
Li L, Bissyandé TF, Wang HY et al. On identifying and explaining similarities in Android apps. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 34(2): 437–455 Mar. 2019. DOI 10.1007/s11390-019-1918-8

On Identifying and Explaining Similarities in Android Apps

Li Li1, Tegawendé F. Bissyandé2, Hao-Yu Wang3, and Jacques Klein2

1Faculty of Information Technology, Monash University, Melbourne 3168, Australia
2Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg 2721, Luxembourg
3School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

E-mail: li.li@monash.edu; tegawende.bissyande@uni.lu; haoyuwang@bupt.edu.cn; jacques.klein@uni.lu

Received March 5, 2018; revised December 7, 2018.

Abstract App updates and repackaging are recurrent in the Android ecosystem, filling markets with similar apps that

must be identified. Despite the existence of several approaches to improving the scalability of detecting repackaged/cloned

apps, researchers and practitioners are eventually faced with the need for a comprehensive pairwise comparison (or simul-

taneously multiple app comparisons) to understand and validate the similarities among apps. In this work, we present the

design and implementation of our research-based prototype tool called SimiDroid for multi-level similarity comparison of

Android apps. SimiDroid is built with the aim to support the comprehension of similarities/changes among app versions

and among repackaged apps. In particular, we demonstrate the need and usefulness of such a framework based on different

case studies implementing different dissection scenarios for revealing various insights on how repackaged apps are built. We

further show that the similarity comparison plugins implemented in SimiDroid yield more accurate results than the state of

the art.

Keywords Android, similarity analysis, app clone

1 Introduction

Android OS has attracted a considerable number

of developers and users in recent years. App markets

are thus now filled with millions of diversified Android

apps offering similar functionalities. While many of

such apps are revised versions of one another that are

distributed by the same developers to meet user re-

quirements on updated functionalities or to adapt to

third-party market opportunities, a large proportion of

apps however represent cloned or repackaged versions

built by third-party developers to redirect advertise-

ment revenues[1,2] or to efficiently construct and spread

malware[3−5].

The research community has recently proposed a

large body of studies dealing with the detection of

cloned/repackaged apps in the Android ecosystem[6−9].

Such studies generally output a verdict (Yes/No) on

whether an app is a repackaged version of another,

without actionable details on how the decision was

made and where the similarity lies. Yet, there is a need

for the research, development and even user communi-

ties for understanding the differences among app ver-

sions. For example, market maintainers and users often

need to identify what has been modified in the latest

app release, in order to ensure that the updated code

is in line with the “what’s new” descriptions. Deve-

lopers can benefit from casual impact analyses assessing

whether some specific modifications may impact app

ratings or cause apps to be removed from markets[5].

Finally, researchers can build change recommendation

approaches by mining app versions, and propose de-

tection approaches for locating malicious payloads in

repackaged malware samples[10].

Unfortunately, the state-of-the-art studies on

repackaged/clone app detection built on internal heuris-

tics are tedious to replicate, while the associated pro-

Regular Paper

A preliminary version of the paper was published in the Proceedings of TrustCom 2017.

This work was supported by the Luxembourg National Research Fund (FNR), Luxembourg, under Grant Nos. CHARACTERIZE
C17/IS/11693861 and Recommend C15/IS/10449467, and also by the National Natural Science Foundation of China under Grant
No. 61702045 and the Beijing University of Posts and Telecommunications (BUPT) Youth Research and Innovation Program of China
under Grant No. 2017RC40.

©2019 Springer Science +Business Media, LLC & Science Press, China



438 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

totype tools are not available for furthering research

in these directions[11]. Most of repackaged app detec-

tion studies[6−9,12−44] indeed do not come with reusable

tools for the research community. To the best of our

knowledge, Androguard[45] and FSquaDRA[46] are the

main publicly available tools for app similarity analysis.

The former performs pairwise comparison at the Dalvik

bytecode level while the latter conducts its similarity

analysis based on resource files. Both approaches, how-

ever, do not offer any explanation on the differences

among similar apps, thus failing to provide opportuni-

ties for further analysis.

Detecting repackaged apps is a challenging endeav-

our. In recent years, the community has focused

on meeting market scalability requirements with ap-

proaches that leverage fast resource-based similarity

comparisons or machine learning techniques. Neverthe-

less, the results of such approaches must eventually be

vetted and further broken down via a pairwise compa-

rison of suspicious repackaging pairs.

In this work, we propose to fill the gap in repackaged

app research by designing and prototyping a frame-

work for automated, comprehensive, multi-level iden-

tification of similarities among apps with facilities for

explaining the differences and similarities. SimiDroid is

designed as a plugin-based framework integrating var-

ious comparison methods (e.g., the code-based compa-

rison at the statement level or at the component level,

and resource-based comparison). By considering var-

ious aspects in a pairwise similarity check, SimiDroid

offers opportunities for a fine-grained comprehension of

app updating and repackaging scenarios such as under-

standing the evolution of Android app vulnerabilities[47]

or dissecting piggybacked malicious Android apps[3].

Overall, in this paper, we make the following con-

tributions.

• We present the design and implementation of

SimiDroid, contributing with a reusable tool 1○ to the

community for detecting similar Android apps and ex-

plaining the identified similarities at different levels

which can be further enriched via plugin implementa-

tions.

• We have implemented several similarity compa-

rison methods as plugins for the current release of

SimiDroid. These methods are borrowed from descrip-

tions in the state-of-the-art literature, covering code-

based and resource-based similarity comparisons.

• Finally, we investigate a number of case studies

on real-world apps to demonstrate the suitability of

SimiDroid in providing explanation hints for different

usage scenarios.

This paper is an extended version of a conference

paper entitled “SimiDroid: Identifying and Explaining

Similarities in Android Apps”, which has been pub-

lished at the 16th IEEE International Conference on

Trust, Security and Privacy in Computing and Commu-

nications. In the previous version, we have introduced

our research-based prototype tool called SimiDroid for

supporting the identification and explanation of simila-

rities between two given Android apps. In this work,

we additionally introduced two parameters to customise

the artefacts to-be analysed. These two parameters

provide a means for users to perform customised anal-

yses so as to perform similarity analysis in a way that

common libraries or certain resource files are not consi-

dered. We also extended SimiDroid to support the

similarities analysis among multiple Android apps si-

multaneously, which subsequently allows the users of

SimiDroid to cluster Android apps into different cate-

gories based on their similarities.

Except for the tool extension, we have refined our

experiments with more empirical findings. For exam-

ple, we enhanced our exploration study in RQ3 (refer to

Subsection 4.3) by discussing a new category of changes

that are recurrently targeted by repackagers. Further-

more, we added a new research question specifically for

evaluating the capability of conducting similarity ana-

lysis for multiple Android apps at the same time. Last

but not the least, we also updated many sections such

as the abstract and introduction sections to reflect the

latest state of this work.

The remainder of this paper is structured as follows.

Section 2 provides necessary background information

on Android app packaging and clarifications on the ter-

minology related to similar Android apps. Section 3 de-

tails the architecture and workflow of SimiDroid. Sec-

tion 4 presents the evaluation results of this work, in-

cluding the research questions and answers. Section 5

discusses the threats to validity. Section 6 provides con-

cluding remarks.

2 Background

We provide an overview of the structure of an An-

droid app package and clarify the terminology used in

the literature related to the topic of similar Android

apps.

1○https://github.com/lilicoding/SimiDroid, Jan. 2019.



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 439

2.1 Android App Packaging

An Android app (packaged as an APK file) is ac-

tually an archive (i.e., ZIP file) assembling various files

(cf. Listing 1), mainly including the followings:

1) a configuration file named AndroidManifest.xml :

important information such as the declared permissions

and the list of components are specified in this file;

2) a bytecode file named classes.dex representing

the main app code in DEX format;

3) a res directory storing various resource files, in-

cluding pictures and layouts that define the app’s “look

and feel”;

4) others, such as the META-INF directory storing

the certificate of authors, and the assets directory which

can be used to store raw data.

Listing 1. Main structure of an Android APK.

This structure simplifies similarity analysis either on

the code included in DEX files or on resources available

in the dedicated directories.

2.2 Terminology on Similar Android Apps

State-of-the-art studies have used various terms in

the literature to refer to the concept of similar Android

apps. In particular, reusing (and cloning) is (are) often

used to describe the process of leveraging parts or the

entirety of existing code to build new programs. This

reuse process is also referred to as code plagiarism in

markets when third-party developers have no right to

exploit other developers’ efforts. In the Android com-

munity, repackaging is consistently used for referring to

the process of cloning Android apps. In this case, deve-

lopers first unpack the app and then perform necessary

changes on the disassembled files before repackaging

them back into a new app version (which is now re-

ferred to as a repackaged app). Generally, repackaging

is different from reusing, where repackaging will likely

reuse the original resources (of the original app) while

reusing may not necessarily be involved in a repackaging

process. Indeed, developers can reuse some code snip-

pets of other apps without repackaging them. More-

over, repackaging processes do not necessarily involve

a change in the code of a given app. Only modifying

metadata or resource files could be sufficient to divert

app ownership and, hence, associated revenues. The

literature reserves the term “piggybacking” for repack-

aging cases where additional code manipulation (e.g.,

insertion of a malicious payload) is performed on the

original app[34].

2.3 Related Work

The related work of this paper lies mainly in two

folds: 1) identifying similar Android apps and 2) ex-

plaining similar Android apps. We now detail them in

Subsection 2.3.1 and Subsection 2.3.2, respectively.

2.3.1 Identifying Similar Android Apps

Similarity identification of Android apps, which

is also referred to by literature studies as repack-

aged/cloned apps identification (or reuse/plagiarize de-

tection), has been recurrently addressed by the state-

of-the-art work. As an example, AndroidSOO[19] lever-

ages the “string offset order” symptom to quickly flag

if a given Android app is repackaged. Similarly, Li et

al. showed that duplicated permissions and duplicated

capabilities, which can be extracted from the Android

manifest file, could be also taken as reliable symptoms

to achieve the same purpose[3].

Excepting symptom-based approaches, researchers

also rely on dynamic analysis to identify similar An-

droid apps[48]. For example, DroidMarking[29] and

AppInk[38] leverage watermarking techniques to check

at runtime if the installing app is repackaged from other

apps. Comparably, DIVILAR[21] provides a self-defense

technique, where the app itself is instrumented with di-

versified virtual instructions that will eventually be ex-

ecuted in a specialized engine, to mitigate the spread

of similar (but fake) apps.

Another recent direction of detecting similar An-

droid apps is to leverage machine learning based tech-

niques. Indeed, both supervised learning[12,23,33] and

unsupervised learning[27,36,43] have been investigated

by state-of-the-art studies. As an example of super-

vised learning, DroidLegacy[23] takes the frequency of

API calls as features to conduct 10-fold cross valida-

tion for the purpose of automatically classifying mal-



440 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

ware samples, including repackaged ones. As an ex-

ample of unsupervised learning, ResDroid[27] adopts

a clustering-based approach to coarsely group similar

Apps into same clusters, so as to reduce the computing

space of other fine-grained comparison approaches.

All the aforementioned approaches attempt to

detect similar apps in a way that they do not

need the knowledge of original apps. The re-

sults of these approaches, however, also need to

be vetted through a comprehensive pairwise compa-

rison (e.g., to confirm the final accuracy). Actu-

ally, like SimiDroid, the majority work in the litera-

ture in detecting similar Android apps at the mo-

ment is still based on pairwise similarity comparis-

on[6−9,13−15,18,20,22,24,25,28,30−32,34,37,39−42,44−46,49,50].

However, these approaches do not provide a means

for analysts to quickly explain how and why the com-

pared two apps are similar (or dissimilar). SimiDroid is

thus presented to fill this gap, aiming for not only de-

tecting similar Android apps but also explaining why

the given two apps are similar (or dissimilar).

2.3.2 Explaining Similar Android Apps

To the best of our knowledge, there is no system-

atized work on explaining similarities in Android apps.

However, there do exist several studies that perform

manual or empirical understanding related to the simi-

larity of Android apps. The most advanced work has

been presented recently by Li et al., who empirically

dissected the piggybacking processes of Android apps[3].

Unfortunately, their empirical investigations are mainly

done in manual and there is no supporting tool asso-

ciated. Our work, namely SimiDroid, can actually be

leveraged to support their findings.

Despite the piggybacking processes, researchers are

also interested in understanding code reuse in Android

markets. Indeed, Mojica et al.[24,44] empirically investi-

gated thousands of apps across five different categories,

in an attempt to understand the code reuse (in class

level) of Android apps. Li et al.[49] and Linares-Vasquez

et al.[25] investigated the Android reuse studies in the

context of library usages[51,52]. As experimentally il-

lustrated by Li et al.[49], the appearance of common

libraries could cause both false positives and false neg-

atives for detecting piggybacked apps.

The objective of this paper is to provide a generic

framework for automated, comprehensive, and multi-

level identification of similarities (or reuses) among

apps. Our work, along with other plugins, can be taken

as a keystone for supporting the replication of existing

similarity-based studies and for facilitating the develop-

ment of new similarity-based studies.

3 SimiDroid

Our objective is to provide to the community an ex-

tensible framework for supporting the comprehension of

similarities among Android apps. The framework aims

at contributing to answering to questions such as “to

what extent are app X and app Y similar” and “what

are the changes that have been applied to app X in

order to build app Y ”. We expect the answers to these

questions to consider different aspects of Android app

packages and to propose different granularity of details.

We design SimiDroid as a plugin-based system

which can independently load various comparison tech-

niques at different levels. As introduced earlier,

SimiDroid implements pairwise comparison schemes to

dissect the similarities and differences among suspected

updates of app pairs. Fig.1 illustrates the overall work-

ing process in SimiDroid. Two apps are provided as in-

puts and SimiDroid yields a similarity profile and some

explanation hints as output. The similarity profile sum-

marizes similarity facts related to the similarity scores

at different levels. The explanation hints highlight the

detailed changes revealing the differences among the

apps (e.g., string encryption has been applied).

Feature
Extraction

Similarity
Comparison

Similarity
Profile

Apps

y
e

Changes
Mining

Explanation
Hints

Fig.1. Overview of the working process of SimiDroid.

SimiDroid works in three steps by first extract-

ing the necessary features, then generating a similarity

profile for the two compared apps, and finally mining

changes for providing hints for analysts to explain the

similarities (or dissimilarities). We now detail these

three steps in Subsection 3.1, Subsection 3.2, and Sub-

section 3.3 respectively.

3.1 Feature Extraction

A plugin implements a similarity computation ap-

proach by providing heuristics for extracting the fea-

tures that it considers for comparing apps. In general,

a SimiDroid plugin provides a representation of an app



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 441

with a set of key/value mappings of the selected fea-

tures. Fig.2 illustrates the case of a plugin considering

code statements as features.

Plugin

key ֓֓> Value

..
.

keyn ֓֓> Valuen

key: setSortOrderSummary()

value: {InvokeStmt, AssignStmt|0, InvokeStmt|2131099690}

Key/Value Concrete Example:

Fig.2. Working process of a plugin of SimiDroid. The key/value
concrete example is extracted from app FFE44A, for which we
will provide more details on how the value is formed in Fig.3.

With this schema, SimiDroid offers a straight-

forward way for practitioners to integrate new plu-

gins implementing comparisons that take into ac-

count a variety of app aspects. In practice, there

are a few classes that could be extended (overrid-

ing some methods) to integrate the plugin logic (i.e.,

how features are extracted) into the framework. Cur-

rently, we have developed three different plugins in

SimiDroid implementing similarity computation follow-

ing the aspects suggested by the literature: method-

based comparison, component-based comparison, and

resource-based comparison. Fig.3 showcases pairwise

comparison results on these aspects, for which we now

detail them as follows.

3.1.1 MPlugin — Method-Based Comparison

The first plugin implements a common similarity

computation method based on app code, at the level

of methods. We design the feature extraction of this

plugin to yield method signatures and abstract repre-

sentations of statements. The latter representations are

derived from the statement’s type (e.g., if-statement,

invoke-statement) instead of the exact statement

string. These features have been introduced in the

previous work[3] not only to implement fast pairwise

comparison but also to be resilient, to some extent, to

obfuscation, i.e., the comparison will not be impacted in

cases where variable names differ but will be impacted

in cases where code structure changes (e.g., hiding the

real method call through reflection[53]). MPlugin fur-

ther extracts all constants (numbers and strings) as fea-

tures for comparison.

Fig.3(a) presents a concrete example of how

method values (statement types in particular) are

formed and compared. By considering constant

strings/numbers, SimiDroid is capable of identifying

fine-grained changes. For example, as shown in Fig.3,

SimiDroid spots that the constant number in the

getString() method call is different between the pair

of apps, giving hints for analysts on where to focus to

understand the motivation behind the change (e.g., the

value of $r4 could eventually be changed).

For some cases, where a certain part of the code

should not be considered for similarity analysis, e.g.,

alleviating the impact of common libraries, we should

provide the flexibility to support that. To this end,

we introduce into this plugin a parameter, namely Li-

brarySetPath, to support customised code-level simila-

rity analysis. The value of parameter LibrarySetPath

should point to a file containing a list of Java packages

(b)

(a)

(c)

Fig. 3. Examples on (a) method-based, (b) component-based, and (c) resource-based comparison. The compared two apps are
FFE44A (left) and 1CA20C (right). The code snippet shown in the method-based comparison block is extracted from method
setSortOrderSummary().



442 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

(one package per each line). When parameter Library-

SetPath is enabled, SimiDroid will ignore all the meth-

ods under the packages configured via the parameter.

3.1.2 CPlugin — Component-Based Comparison

The second plugin extracts app features at the com-

ponent level, where key/value mappings are inferred

from component names, and other Android package in-

formation that is component capabilities including ac-

tion, which describes the type of behaviour matched by

the component (e.g., MAIN component) and category,

which specifies what the component represents (e.g.,

LAUNCHER). CPlugin, although it appears to offer a

higher-level overview thanMPlugin, can be leveraged to

better understand the types and capabilities of the ma-

licious piece of code injected into piggybacked apps[3].

Fig.3(b) presents a concrete example of how com-

ponents are compared. This comparison will identify

changes in the capabilities reported of an existing or

a new component, providing hints to further the ana-

lysis when there is a suspicion on the mismatch between

one app behaviour and the capability exposed by the

other. For example, if the LAUNCHER component is

switched from one component to another, there is a hint

of piggybacked app writer that intends to divert user

attention for triggering malicious code execution.

3.1.3 RPlugin — Resource-Based Comparison

The third plugin builds on resource file comparisons

to detect similar apps. The assumption in the literature

is that, during repackaging and cloning, these files are

unlikely to be modified. Although some recent experi-

ments have shown that resource files can be manipu-

lated during app repackaging, such modifications are

generally not extensive. The feature extraction pro-

cess generates key/value mappings using hash values of

the files’ content. RPlugin can thus identify when a

resource file has been “compromised” (e.g., as shown

in Fig.3(c), the resource files share the same name but

have different hashes).

Similar to LibrarySetPath, a parameter introduced

in the MPlugin for customising the code to be excluded,

we also introduce a parameter, namely ResExtension-

SetPath, to customise the resource files that are not

wanted for the similarity analysis. The value of parame-

ter ResExtensionSetPath should point to a file contain-

ing a list of file extensions (one per each line). When the

parameter is enabled, all the files having extensions con-

figured via the parameter will be ignored by SimiDroid.

3.2 Similarity Comparison

At the end of the feature extraction step, for a given

pair of Android apps (app1, app2), SimiDroid conducts

the similarity comparison on top of the two sets of ex-

tracted key/value mappings (map1 and map2). The

computation is implemented in SimiDroid to quantify

and qualify the extent of similarity between the pair of

apps. We adopt the following four metrics to measure

similarity:

• identical, when a given key/value entry is matched

exactly the same in both maps. For example, given

keyx ∈ keys(map1), we consider it to be identical

as long as it exists also in map2 and its value is ex-

actly the same between the two compared maps, (i.e.,

map1[keyx] = map2[keyx]);

• similar, when a given key/value entry slightly

varies from one app to the other in a pair, more

specifically when the key is the same but values dif-

fer. For instance, given an entry from app1 with key

keyx ∈ keys(map1), we consider it to be similar to

an entry from app2 when keyx exists also in map2

but its value is different from the one in map1 (i.e.,

map1[keyx] 6= map2[keyx]);

• new, when a given key/value entry exists only

in map2 but not in map1. Thus, given a key keyx ∈

keys(map2), we consider it to be new as long as it does

not exist in map1 (i.e., keyx 6∈ keys(map1));

• deleted, when a given entry existed in map1, but

is no longer found in map2. For instance, given a key

keyx ∈ keys(map1), we consider it as deleted as long

as it does not exist in map2 (i.e., keyx 6∈ keys(map2)).

Based on these metrics, we can now compute the

similarity score of the given two apps (app1, app2) us-

ing (1). The similarity score is computed based on the

ratio of items that are identical (i.e., kept the same)

between the two compared apps, where total−new de-

notes all the items available in app1 while total−deleted

stands for all the items available in app2. Consequently,
identical
total−new

is the retained ratio from app1’s point of view

while identical
total−deleted

is the unchanged ratio from app2’s

point of view. In this work, we simply consider the

larger one as the similarity score for the pair. Given a

pre-defined threshold t, which can be computed based

on a set of known repackaging pairs, it is then possible

to conclude with confidence that the given two apps are

similar (i.e., similarity > t).

similarity = max{
identical

total− new
,

identical

total − deleted
}, (1)



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 443

where

total = identical+ similar+ deleted+ new. (2)

We remind the readers that this similarity compa-

rison step is generic and common to all plugins. Thus,

plugin developers do not need to modify the implemen-

tation of this step for supporting the similarity analysis

of their plugins. However, in order to explain beyond

the current metrics, which illustrate what entries are

kept, modified, newly added or deleted, developers are

enabled to extend this step as well for performing more

fine-grained similarity analyses and therefore providing

more detailed explanations.

3.3 Changes Mining

Finally, SimiDroid attempts to mine the changes,

based on the generated similarity profile, to provide

hints for analysts to quickly identify and thus explain

the similarities between compared Android apps. This

changes mining module cannot be fulfilled without the

support of plugins integrated to SimiDroid. Plugin

developers are expected to provide necessary auxil-

iary code in order to support this module to hunt for

changes. The auxiliary code can be added before or af-

ter the similarity comparison. In order to achieve that,

SimiDroid provides callback methods for plugin deve-

lopers to implement (i.e., pre-comparison callback for

such auxiliary code that needs to be executed before the

similarity comparison and post-comparison callback for

such auxiliary code that needs to be executed after the

comparison). As an example, in order to perform a

similarity analysis without considering the appearance

of common libraries for our method-based comparison

plugin, we implement a pre-comparison callback to ex-

clude common libraries, where the pre-comparison call-

back will be excluded before the similarity comparison

is conducted.

In the current implementation of MPlugin (i.e.,

the method-based comparison plugin), we have imple-

mented a post-comparison callback for inferring the

changes between two similar methods. Information on

those changes can provide fine-grained explanations on

what has been modified between the considered pair of

apps and, to some extent, why those changes are made.

As a use case, given a pair of similar apps (a1 → a2),

where a2 is a piggybacked version of a1 with some ma-

licious payloads injected, by inferring the changes be-

tween similar methods, we would be able to understand

how the injected malicious payloads are triggered.

Consider the example depicted in Fig.4 representing

a code snippet extracted from an Android app whose

sha256 starts with DB2CB6 2○. The added line (start-

ing with “+” symbol) is actually a hook, i.e., a piece of

code injected to trigger the malicious payload, during

the execution of original benign code (here from an app

whose sha256 starts with FFDE8B). This example illus-

trates that the malicious payloads could be triggered by

a single method call. By following the execution path

of this hook, analysts can locate the malicious payload

and understand the grafted malware behaviour.

For CPlugin (i.e., the component-based plugin im-

plementation), we have also implemented a post-

comparison callback to check if the newly added com-

ponents have shared the same capabilities as such of

the original components. Doing so is indeed suspicious

since there is no need for a benign app to implement

several components with the same capabilities (e.g., two

PDF reader components in the same app). Consider

again the piggybacked app (DB2CB6) whose code ex-

cerpt was provided in the previous example. The ana-

lysis has revealed that this app has declared two broad-

cast receivers (cf. lines 1 and 8 of Listing 2) to be

notified of both PACKAGE ADDED and CONNEC-

TIVITY CHANGE events. In other words, when one

of these two events comes, both components (receivers)

will be triggered to handle the events. Such a behaviour

is suspicious as in a typical development scenario, there

is no need for a duplication of event listening.

Hook: Trigger the Execution 

          of Malicious Payload

Fig.4. Hook example.

2○Through this paper, we uniquely name an app with the first six letters of its sha256.



444 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

Listing 2. Example of duplicated component capabilities.

3.4 SimiDroid for Multiple Apps

Towards supporting similarity analysis of multiple

Android apps, we go one step further in this work by

extending SimiDroid to take as input multiple Android

apps that analysts would like to dissect at the same

time. Given a set of Android apps, the working pro-

cess of the extension is straightforward. For every two

apps in the given set, SimiDroid performs its default

pairwise comparison (for whatever plugins it has con-

figured) as detailed in the previous section (cf. Subsec-

tion 3.2) and records its analysis results. The results of

each pair are then merged in the end to highlight and

thereby explain the similarities (or dissimilarities) of

the considered apps. The output of this extension is a

matrix which demonstrates the similarity scores of any

two given apps and a list of explanation hints that sum-

marize the changes among some of the considered apps.

Table 1 presents an example of a possible matrix, which

involves the similarity results of four Android apps (i.e.,

a1, a2, a3, and a4).

Table 1. Example of a Similarity Matrix

App a1 a2 a3 a4

a1 - 0.81 0.74 0.2

a2 0.81 - 0.92 0.3

a3 0.74 0.92 - 0.4

a4 0.20 0.30 0.40 -

Clustering Similar Apps. Based on the aforemen-

tioned similarity matrix, we go one step deeper in

this work to group highly similar apps into clusters.

More specifically, we consider the matrix representing

an undirected graph, where each app represents a node

while each similarity between two apps represents an

edge (the similarity is then the weight of this edge).

To this end, as shown in Fig.5(a), we are able to con-

struct a strongly connected graph. Given a threshold t,

we consider two apps are similar as long as their simi-

larity is bigger than t. Then, we break all the edges

that connect two dissimilar apps (i.e., their similarity

is less than t). After this step, the remaining sub-graphs

represent different clusters of similar apps that can be

further leveraged to perform more advanced analyses.

Indeed, as shown in Fig.5(b), with a threshold at 0.8,

four out of six edges are excluded from the graph, re-

sulting in two sub-graphs (i.e., two clusters: one with

a1, a2, a3 and the other with a4). Despite this clus-

tering approach is straightforward, it does become use-

ful when the number of considered apps increases (e.g.,

over 1 000) as well as the threshold changes (especially

when we need to dynamically adjust it).

a

aa

a a

aa

a
⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

(a) (b)

t/ ⊲ 

Fig.5. Constructed graphs for clustering similar Android apps.

3.5 Implementation

SimiDroid, along with the current MPlugin, CPlu-

gin and RPlugin plugins, is implemented in Java.

MPlugin, the method-based comparison plugin, is im-

plemented on top of Soot, a framework for analyzing

and transforming Java and Android apps[54]. Code

statements in MPlugin are processed at the Jimple code

level, an intermediate representation (IR) provided by

Soot in default. The transformation from Android byte-

code to Jimple code is done by Dexpler[55], which has

now been integrated into Soot as a plugin. CPlugin,

the component-based comparison plugin, leverages the

axml library to directly extract component information

from the compressed Android Manifest file in order to

facilitate the extraction process.



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 445

4 Evaluation

Our evaluation addresses the following research

questions.

• RQ1. Can the prototype implementation of

SimiDroid detect similar apps in a set of real-world

apps?

• RQ2. Can SimiDroid be used to detect similar

apps without taking common libraries into considera-

tion? If so, what is the impact of excluding common

libraries on the performance of SimiDroid’s similarity

analysis?

• RQ3. How is SimiDroid compared with existing

tools?

• RQ4. What is the extent of details that SimiDroid

can provide to support the comprehension of simila-

rities within a pair of apps?

• RQ5. Can SimiDroid be leveraged to cluster mul-

tiple Android apps into categories based on their simila-

rities?

All the experiments discussed in this section are con-

ducted on a Core i7 CPU running a Java VM with 8

GB of heap size.

4.1 RQ1: Detection

For a start, we acknowledge that pairwise simila-

rity analysis in general (including the one explored by

SimiDroid) cannot scale to market datasets[3]. For ex-

ample, for the 2 million apps available on Google Play,

there are C2
2×106 candidate pairs to compare. There-

fore, we emphasize at this point that the objective of

SimiDroid is not to identify all the similar apps among

a large set of apps, but rather to confirm suspicions

on a pair of apps and provide details, at different lev-

els, for supporting explanations on their similarity. We

will show later how SimiDroid is useful for identifying

similarities among a (relatively big) number of apps.

We evaluate the detection ability of SimiDroid us-

ing an established comprehensive benchmark[3] of pig-

gybacked apps with about 1 000 pairs of apps 3○. Each

pair is formed by an original benign app and its coun-

terpart piggybacked malware (i.e., a malware built by

grafting a malicious payload to the original benign app).

The assessment thus consists in computing the capabi-

lity of SimiDroid to identify each pair in the set. This

evaluation is performed based on each of the plugins

integrated into SimiDroid.

Fig.6 shows the distribution of similarity scores that

SimiDroid computes for method-based, component-

based, and resource-based comparisons, where the me-

dian values are 0.999 6, 1 4○, and 0.866 1 respectively 5○.

Method Component Resource

0.4

0.6

0.8

1.0

S
im

il
a
ri

ty
 S

c
o
re

Fig.6. Distribution of similarity scores computed through
method-based, component-based, and resource-based compar-
isons.

By far, the similarity scores based on resource-based

comparison are less than those provided by code-based

approaches (including both method and component-

based comparisons). Using Mann-Whitney-Wilcoxon

(MWW) tests, we further confirm that the difference

of similarity scores between resource-based and code-

based comparison is statistically significant 6○. This

finding is also in line with recent findings in [3], reveal-

ing that resource files can be extensively manipulated

during piggybacking.

Both method- and component-based comparisons

have achieved high similarity scores (cf. Fig.6), sug-

gesting that app cloning will unlikely modify the app

code in an invasive manner. This finding is also in line

with the practice of repackaging and code reuse where

repackagers have shown to pay the least efforts in code

changes, to allow easier automation of the repackaging

process.

The scores of component-based comparison are

slightly higher than the scores computed through the

method-based comparison. This indicates that in con-

trast to methods, component capabilities are even

rarely changed during app cloning. Indeed, in our

experiments, 85% of investigated pairs do not modify

the component capabilities of the original apps.

3○The real apps are downloaded from AndroZoo[56].
4○Roughly speaking, over 50% of the pairs have no modification at the component level.
5○Note that on some corner case apps, a plugin may fail to compute the similarity of a given pair (e.g., failing to extract features).

We have dropped such pairs from the results.
6○The reported p-value indicates that the difference is significant at a significance level α = 0.001. Because p-value < α, there is

one chance in a thousand that the difference between the compared two datasets is due to a coincidence.



446 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

In order to present a fair comparative study, we also

compute the similarity scores via SimiDroid for a set of

1 000 pairs of Android apps, which are randomly se-

lected from Google Play. Since the selection is con-

ducted randomly, we expect that for these pairs the

similarity results reported by SimiDroid would be low.

Indeed, the median similarities are 0, 0, and 0 for the

method-based, component-based, and resource-based

comparisons respectively, showing that SimiDroid is ca-

pable of flagging similar (or dissimilar) Android apps.

Result of RQ1. SimiDroid is reliable to detect simi-

lar Android apps. In general, code-based similarity

analysis is more accurate than resource-based simila-

rity analysis.

4.2 RQ2: Exclusion of Libraries

Recall that we have introduced two parameters for

SimiDroid to perform customised similarity analysis,

e.g., discarding unwanted code and resource files. We

would like to also evaluate the validity of these two

parameters. To this end, we re-launch SimiDroid on

10 randomly selected benchmark app pairs with these

two parameters enabled, respectively. The experimen-

tal results confirm that both parameters have signifi-

cantly impacted the experimental results. Our manual

investigation further confirms that the changes brought

along by these parameters are also valid.

Now, let us demonstrate the usefulness of the newly

introduced parameters via a concrete example, i.e.,

leveraging parameter LibrarySetPath to investigate the

impact of common libraries to pairwise similarity ana-

lysis of Android apps. We enable the parameter by

giving as input the list of common libraries released by

Li et al.[49] 7○. As long as a library is identified in a

given app, the library code will not be taken into ac-

count for computing the overall similarity of Android

apps.

We again launch SimiDroid on 500 randomly se-

lected app pairs from the benchmark dataset. Among

the 500 app pairs, without considering library code,

75.8% of them have their similarity scores increased,

18.6% of them have no change, while around 6% of

them (i.e., 28 pairs) have their similarity scores re-

duced. Fig.7 further presents the distribution of simi-

larity scores computed via method-based comparisons,

where common libraries are considered and are dis-

carded, respectively. It is worth to note that, three of

28 pairs with reduced scores have their similarity scores

even down to under 80%, the threshold used by Li et

al.[49] to flag potential repackaged Android apps. That

is to say, these three app pairs would have been falsely

included in the benchmark as repackaged app pairs.

This evidence, on the one hand, shows that our newly

introduced library exclusion parameter is effective for

SimiDroid to discard common libraries when perform-

ing similarity analysis, and on the other hand, demon-

strates that the consideration of common libraries can

indeed impact the performance of pairwise similarity

analysis of Android apps (sometimes even introduce

false positive results).

WithLib WithoutLib

0.9985

0.9995

Fig.7. Distribution of similarity scores computed via method-
based comparisons, where common libraries are considered
(WithLib) and excluded (WithoutLib), respectively.

Result of RQ2. The performance of pairwise simila-

rity analysis of Android apps can indeed be impacted

by common libraries.

4.3 RQ3: Comparison

We compare SimiDroid against the available im-

plementation of two state-of-the-art studies, namely

AndroGuard[45] and FSquaDRA[46], covering code-

based and resource-based similarity analysis respec-

tively.

AndroGuard. AndroGuard is probably the first

available tool presented to the community for detecting

the similarity of two Android apps. Like with MPlu-

gin in SimiDroid, the similarity of AndroGuard is com-

puted at the method level and is calculated based on the

same four metrics leveraged by SimiDroid (cf. Subsec-

tion 3.2). However, the comparison between the con-

tent of two methods is different. Instead of compar-

ing all the statements inside a given method, Andro-

Guard leverages state-of-the-art compressors to com-

pute the similarity distance between two methods. An-

droGuard currently uses the normalized compression

distance (NCD).

7○We also added android.support package into the whitelist because it has been explicitly neglected.



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 447

FSquaDRA. FSquaDRA is an approach that detects

repackaged Android apps based on the resource files

available in app packages. It performs a quick pair-

wise comparison with an attempt to measure how many

identical resource files are shared by a candidate pair

of apps.

We run both AndroGuard and FSquaDRA on the

same benchmark (≈ 1 000 pairs that we have used in

previous RQ1). Fig.8 comparatively plots the distribu-

tion of similarity scores calculated by SimiDroid, An-

droGuard, and FSquaDRA, respectively. The simila-

rity results computed by the state-of-the-art work are

also in line with the conclusions reached previously

in answering RQ1: code-based similarity results (i.e.,

AndroGuard) are generally better than resource-based

similarity results (i.e., FSquaDRA). We have also con-

firmed that the differences are significant using MWW

tests at the significance level of 0.001.

SimiDroid AndroGuard

0.993

0.996

0.999

S
im

il
a
ri

ty
 S

c
o
re

SimiDroid

(b)

(a)

FSquaDRA

0.0

0.4

0.8

S
im

il
a
ri

ty
 S

c
o
re

Fig.8. Comparison results among the similarity scores of (a)
SimiDroid (code-based) and AndroGuard, and (b) SimiDroid
(resource-based) and FSquaDRA.

As shown in Fig.8, the median value of SimiDroid is

slightly higher than the median value of AndroGuard,

although the difference between the two is not statis-

tically significant when checked with MWW tests (i.e.,

p-value > 0.001). In order to compare the precision of

these two code-based similarity analysis tools, we plan

to manually compare the results yielded by these two

apps. To this end, we randomly select 10 pairs for man-

ual investigation. Table 2 enumerates the randomly se-

lected pairs.

In this work, instead of manually investigating all

the methods, which needs a lot of efforts and is hard to

perform in practice, we have decided to focus only on

the reported similar methods. These similar methods

are actually quite suitable for our purpose, as they have

embraced the exact changes between the compared two

apps. As shown in Table 2, eight out of 10 of the se-

lected app pairs share the same number of similar meth-

ods (per pair) by both AndroGuard and SimiDroid. We

then manually investigate the cases of app pairs where

the reported numbers of similar methods differ by An-

droGuard and SimiDroid. We find that this is mainly

due to false negative results of AndroGuard, which has

failed to report a similar method for both cases. We

now provide more details on these two candidate pairs.

Case Study 1: FFDE8B → DB2CB6. For this app

pair, SimiDroid reports two similar methods while An-

droGuard reports only one similar method. The two

similar methods reported by SimiDroid are onCreate()

in class UnityPlayerProxyActivity and onDestroy() in

class UnityPlayerActivity. We have shown in Fig.4 as

a motivating example that the first similar method,

namely onCreate(), has indeed been manipulated to

trigger the execution of package com.gamegod.touydig.

Now we present the code snippet of the second similar

method, namely onDestroy(), in Listing 3, where one

statement (line 6) has been added to the original app.

The purpose of this injection is to clean the changes due

to the execution of injected malicious payloads, which

are triggered by the first similar method onCreate() (cf.

Fig.4).

Case Study 2: 2326A8 → 7D6D97. For this can-

didate pair, AndroGuard reports no similar method

while SimiDroid yields one similar method, which

is onCreate() of class SocialP luginUnityActivity.

Through manual investigation, as shown in List-

ing 3, we confirm that onCreate() of class

SocialP luginUnityActivity is indeed a similar method

which has been tampered with inserting a call to

dywtsbn(), implemented as part of the newly injected

payload within the same class as onCreate().

Result of RQ3. SimiDroid outperforms both code-

based (AndroGuard) and resource-based (FSquaDRA)

similarity analysis tools for detecting similar Android

apps.



448 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

Table 2. Randomly Selected 10 Piggybacking Pairs and Their Code-Based Similarity Results Yielded by AndroGuard and SimiDroid

Original Piggybacked AndroGuard SimiDroid

Identical Similar New Deleted Score (%) Identical Similar New Deleted Score (%)

FFDE8B DB2CB6 618 1 875 0 99.84 1 043 2 1 300 0 99.81

2326A8 7D6D97 1 422 0 1 727 0 100.00 2 445 1 4 384 0 99.96

E2CEED E9B8EE 264 5 1 178 0 98.14 390 5 2 299 0 98.73

8C23C6 5ADAE7 92 1 950 0 98.92 124 1 1 730 0 99.20

A0087E 296792 3 143 1 276 0 99.97 7 090 1 460 0 99.99

1B8441 172F27 3 965 1 834 0 99.97 8 488 1 1 300 0 99.99

00C381 2DC271 905 1 294 0 99.89 1 418 1 460 0 99.93

93E50D 664F22 1 225 1 1 210 0 99.92 2 042 1 2 786 0 99.95

9E49AE 29A23A 1 386 1 1 000 0 99.93 2 172 1 1 892 0 99.95

321DA9 86E88F 829 1 184 0 99.88 1 390 1 474 0 99.93

4.4 RQ4: Support for Comprehending
Repackaging/Cloning Changes

We now investigate the enabling potential of

SimiDroid for comprehending the details in Android

app similarities. To the best of our knowledge, little

work has focused on systematizing the explanation of

similarities among apps.

On top of the detection module (i.e., feature extrac-

tion plugin + similarity comparison plugin), a change

mining module implements specified analyses (before or

after the comparison) for providing insights into the na-

ture and potential purpose behind the changes. Those

analyses are specified by leveraging archived knowledge

from the literature and can be extended by practition-

ers based on their manual investigation findings. We

now enumerate and discuss several analysis directions

that are currently implemented in SimiDroid and that

have been used 1) to characterize suspicious intent in

repackaging, 2) to recognize symptoms of piggybacking,

3) to hint on malicious payload code, or 4) to measure

the impact of library code in app similarity computa-

tion.

4.4.1 Constant String Replacement

Online documentation of advertisement integration

into Android app exposes how ad revenues are for-

warded on the basis of an ad ID tied to the app owner.

We have implemented an analysis in SimiDroid that fo-

cuses on changes related to constant string replacement:

we focus on cases where only the string varies while

the associated code statement (i.e., statement type and

statement context method) does not vary. This analysis

presents a suspected case of redirecting ad revenues, il-

lustrated by the following case study.

Case Study 3: EF2BDA → 87880D (Redirect

Ad Revenue). When repackaging app EF2BDA

into 87880D, attackers have also changed the ad ID

(“a1522d5c390a573” in EF2BDA) to match their own

(line 34 in Listing 3) on the call to the API method

setAdUnitId(), so as to redirect the revenue generated

by app EF2BDA.

The constant string replacement analysis has also al-

lowed confirming obfuscation of code to prevent repack-

aging detection. In addition to constant strings,

SimiDroid also harvests the replacement of constant

numbers between similar methods. The method-based

comparison in Fig.3 has actually demonstrated the case

where a constant number in a method of app FFE44A is

updated in app 1CA20C, leading eventually to a change

in the selected entry. As shown in Table 3, SimiDroid

has identified 476 cases (within 110 pairs) where con-

stant strings are replaced and 2 447 cases (within 122

pairs) where constant numbers are replaced among the

evaluated benchmark pairs (nearly 1 000).

4.4.2 New Method Call

A new method call in a cloned app code is a rele-

vant starting point for tracking a potential injected pay-

load. Indeed, repackagers, as established in a previ-

ous study[3], often modify existing code to insert a sin-

gle method call for triggering the redirection of con-

trol flow from the execution of original benign code

into the newly added (likely malicious) code. Listing 3

shows examples of such method call insertions identi-

fied by SimiDroid at key points of an Android program,

i.e., when an activity is created/launched (line 17) or

when it must be stopped/destroyed (line 6). Actu-

ally, SimiDroid has found 2 259 cases (within 523 pairs)



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 449

Listing 3. Case study illustrative code snippets extracted from real Android apps.



450 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

where new method call is introduced during repackag-

ing (cf. Table 3).

Table 3. Explanation Statistics

Explanation Type Number of Number of

Pairs Times

Constant string mismatch 110 476

Constant number mismatch 122 2 447

New method call 523 2 259

Library impact 422 422

Duplicated component capability 611 60 312

Resource file rename 160 994

4.4.3 Library Impact

As shown by Li et al., the presence of common li-

braries can cause both false positives and false nega-

tives when attempting to detecting repackaged/cloned

apps[49]. We have specified a change analysis after

the identification of similarities to further differenti-

ate changes within libraries from those within app core

code. We thus use a library exclusion filter based on

a whitelist of libraries borrowed from [49]. Among the

analyzed pairs, SimiDroid reports different similarity

scores for 422 pairs when common libraries are excluded

(cf. Table 3). This analysis further allows to avoid false

positives and to reduce the rate of false negatives in

making a detection decision on whether two apps con-

stitute a repackaging pair.

Case Study 4: 29C2D4 → 287198 (False Positive).

By considering common libraries, the similarity of these

two apps is 86%. Giving a threshold of 80%, we have

reasons to believe that these two apps are cloned from

one another. However, after excluding common li-

braries, the similarity of these two apps falls down to

0, demonstrating that a naive similarity analysis could

be misled by common libraries and yield false positive

results.

Case Study 5: F3B117 → 25BC25 (False Nega-

tive). After excluding common libraries, the similarity

of these two apps reaches 84%, leading to a decision that

these apps constitute a repackaging pair (if we consider

also 80% as the threshold). Compared with the case

where libraries are considered (47% similarity score),

one would have missed the chance to suspect the pair

of apps, resulting in a false negative result.

4.4.4 Duplicated Component Capabilities

Building on findings in [3], we identify hints on

repackaging in similar apps by focusing on duplication

in Manifest entries. In particular, duplicated compo-

nent capabilities can be taken as a symptom to quickly

confirm piggybacking as it is indeed suspicious for a

normal benign app, developed from scratch, to imple-

ment several components that listen to the same event,

or that can realize the same action (e.g., play videos).

In our experiments, we have shown (cf. Listing 2 for ex-

ample) fine-grained changes in 611 piggybacking apps

presenting such a symptom, in contrast to their original

counterparts.

Case Study 6: 3FC49C → A02FE8 (Dupli-

cated Capabilities). When analyzing this pair,

SimiDroid yields surprisingly 45 682 duplicated capabi-

lity cases, which are mainly contributed by action an-

droid.intent.action.VIEW, which has been declared in

total 243 times for 213 components (A2
213 = 45 156).

4.4.5 Resource File Rename

Finally, we have implemented an analysis rule to

hint on extensive resource file renaming. This prac-

tice is indeed more common in piggybacking processes

than in mere app updates[3]. The possible intention

behind such a behaviour could be that attackers at-

tempt to fool resource-based comparisons and hence to

bypass the detection of resource-based repackaged de-

tection approaches which are easily applicable at mar-

ket scale. Fig.9 outlines the distribution of resource

directories involving resource file renames. The most

favoured resources are inside the res directory where

the majority of files are pictures. In total, as shown in

Table 3, SimiDroid harvests 994 cases where a resource

file is renamed among 160 piggybacking pairs.

0

res

assets

META-INF

ui

lib

com

1000 2000 3000 4000

Fig.9. Distribution of resource directories ranked based on the
number of resource files (inside the directory) renamed.

Case Study 7: 740E84 → 938A1D (Resource

File Rename). SimiDroid reports a case where

two resource files are exactly the same in content

(same hash code) but have different names between

the compared two apps. Particularly, the resource

file named assets/skeleton/skeleton kaboom blue.json



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 451

in the first app has been renamed to assets/skelet-

on/skeleton kaboom red.json in the second app.

Result of RQ4. SimiDroid is capable of support-

ing the comprehension of similarities within a pair

of Android apps. The explanation hints reported by

SimiDroid can indeed provide an opportunity for an-

alysts to readily identify noteworthy changes, offering

explanations on the likely intent of such changes.

4.5 RQ5: Similarity App Cluster

As mentioned in Subsection 3.4, one benefit that

our extension to SimiDroid for simultaneously analyz-

ing multiple Android apps can be leveraged is to group

similar apps into clusters among a large set of An-

droid apps. In this work, we evaluate this hypothesis

through a real challenge where security analytics would

like to understand the diversity of malicious apps be-

longing to a given family. Although those apps, which

are from the same malware family, should semantically

share the same malicious behaviour, their implementa-

tion could vary dramatically (e.g., they may be vari-

ants of different root malware that are developed from

scratch). Therefore, it is useful to have an automated

approach that systematically groups apps (e.g., from

the same malware family) based on their characteris-

tics into different clusters. Indeed, the clustering result

provides a similarity overview of all the involved apps,

and hence can be leveraged to quickly answer the fol-

lowing questions: how many malware variants exist in

the family, or how many kinds of malware share the

same code structure.

In this work, we randomly select 2 000 malware from

VirusShare 8○, a well-known source sharing viruses in-

cluding Android malicious apps. Since our goal here

is to conduct similarity analyses for such apps that

are from the same malware family, we need to clus-

ter the 2 000 apps into different families based on their

malicious behaviour. To this end, we resort to a mal-

ware labelling tool called AVClass[57] to assign Android

malware to different families. AVClass takes as input

the anti-virus labels and outputs the most likely fam-

ily name for each malware sample, where the anti-virus

labels can be obtained from VirusTotal.

Among the 2 000 randomly selected malware, AV-

Class flags 89 of them as “SINGLETON”, indicating

that there is no family name found for these apps. In

this work, we exclude these 89 apps from consideration.

The remaining 1 811 malware are grouped by AVClass

into 150 clusters, where the number of variants in each

family varies from 1 to 429. Fig.10 illustrates the de-

tailed distribution of the number of variants available

in those clustered families. The median value indicates

that around half of the families have at least two vari-

ants in their families.

2 4 6 8 10

Number of Variants

Fig.10. Distribution of the number of variants available in clus-
tered families.

Table 4 presents the top 10 families ranked based on

their number of variants. Family fakeinst is the most

favoured one that has 429 variants appeared in our

randomly selected 2 000 malware samples, accounting

for roughly 20% of Android malware. As revealed by

Kaspersky 9○, fakeinst apps are the first type of active

SMS trojan that targets users in 66 countries. Thanks

to SimiDroid, as shown in the third column of Table 4,

we find that those 429 variants are actually from 15

root malicious apps, which are recurrently copied and

repackaged to form new variants (with small changes).

From Table 4 we can also observe that for each fam-

ily there is a cluster that contains significantly more

variants compared with others (e.g., 205 for fakeinst

and 90 for dowgin), suggesting that attackers attempt

to implement their malicious apps based on popular

ones, making this cluster of malware variants even more

popular in the family.

We further go one step deeper to investigate whether

the apps in the largest cluster of each family are actu-

ally cloned from the same app (i.e., sharing the same

package name) or are developed by the same attacker

(i.e., sharing the same developer signature). Table 5

summarises the statistics we have obtained, where x/y

in the second column shows that we could not obtain

the metadata for y− x apps due to tooling errors, e.g.,

our tool-chain cannot successfully extract metadata for

4 (i.e., 15− 11) apps in family airpush). Interestingly,

for some clusters such as smsreg and smsagent, all their

apps (or the majority of them) are actually modified

8○https://virusshare.com, Jan. 2019.
9○http://securityaffairs.co/wordpress/24427/malware/fakeinst-first-sms-trojan.html, Jan. 2019.



452 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

Table 4. Top 10 Malware Families Ranked Based on Their Numbers of Variants

Family Number of Variants Number of Clusters Numbers of Variants in Clusters

fakeinst 429 15 205, 56, 31, 16, 19, 25, 24, 6, 6, 4, 4, 4, 3, 2, 2

dowgin 156 11 90, 8, 4, 4, 4, 3, 3, 3, 2, 2, 2

adwo 148 4 80, 50, 3, 2

gappusin 117 13 19, 7, 6, 6, 4, 3, 2, 2, 2, 2, 2, 2, 2

kuguo 108 4 65, 3, 2, 2

smsreg 75 4 19, 15, 3, 2

airpush 52 4 15, 2, 2, 2

smsagent 49 2 37, 2

admogo 48 2 43, 2

opfake 47 8 15, 8, 6, 4, 4, 3, 2, 2

Note: Clusters containing only a single malware are ignored.

from the same root app and are manipulated by the

same developer. This evidence suggests that attackers

are continuously updating their malware so as to bypass

the emerging malware-detecting approaches. Instead

of updating from the same original app, some attack-

ers are preferred to introduce into a malware family of

different apps. For example, all the 80 apps in clus-

ter adwo are developed by the same attacker, while are

developed based on different root apps, i.e., they all

share different unique package names.

Table 5. Statistics of the Apps in the Largest

Cluster of Each Family

Family Variants Number of Number of

Package Names Signatures

fakeinst 191/205 143 143

dowgin 88/90 2 13

adwo 80/80 1 80

gappusin 19/19 8 9

kuguo 65/65 1 18

smsreg 19/19 19 19

airpush 11/15 1 2

smsagent 37/37 37 37

admogo 43/43 1 43

opfake 15/15 4 15

Since the clustering approach of SimiDroid adopts

the same similarity analysis algorithms from the pair-

wise comparison approach, which has been experimen-

tally shown reliable, the performance of the clustering

approach should be also reliable. Indeed, by taking as

input the 80 adwo apps mentioned before, SimiDroid

would still group all of them into the same cluster.

Similarly, as another experimental example, SimiDroid

groups 10 randomly selected Google Play apps into 10

clusters, i.e., one app in a cluster. Our manual obser-

vation confirms that those 10 apps are indeed different

from each other.

Result of RQ5. The capability of analyzing simul-

taneously multiple Android apps makes SimiDroid ca-

pable of clustering Android apps into different cate-

gories based on their similarities, and hence eases the

job of code analysts, e.g., it can help security analysts

to quickly understand the implementation differences of

a set of malware, though they may belong to the same

family.

5 Threats to Validity

Our approach and the experiments presented in this

paper introduce a few threats to validity. First of all,

the current implementation of SimiDroid does not pro-

vide strong obfuscation resilience. For example, if the

method names (or component names) are changed due

to obfuscation, SimiDroid can no longer compute a re-

liable similarity score for these candidate apps. Nev-

ertheless, the main usage of SimiDroid is not to detect

cloned apps in the wild within a large scale of apps, but

to vet and confirm the similarity of suspicious candidate

pairs, giving by other coarse approaches.

Second, the comparison between AndroGuard and

SimiDroid may not be perfect since these two tools

leverage totally different fundamental tools to compute

the similarities between two apps. For example, as

shown in Table 2, for app DB2CB6, the total num-

ber of methods considered by AndroGuard is 1 494 (618

+ 1 + 875) while by SimiDroid is 2 345 (1 043 + 2 +

1 300). The reason why AndroGuard yields fewer meth-

ods than SimiDroid is that AndroGuard attempts to

perform 1 → n comparisons while SimiDroid performs

1 → 1 comparisons. As a result, n similar methods

will be counted only once. Furthermore, thanks to our



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 453

manual verification, we have also confirmed that An-

droGuard will likely yield both false positive and false

negative results in terms of identifying similar methods.

Finally, the similarity analysis among multiple An-

droid apps provided by SimiDroid is quite straightfor-

ward, where only the similarity (i.e., the weight between

two nodes) is considered at the moment. In our future

work, we plan to consider more artefacts such as the de-

grees of the nodes in the graph to make the clustering

results more persuasive.

6 Conclusions

We introduced a new framework, SimiDroid, for

supporting researchers and practitioners in the ana-

lysis of similar apps (by performing either pairwise

comparison for two apps or multiple apps comparison).

SimiDroid integrates plugins implementing the extrac-

tion of features, at different levels, for the computation

of similarity scores. This framework is targeted at con-

firming that two apps are indeed similar and at detail-

ing not only the similarity points but also the modifi-

cations in changed code.

Using a benchmark of piggybacking pairs, we

showed how SimiDroid is accurate in detecting simi-

lar apps, and the extent to which it can support the

analysis of changes performed by malicious app writ-

ers when repackaging a benign app. With this frame-

work, we contributed to supporting the community in

the realisation of extensive studies on app similarities to

further experiment in their fast, accurate and scalable

approaches.

References

[1] Dong F, Wang H Y, Li L, Guo Y, Xu G A, Zhang S D.

How do mobile apps violate the behavioral policy of ad-

vertisement libraries? In Proc. the 19th Workshop on Mo-

bile Computing Systems and Applications, February 2018,

pp.75-80.

[2] Dong F, Wang H Y, Li L, Guo Y, Bissyandé T F, Liu T

M, Xu G A, Klein J. FraudDroid: Automated ad fraud

detection for Android apps. In Proc. the ACM Joint Euro-

pean Software Engineering Conference and Symposium on

the Foundations of Software Engineering, November 2018,

pp.257-268.

[3] Li L, Li D, Bissyandé T F, Klein J, Le Traon Y, Lo D,

Cavallaro L. Understanding Android app piggybacking: A

systematic study of malicious code grafting. IEEE Transac-

tions on Information Forensics and Security, 2017, 12(6):

1269-1284.

[4] Wang H Y, Liu Z, Guo Y, Chen X Q, Zhang M, Xu G

A, Hong J. An explorative study of the mobile app ecosys-

tem from app developers’ perspective. In Proc. the 26th

International Conference on World Wide Web, April 2017,

pp.163-172.

[5] Wang H Y, Li H, Li L, Guo Y, Xu G A. Why are Android

apps removed from Google play? A large-scale empirical

study. In Proc. the 15th International Conference on Min-

ing Software Repositories, May 2018, pp.231-242.

[6] Chen J, Alalfi M H, Dean T R, Zou Y. Detecting Android

malware using clone detection. Journal of Computer Sci-

ence and Technology, 2015, 30(5): 942-956.

[7] Wang H Y, Guo Y, Ma Z A, Chen X Q. WuKong: A scal-

able and accurate two-phase approach to Android app clone

detection. In Proc. the 2015 International Symposium on

Software Testing and Analysis, July 2015, pp.71-82.

[8] Chen K, Liu P, Zhang Y J. Achieving accuracy and scala-

bility simultaneously in detecting application clones on An-

droid markets. In Proc. the 36th International Conference

on Software Engineering, May 2014, pp.175-186.

[9] Zhou W, Zhou Y J, Jiang X X, Ning P. Detecting repack-

aged smartphone applications in third-party Android mar-

ketplaces. In Proc. the 2nd ACM Conference on Data and

Application Security and Privacy, February 2012, pp.317-

326.

[10] Li L, Li D Y, Bissyandé T F, Klein J, Cai H P, Lo D, Traon

L Y. On locating malicious code in piggybacked Android

apps. Journal of Computer Science and Technology, 2017,

32(6): 1108-1124.

[11] Li L, Bissyandé T F, Papadakis M, Rasthofer S, Bartel A,

Octeau D, Klein J, Traon L. Static analysis of Android apps:

A systematic literature review. Information and Software

Technology, 2017, 88: 67-95.

[12] Tian K, Yao D F, Ryder B G, Tan G. Analysis of code

heterogeneity for high-precision classification of repackaged

malware. In Proc. the 2016 IEEE Security and Privacy

Workshops, May 2016, pp.262-271.

[13] Guan Q L, Huang H Q, Luo W Q, Zhu S C. Semantics-

based repackaging detection for mobile apps. In Proc. the

8th International Symposium on Engineering Secure Soft-

ware and Systems, April 2016, pp.89-105.

[14] Wu X P, Zhang D F, Su X, Li W W. Detect repackaged an-

droid application based on HTTP traffic similarity. Security

and Communication Networks, 2015, 8(13): 2257-2266.

[15] Sun M. S, Li M M, Lui J. DroidEagle: Seamless detection

of visually similar Android apps. In Proc. the 8th ACM

Conference on Security & Privacy in Wireless and Mobile

Networks, June 2015, Article No. 9.

[16] Jiao S B, Cheng Y, Ying L Y, Su P R, Feng D G. A rapid

and scalable method for Android application repackaging

detection. In Proc. the 11th International Conference on

Information Security Practice and Experience, May 2015,

pp.349-364.

[17] Aldini A, Martinelli F, Saracino A, Sgandurra D. Detec-

tion of repackaged mobile applications through a collabo-

rative approach. Concurrency and Computation: Practice

and Experience, 2015, 27(11): 2818-2838.

[18] Soh C, Tan H B. K, Arnatovich Y L, Wang L. Detecting

clones in Android applications through analyzing user inter-

faces. In Proc. the 23rd International Conference on Pro-

gram Comprehension, May 2015, pp.163-173.

[19] Gonzalez H, Kadir A A, Stakhanova N, Alzahrani A J,

Ghorbani A A. Exploring reverse engineering symptoms in

Android apps. In Proc. the 8th European Workshop on Sys-

tem Security, April 2015, Article No. 7.



454 J. Comput. Sci. & Technol., Mar. 2019, Vol.34, No.2

[20] Chen K, Wang P, Lee Y J, Wang X F, Zhang N, Huang H

Q, Zou W, Liu P. Finding unknown malice in 10 seconds:

Mass vetting for new threats at the Google-Play scale. In

Proc. the 24th USENIX Security Symposium, August 2015,

pp.659-674.

[21] Zhou W, Wang Z, Zhou Y J, Jiang X X. DIVILAR: Diver-

sifying intermediate language for anti-repackaging on An-

droid platform. In Proc. the 4th ACM Conference on Data

and Application Security and Privacy, March 2014, pp.199-

210.

[22] Gonzalez H, Stakhanova N, Ghorbani A A. DroidKin:

Lightweight detection of Android apps similarity. In Proc.

the 10th International Conference on Security and Privacy

in Communication Systems, September 2014, pp.436-453.

[23] Deshotels L, Notani V, Lakhotia A. DroidLegacy: Auto-

mated familial classification of Android malware. In Proc.

ACM SIGPLAN on Program Protection and Reverse En-

gineering Workshop, January 2014, Article No. 3.

[24] Mojica I J, Adams B, Nagappan M, Dienst S, Berger T,

Hassan A E. A large-scale empirical study on software reuse

in mobile apps. IEEE Software, 2014, 31(2): 78-86.

[25] Vásquez L M, Holtzhauer A, Bernal-Cárdenas C, Poshy-

vanyk D. Revisiting Android reuse studies in the context

of code obfuscation and library usages. In Proc. the 11th

Working Conference on Mining Software Repositories, May

2014, pp.242-251.

[26] Crussell J, Gibler C, Chen H. AnDarwin: Scalable detection

of Android application clones based on semantics. IEEE

Transactions on Mobile Computing, 2015, 14(10): 2007-

2019.

[27] Shao Y R, Luo X P, Qian C X, Zhu P F, Zhang L. Towards a

scalable resource-driven approach for detecting repackaged

Android applications. In Proc. the 30th Annual Computer

Security Applications Conference, December 2014, pp.56-

65.

[28] Zhang F F, Huang H Q, Zhu S C, Wu D H, Liu P. View-

Droid: Towards obfuscation-resilient mobile application

repackaging detection. In Proc. the 7th ACM Conference

on Security and Privacy in Wireless & Mobile Networks,

July 2014, pp.25-36.

[29] Ren C G, Chen K, Liu P. Droidmarking: Resilient software

watermarking for impeding Android application repackag-

ing. In Proc. the 29th ACM/IEEE International Confe-

rence on Automated Software Engineering, September

2014, pp.635-646.

[30] Sun X, Zhongyang Y B, Xin Z, Mao B, Xie L. Detecting

code reuse in Android applications using component-based

control flow graph. In Proc. the 29th IFIP TC 11 Inter-

national Conference on ICT Systems Security and Privacy

Protection, December 2014, pp.142-155.

[31] Lindorfer M, Volanis S, Sisto A, Neugschwandtner M,

Athanasopoulos E, Maggi F, Platzer C, Zanero S, Ioan-

nidis S. AndRadar: Fast discovery of Android applications

in alternative markets. In Proc. International Conference

on Detection of Intrusions and Malware, and Vulnerability

Assessment, July 2014, pp.51-71.

[32] Kywe S M, Li Y J, Deng R H, Hong J. Detecting camou-

flaged applications on mobile application markets. In Proc.

the 17th International Conference on Information Security

and Cryptology, December 2014, pp.241-254.

[33] Lin Y D, Lai Y C, Chen C H, Tsai H C. Identifying An-

droid malicious repackaged applications by thread-grained

system call sequences. Computers & Security, 2013, 39(B):

340-350.

[34] Zhou W, Zhou Y J, Grace M, Jiang X X, Zou S H. Fast,

scalable detection of piggybacked mobile applications. In

Proc. the 3rd ACM Conference on Data and Application

Security and Privacy, February 2013, pp.185-196.

[35] Vidas T, Christin N. Sweetening Android lemon markets:

Measuring and combating malware in application market-

places. In Proc. the 3rd ACM Conference on Data and Ap-

plication Security and Privacy, February 2013, pp.197-208.

[36] Crussell J, Gibler C, Chen H. AnDarwin: Scalable detec-

tion of semantically similar Android applications. In Proc.

the 18th European Symposium on Research in Computer

Security, September 2013, pp.182-199.

[37] Zheng M, Sun M S, Lui J. DroidAnalytics: A signa-

ture based analytic system to collect, extract, analyze

and associate android malware. arXiv:1302.7212, 2013.

https://arxiv.org/pdf/1302.7212.pdf, September 2018.

[38] Zhou W, Zhang X W, Jiang X X. Appink: Watermarking

Android apps for repackaging deterrence. In Proc. the 8th

ACM SIGSAC Symposium on Information, Computer and

Communications Security, May 2013, pp.1-12.

[39] Gibler C, Stevens R, Crussell J, Chen H, Zang H, Choi H.

AdRob: Examining the landscape and impact of Android

application plagiarism. In Proc. the 11th Annual Interna-

tional Conference on Mobile Systems, Applications, and

Services, June 2013, pp.431-444.

[40] Hanna S, Huang L, Wu E, Li S, Chen C, Song D. Juxtapp:

A scalable system for detecting code reuse among Android

applications. In Proc. the 9th International Conference on

Detection of Intrusions and Malware, and Vulnerability As-

sessment, July 2012, pp.62-81.

[41] Crussell J, Gibler C, Chen H. Attack of the clones: De-

tecting cloned applications on Android markets. In Proc.

the 17th European Symposium on Research in Computer

Security, September 2012, pp.37-54.

[42] Potharaju R, Newell A, Nita R C, Zhang X Y. Plagiariz-

ing smartphone applications: Attack strategies and defense

techniques. In Proc. the 4th International Symposium on

Engineering Secure Software and Systems, February 2012,

pp.106-120.

[43] Wu D J, Mao C H, Wei T E, Lee H M, Wu K P. DroidMat:

Android malware detection through manifest and API calls

tracing. In Proc. the 7th Asia Joint Conference on Infor-

mation Security, August 2012, pp.62-69.

[44] Ruiz I J M, Nagappan M, Adams B, Hassan A E. Under-

standing reuse in the Android market. In Proc. the 20th

IEEE International Conference on Program Comprehen-

sion, June 2012, pp.113-122.

[45] Desnos A. Android: Static analysis using similarity dis-

tance. In Proc. the 45th Hawaii International Conference

on System Sciences, February 2012, pp.5394-5403.

[46] Zhauniarovich Y, Gadyatskaya O, Crispo B, La S F, Moser

E. FSquaDRA: Fast detection of repackaged applications.

In Proc. the 28th Annual IFIP WG 11.3 Working Confe-

rence on Data and Applications Security and Privacy, July

2014, pp.130-145.

[47] Gao J, Li L, Kong P F, Bissyandé T F, Klein J. On vulner-

ability evolution in Android apps. In Proc. the 40th Inter-

national Conference on Software Engineering: Companion

Proceedings, May 2018, pp.276-277.



Li Li et al.: On Identifying and Explaining Similarities in Android Apps 455

[48] Kong P F, Li L, Gao J, Liu K, Bissyandé T F,

Klein J. Automated testing of Android apps: A system-

atic literature review. IEEE Transactions on Reliability.

doi:10.1109/TR.2018.2865733.

[49] Li L, Bissyandé T F, Klein J, Le T Y. An investigation into

the use of common libraries in Android apps. In Proc. the

23rd IEEE International Conference on Software Analysis,

Evolution, and Reengineering, March 2016, pp.403-414.

[50] Viennot N, Garcia E, Nieh J. A measurement study of

Google play. In Proc. ACM International Conference on

Measurement and Modeling of Computer Systems, June

2014, pp.221-233.

[51] Ma Z, Wang H Y, Guo Y, Chen X Q. LibRadar: Fast and

accurate detection of third-party libraries in Android apps.

In Proc. the 38th ACM/IEEE International Conference on

Software Engineering Companion, May 2016, pp.653-656.

[52] Wang H Y, Guo Y. Understanding third-party libraries in

mobile app analysis. In Proc. the 39th IEEE/ACM Inter-

national Conference on Software Engineering Companion,

May 2017, pp.515-516.

[53] Li L, Bissyandé T F, Octeau D, Klein J. DroidRA: Tam-

ing reflection to support whole-program analysis of Android

apps. In Proc. the 25th International Symposium on Soft-

ware Testing and Analysis, July 2016, pp.318-329.

[54] Lam P, Bodden E, Lhoták O, Hendren L. The Soot frame-

work for Java program analysis: A retrospective. In Proc.

Cetus Users and Compiler Infrastructure Workshop, Octo-

ber 2011, Article No. 35.

[55] Bartel A, Klein J, Le Traon Y, Monperrus M. Dexpler: Con-

verting Android Dalvik bytecode to jimple for static ana-

lysis with soot. In Proc. the ACM SIGPLAN International

Workshop on State of the Art in Java Program Analysis,

June 2012, pp.27-38.

[56] Li L, Gao J, Hurier M, Kong P F, Bissyandé T F,

Bartel A, Klein J, Traon Y L. Androzoo++: Col-

lecting millions of Android apps and their metadata

for the research community. arXiv:1709.05281, 2017.

https://arxiv.org/pdf/1709.05281.pdf, September 2018.

[57] Sebastián M, Rivera R, Kotzias P, Caballero J. AVCLASS:

A tool for massive malware labeling. In Proc. the 19th In-

ternational Symposium on Research in Attacks, Intrusions,

and Defenses, September 2016, pp.230-253.

Li Li is a lecturer (a.k.a., assistant

professor) and a Ph.D. supervisor at

Monash University, Melbourne, Aus-

tralia. He received his Ph.D. degree in

computer science from the University

of Luxembourg, Luxembourg, in 2016.

His research interests are in the fields

of Android security and reliability,

static code analysis, machine learning and deep learning.

Dr. Li received an ACM Distinguished Paper Award at

ASE 2018, a FOSS Impact Paper Award at MSR 2018,

and a Best Paper Award at the ERA track of IEEE

SANER 2016. He is an active member of the software

engineering and security community serving as reviewers

or co-reviewers for many top-tier conferences and journals

such as ICSME, SANER, TOSEM, TSE, TIFS, TDSC,

and TOPS.

Tegawendé F. Bissyandé is a

research scientist with SnT (Interdisci-

plinary Centre for Security, Reliability

and Trust), University of Luxembourg,

Luxembourg. He received his Ph.D.

degree in computer science from the

University of Bordeaux, Bordeaux,

France, in 2013. His work is mainly

related to software engineering, specifically empirical

software engineering, reliability and debugging as well as

mobile app analysis. His studies were presented in major

conferences such as ICSE, ISSTA and ASE, and published

in top journals such as Empirical Software Engineering

and IEEE TIFS. He has received a Best Paper Award at

ASE 2012, and has served in several program committees

including ASE-Demo, ACM SAC, and ICPC.

Hao-Yu Wang is currently an

assistant professor at Beijing University

of Posts and Telecommunications,

Beijing. He received his Ph.D. degree

from Peking University, Beijing, in

2016. His research interest lies at the

intersection of mobile system, privacy

and security, and program analysis.

His studies were presented in major conferences such

as ESEC/FSE, ISSTA, WWW, UbiComp, IMC, and

published in top journals such as ACM Transactions on

Information Systems (TOIS).

Jacques Klein is a senior research

scientist at the University of Lux-

embourg, Luxembourg, and at the

Interdisciplinary Centre for Security,

Reliability and Trust (SnT). He re-

ceived a Ph.D. degree in computer

science from the University of Rennes,

Rennes, France, in 2006. His main

areas of expertise are threefold: 1) mobile security

(malware detection, prevention and dissection, static

analysis for security, vulnerability detection, etc.); 2)

software reliability (software testing, semi-automated and

fully-automated program repair, etc.); 3) data analytics

(multi-objective reasoning and optimization, model-driven

data analytics, time series pattern recognition, etc.). In

addition to academic achievements, Dr. Klein has also

standing experience and expertise on successfully running

industrial projects with several industrial partners in

various domains by applying data analytics, software

engineering, information retrieval, etc., to their research

problems.


