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Abstract In this article, we survey the main achievements of moving objects with transportation modes that span the

past decade. As an important kind of human behavior, transportation modes reflect characteristic movement features and

enrich the mobility with informative knowledge. We make explicit comparisons with closely related work that investigates

moving objects by incorporating into location-dependent semantics and descriptive attributes. An exhaustive survey is

offered by considering the following aspects: 1) modeling and representing mobility data with motion modes; 2) answering

spatio-temporal queries with transportation modes; 3) query optimization techniques; 4) predicting transportation modes

from sensor data, e.g., GPS-enabled devices. Several new and emergent issues concerning transportation modes are proposed

for future research.
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1 Introduction

Moving objects represent real-world objects that

continuously change their locations over time[1,2], e.g.,

vehicles and humans. Such data have received substan-

tial attention in both research and industry communi-

ties, and enabled a wide range of applications includ-

ing traffic management and monitoring, tourist service,

and mobile commerce. In addition to time-stamped lo-

cations, transportation modes reflect human behavior

and play a pivotal role in understanding the mobility

and contextual knowledge[3,4] and supporting advanced

trip planning[5,6]. This is because time-stamped loca-

tions neither fully represent a person’s state nor fully

recognize the high-level intentions of complex behavior.

Typically, a person’s trip includes several transporta-

tion modes, e.g., Walk, Car, and Bus. To help under-

standing the issue, we provide two trips of Mike from

his home to the office room, as illustrated in Fig.1.

(b)

(a)

Fig.1. Mike’s trips with multiple modes. (a) O1: A
Walk
−−−→

B
Car
−−→ C

Walk
−−−→ D. (b) O2: A

Walk
−−−→ B

Bus
−−→ C

Metro
−−−−→ D

Walk
−−−→

E.
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O1: Mike walks from home to the parking lot, and

then drives the car to the university. After parking the

car he walks to his office room.

O2: Mike walks from home to a bus stop, then takes

a bus to the underground train station, moves from C

to D, and finally walks from the station to his office

building.

Such moving objects have two unique features. 1)

Multiple Environments. The object moves over a range

of urban areas each of which exhibits their own char-

acters in terms of transportation infrastructures and

positioning technology. 2) A Sequence of Transporta-

tion Modes. The value changes over time and the vari-

ation indicates the switch between different environ-

ments. We consider both outdoor and indoor move-

ments. This imposes new challenges regarding the data

management including data modeling and query pro-

cessing, and the recognition of modes as they are not

recorded by popular sensors.

1.1 Transportation Modes

Transportation modes provide a comprehensive pic-

ture for understanding humans’ behavior. Such high-

level activities capture a range of available places and

build the connection between moving objects and the

underlying geographical objects. The topic has re-

ceived considerable attention among users and deve-

lopers. Target applications include the data mana-

gement of moving objects[7,8], multi-modal transporta-

tion management and traffic control[9,10], trajectory

sharing and mobility data analysis[11], and physical ac-

tivity and fitness monitoring[4,12], to name a few.

People’s movement includes outdoor and indoor sce-

narios. In the former case, there are motorized modes

like Car and Bus and non-motorized modes like Walk

and Bike. In the latter case, people can walk, run,

bike and be still, although a motorized vehicle may oc-

cur in some particular environments, e.g., airport. We

summarize popular transportation modes in the current

state of the art and provide a taxonomy in Table 1.

Some methods do not distinguish vehicle modes Car,

Bus and Taxi and use the term Motor in general[13],

but some do[3]. In the literature, several words re-

ferring to the same mode are used, {Metro, Subway,

Underground Train}, {Bike, Bicycle}, and {Still, Sta-

tionary, Stop, Static}. For the sake of consistency, we

use Metro, Bike and Still. Notations of Walk, Still and

Run mean outdoor modes, and are generalized as In-

door for people moving inside buildings. A few special

modes such as Electric Vehicles are studied in particu-

lar applications[14], but are ignored in the paper.

Table 1. Summarization of Indoor and Outdoor Mode

Term Transportation Mode

Non-motorized Indoor

Walk, Still, Run

Bike

Motorized Car, Taxi, Bus

Public Train, Metro, Bus

Sharing Ride-sharing, Ride-hailing

The study of Ride-Sharing[15−17] and Ride-

Hailing[18,19] has attracted considerable attention in re-

cent years. Several commercial service providers are

well established, e.g., DiDi and Uber. Ride-Sharing

refers to a transportation mode in between private car

and public transportation in the sense that the ride is in

a private car, but the route between the origin and the

destination is indirect. For ride-hailing, there is a wait

for pick-up, similar to public transportation. These

modes will become increasingly important, particularly

with the development of autonomous vehicles[20].

1.2 Literature Covered

Moving objects with transportation modes

have been extensively studied in a variety of re-

search communities including database[7,21], data

mining[3], persuasive/ubiquitous computing[12,22], ar-

tificial intelligence[4,23,24], geographical information

system[25,26], intelligent transportation systems[27],

and mobile communication networks[13,28,29]. This

survey summarizes recently developed techniques in

those fields and classifies them into two categories: 1)

database, and 2) data mining and machine learning.

The two communities investigate mobility data with

motion modes from different aspects.

The database community mainly focuses on model-

ing and representing the data to support advanced ap-

plication queries such as spatio-temporal queries with

transportation modes and multi-modal trip planning.

Moving objects with transportation modes involve a

range of environments which have different character-

istics such as network space, obstructed area, and 3-D

(three-dimensional) space. The management of con-

tinuously changing location data and transportation

modes (environments) requires dedicated support from

the underlying database system. Corresponding data
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models are proposed to capture the underlying environ-

ment in order to represent moving objects[7,21]. Novel

queries and application analysis that involve trans-

portation modes are studied, e.g., multi-modal trip

planning[7,30], the switch between different modes[31],

and range queries[8]. Query optimization techniques

are proposed to improve the system performance as

well. Some auxiliary tools are developed to enhance

the system functionality, e.g., data simulation[32], 3D

visualization and animation[33].

The communities of data mining, machine learn-

ing and geographical information system primarily aim

at inferring transportation modes from low-level sen-

sor data. Both coarse data such as GSM[34] and fine-

grained data such as GPS[26,35,36] are used. Such

data collection has become an important and conve-

nient approach to investigating travel behavior due to

the widespread use of mobile devices such as smart-

phones. To achieve the goal, a number of prediction

models and classification systems are employed to reco-

gnize the travel modes for outdoor movements. The

models typically consist of several widely-used baseline

models such as decision-tree, random forest, SVM and

Bayesian net. A set of sophisticated features is selected

to train the models. Solely using GPS data is not suf-

ficient to classify motorized transportation modes such

as Car and Bus due to similar movement characteris-

tics. Thus, multiple data sources are utilized to increase

the prediction accuracy. Popular sources include GIS[5],

accelerometer[25] and cellular data[37]. This line of work

can be considered as a significant step in recognizing

human activities.

We believe that techniques from those communities

can be combined to build a comprehensive platform

for managing and analyzing big mobility data, as il-

lustrated in Fig.2. For instance, the outcome of pre-

dicting transportation modes can be used as the input

data for a database system managing moving objects

with transportation modes. Although the mode Indoor

is not available from GPS data, most popular outdoor

modes are covered. In this survey, we aim at offering a

thorough and structured overview of the current state

of the art, while how to build such a platform and fuse

relevant techniques is beyond the scope of the paper.

The rest of the paper is organized as follows. We

compare moving objects with transportation modes

with several mostly relevant issues in Section 2. Data

models are presented in Section 3. Query processing

and optimization techniques are presented in Section 4

and Section 5, respectively. We introduce techniques

developed to obtain moving objects with transporta-

tion modes in Section 6, followed by conclusions and

future work in Section 7.

Querying and 

Indexing[7-9]

Database

Benchmark[31]

Modeling[21]

Data Mining and

Machine Learning

GIS, Accelerometer

<long, lat, t> and 

Classification
Models[5,13,23,36] 

Expert System[25]

Recurrent Nets[24]

Fig.2. Connection between two communities. long: longitude;
lat: latitude; t: time.

2 Semantic, Symbolic and Multi-Attribute

Trajectories

Recently, extending the knowledge about mobility

data has attracted considerable attention due to the

fact that the location information is not sufficient to

fully understand people’s behavior and answer queries

involving semantic data. Existing work can be classified

into three categories: 1) semantic and activity trajec-

tories, 2) symbolic trajectories, and 3) multi-attribute

trajectories.

Semantic and Activity Trajectories[38−42]. A seman-

tic trajectory enriches a spatio-temporal trajectory by

attaching a semantic label to a location. Usually, the

locations are points of interest at which people perform

actions and activities such as hotel and restaurant. Us-

ing the semantic trajectory representation, Mike’s trip

O2 in Fig.1 will be

Semantic(O2)

= <(t1, A, “home”), (t2, B, “bus stop”),

(t3, C, “metro stop”), (t4, D, “metro stop”),

(t5, E, “university”)>.

Such a trajectory enables queries and analytics

considering semantic interests and location preferences.

For example, users may search for relevant trajecto-

ries that pass B and D and contain keywords “bus”

and “metro”. Given such a trajectory, semantic loca-

tions are sparsely defined because among a person’s trip

only a few locations have semantics. In the example,

semantic locations between A and B are not defined

because the semantics is not known. Consequently, se-

mantic trajectories mainly deal with ranked and top-k
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queries but cannot support continuous queries. As a

further step, a comprehensive knowledge graph for ur-

ban movement is constructed in which nodes and edges

are represented in latent semantic space. One can ap-

ply the graph to predict the extent of user attention

paid to different locations in a city[43]. In addition to

extracting semantics from outdoor trajectories, motion

trajectories of indoor scenarios are utilized to estimate

and iteratively refine the underlying route network[44].

The method assumes that the underlying route network

is unknown because in many cases digital models are

not given or easily obtained. Outlier movement detec-

tion, self-healing analysis and trajectory cleaning are

supported.

Symbolic Trajectories[45,46]. A symbolic trajectory

is represented as a sequence of pairs (t, l), in which

t is a time interval and l is a label (short character

string) describing certain aspects of a trajectory. The

symbolic information is computed from the movement

itself or obtained from the geographical environment.

Typical examples include names of roads, activities and

transportation modes. The goal is to provide a simple

and flexible model for any kind of semantic information,

while geometric locations are not defined. If transporta-

tion modes are considered, the symbolic trajectory for

Mike’s trip O2 is denoted by

Symbolic(O2)

= <([t1, t2],Walk ), ([t2, t3],Bus), ([t3, t4],Metro),

([t4, t5],Walk ), ([t5, t6], Indoor )>.

Multi-Attribute Trajectories[47,48]. In practice, ob-

jects or entities are naturally of multiple attributes in

addition to spatial and temporal aspects, amenable to

diverse types of analysis. This kind of trajectories com-

bines spatio-temporal trajectories and characteristic at-

tributes. That is, a multi-attribute trajectory consists

of a sequence of time-stamped locations and a set of at-

tributes. The attribute domain depends on real appli-

cations. For example, the management of urban vehicle

trajectories defines two attributes COLOR= {SILVER,

RED} and BRAND = {VW, BMW, BENZ}. Consider

Mike’s trip O1. Assuming that he drives a SILVER VW

from the home to the university, the multi-attribute tra-

jectory is

MultiAtt(O1)

= (<(t1, loc1), ..., (tn, locn)>, (SILV ER, V W )),

in which the spatio-temporal trajectory and the at-

tribute model are integrated into one framework. An

important point is that location-independent attributes

are primarily tackled in order to represent the ob-

ject from diverse aspects. This allows users to issue

queries containing both spatio-temporal and attribute

constraints, e.g., “did any (SILVER, VW) pass the uni-

versity between [7am, 8am]?” A time-dependent at-

tribute could be defined to represent transportation

modes, but the solution processes transportation modes

and locations separately. That is, we are aware of the

modes, but do not know the place at which the mode

occurs or changes.

The three kinds of trajectories above follow the same

direction as moving objects with transportation modes

that explore spatio-temporal trajectories with addi-

tional information, but there are some significant diffe-

rences between them. 1) Semantic trajectories add se-

mantic data by attaching labels to locations, which are

points of interest in general. A data pre-processing pro-

cedure is involved to enrich trajectories with semantic

annotations. Transportation modes are not supported

because such data are related to pieces of movements

rather than individual locations. 2) Symbolic trajec-

tories deal with generic semantic information includ-

ing transportation modes and users’ activities, but geo-

graphical locations are not defined. 3) Multi-attribute

trajectories aim at providing a full picture of moving

objects by considering a range of aspects, in particular,

location-independent data. This is orthogonal to mov-

ing objects with transportation modes because motion

modes are related to locations.

3 Data Models

3.1 Moving Objects in a Single Environment

Researchers start investigating moving objects in

free space in which there is no limitation about the

movement. In practice, most outdoor and indoor mo-

tions are constrained due to the fixed underlying struc-

ture such as the presence of obstacles and floor plans.

In the literature, there has been a large body of work

on modeling and querying moving objects, which can

be classified into four categories according to the un-

derlying environment, 1) free space[1,49−51], 2) road

(spatial) network[52−56], 3) obstacle space[57−60], and

4) indoor[61−65].

Free space is an environment in which objects move

without any constraint. Practically, objects usually

move on a pre-defined set of paths as specified by the

underlying environment, e.g., roads and highways. The

obstacle space defines an area that inhibits the move-

ment connected by a straight line as obstacles block the
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connection. In comparison with road network, there is

no pre-defined path in the obstacle space but the path

between two points should take into account obstacles.

The main difference between free space and constrained

environments lies in location representation and dis-

tance computation. The coordinate representation (i.e.,

longitude and latitude) is typically used in free space

but is not an optimal choice for constrained environ-

ments. This is because the method does not provide

the referenced target by the moving object, e.g., the

road/street. To solve the problem, locations are rep-

resented by first referencing to a geographical object

and then recording the relative location according to

that object. Regarding the distance computation, two

arbitrary points are directly reachable and connected

by a straight line in free space. However, such a line

may not exist in a constraint space due to the under-

lying network structure or be blocked by an obstructed

area. A shortest path query is performed to determine

the distance in a constrained space, which is a costly

procedure.

In addition to outdoor space, indoor data mana-

gement has attracted considerable attention in the last

decade. Such an environment has two unique features.

1) Space Constraint. This is characterized by en-

tities such as rooms, hallways and staircases that en-

able and constrain the movement. Indoor movement is

surely not within free space but is less constrained than

the movement in a spatial network. Indoor travels are

bound by a building infrastructure, typically incurring

a short distance and time period compared with out-

door travels.

2) Positioning Technology. GPS signal is not reli-

ably available in indoor settings. Indoor moving ob-

jects are typically monitored by proximity-based in-

door positioning technologies such as Wi-Fi, RFID and

bluetooth. Symbolic models are often used for indoor

movement[66,67].

Public transportation network is an environment in

which pre-defined paths are offered for moving objects.

The movement is not only limited to fixed routes but

also under a specified schedule. Furthermore, passen-

gers can only start and end their trips at stops and

stations. There are some special features, e.g., the wait-

ing time and the number of transfers. GTFS (General

Transit Feed Specification) 1○ defines a format for pub-

lic transportation schedules and associated geographic

information. Each file records a list of items with the

format (name, value). Locations of a bus traveler are a

set of items recording bus stops as well as arrival and

departure time at each stop. People can use the specifi-

cation to provide schedules and geographic information

to Google Maps.

Data models for a single environment are not appro-

priate for moving objects with transportation modes.

On the one hand, they do not consider a range of availa-

ble environments such that the system is only aware of

a sub-trip instead of the complete movement. The re-

lationship/interaction between different environments

is not handled, for example, the places at which peo-

ple switch transportation modes such as bus stops and

building entrances. On the other hand, data models

above propose different techniques for location repre-

sentation. Specifically, moving objects in a road net-

work are represented by referencing to a road, and in-

door trips are represented by referencing to an office

room or using the symbolic method. In order to man-

age the complete trip like O1 or O2, the system needs

to maintain several pieces of trips each of which has

a particular model only for one environment. This in-

curs much system overhead and significantly compli-

cates the query processing when multiple modes are in-

volved. As a consequence, a robust and general location

representation is essentially needed that can be applied

in all cases. Meanwhile, the method should be consis-

tent with the well-established work for an individual

environment in order to provide a systematic solution.

3.2 Modeling Multiple Environments

The urban transportation is a complex system in-

volving a number of components such as infrastruc-

tures, networks, and schedules. There are static objects

such as routes and stops, and also dynamic objects such

as vehicles and traffic condition. To fully represent the

system, a multi-dimensional data model is required to

consider a range of factors including spatial and tempo-

ral domains, topology and relationship, granularity and

hierarchy. Consensus-based functional requirements for

multi-dimensional transportation data management are

presented[68]. The fundamental issue is to develop a

comprehensive transportation location reference system

such that objects are represented as they occur in the

real world including 1-D, 2-D and 3-D models. The

data model includes a number of components for man-

aging multi-dimensional data, e.g., navigation, multi-

dimensional location referencing and multi-scale rep-

resentations. A multi-dimensional data model is pro-

1○http://code.google.com/transit/spec/transit feed specification.html, Oct. 2011.
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posed to provide a foundation for capturing and query-

ing complex transportation infrastructures[69]. The

model captures important transportation infrastructure

concepts such as roads, road parts, lanes and the rela-

tionships among them. Each individual lane is captured

due to different road characteristics, and the relation-

ship containment is captured among segments at diffe-

rent levels. Different contents are attached to specific

points and road sections, e.g., traffic accidents, gas sta-

tions, and speed limits. Later, Jensen et al.[70] extended

the representation dimension by introducing three new

relations on dimension values to capture direction, traf-

fic exchange and lane change relationships between road

segments. Some properties of the three relations are de-

fined such as transitivity and propagation of direction.

Each representation of the transportation infrastruc-

ture is modeled as a separate dimension hierarchy. Two

categories of queries are considered: transportation in-

frastructure and dynamic. However, those techniques

focus on modeling and representing transportation in-

frastructures, but do not involve moving objects.

A conceptual data model presented in [7] integrates

moving objects databases and graph-based databases

to support trip planning with several transportation

modes in urban transportation networks, e.g., Bus →

Walk → Train. Each vertex in the graph corresponds

to a place in a transportation network, which contains

a name and a geometric object, e.g., point or region.

Each edge is associated with a transportation mode.

Edges with different modes can be incident on the

same vertex indicating that a transfer between diffe-

rent modes can happen. The model supports returning

the shortest path with multiple transportation modes

as well as constraints and choices, e.g., different motion

modes, and the number of transfers. Such a higher-

order model enables the creation of new computing ser-

vices that respond to customized requirement and sup-

port accurate predictions about future behavior.

To model moving objects across all available envi-

ronments, a comprehensive location representation sys-

tem should encompass all available elements and ab-

stractions for transportation-based objects. Employing

the referencing method, a generic data model is de-

signed to manage moving objects in outdoor and in-

door environments[21]. The idea is to conceptually par-

tition the space into a set of so-called infrastructures,

each of which 1) corresponds to an environment with

particular transportation modes and 2) consists of a

set of geographical objects defining available places for

moving objects. Five infrastructures are included in

total, {Free Space, Road Network, Public Transporta-

tion Network, Region-Based Outdoor and Indoor}, as

illustrated in Fig.3. Public Transportation Network in-

cludes bus and metro networks in which bus and metro

routes are geographical objects, Region-Based Outdoor

defines the areas for pedestrians, and Indoor is a set

of public buildings such as hotels, office buildings, and

hospitals. Private buildings are discarded because usu-

ally simple movements occur and the dataset in this

setting is rather difficult to obtain due to the privacy

issue. The reference model has the advantage that a

range of geographical objects are incorporated includ-

ing 2-D objects (roads, regions), 3-D objects (buildings)

and dynamic objects (buses).

Road Network
Bus Network
Bus Stop
Metro Network
Metro Stop
Walking Areas
Buildings
Free Space

Fig.3. Partitioning the space into infrastructures.

A full list of data types is provided to represent geo-

graphical objects, each of which consists of a unique ID,

a label for the data type and the value. All data types

are embedded into a relational interface in order to ex-

change the information in a consistent fashion. The

location model first maps the location of a moving ob-

ject to a geographical object and then records the rela-

tive position according to that object, as illustrated in

Fig.4. Moving objects with transportation modes are

represented by a sequence of movements, each of which

corresponds to a sub-trip with one mode. Both precise

and approximate locations are supported in order to

provide a flexible representation. A group of operators

is designed to manipulate the data to answer queries

with transportation modes.

(b)(a) (c) (d) (e)

Fig.4. Referenced location representation. (a) Free space. (b)
Road network. (c) Bus network. (d) Pavement area. (e) Office
rooms.

A unified pseudograph model of outdoor and indoor

spaces is proposed[71]. Two essential elements are cap-

tured, topology and dynamics, in which the former de-

fines geometric properties and the latter represents the
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changes in motion. The model is for receptor-based sys-

tems, e.g., RFID readers or wireless sensor networks.

Motivated by the fact that getting a taxi in highly

congested areas such as airports and railway stations

is time-consuming and expensive, a model of multi-

modal ride-sharing is designed for public transportation

hubs[72]. The method combines in a unique way three

mechanisms: virtual queues, walking for the purpose of

ride-sharing, and multiple-drop-off ride-sharing. A trip

is defined as a triplet including destination, the number

of travelers, and constraints (maximum walking time

and maximum delay). Two modes are included, Walk

and Car.

3.3 Dynamic Transportation Networks

Transportation network attributes like the travel

time are associated with particular time instances due

to dynamic conditions such as rush hour, road construc-

tion, accidents and events[73,74]. Ding and Güting[75]

proposed a data model for moving objects on dynamic

transportation networks. A dynamic graph is defined

by associating a temporal attribute to each edge or node

to express traffic jams and blockages caused by tem-

porary constructions and the insertion and deletion of

junctions or routes. Under these circumstances, finding

an optimal route is a critical problem for vehicle naviga-

tion because both the traffic condition and the location

of the traveler change over time. The traveling route

may be modified from time to time. A novel dynamic

shortest path algorithm is developed to compute the

dynamic shortest path between a moving object and

the destination in which traffic conditions are updated

in real time[76]. The methods[77,78] integrate time de-

pendent traffic into the model to provide users more

accurate travel time and better sequenced routes. A

standard relational DBMS is employed such that the

tables, joins and sorting algorithms can be leveraged.

The task is to model the dynamic transportation net-

work for trip planning services instead of representing

moving objects with different modes.

4 Query Workload

4.1 Spatio-Temporal Queries with

Transportation Mode Constraints

We are primarily interested in queries containing

spatio-temporal parameters and transportation modes

as solely investigating modes is a simple task. One can

ask queries where and when the mode changes or ex-

tract a sub-trip according to the mode as the followings.

Q1. “Where and when did Mike switch from Bus to

Metro?”

Q2. “How long and where does Mike walk?”

To answer the queries, the database system should

manage time-stamped locations as well as transporta-

tion modes and determine the relationship between

moving objects and referenced objects. A list of rep-

resentative queries is proposed and formulated by an

SQL-like language[21]. GMOBench[31], a benchmark

for moving objects with multiple transportation modes,

is developed to evaluate and optimize a prototype

database system. The benchmark targets measuring

the cost of common operator constellations and access

patterns. Queries are classified into two categories:

four infrastructure queries and 17 trajectory queries, in

which the former deals with geographical objects such

as “which streets does Bus No. 12 pass by” and the

latter deals with moving objects such as “who arrived

by taxi at the university on Friday”. In comparison

with spatio-temporal queries, a wide range of geograph-

ical objects and the relationships between different en-

vironments and modes characterize the queries (see the

following examples).

Q3. “How many people take the same bus as Mike?”

Q4. “Did Mike spend more than 15 minutes on

waiting for the bus?”

Complementary to the benchmark workload, three

types of range queries are investigated to return trips

that intersect a spatio-temporal window and contain

specified transportation modes[8]. For example, one can

search for trips that intersect the city center and con-

tain modes {Bus, Metro}. Transportation modes may

follow a particular order like Bus → Metro.

4.2 Trip Planning with Modes

In a public transportation system, the journey plan-

ning typically involves Bus, Metro and Walk. The ser-

vice aims at providing the itinerary between an origin-

destination pair that optimizes a range of costs such

as the travel time, the number of transfers, and the

walking/waiting time. Route planning in such a sys-

tem considers spatio-temporal constraints such as the

time required to wait for a bus at a station, or the fea-

sibility of transferring from one bus to another given

their respective schedules.

Graph models are widely used to represent the

transportation system. A data model is proposed

to conceptually and abstractly provide a multi-modal

trip[7]. The graph model connects places in a trans-

portation network. The proposed framework is able to
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return the shortest path connecting the origin and the

destination with mode constraints and choices, e.g., less

than two bus transfers. A labeling approach is proposed

to model a public transportation network as a timetable

graph, in which each node represents a station and each

directed edge is associated with a timetable recording

the departure time of each vehicle at the station[79]. Al-

though an efficient method is developed, the graph is

built on a single mode transportation network without

supporting the switch between different services (e.g.,

bus, subways).

A dynamic programming-based algorithm is deve-

loped to solve the itinerary planning problem[9]. The

method well formulates the issue as a shortest path

problem with time windows on a multi-modal time-

schedule network and optimizes a set of criteria such

as total travel time, the number of transfers, and to-

tal walking and waiting time. An interesting ope-

rator called isochrones is studied in multi-modal and

schedule-based transport networks[80]. The goal is to

find the set of points on a road network, from which a

specific point of interest can be reached within a given

time span including transportation modes Walk and

Bus. In an intelligent transportation system, the multi-

modal interconnectivity between different transporta-

tion modes represents the quality of offering transporta-

tion mode options to users. For example, the amount of

waiting time spent on changing transportation modes

(e.g., Bus→ Walk → Metro) is used to evaluate how

well the interconnectivity is. Optimization methods are

proposed to reduce the waiting time[30].

Bike is usually a convenient option for the first and

last miles because bus and metro stations are often

outside the walkable range. Tang et al.[81] considered

a multi-modal public transportation system including

shared bicycles for the first and last miles, and opti-

mized the size of bicycle pools. The method guarantees

bicycle availability with a high probability and reduces

the number of bicycles per customer from 2 to 1.25. A

flexible mini-shuttle like transportation system is deve-

loped to provide a transportation mode between Bus

and Taxi because buses and metros are slow due to

many stops, and taxies cause greater traffic congestion

and pollution[82]. Effective routing algorithms are de-

signed based on mining combinable trips from taxi GPS

trajectories.

Ride-sharing is an environmental-friendly mode

of commute that a group of travelers with similar

itineraries and time schedules share a vehicle for their

trips. This reduces the travel cost including fuel, tolls,

and parking fees. Dynamic sharing for a large number

of taxies is studied in order to quickly retrieve candidate

taxies satisfying a user query. An experimental plat-

form is built to produce taxi ride queries conforming

to the real query distribution and generate ride-sharing

schedules reducing the total travel distance[83]. To offer

travelers multiple options, a dynamic ride-sharing solu-

tion is proposed and considers both the pick-up time

and the price[84].

An open source software called OpenTripPlanner is

published to provide passenger information and trans-

portation network analysis services 2○. The core com-

ponent finds itineraries combining transit, pedestrian,

bicycle, and car segments through transportation net-

works built from OpenStreetMap 3○ and GTFS data.

5 Query Optimization

5.1 Index Structures and Algorithms

A number of spatio-temporal indexes are proposed

to well manage time-stamped locations for historical

data and on-line updating. However, they are not suf-

ficient for answering queries with transportation modes

because one cannot use the index to prune the search

space on modes. The performance significantly dete-

riorates for large datasets as one needs to iteratively

evaluate the trajectory. An index structure called TM-

RTree (Transportation Mode R-Tree) is developed to

manage spatial, temporal data as well as transporta-

tion modes[8]. The structure, based on a 3-D R-tree,

is built on trajectories each of which contains only one

transportation mode. For example, the trip O1 will

be decomposed into pieces of movements, as shown in

Fig.5. All possible transportation modes are collected

including two forms: a single mode and a pair of modes.

In particular, a pair of modes are of the form X →Walk

or Walk → X . This is based on the observation that

the mode switch often includes Walk. An integer is

integrated into the tree node to indicate transporta-

tion modes contained by trajectories in the sub-tree.

The TM-RTree is primarily used for answering spatio-

temporal range queries with transportation modes.

Application queries are interested in not only

searching for trips with particular modes but also de-

termining the relationship between moving objects and

referenced geographical objects. For example, to an-

2○http://www.opentripplanner.org/, Jan. 2019.
3○http://www.openstreetmap.org/, Aug. 2018.
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swer the queryQ3 in Subsection 4.1, the system requires

to identify all travelers taking the same bus as Mike.

The TM-RTree is able to find all bus trips but cannot

establish which bus for the trip. To solve the problem,

a two-level structure called Mode-RTree is proposed[31].

The upper level contains a list of pairs with the form

(mode, record), in which the root node of an extended

3-D R-tree is maintained for each mode. The lower level

consists of a set of extended 3-D R-trees by integrating

an integer into each node to manage referenced objects

for moving objects such as roads, pavements, buses and

rooms. Mode-RTree takes in a set of trips with a single

mode and inserts each trip into a sub-tree according to

the transportation mode. Fig.6 depicts the two struc-

tures.

Buildings
Walking
Areas

Streets/Roads

Car

Walk

Indoor

y

t

x

Fig.5. Partitioning O1 according to the mode.

Corresponding query algorithms are developed over

TM-RTree and Mode-RTree. Employing TM-RTree,

three algorithms are proposed for queries containing a

single mode, multiple modes and a sequence of modes.

In particular, the algorithm dealing with a sequence of

modes combines two modes as a pair to check the mode

existence. This significantly improves the pruning abi-

lity in comparison with checking an individual mode.

Algorithms running over Mode-RTree first determine

the sub-tree according to the mode and then access the

structure to collect qualified trajectories. If the query

requests multiple modes, an intersection is performed

on candidates received from sub-trees.

5.2 Prototype System

A prototype database system is developed to

manage moving objects over a range of real-world

environments[85]. The implementation is based on an

extensible database system SECONDO[86] by incorpo-

rating into a number of modules including data storage

and representation, operators, data generators, index

structures and algorithms. Regarding the indoor envi-

ronment, the query interface supports 3-D visualization

of floor plans and animation of indoor movements, and

is later extended to support displaying outdoor move-

ments and the R-tree structure in a 3-D viewer[33].

When complex queries are executed, e.g., joins, the

I/O communication usually becomes a bottleneck. A

tool is developed to monitor database files at execution

time[87], enabling us to better understand the query

progress and perform analysis on the system.

TM-RTree
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Walk

Still

Run

Bike

MBR

Mode Bitmap

Root
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Indoor  Car   Walk      ...

Sub-Tree
Root

Reference
Objects

Sub-Tree
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Reference
Objects

Mode-RTree

Roads

MBR

ID Bitmap

Rooms

Fig.6. Comparison between two structures. (a) TM-RTree. (b) Mode-RTree.
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6 Trips with Motion Modes

Large real datasets of moving objects with trans-

portation modes are difficult to obtain due to too much

effort from humans because people have to explicitly

attach labels to mark transportation modes. Users will

be easily bored if making additional data-labeling jobs.

Furthermore, only the mode information is not suffi-

cient for most applications as the underlying geographi-

cal objects are to be established as well. To solve the

problem, there are two alternative solutions. One is

to infer transportation modes from sensor data such as

GPS and GSM, and the other is to develop data gene-

rators.

6.1 Transportation Modes Detection

An important issue in ubiquitous computing and

GIS applications is to build rich models to predict

human behavior from low-level sensor data[35]. For

example, a healthcare assistant informs the user if

he/she runs for too long and estimates the number of

burnt calories by analyzing transportation modes from

the travel diary[4]. Many artificial intelligence tech-

niques have been recently applied to detect transporta-

tion modes. They attempt to extract good features

from various sensor data and build powerful classifiers

based on machine learning models such as SVM, Hid-

den Markov Models and Decision Tree[27]. GPS is the

primary sensor data, but other sensors are utilized to

increase the accuracy. We summarize the methods of

predicting outdoor transportation modes in Table 2.

Some preliminary work is done to learn a uni-

fied model of transportation modes in an unsupervised

manner[35,88]. The method[88] not only infers a user’s

mode of transportation but also predicts when and

where he/she will change the mode. However, few

transportation modes are established, the experimen-

tal dataset is limited (GPS logs from one person are

used), and the data quality is not high.

Zheng et al.[3,22,23] developed a systematic method

based on supervised learning to automatically infer

users’ outdoor transportation modes including Car,

Walk, Bus and Bike. The goal is to provide more con-

textual information and enrich a user’s mobility with

informative knowledge because raw GPS logs are lim-

ited in understanding users’ mobility. The method in-

cludes off-line learning and on-line reference. We il-

lustrate the off-line learning in Fig.7. This phase 1)

partitions trajectories into segments by utilizing some

commonsense knowledge, e.g., Walk is a transition be-

tween different modes, and 2) extracts features such as

distance, average velocity and heading change rate. An

Table 2. Summary of Approaches for Predicting Outdoor Transportation Modes

Sensor Prediction Method Accuracy (%) Transportation Mode

(Ground Truth Comparison and Accuracy Calculation)

GPS Bayesian model[35] (hand-labeled modes, cross-validation) 84 {Car, Walk, Bus}

Hierarchical Markov model[88] (activities in the historical
data)

84 {Car, Walk, Bus}

Supervised learning[3] (visualize traces on a map) 71 {Car, Walk, Bus, Bike}

Tree-based ensemble classifiers[26] (labeled modes, K-fold
cross-validation)

91 {Car, Walk, Bike, Metro, Train}

Random Forest classifier[36] (particular rules) 93 {Car, Walk, Bike, Metro, Bus}

GSM Statistical classification and boosting[34] (custom diary appli-
cation)

85 {Car, Walk, Still}

GPS+ Classification system[13] (10-fold cross validation) 94 {Motor, Walk, Bike, Still, Run}
accelerometer

Recurrent nets[24] (signal logs containing modes) 93 {Car, Walk, Bus, Bike, Train,
Tram, Subway}

HMM[89] (annotate transport modes) 76 {Car, Walk, Bus, Bike, Train,
Tram, Metro, Motocycle}

GPS+GIS Transportation network + classification system[5] (labeled
modes, web application)

94 {Car, Walk, Still, Bus, Bike,
Train}

ArcGIS[90] (GPS logger, travel diary) 83 {Car, Walk, Bus, Metro, Tram}

Expert system + OpenStreetMap[25] (manual classification) 92 {Car, Walk, Bus, Bike, Train,
Tram, Metro, Ferry, Boat, Air-

craft}
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Fig.7. Predicting transportation modes.

inference model is built at the off-line learning. At the

on-line phase, the model probabilistically predicts the

transportation mode of each trajectory segment and a

post-processing algorithm improves the inference accu-

racy. The mode with the maximum probability is used.

A statistical method is deployed to generate global

features and extract several local features by employ-

ing tree-based ensemble models such as Random For-

est and XGBoost, among which XGBoost achieves the

best performance[26]. A random forest classifier com-

bined with a rule-based method is developed to detect

transportation modes[36]. Seven GPS-related variables

are selected as the feature set. The rule-based method,

which is more appropriate than the advanced classifier

in the scenario without GPS signal and with incomplete

GPS signal, is able to identify subway trips at a high

accuracy (up to 98%).

Accelerometer-based techniques are widely used in

conjunction with GPS data for transportation mode de-

tection on mobile phones due to the advantages of low

power consumption, directly measuring users’ move-

ments and highly detailed information. A classification

system is built to determine the transportation mode

of an individual when it is outside by making use of

a mobile phone with a built-in GPS receiver and an

accelerometer[13]. The overall classification system con-

sists of a decision tree followed by a first-order discrete

hidden Markov model. The method does not distin-

guish between various modes under motorized trans-

portation, such as Car versus Bus. Transportation

mode detection is hierarchically decomposed into sub-

tasks based on a novel set of accelerometer features[28].

Coarse-grained GSM data from mobile phones are used

to recognize high-level properties of user mobility[34].

Statistical classification and boosting techniques are

employed, but a few transportation modes are dis-

tinguished (Walk, Car, Still) and the accuracy is not

high. An algorithm is developed to estimate the gra-

vity component of the accelerometer measurements,

and novel accelerometer features such as spectrum peak

position and stationary duration are extracted to cap-

ture key characteristics of vehicular movement patterns.

A trip analysis system is developed based on smart-

phones and mobile apps to identify both the travel

mode and the purpose (e.g., home-based work, home-

based shopping)[11].

Distinguishing between motorized and non-

motorized modes is not difficult, but the problem be-

comes challenging when classifying modes like Car, Bus

and Train. They have similar GPS-related features and

accelerometer readings. To increase the accuracy, GIS

data are utilized to create discriminative features. The

knowledge of the underlying transportation network

such as bus stop locations and railway lines is consi-

dered to distinguish between motorized modes[5]. Novel

features related to transportation network information

are identified and derived to improve classification ef-

fectiveness, e.g., average bus closeness, and average

rail closeness. The proposed approach treats above-

ground train as a transportation mode and achieves

the accuracy up to 93.5%. To build a multi-modal

transportation network for mode detection, a number

of GIS layers are cleaned and edited such as streets,

bus routes and stops, subway lines and stations[90].

A deep learning model is built to work directly with

raw signals from an embedded accelerometer. Different

types of recurrent neural networks are used including

the typical recurrent net and the two-layer versions[24].

Relying on fuzzy concepts found in expert systems and

OpenStreetMap data, up to 10 transportation modes

are distinguished and classified into three categories

{Land, Water, Air}. The method handles data with

signal shortages and noise[25]. The cellular data of mo-

bile phone service providers are utilized to know public

transportation modes and crowd density estimation[37].

Mobile devices involve continuous sensing of GPS

or acceleration modules to infer transportation modes.
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This decreases the battery lifetime. Using cellular net-

work information as a priori knowledge, a battery-

efficient method is developed to minimize power con-

sumption and maximize detection accuracy[29]. A low-

power classifier is designed to address the requirement

of collecting more training data and achieving low com-

putational complexity[4]. The power consumption is

drastically reduced by 99%, while competitive mode-

detection accuracy is maintained and the complexity is

independent of the data size.

Indoor detection differs drastically from the outdoor

scenario due to the physical environment as well as the

availability and reliability of sensing resources. Indoor

route networks are small in comparison with road net-

works, resulting in a short traveling distance and time

interval. GPS is a popular data source for outdoor

mode detection but is not reliably available in indoor

settings. Indoor transportation scenarios are explored

to achieve a conceptual model by utilizing Wi-Fi and

accelerometer data collected through smartphones in

a hospital[14]. Detected indoor modes include general

modes {Still, Bike, Walk} and hospital-specific electric

vehicles {e-bus, bedpusher}. Extracted features from

the sensor data can be applied for both indoor and out-

door scenarios such as signal strength based features

and position based features. Popular techniques for in-

door mode detection include smart phone sensors[91],

depth camera models[92], and Wi-Fi fingerprints with

user information[93].

6.2 Data Generators

Large real datasets are often hard to come by as

most people do not want to publish their movements,

in particular, time-stamped locations with transporta-

tion modes. There are several published datasets, e.g.,

GeoLife 4○, NYC 5○, and DiDi 6○. These are taxi trips

in general and not comprehensive enough to perform

queries with transportation modes and evaluate the

system in consideration. Although machine learning

techniques are able to accurately infer most outdoor

transportation modes, particular geographical objects

do not receive adequate attention, that is, at which

road the vehicle is located, which bus the passenger

takes and in which area the pedestrian walks. These

objects are essentially important when representing

the location of a moving object using the referencing

method. Map matching is a procedure that estimates

the route traveled by vehicles or people by using ob-

served coordinates[94,95], but does not obtain walking

areas and moving buses. Furthermore, one needs all

available environments in a consistent space. That

is, road networks, public transportation systems, pave-

ment areas and buildings are within the same city. This

motivates researchers to develop data generators to pro-

duce datasets with variable sizes in a simulated sce-

nario.

A mini-world generator (MWGen) is developed to

build a range of infrastructures and generate moving

objects with both indoor and outdoor transportation

modes[32]. The data generator works in a two-step pro-

cess. At the first step, the tool takes in a set of roads

and public floor plans such as library and hotel, and de-

fines some parameters to build available environments

for moving objects. At the second step, based on popu-

lar movement rules, the system performs trip planning

across different environments to connect origins and

destinations and generates moving objects. The work-

flow of MWGen is illustrated in Fig.8. The tool is able

to simulate popular human movements and scale the

data size for performance evaluation. In addition, 3-D

visualization and animation of indoor moving objects

are supported and the shortest path query in an ob-

structed space can be answered.

Traffic simulators have been extensively studied in

the literature[96,97]. In particular, public transporta-

tion systems play an essential role in the process of

urbanization. A spatial interaction coverage model is

used to model the relationship between demand points

and bus stops and remove redundant bus stops[98]. The

model considers the attractiveness of stops and the dis-

tance decay. Such an ability provides better bus routes

for the transportation agency. SMARTS (Scalable Mi-

croscopic Adaptive Road Traffic Simulator)[99] is built

with a distributed architecture for fast large-scale simu-

lations. The route of public transportation (e.g., buses

and trams) can be imported by reading route informa-

tion from OpenStreetMap data.

There are also data simulators developed to create

moving objects in a single environment, mainly includ-

ing free space, road network and indoor.

Free Space. GSTD[100], a widely used spatio-

temporal generator, defines a set of parameters to con-

trol the generated trajectories. The generator is later

4○http://research.microsoft.com/en-us/projects/geolife, Jan. 2019.
5○http://www.nyc.gov/html/tlc/html/technology/data.shtml, Jan. 2019.
6○https://outreach.didichuxing.com/app-vue/personal, Dec. 2018.
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Fig.8. Outline of MWGen.

extended to produce more realistic moving behaviors

such as group movement and obstructed movement[101].

Two methods are used for setting positions and velo-

cities for moving objects generation[102], uniform distri-

bution and skewed distribution. BerlinMOD[103] pro-

vides a benchmark by generating moving objects based

on trip planning, e.g., from home regions to work re-

gions. Users can set a range of parameters to simulate

a person’s everyday trips including the number of ob-

servation days and the way of selecting the initial and

final positions.

Road Network. Brinkhoff is the earliest attempt to

generate moving objects over a road network[104,105].

To simulate the traffic scenario, objects are created in

a random way and appear and disappear when their

destinations are reached. SUMO[106] is an open source

generator that simulates the movements of private and

public transports. Vehicle movements are represented

in a network that does not allow conflicts. An impor-

tant feature is that the proper interaction between mov-

ing objects is considered. GAMM[107] generates cellular

network trajectories and symbolic trajectories to sim-

ulate real-life mobility patterns and constraints. The

tool Hermoupolis[108] takes a road network, points of

interest and mobility patterns as input to generate tra-

jectories conforming to the mobility pattern require-

ments. An extensible web-based road network traf-

fic generator is developed to produce traffic data at

any arbitrary road network[109]. The tool is shipped

with different traffic generators including Brinkhoff and

BerlinMOD as well as various road network sources

such as U.S.A. Tiger files 7○ and OpenStreetMap.

Indoor. To generate indoor moving objects, a floor

plan, showing the relationships between rooms, spaces,

and other physical features at one level of a structure,

plays an essential role. The SLAM-like (simultaneous

localization and mapping) approaches are proposed for

floor plan reconstruction through observations of de-

vices carried by humans[91]. Yang et al. created in-

door moving objects based on floor plans and some

pre-defined movement rules, e.g., an object in a room

can move to the hallway[66,67]. IndoorSTG generates

semantic-based trajectories in a simulated indoor envi-

ronment including rooms, doors, corridors, stairs, eleva-

tors and virtual position devices[110]. A toolkit named

Vita is developed to generate indoor mobility data for

real-world buildings[111]. The tool produces the desired

data in a three-layer pipeline: infrastructure, moving

object and position. The moving object layer offers the

functionality of defining objects or trajectories, with

configurable indoor moving patterns, distribution mod-

els, and sampling frequencies.

7 Conclusions

The article summarized a number of research results

related to moving objects with transportation modes.

The covered topics mainly include modeling and rep-

resenting the data, answering spatio-temporal queries

with motion modes, and predicting travel modes from

sensor data. Although the survey aims at including as

many relevant issues as possible, some are left out due

to the space limitation. We hope that the survey may

serve as a basic guide for researchers and engineers who

are interested in studying the topic and making further

contribution.

One important future work is to study the on-

line update as most existing techniques deal with the

past movement. Infrastructure objects may be up-

dated, e.g., construction of roads and buildings, and

new bus schedule. Moving objects are updated in

terms of location, speed, direction and transportation

7○http://www.census.gov/geo/maps-data/data/tiger-line.html, Nov. 2018.
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modes. In particular, updating transportation modes

incurs the change of the environment and the refer-

enced object. Another interesting issue is to discover

interesting movement patterns regarding different en-

vironments and transportation modes. Meanwhile, the

knowledge graph for urban movement can be built to

extract meaningful relationships between humans and

further enhance innovative mobile applications.
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Indexing the positions of continuously moving objects. In

Proc. the 2000 ACM SIGMOD International Conference

on Management of Data, May 2000, pp.331-342.
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