing on accurate skeleton tracking.

In this work, we explore the possibility of a data-

driven deformation approach that can be both efficient

and capable of reproducing deformation details. We

generate avatar’s motion by integrating pose recogni-

tion, template-guided pose transfer and reconstruction,

and inter-pose interpolation, to obtain real-time motion

generation on a given human avatar model.

Our main idea is to design this human avatar and

its interactive control using an intrinsic geometric en-

coding, which captures the body geometry in a pose-

insensitive manner. The user’s pose is tracked and ana-

lyzed to guide the placement of a set of feature points on

the avatar. Then, the geometry of the avatar under the

new pose can be reconstructed using the intrinsic en-

coding. Specifically, our pipeline consists of four main

steps. The first step is done offline, where the intrinsic

Laplacian coordinates of the avatar are computed and

stored. Then, in the online control phase, we 1) track

the user’s pose, and use it to select a reference tem-

plate pose from the database, 2) transfer the pose of

the template onto the avatar, and 3) generate the mor-

phing sequence of the avatar between these key poses.

This pipeline is illustrated in Fig.1.

The main contributions of this paper are two-folded.

First, we propose to perform a real-time avatar control

through a pose reconstruction (pose recognition, then

pose transfer) algorithm. With the help of a database

containing ever-growing human body geometries/poses,

the algorithm is efficient and effective. Second, to per-

form the real-time pose transfer, we adopt the intrinsic

Laplacian encoding which is pose-insensitive, and de-

velop an efficient key-pose-frame recognition and geo-

metric reconstruction algorithm. Our experiments have

demonstrated that the proposed pipeline has promising

applications in VR tasks.

Offline
Laplacian
Encoding

Pose
Estimation

and 
Template
Choosing

Pose
Transfer

Morphing
Generation

Fig.1. Our main computation pipeline.

2 Related Work

Designing an efficient human avatar with real-time

user-control support is closely related to two technical

components. One is the recognition of users’ pose, and

the other is the deformation of the avatar model ac-

cording to this pose.

2.1 Pose Estimation

The aim of the pose estimation stage is to calcu-

late 2D or 3D positions of joints that characterize a

human pose. In order to control a 3D human avatar,

we need to have coordinates of 3D joints. These 3D po-

sitions can be obtained either directly through tracking

sensors attached on the user, or by calculations from

images captured by camera(s) on the scene.

Image-based pose estimation is a fundamental but

still ongoing research topic in computer vision field. A

challenge in image-based 3D joints estimation is col-

lecting proper dataset[13]. To achieve a high perfor-

mance on pose estimation and classification, having suf-

ficient amount of 3D poses with annotated 2D images

(in which 2D joint locations are determined) is often

necessary. This is, unfortunately, expensive and still

difficult even with the state-of-the-art motion capturing

systems and trained actors[14]. Martinez et al.[15] sug-

gested to collect and utilize only 2D joint information,

and designed a deep network architecture to estimate

3D pose from 2D pose data. However, since process-

ing 2D data to support this estimation is highly non-

trivial, the generalization ability of this algorithm is

yet to be improved. Yasin et al.[13] suggested a method

that uses two independent datasets of 3D pose and 2D

images. With this, it does not require a large amount

of annotated 2D images. The independent 3D poses
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are projected to 2D plane to train a pictorial structure

model (PSM) for 2D pose estimation. Final 3D poses

are estimated by minimizing the projection errors from

these 2D poses. This method still requires sufficient 3D

pose data in training, which is expensive and sometimes

prohibited. To solve this issue, Moreno-Noguer[16] deve-

loped a 2D-to-3D EDM regression model with a deep

neural network that does not rely on 3D pose dataset.

Another challenge of pose estimation especially for

real-time applications such as human avatar control

is the computation efficiency. The aforementioned

methods[13,15,16] are not real-time and insufficient for

interactive avatar control that we need. In [17], a real-

time algorithm is proposed to calculate 2D and 3D joint

positions simultaneously. From single RGB images, a

Kinematic skeleton is fitted and then the 3D joints are

calculated through a convolutional neural network.

Although image-based 3D pose estimation has

achieved great advancement in the past few years, ob-

taining reliable and real-time estimation of joints or

markers from the user is still not trivial. In this work,

we directly adopt sensor-based pose estimation using a

tracking vest 1○. With this direct tracking we can have

accurate real-time landmark coordinates on the user,

without the need to label any image dataset.

2.2 Pose Deformation

The goal of pose deformation is to generate the new

body pose and shape for the avatar to match the user’s

real pose. In this paper we categorize the methods pro-

posed for pose deformation in the literature into three

groups: image-based, skinning-based and intrinsic 3D

coordinates based methods.

Image-based methods use 2D images as inputs to

generate human body poses. In [18], firstly, 12 2D im-

ages are captured from a person’s body in different an-

gles of view. Subsequently, calibration and orientation

processes are done on the 2D images. After finding

the interest points, the matching points are estimated.

Then, the body orientation is calculated based on the

matched points for the pair images. Next, the final

results are calculated by estimating both interior and

exterior orientation. In [19], Seo et al. suggested a

method using a statistical modeling of 2D image shapes.

First, the contour template of the human body image is

determined. The PCA algorithm is applied to param-

eterize the body shape model based on 3D shapes. In

the next stage, the projection of 3D shape is matched

with the 2D contour of body shape. Finally, a 3D shape

is generated by minimizing the matching error.

In [20], Cheng et al. used Kinect images as input

to segment body shapes from the 2D images. In the

next phase, some key points are detected based on a

regression approach. The human body pose then is

parameterized using a sparse key point representation.

Although the accuracy reported is high (with the error

of 8.2 mm), the computational cost for each frame takes

more than 0.5 second that causes the method not to be

suitable for real-time applications. The method pro-

posed in [5] is real-time in reproducing digital avatar.

In this paper, the pose and the texture information are

obtained using infrared and RGB cameras respectively.

In this method many conditions that cause errors in

real-time human body reconstruction such as occlusion

and topology change are considered and solved. In ad-

dition to the body, image-based approaches can be used

for facial expression representation[21] that is another

component of human avatar animation. Although the

image-based methods can reconstruct body pose and

geometry, the reconstructed body pose may have some

salient artifacts and missing parts since the method re-

lies on the visible regions of the provided image.

Skinning is another approach to animating human

bodies under different poses. It associates vertices

on the human body skin with certain skeletal nodes

(bones), and then deforms vertices according to the

transformations of their correlated bones. To adopt

skinning approaches, skeletons need to be extracted

and the associations need to be computed. However,

both the real-time extraction/tracking of the skele-

ton and the estimation of bone transformations are

non-trivial. While the skeleton extraction from a 2D

or 3D shape (i.e., skeletonization) has been widely

studied in graphics and vision fields during the past

two decades[22−24], extracting skeletons from incom-

plete/occluded scans[25], or extracting consistent skele-

tons on multiple objects[26] (so that deformation can

be transferred from one body to another[27]) still can-

not be solved in real time. Finally, while some real-time

algorithms such as [17] have been proposed to track the

dynamically changing skeleton during human’s motion,

the reliable determination of full bone transformations,

i.e., both rotations and translations on all bones, is still

challenging.

Another approach to model and transfer human

poses is using intrinsic shape representations, or pose-

insensitive descriptors to encode both pose and local

1○Priovr dev kit. https://yostlabs.com/priovr/, Dec. 2018.
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geometry of human body[28]. By separating the intrin-

sic local geometry and human pose, designing such a

pose-invariant representation becomes possible[28].

The first fundamental form of a surface, defined by

the intrinsic metric of the surface, is usually insensitive

to postures. In [4], Pishchulin et al. built a statisti-

cal shape model for human based on such local coordi-

nates, which are pose-insensitive. This will allows the

principle components analysis (PCA) to be performed

on human bodies with various poses. Another effec-

tive coordinates are mesh Laplacian, which provides

a mean to represent surfaces using intrinsic bases. In

[29], the normalized Laplacian operator is used to cal-

culate the Laplacian offsets. These locally encoded off-

sets are isometry-invariant, and are used to encode the

shape and pose information simultaneously. However,

the normalized Laplacian operator is neither symmetric

nor full rank. Hence, the reconstructions in [29] reduce

to an iterative optimization, which is slow and not suit-

able for online pose transfer. In this work, we modify

the model of [29] to make it more efficient for real-time

pose transfer.

3 Methodology

Our proposed avatar control pipeline tracks the mo-

tion of a user in the field, and selects templates sequen-

tially from the database to guide the avatar’s deforma-

tion. The algorithm is summarized in Fig.1. During the

offline stage, the geometry of the avatar is encoded us-

ing locally encoded Laplacian offsets, which are intrin-

sic and pose-insensitive (Subsection 3.1). Then, during

the online stage, from the input of the user’s pose, de-

scribed by a set of tracked 3D landmarks, we construct

a pose descriptor using the distribution of these land-

mark points (Subsection 3.2). Then, in a human body

database we find a template model with the most simi-

lar pose (Subsection 3.3). The avatar will be deformed

following the template model (Subsection 3.4). Finally,

we animate the motion of the avatar by interpolating

shapes between every two consecutive key poses (Sub-

section 3.5).

Overall, the goal of our research is to animate a

human avatar which can be defined as the digital rep-

resentative of the user in a 3D space. A default human

avatar is selected based on the closest 3D geometry to

the user in the dataset that is called source mesh (S)

in this paper.

In the next stage, the source mesh iteratively is de-

formed based on the closest 3D pose to the user in the

dataset which is called the template mesh (T ). This

can be defined by a deformation function (F ). There-

fore, we have: Sn = F (S, T ) where Sn is the deformed

source mesh or new mesh.

3.1 Offline Processing: Intrinsic Encoding

Using Local Laplacian Offsets

To support effective pose recognition and avatar de-

formation, we need to encode both the pose information

and the local geometry of a human body shape. The

pose information (insensitive to geometry difference) is

needed to recognize the user’s pose and to match the

poses of different persons. The geometry information

(insensitive to pose difference) is needed to describe

the avatar’s own geometric characteristics during defor-

mation, so that the avatar will not deform to another

person. We use the Laplacian offsets, encoded in local

coordinate system of each vertex. These intrinsic vari-

ables will not change under isometry transformation.

We define necessary terminologies as follows. We

use S = {VS , E} to denote a source mesh, or the avatar

mesh. It is the mesh we want to deform according to

the user’s pose. The avatar mesh S could come from

a pre-designed avatar model, or from a body scan of

the user. T = {VT , E} denotes a template mesh. It

is from the human body database where a mesh with

a similar geometry and pose is selected. T will guide

the deformation of S. Note that we cross-parameterize

all the human bodies, and thus S and T have the same

vertex number ‖VS‖ = ‖VT ‖ = ‖V ‖ and the same con-

nectivity E. We use M = {m1,m2, . . . ,mk} to denote

the (index) set of marker points tracked from the user.

They correspond to certain vertices on the mesh. By

matching vertices in S with their counterparts in T , we

can control the deformation of S following the tracked

user’s motion.

The Laplacian offset vector ∆ is an (n × 3)-

dimensional matrix (n = ‖V ‖) that can be considered

as a discrete 3D vector field defined on every vertex,

∆ =











∆1

∆2

...
∆n











= L











x1

x2

...
xn











,

where xi denotes the 3D coordinates of vertex vi. The

Laplacian operator L can be discretely represented as

an n× n matrix whose component li,j is

li,j =







deg(vi), if i = j,
−1, if j 6= i & vj ∈ N1(vi),
0, otherwise,
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where N1(vi) denotes the one-ring neighborhood of ver-

tex vi, and deg(vi) denotes the valence of vertex vi.

This Laplacian offset∆ encodes the geometry of the

human body shape. But it is not invariant under pose

change. On the other hand, if we encode this offset un-

der local coordinate frame of each vertex, it becomes

intrinsic and is invariant under isometry[29]. Therefore,

we project the Laplacian offset onto each vertex’s local

coordinate system:

∆i = ω1
i f1(vi) + ω2

i f2(vi) + ω3
i f3(vi) = F (vi)×Wi,

where f1(vi), f2(vi), and f3(vi) are the three orthonor-

mal vectors that define a local coordinates system F (vi)

on vertex vi in S. The new isometry-invariant coordi-

nates of vertex vi are Wi = {ω1
i , ω

2
i , ω

3
i }.

Fig.2 illustrates the insensitivity of this local coor-

dinate system with respect to pose changes. For a same

human body under two different poses in Figs.2(a) and

2(b), the coordinates are similar, except on regions that

undergo deformations that are far from isometry. This

can be seen in Fig.2(c). On the other hand, these co-

ordinates reflect the geometry difference. Hence, the

coordinates on two different human bodies (even with

a same pose) are quite different, as shown in Figs.2(d)

and 2(e).

Note that, unlike [29] which uses a normalized

Laplacian operator, we construct the Laplacian off-

sets using the unnormalized Laplacian operator. This

makes the Laplacian matrix symmetric, and it could al-

low us to more efficiently solve the pose transfer through

Cholesky factorization[30] (Subsection 3.4).

The orthonormal vectors f1(vi),f2(vi),f3(vi) can

be constructed using 1) the normal vector n(vi) at each

vertex vi, 2) the normalized projection of xixk onto the

tangent plane of vi where vk is an arbitrary but fixed

neighboring vertex of vi, and 3) the cross product of

these two vectors.

3.2 Pose Modeling

We organize and classify available human body

mesh data according to their poses. To make the pose

estimation consistent with the body tracking, we use

a set of selected landmark points on the body. These

landmarks are consistent with the sensors being tracked

by a wearable body tracker (Fig.3(a)). When a user

is performing his/her control motion, the correspond-

ing 3D coordinates of these landmarks (Fig.3(b)) will

be tracked and mapped onto the body mesh space in-

stantly, serving as constraints to guide the avatar de-

formation.

Using these tracked landmarks, we build a descrip-

tor for pose classification and recognition, using angles

between line segments connecting these markers. From

all the line segments that connect every pair of mark-

ers, we select a subset Ls = {l0, l1, l2, . . . , lk} of line

segments, and then build an n-dimensional feature de-

scriptor Fs = {θ1, θ2, . . . , θn} using angles θk between

some pairs of adjacent line segments.

θk = arccos
lilj

‖li‖‖lj‖
,

where li and lj are a pair of adjacent line segments. We

elaborate the algorithm of selecting line segments and

angles as follows.

Max

Min

(b)(a) (c) (d) (e) (f)

Fig.2. Pose-insensitivity of local Laplacian offsets. (a) and (b) show the two poses of one person. (c) shows the colorcoded point-to-point
coordinate difference between (a) and (b). Most body regions have small difference. Near some joints where the deformation is far
away from isometry, the deviation is relatively big. (d) shows another person that has a similar pose to (a). As shown in (e), the
point-to-point coordinate difference is significantly bigger than that in (c). This indicates that these intrinsic cooridinates are more
sensitive to body shape difference, and insensitive to the pose change.
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Fig. 3. Wearable body tracker vest is used to track feature landmarks on human body. Sixteen corresponding feature points are
extracted on the human body mesh template. (a) Body tracker vest. (b) Tracked landmarks.

We use a decision tree to select the significant line

segments and incident angles to build the pose descrip-

tor. First, the 16 landmarks can form
P 3

16

2 angles. From

all these angles (variables), we build a decision tree to

select the most salient d ones. Considering the sym-

metric property of the human body and motions and

to avoid the imbalance in the training dataset, we “mir-

rored” all the incident angles: suppose we use m(i) to

indicate landmark i’s corresponding landmark on the

other side, when an incident angle θ = ∠(vi, vj , vk)

is observed in the data, we also add an instance of

θ = ∠(vm(i), vm(j), vm(k)). These angles are then se-

lected by a decision tree to pick the most salient k vari-

ables to form the angle descriptor.

Fig.4 shows the angle selected when a different fea-

ture size d is being considered. These selected line seg-

ments and angles form the feature descriptors which we

used to classify all the pose samples in the dataset.

Fig.5 illustrates four more example descriptors on

two human bodies, with two different poses, respec-

tively. While the feature graphs for two different per-

sons with the same pose are notably similar, these

graphs are very different for people in different poses.

Therefore, using this graph to describe the pose is ef-

fective. More experimental results demonstrating the

descriptor’s effectiveness are reported in Section 4.

n/ n/ n/

Fig.4. Line segments (angles) selected for constructing the fea-
tures when a different descriptor size is used: d = 20, 40, 60.

3.3 Template Selection and Pose Recognition

Template Database. The volume of publicly availa-

ble human pose database has been rapidly growing.

We integrated multiple datasets: FAUST[31] (includ-

ing 500 human body samples in 30 different poses),

SCAPE 2○ (including a human body in 72 different

poses), Human3.6M 3○ (including 3.6 million bodies and

poses), K3D-Hub[32], CAESAR 4○, SHREC’14 5○, and

MPI Stitch 6○.

Pose Recognition. Following the method described

2○SCAPE: Shape completion and animation of people. https://ai.stanford.edu/˜drago/Projects/scape/scape.html, Dec. 2018.
3○Human3.6m: 3.6 million 3D human poses and corresponding images. http://vision.imar.ro/ human3.6m/description.php, Dec.

2018.
4○CAESAR: The most comprehensive source for body measurement data. https://store.sae.org/caesar/, Dec. 2018.
5○SHREC’14: Shape retrieval of non-rigid 3D human models. http://www.cs.cf.ac.uk/shaperetrieval/shrec14/, Dec. 2018.
6○The stitched puppet: A graphical model of 3D human shape and pose. http://stitch.is.tue.mpg.de, Dec. 2018.
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Fig.5. Feature graphs of two human bodies in different poses. The feature size is 50. Note that while the feature descriptor is formed
by the incident angles, we plot these angles’ associated line segments for visualization purpose.

in Subsection 3.2, pose descriptors for all the meshes in

this database are pre-computed on all the template hu-

man bodies. When a new pose is given, we can simply

compute its descriptor, then compare it with all these

precomputed descriptors, and report the most similar

template.

To do this comparison efficiently we use a support

vector machine (SVM) to classify the poses. SVM is

well-known for its ability of class separation and low

computational cost. Then we use K-nearest-neighbors

algorithm to choose the best pose that matches the

user’s body geometry within the classified pose class.

Fig.6 shows the pipeline of the pose recognition

stage. From the tracked landmarks, the pose descriptor

is created and compared with representatives from each

cluster. A mesh with the most similar pose is selected

as the template.

3.4 Geometric Reconstruction

To deform the source mesh S to match the pose of

template mesh T , we shall reconstruct S’s local geo-

metry, using local Laplacian offset coordinates W com-

puted on S, on the local coordinate frames F defined

on T . Specifically, if we recall that

L











x1

x2

...
xn











=











FS(v1)W1

FS(v2)W2

...
FS(vn)Wn











. (1)

Here, we use FS to indicate the local coordinate frames

defined on mesh S, and FS(vi) is the local frame (a

3 × 3 matrix) on vi. Wi is the corresponding local co-

ordinates.

If we denote the deformed source mesh as S∗, then

we also have

L











x∗

1

x∗

2
...
x∗

n











=











FS∗

(v1)W1

FS∗

(v2)W2

...

FS∗

(vn)Wn











, (2)

where x∗

i are final coordinates of each deformed vertex

vi, and FS∗

is the corresponding local frames. Using

T to guide this deformation is to make FS∗

to follow

FT as much as possible. Hence, we first set FS∗

follow-

ing FT . And we use it to solve X∗, and then update

FS∗

accordingly. We repeat these iterations until it

converges.

Another issue is that the rank of L is n− 1. There-

fore, linear systems of (1) and (2) have infinite solu-

tions. This is why [29] uses an iterative solver to find

a solution near a given initial guess. In our problem,

our tracked landmarks provide with us c× 3 extra con-

straints on mesh S∗. With these constraints, the system

of (2) becomes over-constrained, and we can revise L

to a full-ranked symmetric positive definite matrix, and

use the more efficient Cholesky decomposition to solve

the systems. Furthermore, L will never change, but we

will need to resolve the system under different boun-

dary conditions. This strategy will allow us to reuse

the decomposition result and get solutions to all these

linear systems instantaneously.

Constrained Laplace Linear System. With con-

straints defined by tracked landmarks, we can simplify

the Laplace matrix L by removing the corresponding

rows and columns. Specifically, if vi is a landmark, then

its coordinates x∗

i is known, and we remove the i-th row

and the i-th column from L and move the correspond-

ing element lijx
∗

j to the right side of the linear sys-

tem. We use bc to denote all these moved components.
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(a) (c)(b)

Fig.6. Pose recognition pipeline. (a) Pose from the user. (b) Corresponding pose descriptor (incident line segments visualized as a
graph). (c) Matched pose from database.

Suppose there are c landmarks, then after removing all

these variables from the system, the coefficient matrix

becomes (n− c)× (n− c). We denote it as Lc. Finally,

(2) becomes

Lc











x∗

1

x∗

2
...

x∗

n−c











=











FS∗

(v1)W1

FS∗

(v2)W2

...

FS∗

(vn)Wn−c











+ bc. (3)

When we have more than two landmarks, Lc is full-

ranked (i.e., positive definite). We can use Cholesky

decomposition[30] to decompose Lc into Lc = TT ∗

where T is a lower triangular matrix with positive di-

agonal entries and T ∗ denotes the conjugate transpose

of T . Then, we can efficiently reuse T and T ∗ to solve

the linear systems of (3) under different boundary con-

straints when Lc does not change.

Final Algorithm. We summarize our proposed re-

construction algorithm as follows,

1) initialization: set FS∗

= FT ;

2) solve the linear system in (3) and get X∗;

3) update FS∗

by re-calculating the local frames;

4) if during the last iteration, both X∗ and FS∗

do

not change much, STOP; otherwise, go back to step 2.

An example of reconstruction (pose transfer) result

is illustrated in Fig.7. The source meshes in Figs.7(a),

7(d), 7(g), and 7(j) are deformed following the poses

of the template meshes. The pose transfer results in

Figs.7(c), 7(f), 7(i), and 7(l), respectively, have the geo-

metry of each source mesh but its pose mimicks the

template’s pose.

3.5 Morphing from Source to Target Poses

To generate a sequence of meshes, we only process

a few key pose frames.

For every k seconds, its pose is captured and recog-

nized. Suppose the current frame is the i-th capture.

With the recognized pose a template Ti×k is selected

and used to guide the deformation and obtained a new

deformed mesh Si×k from the last key frame S(i−1)×k.

Between these two key frames S(i−1)×k and Si×k, we

simply do a linear interpolation to generate the morph-

ing sequence

Key Frame Interval Selection. The interval para-

meter k balances the quality and the computational

cost. When k decreases, more intermediate poses are

captured, and less interpolation is used. This in gene-

ral increases the quality of generated motion sequence.

However, the computation of pose recognition and re-

construction needs to be finished within this interval.

When k increases, we reconstruct fewer poses and rely

more on interpolation. The reconstructed motion could

be less accurate but the computation is much faster.

However, the suitable value for k depends on users’

motion. Slower motions can be reconstructed with big-

ger k, while rapid or drastic motions need smaller k to
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(b)(a) (c) (d) (e) (f)

(h)(g) (i) (j) (k) (l)

Fig.7. Four pose transfer examples. The source meshes (a), (d), (g), (j), following template meshes (b), (e), (h), (k), are deformed to
the new poses (c), (f), (i), (l), respectively.

reproduce. Adaptively selecting k would be ideal; but

during the online user-avatar synchronization, perform-

ing a real-time prediction then adaptively adjusting k

is technically challenging. Therefore, based on multi-

ple experiments and our current implementation on our

machine, we select a relatively small interval k = 1 for

which the computation can always be finished and the

reproduced sequence is acceptable for common motions.

Fig.8 illustrates poses linearly interpolated between

two key poses. Fig.9 illustrates another pose tracking

and transfer example in our experiment. Fig.9(a) shows

the sampled pose tracking on the user, and the corre-

sponding computation is finished within such a time in-

terval. The transferred pose on the avatar is rendered

in Fig.9(b).

4 Experimental Results

In this section, we will describe our experimental

setup and demonstrate our results on feature selection,

pose classification, and pose transfer.

Pose 1 Pose 2

Fig.8. Morphing based on linear interpolation between two key-frames.
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1 s

0.072 s
0.075 s0.081 s

2 s 2 s

(a)

(b)

Fig. 9. (a) Sequence of real-time captured key-frames and associated run-time between two key-frames. (b) Reconstructed body
geometries for each captured key-frame and associated run-time between two key-frames.

4.1 Dataset

Human bodies collected in different datasets usually

have difference resolutions and connectivities. Fusing

all these data and generating a consistently parame-

terized human body model are necessary for us to use

them as templates to guide the pose transfer. How-

ever, automatically finding the dense point-to-point

correspondences between these human bodies is non-

trivial[33,34]. In this work, we utilize the parametric

model, SMPL[35], and perform a fitting on each human

body geometry in the database. With this modeling

fitting, we obtain the model parameters and use them

to reconstruct the consistently parameterized meshes.

Every human body in the database is processed in this

way, and converted into models with the same connec-

tivity. In practice, models within a same database are

often registered and consistently parameterized. Then

among these models, we only need to perform the above

fitting on one representative model, and its cross-shape

parameterization to other models. Inspired by [35, 36],

to perform an SMPL fitting, we use the 14 landmarks

that we are tracking during the motion capturing. For-

tunately, human poses can be appropriately encoded

by these landmarks because the significant variation in

human pose can be defined by these few moving joints.

Fig.10 shows some examples of FAUST and SCAPE

datasets. Fig.11 illustrates an example of two consis-

tently parameterized human bodies. Figs.11(a) and

11(b) are two meshes, from SCAPE and FAUST, re-

spectively, and their zoomed-in wireframe view of the

head. Figs.11(c) and 12(d) are their re-parameterized

meshes, which now have the same sampling and con-

nectivity.

4.2 Results

We demonstrate the experimental results on diffe-

rent phases of the proposed pipeline: feature construc-

tion, pose classification, and pose transfer.

4.2.1 Feature Construction

We find that the feature selection by the decision

tree results in angles that are from joint markers and

have high variance. Table 1 shows an example of se-

lected angles and their variance values (the marker in-

dexes of the line segments can be found in Fig.3). Inter-

estingly, all the selected angles are on joints following

the natural skeletal structure of the human model, in-

dicating that these joint angles are significantly more

informative and sensitive to the pose change than the

rest.
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(b)

(a)

Fig.10. Some examples of body shapes from (a) FAUST[31] and (b) SCAPE 7○ datasets.

(b)(a) (c) (d)

Fig.11. Cross-body registration and parameterization using the SMPL model. (a) is a mesh from the SCAPE database and the
wireframe view of the head. (b) is a mesh from the FAUST database. (c) and (d) are their re-parameterized meshes after the SMPL
fitting, respectively. The re-parameterized meshes have the same resolution and connectivity. (a) 12 500 vertices. (b) 6 890 vertices.
(c) 10 000 vertices from the SCAPE database. (d) 10 000 vertices from the FAUST database.

Table 1. Selected Feature (Angles) for Descriptor Construction

Rank Seg-1 Seg-2 Marker

1 (0, 11) (11, 2) 11

2 (0, 10) (10, 2) 10

3 (6, 10) (10, 4) 10

4 (6, 11) (11, 4) 11

5 (0, 12) (12, 2) 12

6 (7, 11) (11, 5) 11

7 (4, 10) (10, 2) 10

8 (5, 11) (11, 7) 11

Note: The selected angles interestingly correspond with joint
angles with big variance, following the skeleton structure. Seg-
1 and Seg-2 indicate the two line segments forming the angle.
The listed indexes for these line segments and markers follow the
definition in Fig.3.

4.2.2 Pose Estimation

We used a tracking vest which has low noise er-

ror compared with image-based approaches. To esti-

mate the user’s pose to obtain the appropriate template

mesh, we use the aforementioned feature descriptor de-

rived from the corresponding tracked markers. Fig.12

visualizes the distribution/clustering of different poses

described by our pose descriptors.

For this visualization, we reduce the dimension of

the descriptor space to 2 simply using the PCA algo-

rithm. As can be seen in the figure, except for class

1 and class 8 which are remarkably similar poses, all

7○SCAPE: Shape completion and animation of people. https://ai.stanford.edu/˜drago/Projects/scape/scape.html, Dec. 2018.
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the other classes are appropriately separated. We ob-

tained these results as conceptual experiments to test

how our pose classification algorithm is robust. How-

ever, in the reality, the number of classes needed for a

real-time pose animation is significantly more than 10.

-1.5 -1.0 -0.5 0.0 0.5

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9

1.0 1.5 2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Fig.12. Visualizing the pose estimation, clustered by con-
structed pose descriptors.

We used SVM to classify the poses on the FAUST

dataset. We achieved the average accuracy of 0.98 in

this dataset.

The classification accuracy is defined by

accuracy = (TP + TN)/(TP + TN + FP + FN),

where TP , TN , FP , and FN are true positive, true

negative, false positive and false negative, respectively.

Pose classification accuracy regarding the dimension of

feature descriptors. When the descriptor dimension is

60 and 70, the classification accuracy reaches 1.0.

4.2.3 Pose Transfer

Fig.13 shows a demo of the pose transferring

pipeline. As can be seen in the figure, body is tracked

using a body tracker. Subsequently, in the pose esti-

mation stage, the template mesh is chosen using the

pose feature descriptors. Finally, the pose is transfered

based on the template and source mesh.

Fig.14 show animations under different sampling

densities, where k = 2 (images with green bounding

box) and k = 3 (images with red bounding boxes), re-

spectively, where the poses in the same rows are cap-

tured from the same frame. The figure also shows the

zoomed region obtained by k = 2 and k = 3. As can

be seen, the hands when k is set to 2 is shrunk and is

less natural than those when k is set to 3. Generally, as

we can see from the figure, with smaller k, the morph-

ing looks smoother and more natural. Naturally, if we

keep tracking the user’s pose more frequently, we can

reproduce the motion more accurately.

Algorithm Efficiency. The runtime statistics (for ev-

Tracking Vest Body Markers Template Mesh

Output Mesh

Pose Feature
Descriptor

Classified
Feature

Descriptor

Choosing the
Template Mesh

Pose Transferring

Fig.13. Demo of pose transferring pipeline.



268 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

1

1

5

5 6

6

2

2 3

3

4

4
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7

7

Fig.14. Comparisons of interpolated poses with different key pose intervals: k = 2 (green bounding box) and k = 3 (red bounding
box). A zoomed-in figure is put to the right of each pose for clearer comparison.

ery computation component) of our pose transfer algo-

rithm is reported in Table 2. Following the pose transfer

algorithm formulated in Subsection 3.4, we can use a

threshold to check the convergence of the pose update.

Meanwhile, to ensure the efficiency of the algorithm, we

can also limit the iteration number to be smaller than

k. In our experiments, we found that the iteration usu-

ally converges within 10 steps, and setting k = 10 pro-

duces good enough result. The linear system solving

time in Table 2 consists of the time in solving three lin-

ear systems (for x, y, and z coordinates respectively).

The linear interpolation between consecutive key poses

is instantaneous. Therefore, the total online computa-

tion usually finishes within 12 + 0.8 + 1.9 × 10 < 32

milliseconds.

Table 2. Runtime Table for Our Pose Transfer Algorithm

Component Offline/Online Runtime (ms)

Laplacian matrix construction Offline 2.1

Cholesky decomposition Offline 3.9

Pose recognition Online 12.0

Local frames calculation Online 0.8

Linear system solving
(per iteration)

Online 1.9

Linear Interpolation Versus More Advanced Morph-

ing Algorithm. When the interval between captured key
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poses is big, e.g., k = 3 in Fig.14, morphing generated

by the simple linear interpolation can have undesir-

able artifacts. More advanced morphing strategies[37,38]

could be used to generate the interpolation. However,

advanced algorithms for animation morphing through

calculating more natural animation paths could be no-

ticeably more expensive, and might delay the online

synchronization.

4.3 Discussions and Comparisons

We compare our method with the direct surface de-

formation method, especially, the direct Laplacian de-

formation. We also compare it with the widely adopted

skinning-based character manipulation methods.

Laplacian coordinates were used to perform direct

surface deformation in [6]. The idea can be summarized

as minimizing

E(V ′) =
n
∑

i=1

‖Ti(L(vi))− L(v′i)‖+
n
∑

i=m

‖v′i − ui‖,

where vi and v′i indicate the coordinates of the original

and deformed vertices, ui is vi’s target position (given

as the user’s control), L is the Laplacian operator, and

Ti is a transformation matrix defined on vi (which needs

to be solved) that consists of rotation, translation, and

isotropic scaling. The first term penalizes the deviation

of Laplacian coordinates caused by the surface deforma-

tion. Solving Ti makes the Laplacian-based representa-

tion invariant to rigid and iso-scaling transformations.

The second term is a soft constraint to attract mesh

vertices toward their target positions.

In our method, we perform a pose recognition and

then directly use the local frames Fi from a model with

similar pose. We minimize

E(V ′) =

n
∑

i=1

‖Fi(L(vi))− L(v′i)‖,

s.t. v′j = uj , j = 1, . . . ,m,

where ui are a set of tracked landmarks on human body

surface. The key difference is that without the need to

compute transformations Ti, we can reduce the prob-

lem to solving linear systems rather than performing

a non-linear optimization. Therefore, our approach is

significantly faster and can be used in real-time avatar

synchronization

Skinning-Based Methods. Skinning-based anima-

tion methods[10,27] have been widely adopted in gener-

ating animations. They usually first do the skinning by

extracting skeletal bones and computing bone-vertex

association from a sequence of animated meshes, and

then use the deformation of the skeleton to drive the

deformation of surface vertices.

One difficulty for skeleton-driven body deformation

is the accurate skeleton tracking from the field. Al-

though commercial APIs from the RGB-D sensors like

Kinects have been developed to support skeleton ex-

traction from the field, and recent research on pose es-

timation from RGB cameras has also made great perfor-

mance improvement[17], the skeleton tracking is still not

always reliable. When the motion is uncommon, dra-

matic, or there is salient occlusion, tracked skeletons

could have missing nodes or incorrect topology. This

could affect subsequent animations. Therefore, we use

the tracking vest which can more accurately and reli-

ably track a set of landmarks on the body surface, and

avoid this problem.

5 Conclusions

We designed a human avatar representation ap-

proach for avatar control in virtual reality environments

using a wearable body tracking vest. The suggested

method consists of two main phases of pose recognition

and pose transfer. We developed a pose descriptor by

which the pose can be effectively estimated. For pose

transfer, we adopted an intrinsic coordinates using lo-

cally encoded Laplacian offsets. The transfer reduces to

solving of sparse linear systems and can be computed

rapidly. Using interpolation between the key-poses ob-

tained from the previous step, a fast human avatar an-

imation can be achieved.

Limitations and Future Work. Currently, we gene-

rate the morphing sequence using the simple linear in-

terpolation. This could lead to artifacts, especially

when the two consecutive poses change dramatically.

With a denser sampling of the human poses, this could

become less an issue. However, processing densely sam-

pled poses requires a big database that contains many

more poses. Without sufficient classification of diffe-

rent poses, selected templates for different key poses

could be the same, and hence their interpolation does

not help refine the morphing. But with the collec-

tion/integration of more human body datasets, this is-

sue will be alleviated gradually.

Skinning-based body deformation is a widely

adopted strategy for human motion animation. In gene-

ral, if the skeleton tracking is accurate, skinning-based

methods could better handle the non-isometry deforma-
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tion than our Laplacian-based deformation. In our fu-

ture work, we will explore more reliable real-time skele-

ton tracking algorithm, and also study avatar synchro-

nization through skinning-based deformation for noisy

or incomplete skeletons.
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