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Abstract Ensemble methods are among the state-of-the-art predictive modeling approaches. Applied to modern big

data, these methods often require a large number of sub-learners, where the complexity of each learner typically grows with

the size of the dataset. This phenomenon results in an increasing demand for storage space, which may be very costly.

This problem mostly manifests in a subscriber-based environment, where a user-specific ensemble needs to be stored on

a personal device with strict storage limitations (such as a cellular device). In this work we introduce a novel method

for lossless compression of tree-based ensemble methods, focusing on random forests. Our suggested method is based on

probabilistic modeling of the ensemble’s trees, followed by model clustering via Bregman divergence. This allows us to find

a minimal set of models that provides an accurate description of the trees, and at the same time is small enough to store and

maintain. Our compression scheme demonstrates high compression rates on a variety of modern datasets. Importantly, our

scheme enables predictions from the compressed format and a perfect reconstruction of the original ensemble. In addition,

we introduce a theoretically sound lossy compression scheme, which allows us to control the trade-off between the distortion

and the coding rate.
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1 Introduction

An ensemble method is a collection of sub-learners,

usually decision trees like CART[1] or C4.5/C5.0[2].

The ensemble takes advantage of the favorable prop-

erties of its sub-learners, while mitigating their low

accuracy by averaging or adaptively adding together

many trees. Widely used ensemble methods include

bagging[3], boosting[4], random forests[5] and others.

During the past decades ensemble methods have gained

a wide reputation of being among the most powerful

off-the-shelf predictive modeling tools[6].

In order to attain their favorable predictive perfor-

mance, ensemble methods usually require a large num-

ber of sub-learners, which tends to grow with the size

of the problem. An increasing dataset size also results

in deeper and more complex models. This most clearly

manifests in random forest, where the trees are typi-

cally grown to a maximal size and are not pruned[5].

Consequently, the size of the forest strongly depends

on the number of observations. For example, training a

random forest of 1 000 trees (using Matlab’s treeBagger

routine) on a modern big dataset such as Liberty Mu-

tual Group’s Property Inspection Prediction 1○ (which

consists of 50 999 observations and 32 features), results

in an average tree depth of 40 levels. Storing these trees

requires 733.7 MB with the best standard solution (that

is, using the compact(tree) MATLAB routine, followed

by a gzip 2○ compression).

In this work we present an extended version of [7],

which focuses on lossless compression method for large

tree-based ensembles. The fundamental observation

underlying our method is that the random forest’s trees

are independent and identically distributed random en-
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tities, given the training data. This allows us to infer

their probabilistic structure and construct an entropy

code with a corresponding dictionary. As later dis-

cussed, more complicated models better describe the

true probabilistic structure of the trees and therefore

result in better compression rates. However, such com-

plicated models also result in codes which require a

greater number of dictionaries (and henceforth increase

the overall compressed data description). Therefore,

the main challenge is finding the ideal trade-off between

an accurate description of the model and the total dic-

tionary size. Our compression approach is lossless in its

essence. This means we allow complete recovery of the

original trees without any loss of information. More-

over, with a careful implementation, our suggested ap-

proach allows prediction straight from the compressed

format.

In this extended version, we further introduce a

novel lossy compression scheme which demonstrates a

greater coding rate at the cost of a distortion in the

reconstruction. Our lossy compression is based on

subsampling and quantization of the ensemble trees,

followed by lossless compression. This allows us to

introduce a fundamental trade-off between distortion

and coding rate in i.i.d. (independent identically dis-

tributed) ensemble methods.

A MATLAB implementation of our suggested com-

pression scheme is publicly available at the first author’s

web-page 3○.

1.1 Related Work

The problem of storing large ensembles has gained

an increasing interest in recent years, due to these meth-

ods’ popularity and the emergence of extremely large

datasets.

One line of work focuses on “pruning” techniques for

tree ensembles. Here, the idea is to reduce the size of

the ensemble by removing redundant components (fea-

tures/trees, etc.), while maintaining the predictive per-

formance. In [8], the author proposed to extend the

classical cost-complexity pruning of individual trees to

ensembles. On the other hand, [9, 10] propose to prune

and improve the model’s interpretability by selecting

optimal rule subsets from tree-ensembles. Another way

to reduce the complexity and/or improve the accuracy

of the tree-ensembles is to merely select an optimal sub-

set of trees from a very large ensemble generated in a

random fashion (see, e.g., [11]). An additional pruning-

based approach[12] is to reformulate the tree-ensemble

as a linear model in terms of node indicator functions,

while adding an L1-norm regularization term (LASSO)

to encourage sparsity in the features. The idea behind

this approach is to select a minimal subset of indicator

functions while maintaining predictive accuracy. Notice

that all of these “compression” schemes are lossy and

result in a pruned ensemble which is significantly diffe-

rent from the original ensemble. Moreover, there are

no guarantees on the combination of compression rate

and the difference between the pruned and the origi-

nal ensemble. In other words, some ensemble may be

successfully pruned while others may not.

In a different line of work, Bucelia et al.[13] suggested

to “compress” an ensemble model by training an artifi-

cial neural network that mimics the functionality of the

ensemble. This results in a significantly faster and more

compact approximation of the original model. Despite

these favorable properties, approximating an ensemble

by a neural network is again both lossy and irreversible.

In other words, the neural network predictions are not

identical to the predictions of the original ensemble and

in some cases may deviate quite notably in terms of root

mean square error. Moreover, given the approximated

neural network, it is not possible to recover the origi-

nal ensemble. This means that once an approximation

network replaces the ensemble, one cannot make fur-

ther use or modifications to the ensemble (for example,

adding more trees to improve performance). In addi-

tion, notice that for a modern big data, the trained ran-

dom forest would usually consist of complex and deep

(un-pruned) decision trees. It is well known that train-

ing a neural network to accurately approximate such a

complicated function is not a trivial task. In fact, it

typically requires an exponentially increasing number

of neurons to achieve a prescribed accuracy[14].

There also exists a large body of work on the com-

pression of different data structures in the source cod-

ing community. This includes the compression of a

single or multiple tree structures[15,16]. However, this

line of work focuses on more general settings — usu-

ally arbitrary or randomly constructed trees. These

trees hold different probabilistic characteristics than

our data-driven decision trees, which are all built on

a single dataset and with only the randomness infused

by the random forest algorithm differentiating them.

To the best of our knowledge, our contribution pro-

vides the first lossless compression approach for large

tree ensembles.

3○https://sites.google.com/site/amichaipainsky/software, Jan. 2019.
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2 Basics

2.1 Random Forests

A random forest is an ensemble learning method,

usually used for classification or regression problems[5].

It operates by constructing multiple decision trees at

the training phase, followed by aggregating their re-

sults through a majority vote (classification) or averag-

ing (regression). This overcomes the well-known draw-

back of a single decision tree, which tends to have low

accuracy and high variance due to its greedy model

building approach. In a random forest, each tree is

constructed according to a randomly sampled subset

of observations (usually with replacement), and a ran-

domly sampled set of variables. This allows a diverse

set of learners which is then averaged, thus reduces the

variance associated with a single tree, and decreases the

generalization error.

Random forest’s trees are usually constructed by

widely-used tree fitting methods like CART[1] or

C4.5/C5.0 4○[2]. These methods are greedy recursive

partitioning algorithms. In each iteration, a set of

observations is split into disjoint subsets, such that a

loss criterion[17,18] is minimized, in a greedy, non-regret

manner (for example, [1, 19, 20]). A regression or clas-

sification tree is a tree data structure in which each in-

ternal (non-leaf) node is labeled with a variable name

and a corresponding split value, while a leaf is labeled

with a fitted value (a class for classification problems,

or a numerical value for regression problems).

2.2 Entropy Coding

A compressed representation of a dataset involves

two components — the compressed data itself and an

overhead redundancy. Encoding a sequence of a length

n requires at least n times its empirical entropy. This

is attained through entropy coding according to the se-

quence’s empirical distribution. The redundancy, on

the other hand, may be quantified in several ways.

One simple way is through a dictionary. Assume we

encounter n0 6 n unique symbols. Then a dictio-

nary is simply a one-to-one mapping of each unique

symbol and its corresponding codeword. An alterna-

tive way to quantify the redundancy is through a refe-

rence distribution. Assume we encode the source se-

quence according to a fixed (and predefined) distribu-

tion Q while the empirical distribution is P . Then, the

Kullback Leibler divergence of Q from P , denoted as

DKL(P ||Q) =
∑

Pi log
Pi

Qi
, is the amount of informa-

tion lost when Q is used to approximate P . In other

words, nDkl(P ||Q) is the expected number of extra bits

required to encode the n samples from P using a code

optimized for Q rather than the code optimized for P .

Hence, the trade-off is between having efficient codes

with large overhead (when using a detailed dictionary)

and having inefficient codes with no overhead (when

using a predefined reference distribution).

There exist several popular entropy coding schemes.

The most widely used ones are Huffman and arithmetic

coding[21]. The Huffman algorithm is an iterative con-

struction of a variable-length code table for encoding

the source symbols. The algorithm derives this ta-

ble from the probability of occurrence of each source

symbol. It can be shown that the average codeword

length, achieved by the Huffman algorithm, R, satisfies

Ĥ (X) 6 R 6 Ĥ (X) + 1. In arithmetic coding, instead

of using a sequence of bits to represent each symbol,

we represent it by a subinterval of the unit interval[21].

This means that the code for a sequence of samples is an

interval whose length decreases as we add more samples

to the sequence. Assuming that the empirical distribu-

tion of the sequence is known, the arithmetic coding

procedure achieves an average codeword length which

is within 2 bits of the empirical entropy. Although

this is not necessarily optimal for any fixed sequence

length (as the Huffman code), this procedure is incre-

mental and can be used for any sequence-length. One of

the major challenges of entropy coding occurs when the

source is over a large alphabet size. Then, the coding

redundancy becomes quite significant[22] and alterna-

tive compression methods should be considered[23−27].

In addition to the entropy coders discussed above,

it is important to mention the Lempel-Ziv (LZ)-based

family of coders[21]. LZ-based algorithms replace re-

peated occurrences of source sequences with references

to a single copy of that sequence existing earlier in

the uncompressed stream. The main advantage of this

scheme is that it requires neither to transmit a dictio-

nary, nor a predefined reference distribution. Yet, the

LZ-based algorithms’ compression rate asymptotically

approaches the empirical entropy of the sequence.

3 Compression Methodology

A tree-based ensemble is a collection of decision

trees, usually like CART or C4.5/C.5. Tree building

algorithms can handle both numerical and categorical

4○Data mining tools See5 and C5.0. https://www.rulequest.com/see5-info.html, Dec. 2018.
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features and build models for regression, two-class clas-

sification, and multi-class classification. The splitting

decisions in these algorithms are based on optimizing

a splitting criterion over all possible splits on all vari-

ables. This means that each node in the constructed

tree is defined by both a splitting variable and a cor-

responding split value. The fits of the tree are mini-

mizers of the objective function for the resulting sets

of leaf observations. For example, the fit of the obser-

vations in a certain leaf of a regression tree is simply

the average value of these observations. A single tree

structure may hold many additional characteristics and

parameters (such as various summary statistics at each

node). Since we are interested in compression for pre-

diction purposes, we limit our attention to the following

relevant attributes:

1) the structure of the tree,

2) the splits of the nodes (variable name and a cor-

responding selected split value),

3) the values of the leaves (fits),

where the structure of the tree is simply a data-

structure which distinguishes between nodes and leaves

(for example, Fig.1). In this work we focus on the com-

pression of random forests, in which the trees are con-

structed independently and are identically distributed,

given the training data. In order to apply entropy-based

compression methods (such as Huffman or arithmetic

coding), we first need to define a probabilistic setup for

the entity we are to compress. We have that

P (tree) = P (tree structure)×

P (nodes|tree structure)×

P (leaves|nodes, tree structure).

This decomposition allows us to compress each of the

components separately, while benefiting from a reduced

algorithmic complexity.

(b)(a)

Fig.1. Zaks’ tree[28] binary representation. (a) A decision tree.
(b) The numbering of the nodes and the leaves related to Zaks’
sequence.

3.1 Tree Structure Compression

The problem of compressing a generalized tree-

based data structure has received a considerable

amount attention throughout the years[15]. Here we

introduce an encoding method presented by Zaks[28].

However, there exist many other compact representa-

tion formats for the structure of a tree, as later de-

scribed.

Consider the tree in Fig.1(a). Label all the nodes

by 1 and all the leaves (missing subtrees) by 0 as in

Fig.1(b). We obtain the code sequence, called Zaks’ se-

quence, by reading the labels in preorder (first visiting

the root, then recursively traversing the left subtree

in preorder, and then the right subtree in preorder).

Hence, the Zaks’ sequence related to the tree in Fig.1

is 111100100100111001000.

We have the following characterization for feasible

Zaks’ sequences. A bit string is a Zaks’ sequence if and

only if the following three conditions hold:

1) the string begins with 1;

2) the number of 0’s is one greater than the number

of 1’s;

3) no proper prefix of the string has the property 2.

Hence, the length of a Zaks’ sequence is 2n + 1 for a

tree with n nodes and it is uniquely decodable[28].

There exist several other tree structure encoding

schemes[15], such as children pattern sequence (of length

2n) and balanced parentheses (again, of length 2n) or

others.

As shown in the experiments in Section 6, the struc-

ture of the tree holds a relatively small size, com-

pared with the other compressed components. There-

fore, we choose to represent the structure of each tree

with a Zaks sequence, concatenate all sequences, and

apply a simple LZ-based encoder[21] to the concate-

nated sequence. Notice we may have treated each

Zaks’ sequence as an independent realization from

P (tree structure) and encode them accordingly. How-

ever, this approach would treat each sequence as a sin-

gle symbol, drawn from a very large alphabet (of all

possible sequences), and ignore the internal structure of

the sequences. Therefore, inspired by [16], we compress

the concatenated sequence using an LZ-based encoder,

and take advantage of the structural nature of Zaks’

sequences.

3.2 Nodes Compression

In this subsection we focus on the compression of

the trees’ nodes (specifically, the split selected at each
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node). As mentioned above, each node is defined by

a name of a variable and a corresponding split value.

Notice some variables may be numerical while others

categorical, and the range of values of each variable

may also be significantly different than the other vari-

ables. Therefore, we derive a probabilistic model for

each of the variables separately. In addition, we notice

that a node only depends on its parents, as a result of

the recursive construction of the tree. This means that

P (nodes|tree structure)

=
∏

u∈{nodes}

P (u’s variable name|u’s parents)× (1)

P (u’s split value|u’s parents, u’s variable name).

At this point it becomes quite evident that if

we are to define a separate probabilistic model for

each term in (1), (for example, P (u2’s variable name

| parent name, parent split value)), we would end up

with a number of models which are exponential in the

depth of the tree. This phenomenon is further demon-

strated in Subsection 3.2.2. Moreover, encoding each

node’s information according to its specific model would

result in an exponentially increasing number of dictio-

naries, as discussed in Subsection 2.2. This means we

need to “cluster” models together, in order to reduce

the dictionary size overhead, while maintaining a good

compression rate.

3.2.1 Model Clustering

Let s1, . . . , sM be M sequences of independent

draws, with corresponding empirical distributions

P1, . . . , PM , all on the same alphabet. We denote the

lengths of the sequences as n1, . . . , nM , respectively.

We would like to encode all of these sequences according

to a single codebook (and a single corresponding dictio-

nary). Let Q be the probability distribution according

to which the codebook is constructed. Then, the mini-

mal overhead redundancy, where the minimization is

with respect to the probability distribution Q, is:

min
Q

M
∑

i=1

niDkl (Pi||Q) + α||Q||0, (2)

where Dkl is the Kullback Leibler divergence (previ-

ously defined in Subsection 2.2), ||Q||0 is the L0 norm

of Q (the number of non-zero elements in Q), and α is

the cost of describing a single line in the dictionary (a

symbol and its codeword). The L0 term makes this

optimization problem quite involved. Therefore, we

may relax it by replacing the L0 term with L1 (Lasso-

like) or L2 (Ridge-like) penalties, to achieve a con-

vex optimization problem. Alternatively, assume that

the alphabet size (from which each of the sequences

is drawn) is finite and equals B. Then ||Q||0 6 B

and the minimal value of (2) is bounded from above

by
∑M

i=1 niDkl (Pi||Q
∗) + αB, where Q∗ is the mini-

mizer of
∑M

i=1 nkDkl (Pi||Q). Further, let us assume

that B is fixed, while the lengths of the sequences

(n1, . . . , nM ) increase. In this case, the first term

becomes dominant, compared with the penalty term,

αB ≪
∑M

i=1 niDkl (Pi||Q
∗). This means that for a fixed

B, and as the lengths of the sequences, (n1, . . . , nM )

increase, we may approximate the penalty term as a

constant and replace (2) with

min
Q

M
∑

i=1

nkDkl (Pi||Q) + αB.

Let us now extend this problem and assume that the M

sequences are to be clustered according to K different

codebooks. For a fixed K, the corresponding optimiza-

tion problem is

min
C,Q

K
∑

k=1

M
∑

i=1

1{Pi∈Ck}niDkl (Pi||Qk) + α||Qk||0, (3)

where C = {Ci}
K
i=1 and Q = {Qi}

K
i=1 are the clusters

and corresponding codebook probability distributions

respectively, and 1{·} is the indicator function. As be-

fore, the penalty term may be bounded from above by

αB, which leads to

min
C,Q

K
∑

k=1

M
∑

i=1

1{Pi∈Ck}niDkl (Pi||Qk) + αBK. (4)

This means that for sufficiently large n’s and a fixed

B, we may bound (3) from above, to achieve a simple

clustering problem (4). Notice this clustering problem

is very well studied[29] with many algorithms (mostly

K-means like) and applications.

3.2.2 Clustering of Node Models

As mentioned above, we would like to cluster models

together, to find the ideal trade-off between a minimal

number of dictionaries and a minimal loss of bits, which

results from encoding the models according to the clus-

ter’s codebook. As demonstrated in (1), we distinguish

between modeling the variables’ names and modeling

the split values, given the variable name.

Let us first focus on the modeling of variable names.

We would like to assign a designated probability distri-

bution for a variable name, for each node in the tree,
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and then cluster the distributions as in (4). We begin

by defining an empirical distribution which describes

the variable name in the root. Then, we may define an

empirical distribution of the root’s children given the

root, and so forth. Obviously, the number of distribu-

tions quickly becomes intractable as we go deeper in the

tree, even before we apply the clustering. Therefore, we

relax the exhaustive construction of all possible models

and focus on a simpler form of dependencies in the tree,

in which we assume a node only depends on its depth

and the variable name of its father. Therefore, assum-

ing a forest with a maximal tree depth T , the number

of possible models for the variable name is d×T , where

d is the number of variables in the problem.

Once we have established the list of possible models

for variable names, we are ready to cluster the models

according to (4), for different values of K, and choose

the one which minimizes the objective. We then com-

press the data which corresponds to each model with

a Huffman code, according to the cluster’s empirical

probability distribution.

Notice that the cost of describing a single dictio-

nary line, defined as α in (4), depends on the nature

of the data we are to compress and the encoder we

use. Here, we may achieve a reduced dictionary size

by holding a single dictionary which maps the actual

name of the variable to its numeric representation and

use the numeric representation in all the dictionaries

we construct (e.g., instead of using the variable names

“height”, “weight” and “eye color”, we use “00”, “01”,

“10”). Since we do not know the codeword used for

each symbol in the dictionaries, we may bound it by

the maximal length of a codeword, which is d bits (the

worst-case Huffman codeword for an alphabet size d).

Therefore, we have that α = log2(d)+d for the variable

names.

In the same manner we would like to model the split

value, given the name of the variable. We use the same

modeling relaxation and construct a model according

to the same dependencies described above. This leads

to a total of d2 × T candidate models for clustering,

since we need a different model of split values for each

of the models that describe the variable names. Assum-

ing that a variable’s split values take over C different

values, then the maximal codeword length is C bits and

α = log2(C) + C. Obviously, C may be quite large for

numerical variables. However, in most decision trees

(such as CART or C4.5/C5.0), a numerical split is spe-

cified by a single observation’s value. This means that

the numerical split value may be represented by an in-

dex of an observation, which takes log2(n) bits. This

naive representation may be further improved by apply-

ing entropy coding to these split values, as previously

demonstrated. Therefore, we have that for numerical

split values, α = log2(n) + C.

At this point it is important to emphasize an addi-

tional difference between the split values of numerical

and categorical variables. The split values of a numeri-

cal variable are numeric values. Therefore, the distribu-

tion of these values is continuous, and there is a natural

order between every two different values. On the other

hand, splitting a categorical variable corresponds to a

partition of its categories into two disjoint sets. This

means that there is no natural ordering and the distri-

bution of the values is discrete (taking over a finite set).

In other words, designing an entropy encoder (which

is designated for a finite set of unordered symbols) is

much more natural for categorical split values than for

numerical ones. However, notice that for large datasets,

variables’ split values tend to take over a limited set of

values as we are closer to the root, for both numerical

and categorical variables. This means we can regard

the numerical values as categories in this sense. As we

go deeper in the tree, the split values become more uni-

form (and sparse) for both categorical and numerical

variables; therefore most coding techniques are ineffec-

tive. These phenomena are discussed in more details

detail in Section 6.

3.3 Fits Compression

We now turn to consider the compression of the

tree’s fits. As in the nodes’ compression, we may model

the (conditional) probability of fit values in each leaf of

the tree. However, this requires an exponentially in-

creasing number of models, as demonstrated in Subsec-

tion 3.2.2. Therefore, we define a simplified model in

which the distribution of the fits in a leaf depends on

its depth and its father’s variable name. This leads to

a set of probability distributions which we cluster ac-

cording to (4), in the same manner mentioned above.

As before, it is important to distinguish between com-

pressing numerical and categorical values. In a classi-

fication problem, the fits are categorical and take over

a finite set of values. This makes the use of entropy

coders very suitable. However, regression problems re-

sult in numerical fits which may take over a continuous

(and ordered) set of values. This means that we may

either ignore this property and treat the continuous fits

as categorical ones, or quantize the fits (through sim-

ple rounding, or in a more complicated manner using a
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frequency-based quantization technique, such as Lloyd-

max algorithm[30]).

Notice that by quantizing the fits we introduce an

error from the original tree. Therefore we can no longer

regard our method as lossless. However, such quanti-

zation results in a very regularized distortion, in the

sense that we can directly set the distortion level to

achieve a required compression rate (as opposed to most

other lossy compression techniques mentioned in Sub-

section 1.1). A detailed discussion regarding fits’ quan-

tization is presented in Section 7.

Notice that while it is customary to consider the

leafs as the position of the fits in a tree, in many popular

decision tree implementations (such as Matlab’s fitrtree,

fitctree, treebagger), each node of the tree holds a fit,

in case of missing values during prediction. This means

that the compression rate of the fits takes a significant

part in the compressed forest.

4 Our Suggested Algorithm

As described in Section 3, our suggested compres-

sion technique decomposes a tree into three compo-

nents, which are the structure of the tree, the nodes

of the tree, and the fits of the tree. Since the trees

are independent and identically distributed (as a result

of the random forest construction), we may compress

the trees as memoryless draws from a complex random

source, as described in Section 3. Our suggested al-

gorithm works as follows. We first extract the Zaks

sequences which describe the structure of the trees. As

mentioned in Subsection 3.1, we compress each of these

sequences with an LZ-based encoder. We then extract

the empirical probability distributions for the nodes’

names and split values. Specifically, we go over all the

nodes in the trees and for each node we record its varia-

ble name and split value, its depth in the tree, and its

father’s variable name. We then aggregate this infor-

mation into a set of conditional empirical probability

distributions:

Pvn = P (variable names|node depth,

father’s variable name),

Pcv = P (split value|node depth, variable name,

father’s variable name).

Once we have gathered these sets of conditional distri-

butions, we apply our clustering technique (4) on Pvn

and Pcv (separately), to find the ideal trade-off between

a minimal cost of dictionaries’ description and minimal

averaged redundancy, resulting in using unified dictio-

naries. We repeat the clustering process for different

values of K to find the minimizer of (4) over all possi-

ble K’s. Once we have established the chosen clustering

and the mean of each cluster (which is a probability dis-

tribution Qk), we construct a Huffman code according

to Qk and compress all the clusters’ sequences accord-

ingly. Lastly, we repeat the same construction of con-

ditional probability distributions to the fits in the tree.

We again apply our clustering technique and compress

the fits accordingly. Notice that for two-class classifica-

tion problems we would usually prefer to use an arith-

metic encoder, which tends to out-perform the Huffman

encoder for binary alphabets with skewed probability

distributions. Algorithm 1 summarizes our suggested

method.

5 Predictions from the Compressed Forest

As mentioned above, our suggested approach allows

making predictions straight from the compressed repre-

sentation of the forest. This is possible due to the prefix

property of the Huffman code. Specifically, given a se-

quence of symbols that are coded by a Huffman code,

we may decode a symbol in the sequence without de-

coding the entire sequence. In this way, we may access

(and decode) only the required information, to make a

prediction for a given future observation. Let us demon-

strate our prediction scheme. First, we extract the

Zaks’ sequence of the first tree. This requires storing

2n+1 bits in the random access memory (RAM) of the

system for a tree of n nodes (see Subsection 3.1). Then,

for every node that we encounter, we access its com-

pressed variable name and split value in the compressed

data, and decode them according to their corresponding

Huffman code, as described in Subsection 3.2.2. Notice

that this operation only requires the location of both

the compressed information and the corresponding dic-

tionaries in our stored data, which is directly due to

the prefix property. Finally, we decode the fit of the

leaf, using its corresponding Huffman dictionary, in the

same manner as above (Subsection 3.3). We repeat this

process for each tree in the forest. Notice that the de-

scribed scheme may also be used to decode the entire

forest, and not just to predict from it.

It is important to emphasize that Huffman code

guarantees lossless compression, even if the data is not

encoded according to its true underlaying probability

distribution[31]. This property allows us to reduce the

number of Huffman dictionaries that are used in our
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compression scheme, while still allowing a perfect re-

construction and identical predictions to the original

random forest.

Algorithm 1 . Lossless Compression of Random Forests

Require: a set of A random forest trees, {t1, . . . , tA}, v = vari-
ables names, d = number of variables, C(vi) = set of split
values for each vi ∈ v, and T = maximal depth among all the
trees {t1, . . . , tA}

1: Extract a set of A Zaks’ sequences, {z1, . . . , zA}, from the
given trees {t1, . . . , tA}

2: Concatenate {z1, . . . , zA} to a single sequence, zall
3: Compress zall using an LZ encoder to achieve zcomp

4: Set sequences of variable names vars(dp, fa) = {} and
corresponding counters Pvars(vn, dp, fa) = 0 for all dp ∈
{1, . . . , T} and vn, fa ∈ v

5: Set sequences of split values splits(vn, dp, fa) = {} and cor-
responding counters Pspt(sp, vn, dp, fa) = 0

6: Set sequences of fits fits(dp, fa) = {} and corresponding
counters Pfits(vn, dp, fa) = 0

7: for all ti ∈ {t1, . . . , tA} do

8: for all nodej ∈ ti do

9: Set dp = the depth of nodej ’s in ti
10: Set fa = the variable name of nodej ’s father
11: Set vn = the variable name of nodej
12: Set sp, ft = the split and fit values of nodej respectively
13: Set vars(dp, fa) = vars(dp, fa)||vn
14: Set Pvars(vn, dp, fa) = Pvars(vn, dp, fa) + 1
15: Set splits(vn, dp, fa) = splits(vn, dp, fa)||sp
16: Set Pspt(sp, vn, dp, fa) = Pspt(sp, vn, dp, fa) + 1
17: Set fits(dp, fa) = fits(dp, fa)||ft
18: Set Pfits(ft, dp, fa) = Pfits(ft, dp, fa) + 1
19: end for

20: end for

21: Normalize all P ’s by their sums
22: for all k ∈ {1, . . . ,K} do

23: Apply the clustering algorithm (4) with k clusters on the
set Pvars

24: Set obj = the objective attained in line 23
25: if obj < min obj then

26: Set min obj = obj, k opt = k

27: Set Ccl = the set of clusters attained in line 23
28: Set Pcl = the cluster centers attained in line 23
29: end if

30: end for

31: set varscomp = {}
32: for all k ∈ {1, . . . , k opt} do

33: Construct a Huffman encoder HF vars(k) to Pcl(k)
34: for all Pvars ∈ Ccl(k) do

35: Encode the corresponding vars sequence according to
HF vars(k), to attain vars seqcomp

36: Set varscomp = {varscomp, vars seqcomp}
37: end for

38: end for

39: Repeat steps 22–38 for {Psplits}
d
j=1 to attain the sets of com-

pressed sequences {splitscomp}dj=1 and corresponding sets of

Huffman encoders {HF splits}
d
j=1

40: Repeat steps 22–38 for Pfits with an arithmetic encoder to
attain the set of compressed fits fitscomp and a correspond-
ing set of Pfits cl for decompression purpose

41: return zcomp, varscomp, HF vars, {splitscomp}dj=1,

{HF splits}
d
j=1, fitscomp, Pfits cl

6 Experiments

We now demonstrate our suggested compression

scheme on a variety of data-driven random forests,

generated from publicly available real-world datasets

(UCI repository 5○ and Kaggle 6○). The random forests

are trained using Matlab’s treeBagger routine with 1 000

trees, while the rest of the parameters are set to their

default values. We compare our suggested algorithm

with two different lossless compression schemes. The

first, denoted as standard compression, begins with ap-

plying the compact(tree) routine on the trained forest.

This creates a compact version of the random forest by

eliminating redundant information and duplications of

information. Then, the compact version is compressed

using gzip[32]. These steps attain an immediate lossless

compression by currently available off-the-shelf tools.

However, notice that the compact(tree) routine is not

designed solely for prediction purposes and maintains

several forest attributes which are unnecessary for our

prediction-oriented scheme. Therefore, we further sug-

gest a light compression of a random forest, in which

we only keep the information necessary for prediction,

as listed in the beginning of Section 3, followed by gzip

compression. This gives us a more relevant reference

for our suggested scheme. It is important to notice

that we do make some elementary adjustments to the

trees prior to the gzip compression, such as replacing

the alphabetical strings along the trees with short nu-

merical values. This further enhances the compression

rate of the light compression scheme.

It is important to mention that in all of our experi-

ments we use a 64-bit representation for every numeri-

cal fit value we represent. This may be considered as

an overly conservative approach for lossless compres-

sion. However, for the purpose of this work, we prefer

to follow the most orthodox interpretation of lossless-

ness, and show that we still achieve high compression

rates.

We begin the presentation of our results with a case

study, in which we compress a random forest trained

over Liberty Mutual Group’s Property Inspection Pre-

diction dataset 7○. In this dataset, the goal is to pre-

dict a count of hazards or pre-existing damages using

the property’s information. This enables Liberty Mu-

tual to more accurately identify high-risk homes that

require additional examination to confirm their insur-

5○http://archive.ics.uci.edu/ml, Jan. 2019.
6○http://www.kaggle.com/competitions, Jan. 2019.
7○https://www.kaggle.com/c/liberty-mutual-group-property-inspection-prediction, Jan. 2019.
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ability. Liberty dataset consists of 50 999 observations

and 32 confidential variables, of which 16 are numeri-

cal and 16 are categorical. We train a random for-

est according to this dataset, as described above. We

then apply the standard compression, to attain a com-

pressed size of 733.7 MB. We further apply the light

compression to the same random forest. This results in

215.6 MB, of which 122.1 MB are for the fits. Applying

our suggested algorithm achieves a total compression

size of 142.7 MB, where 118 MB describe the fits. We

immediately notice that in both of these cases the fits

hold a very dominant portion of the forest. This is a

result of the numerical nature of the fits, as described in

Subsection 3.3. Therefore, let us revert Liberty’s regres-

sion problem into classification by comparing each ob-

servation value with the mean of all observation. This

means we would now like to classify those homes for

which the number of hazards or pre-existing damages is

greater than the mean. We train a random forest for the

classification problem and again apply the compression

schemes described above. The standard compression

results in a total of 723.1 MB, almost as before. How-

ever, the light compression now takes only 96.5 MB, of

which 2.54 MB are for the trees structure, 10.16 MB for

the variable names, 2.54 MB for the fits and 81.3 MB

describe the split values. Notice that the fits now take

the same portion as the tree structure, since each node

holds a single binary fit.

Applying our suggested compression scheme, we get

a total of 12.43 MB which breaks down to 1.81 MB for

the structure, 4.02 MB for the variables names, 4.5 MB

for the split values, 1.58 MB for the fits, and the re-

minder for the dictionaries. These results are summa-

rized in Table 1.

Table 1. Compression Results (in MB) of 1 000 Trees Random

Forests, for Liberty Mutual Classification Problem

Method Tree Structure Variable Splits Fits Dictionary Total

Names

Light 2.54 10.16 81.3 2.54 – 96.50

Ours 1.81 4.02 4.5 1.58 0.52 12.43

We notice that by reverting the problem into clas-

sification, we achieve a reduction of 124.2 MB, due to

the finite (binary) alphabet of the fits. In total, our

suggested scheme achieves a compression rate of 1 : 40

compared with the standard compression, and a rate of

1 : 5.2 compared with the light compression.

We further analyze our results and notice that for

most variables, the clustering results in three separate

models which only depend on the depth of the nodes.

This means we usually have a single model for low

depth nodes, a single model for middle depth nodes,

and a single model for deeper nodes. Moreover, we no-

tice that the low depth model (closer to the root) is

usually very sparse while the deeper model is almost

uniformly distributed. This is not surprising since for a

large number of observations, the splits which are closer

to the root are expected to have much resemblance over

different trees, while deeper splits are much more “ran-

dom”, due to the greedy construction of the trees. This

phenomenon is observed for the variable names models

and the split value models. Notice that the number of

models also strongly depends on the cost of describing

each line in the dictionary (the α term in (4)). Since

we choose a 64-bit representation, the cost of a dictio-

nary is relatively large and results in a small number

of models. Reducing the representation accuracy to 32

bits shows an increase in the number of clusters to ap-

proximately 7.

In addition to Liberty’s dataset, we examine our

suggested scheme on a variety of classification (marked

with ∗) and regression (marked with +) problems of

different sizes and complexities. Notice that several

classification datasets are generated from regression

datasets, as in the Liberty example discussed above.

The results are summarized in Table 2. All of the

datasets are obtained from UCI repository and Kaggle.

As we can see, our suggested scheme achieves an

average compression rate of approximately 1 : 70 com-

pared with the standard compression, and approxi-

mately 1 : 6 compared with the light compression, for

the classification problems. However, the average com-

pression rates for the regression problem are only 1 : 4.1

and 1 : 1.45 compared with the two compression meth-

ods respectively, as a result of the costly lossless com-

pression of the numerical fits, as discussed above. In

most of the datasets, the model clustering results in

2–3 different models, in the same manner as in the Li-

berty dataset. This further justifies the relaxation of

our trees’ model, as described in Section 4, so that in

practice there is no need for exponentially growing num-

ber of models prior to the clustering phase.

7 Lossy Compression

Although the focus of our work is lossless compres-

sion of random forests, there are several immediate ad-

justments which allow a lossy compression with favora-

ble theoretical guarantees. In this section we introduce
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Table 2. Compression Results of 1 000 Trees Random Forests, Trained over Different Datasets

Dataset (Method) Observations, Variables Standard (MB) Light (MB) Our Scheme (MB)

Iris∗ (3 class) 150, 4 3.730 0.082 0.013
Wages∗ 534, 11 15.780 1.400 0.160
Airfoil Self Noise+ 1 503, 5 1.364 0.490 0.340
Airfoil Self Noise∗ 1 503, 5 1.260 0.108 0.012
Bike Sharing+ 10 886, 11 7.690 3.390 2.380
Naval Plants+ 11 934, 16 8.600 3.050 2.150
Naval Plants∗ 11 934, 16 8.500 2.210 0.810
Shuttle∗ 14 500, 9 2.162 0.280 0.049
Forests∗ 15 120, 55 9.136 2.910 0.340
Adults∗ 48 842, 14 159.100 41.600 7.300
Liberty+ 50 999, 32 733.700 215.600 142.700
Liberty∗ 50 999, 32 723.100 96.500 12.430
Otto∗ 61 878, 94 209.100 48.300 6.100

two basic lossy modifications, which are tree sampling

and fits quantization.

Let A be a set of independent and identically dis-

tributed trees, trained by the random forest routine,

over a dataset of n observations. Let A0 be a randomly

sampled subset of A. We would like quantify the ac-

curacy loss and the compression gain, caused by the

sampling operation.

Notice that while it is customary to regard the ob-

servations as random entities (for generalization pur-

poses), in the context of data compression we regard

them as fixed. Therefore, the randomness of the en-

semble is solely due to the forest construction routine.

For each observation i, we denote the mean random

forest prediction for this observation on this specific

dataset by ŷ∗i . Denote the prediction from a random

tree t ∈ A in the random forest sequence by ŷt,i, and

the “error” it incurs by et(i) = ŷt,i − ŷ∗i . Let µi and

σ2
i be the mean and the variance of this error, respec-

tively. Let us now randomly sample a subset A0 ⊂ A of

the ensemble. Then, the accuracy loss may be bounded

from above by

D(A,A0, σ
2) = var

(

∑

t∈A0
et

|A0|
−

∑

t∈A et

|A|

)

,

where et is the mean of et(i) for all t ∈ A. Notice

that the random variables et are i.i.d. with a mean

µ = n−1
∑n

i=1 µi and a variance σ2
i . We assume for

simplicity that σ2
i = σ2 is fixed (or that σ2

i is bounded

from above by σ2). Then var(et) is between
σ2

n
and σ2,

depending on the dependence structure between pre-

dictions of the same tree. However, since var(et) < σ2,

we have that σ2 > σ2
i , ∀i ∈ {1 . . . n}. Simple derivation

shows that

D(A,A0, σ
2) = var

(

(|A||A0|)
∑

k∈A0
ek

|A||A0|
−

∑

k∈A A0

|A|

)

= σ2|A0|

(

1

|A0|
+

1

|A|

)2

+ σ2 |A| − |A0|

|A|2
.

Assuming that |A0| ≪ |A| we have that

D(A,A0, σ
2) ≈

σ2

|A0|
+

σ2

|A|
.

It is important to mention that even though our deriva-

tion considers the ensemble’s trees, t ∈ A, as a random

entity, in practice they are regarded as fixed data struc-

tures to be compressed. This means that the σ2

|A| term is

the “ground truth” of our random forest prediction ac-

curacy and the accuracy loss, caused by sampling |A0|

trees (followed by lossless compressing), is simply σ2

|A0|
.

Assuming that subsampling the ensamble does not ef-

fect the compression rate of individual trees, the com-

pression gain we achieve is fairly straight forward and

shown to be linear in the sampling ratio, |A0|
|A| , on the

average.

On top of subsampling the trees, an additional

lossy compression adjustment may be attained through

quantizing the (numerical) fits, as discussed in Sub-

section 3.3. Assume the fits take values over a finite

range of size 2c. Let us quantize the values of the fits

with a naive b-bit quantization. This means we define

2b quantization points and uniformly place them over

the range. Assuming that the distortion (quantization

error) is uniformly distributed (for example, through

dithered quantization[33]) we attain an average accu-

racy loss of 2r

2b = 2−(b−r). Further, assuming that each

numerical value is represented by 64 bits, the compres-

sion gain we achieve is b
64 , on the average.

Therefore, the average overall accuracy loss (that is,

the variance of the difference before and after subsam-

pling |A0| ≪ |A| trees and quantizing the numerical

fits) is bounded from above by

σ2

|A0|
+

(

2−(b−r)
)2

12|A0|
,

while the average compression gain is a factor of b
64

for the compressed fits and an additional factor of
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|A0|
|A| for the entire compressed ensemble. Notice that

while there exist more adequate frequency based quan-

tization techniques (for example, Lloyd-max[30]), the

naive quantization described above offers simple and

favorable theoretical properties. However, in practice,

one may achieve better performance by applying those

methods.

Let us now illustrate our suggested lossy compres-

sion approach. Fig.2 demonstrates the fits quantization

(Fig.2(a)) and the tree subsampling (Fig.2(b)), applied

to the (regression) Air Self Noise dataset (see Table

2). Here, we split the data-set to 80% training set and

20% testset. We train a random forest (using Matlab’s

treebagger routine) and evaluate the mean square er-

ror (MSE) on the test set. Then, we apply the two

lossy compression techniques discussed above. Fig.2(a)

demonstrates the effect of the fits quantization. The

x-axis is the number of quantization bits used to de-

scribe the fits, the dashed curve is the corresponding

MSE (on the test set), and the straight (full) line is

the compression size. As we can see, we may represent

the fits by only 7 bits, with no significant degradation

in performance of the random forest. This results in a

compression size of approximately 47 KB. Notice that

the over-conservative 64-bit representation used in Ta-

ble 2 allows a compression size of 340 KB. Now, let us

subsample the trees in the forest, while maintaining the

7-bit representation for the fits. Fig.2(b) demonstrates

the MSE (dashed curve) and the resulting compression

size (straight full line) for different numbers of subsam-

pled trees (x-axis). Here we observe that by sampling

only 250 trees of the forest, we may reduce the com-

pression size to only 11 KB, while almost maintaining

the same performance. Therefore, we conclude that

by both quantizing the fits and subsampling the forest,

we may reduce the compression size from 340 KB (in

the conservative lossless case) to only 11 KB with no

significant impact on the generalization performance.

In addition, we notice the linear threads of our com-

pression size curves, which illustrate (and justify) our

analysis above.

Let us further apply our lossy compression tech-

niques to a larger dataset. Fig.3 demonstrates the

MSE and the corresponding compression size of our

suggest method, applied to the (regression) Bike Shar-

ing dataset (Table 2). Here, we may reduce the com-

pression size from 2.38 MB to only 300 KB with no sig-

nificant effect on the generalization performance. This

is achieved by representing the fits with 12 bits, while

subsamping 600 trees from the forest.
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Fig.2. Lossy compression of Air Foil Noise dataset. (a) Fits
quantization. (b) Tree subsampling.

2 4

3.376 0

2.714 6

2.053 2

1.391 8

0.730 4

0.069 0
6 12 14 16

626

542

457

373

288

204
8 10

Quantization Bits

M
S
E

733.0

724.4

715.8

707.2

698.6

690.0

M
S
E

MSE
Compression

MSE
Compression

C
o
m

p
re

ss
io

n
 S

iz
e 

(K
B

)

486

394

302

210

118

26 C
o
m

p
re

ss
io

n
 S

iz
e 

(K
B

)

(a)

200 400 600 800 1000

(b)

Number of Trees

Τ104

Fig.3. Lossy compression of the Bike Sharing dataset. (a) Fits
quantization. (b) Tree subsampling.

It is important to mention that our suggested

lossy approach is typically not competitive with some
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alternative methods, such as neural-networks based

compression[13]. Our suggested lossy compression typi-

cally compresses the forest in a factor of up to a

100 (from the uncompressed representation), while

neural-based methods compress in factors of 1 000 and

more[13]. However, our main advantage lies in the abi-

lity to provide a theoretically sound trade-off between

distortion and compression rate and to explicitly con-

trol the desired performance. In addition, our method

allows to further modify the forest (for example, by

adding more trees), even after the lossy compression

is applied. This serves as a balancing mechanism for

coding implementations.

8 Conclusions

In this work we introduced a novel method for

lossless compression of random forests. Our sug-

gested method uses the independent and identically dis-

tributed nature of the trees to fit probabilistic models

and compress the data accordingly. Since the number

and the complexity of the models grow with the size

of the problem, we applied model clustering according

to Bregman divergence. This allows us to find the op-

timal trade-off between a smaller set of models that

accurately describe the data, and corresponding dictio-

naries for decompression purposes.

While to the best of our knowledge, our suggest ap-

proach is unique in its lossless nature. There exists

a large body of work on lossy compression of ensem-

ble methods. Most of these lossy compression schemes

manipulate the forest (by pruning or mimicking it),

with hardly any guarantees on the resulting prediction

accuracy. The main advantage of our suggested scheme

is that it provides a complete and accurate recovery of

the forest. This property ensures the same prediction

accuracy as the original forest. In addition, it allows

future modification to the forest (such as adding more

trees, applying further inference, and so on.). Further,

since our method is lossless and directly compresses the

trees, a more complex random forest would not neces-

sarily result in a worse compression rate (as demon-

strated in Table 2). Notice that the lossy schemes, on

the other hand, may result in a severe deterioration of

accuracy in order to achieve a prescribed compression

rate, as described in Subsection 1.1.

Although the focus of our work is lossless compres-

sion, our suggested scheme may also be extended to

lossy compression, as described in Section 7. The main

advantage of our lossy scheme is that it is easy to imple-

ment and provides theoretical guarantees on both the

accuracy loss and the achieved compression gain. This

allows the user to find the ideal balance between the two

without blindly applying a series of lossy compression

tasks.

It is important to mention several popular variants

of tree ensembles which imply different probabilistic

structures. For example, completely randomized trees

(CRT)[34,35] utilize a recursive partitioning in which the

observations in each node are split according to a ran-

domly chosen feature and a corresponding random split

value. Therefore, we expect less resemblance among the

trees. Further, it leads to more uniform distributions

of the splitting rules in each node, and henceforth, a

lower compression rate. On the other hand, there ex-

ist more complicated tree-based structures such as deep

forest[36], where different random forests are cascaded

layer by layer, similar to deep neural networks. This

results in more involved probabilistic dependencies, as

we consider the collection of all the trees in the system.

Nevertheless, we may still cluster and encode different

models together, to introduce a compression gain.

All of these properties make our suggested compres-

sion framework a favorable methodology, both in theory

and in practice.
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