
Le Q, Amer A, Holliday J. RAID 4SMR: RAID array with shingled magnetic recording disk for mass storage systems.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 34(4): 854–868 July 2019. DOI 10.1007/s11390-019-1946-

4

RAID 4SMR: RAID Array with Shingled Magnetic Recording Disk

for Mass Storage Systems

Quoc Le, Ahmed Amer, and JoAnne Holliday, Member, ACM, IEEE

Department of Computer Engineering, School of Engineering, Santa Clara University, Santa Clara, CA 95053, U.S.A.

E-mail: {qle, aamer, jholliday}@scu.edu

Received September 23, 2018; revised March 31, 2019.

Abstract One way to increase storage density is using a shingled magnetic recording (SMR) disk. We propose a novel

use of SMR disks with RAID (redundant array of independent disks) arrays, specifically building upon and compared with

a basic RAID 4 arrangement. The proposed scheme (called RAID 4SMR) has the potential to improve the performance of

a traditional RAID 4 array with SMR disks. Our evaluation shows that compared with the standard RAID 4, when using

update in-place in RAID arrays, RAID 4SMR with garbage collection not just can allow the adoption of SMR disks with a

reduced performance penalty, but offers a performance improvement of up to 56%.

Keywords disk array, redundant array of independent disks (RAID), shingled magnetic recording (SMR), shingled write

1 Introduction and Related Work

1.1 Introduction

Disk drives have undergone dramatic increases in

storage density, totaling over six orders of magnitude

in the past five decades; but for capacities to con-

tinue to grow, they must overcome a looming physi-

cal limit. One of the most promising approaches to

overcoming this limit is shingled magnetic recording

(SMR) and its follow-up technology, two-dimensional

magnetic recording (TDMR). The attractiveness of this

approach is that it requires minimal changes to exist-

ing magnetic recording technology, and could easily be

adopted with essentially the same physical recording

mechanisms. Current disks offer recording densities of

400 Gb/in2, but with shingled writing 1 Tb/in2 would

be considered an achievable goal[1−4]. Since a shingled

write disk would, for most tracks, be unable to per-

form a non-destructive write operation, data layout and

management strategies become essential to the smooth

adoption of shingled write disks (i.e., without requir-

ing significant changes to overlying software such as file

systems, databases, object stores, and logical volume

managers). The success of any approach depends on

the nature of the block I/O workload presented to the

device.

As of 2018, there are many cloud storage providers

such as Google Cloud Storage 1○, Dropbox 2○, and

Backblaze 3○. There are hundreds of millions of giga-

bytes of data stored in the mass storage systems used

by these providers. These systems need to scale as large

as possible while maintaining costs as low as possible.

Most of these services target customers using cloud sto-

rage as data archiving, which involves mostly writes,

less reads, and virtually no updates to archived data.

This should be perfect for SMR disks. We propose

to use SMR disks to solve the mass storage problem.

We have evaluated an array of recorded workloads and

their impact on a set of disk models logically repre-

sentative of the different strategies for data layout on

shingled write disks, and proposed a scheme for using

SMR disks in RAID (redundant array of independent

disks) arrays, named RAID 4SMR. We also evaluated

our RAID 4SMR scheme with garbage collection and

Regular Paper

A preliminary version of the paper was published in the Proceedings of MASCOTS 2015.
1○Google Cloud Storage. https://cloud.google.com/storage, Jan. 2019.
2○DropBox. http://www.dropbox.com, Jan. 2019.
3○Backblaze. http://www.backblaze.com, Jan. 2019.

©2019 Springer Science +Business Media, LLC & Science Press, China

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 855

analyzed the reliability of the scheme.

SMR drives could behave differently for write and

re-write operations. Write operations when coming to

SMR drives will be written sequentially to an arbitrary

band. Seagate, one of the most major drive suppli-

ers, published an article 4○ on how SMR drive works

in 2013, explained that any re-write or update exist-

ing block requires SMR drives to correct not only the

requested data, but essentially all data on the follow-

ing tracks. Western Digital (WD), another major hard

drives manufacturer, in a knowledge base article 5○ en-

ables the customers to help themselves, and states that

all physical sectors are written sequentially in a di-

rection radically and are only rewritten after a wrap-

around. The write behavior of an SMR drive is also

confirmed by Aghayev et al.[5] in an effort that com-

bines software and hardware techniques to discover key

properties of drive-managed SMR drives.

In the remainder of the paper, we describe our expe-

riences evaluating the behavior of SMR disks when used

in an array configuration or when faced with heavily in-

terleaved workloads from multiple sources. While our

initial results show a potentially dramatic negative im-

pact when dealing with heavily interleaved workloads,

they also demonstrate the positive effect of reducing

such interleaving. By rethinking a traditional array

layout and redirecting re-write operations to a diffe-

rent drive, we have revised the design of a standard

RAID 4 array to not just allow the adaption of SMR

disks with a reduced performance penalty, but offer a

performance improvement of up to 56%. This can be

done by adding a dedicated data HDD and replacing

data disks with SMR disks in a basic RAID 4 arrange-

ment. Finally, we propose RAID 4SMR (we change the

name from RAID 4S to RAID 4SMR to avoid confusion

with RAID 4S by Wacha et al.[6]) which explores how

SMR disks can be combined with conventional mag-

netic recording (CMR) or standard disks to achieve an

efficient and reliable RAID array. We extend our pre-

liminary work on RAID 4SMR to support garbage col-

lection, followed by detailed analyses on fault tolerance,

space efficiency, and reliability.

1.2 Related Work

Wacha et al.[6] used the name of RAID 4S for adding

faster SSD to RAID arrays to alleviate the RAID 4

parity bottleneck which actually replaces parity disk in

RAID 4 with SSD to improve small writes. This is diffe-

rent from our approach which replaces all the standard

data HDDs with SMR disks (not just the parity disk).

Introducing a RAID 4 array with all SMR disks as data

disks would be more challenging since SMR disks are

getting worse with a great number of update-in-place

operations[7].

Jin et al.[8,9] proposed an SMR RAID file system.

The difference is that theirs is based on RAID 5 whereas

ours is RAID 4. Ours is more extendable, as we can

chain multiple RAID 4 systems together. Also, Lu

and Zhou[10] tried to employ SMR RAID with SSD.

Aghayev et al.[5] tried combining software and hard-

ware techniques to reverse engineer key properties of

SMR drives.

Earlier work has been described on shingled disks

and their physical design, including basic mecha-

nisms to deal with the problem of destructive

updates[1−4,11−16]. Most proposed techniques revolve

around some form of log-structuring of the data[17−23].

The log-structuring mechanisms owe their designs to

the original log-structured file-systems[24−26], and sub-

sequent work applying the same techniques in areas as

diverse as databases, tertiary storage, and tape-based

filesystems[27−33].

Recent studies describing the management of data

on shingled write disks have been described by Gibson

and Polte[16], and by Casutto et al.[34] The latter of-

fered one of the first practical solutions to managing a

log-structured layout in the presence of limited meta-

data storage capacity, while Amer et al.[35,36] explored a

spectrum of design parameters for shingled write disks,

including alternative interfaces such as object-based

stores, or file system based approaches to addressing

the new disk behavior.

Also, there are some reliability analyses for different

RAID systems which focus on mean time to data loss

(MTTDL)[37−41].

Yang et al.[42] presented a virtual persistent cache to

remedy the long latency behavior of host-aware SMR.

He and Du[43] introduced an approach to SMR trans-

lation which adapts a drive-managed SMR data mana-

gement scheme.

4○Seagate Technology LLC (2013). Introducing Seagate SMR. https://www.seagate.com/tech-insights/breaking-areal-density-
barriers-with-seagate-smr-master-ti, Jan. 2019.

5○Western Digital. TRIM Command Support. https://support.wdc.com/knowledgebase/answer.aspx?ID=26014, Jan. 2019.

856 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

2 Background

Magnetic recording is rapidly approaching a physi-

cal limit that cannot be avoided without significant

changes to the methods used to record data. The “me-

dia trilemma” is a term used by Sann et al.[14] to de-

scribe the physical limit that hard drives are rapidly

approaching, illustrated in Fig.1.

Signal to

Noise Ratio

Media

Writability

Thermal

Stability

Fig.1. Media trilemma (a term coined by Sann et al.[14]).

To overcome the recording limits imposed by the

media trilemma, shingled magnetic recording offers a

solution that does not require a departure from the ba-

sic mechanisms of magnetic recording used in current

disks. It requires minor modification to the read-write

head in order to allow for “narrower” tracks to be writ-

ten, and this comes at the cost of a functional difference

in how tracks can be updated.

To illustrate how a disk employing shingled mag-

netic recording can effect increased data storage densi-

ties, we start with a logical view of tracks and an illus-

tration of the required modification to the disk head. In

Fig.2 we see how data is organized on a disk in a series of

adjacent “tracks” each of which is distinctly written and

read. The media trilemma dictates a minimum “width”

on such tracks. It is important to note that this limit is

imposed upon the tracks being written, not when they

are read. The writability of the medium (acting to al-

low reduced widths) coupled with the strength of the

magnetic field (acting to widen the track) is in conflict

when the track is being written. Assuming we were

able to write a narrow track, we would be able to read

much thinner tracks than those the trilemma allows us

to write. Assisted recording methods exploit this fact,

by temporarily overcoming the difficulty of writing to

a more stable medium using focused heat (thereby the

“wider” field would be used, but the width of the track

would be restricted to the area that has been heated).

Shingled magnetic recording simply uses a more power-

ful magnetic field to perform writes, requiring no such

assistance, but to allow for narrower tracks, a modified

disk head is employed. Specifically, a magnetic shield

is added to the trailing sides of the head, as shown in

Fig.3(a). In this manner, as a track is written it will be

written as a “wide” track. However, such width would

only impact the current track but not the entirety of

the preceding track as it would be protected by the

trailing shield. This would allow us to not only bring

tracks closer, but effectively overlap them. Resulting

in a shingled track arrangement, where all that is left

of a track after the shingling, is what it needed to read

the data, not the greater width necessary to initially

write the track. In this manner, we get increased disk

density primarily through the increase of track density,

as illustrated in Fig.3(b). However this increased den-

sity comes at the expense of rendering any subsequent

attempt to update these narrower preceding tracks de-

structive.

Data Density
Simultaneously Limited by Either
Material Instability or Write Field
Strength

Independent Track Writes
Neighbouring Tracks Unaffected

Fig.2. Conceptual view of tracks, as written with a current disk
head. Decreasing media writability (to improve stability) for the
sake of increasing density would have an adverse effect on track
density if the disk head resulted in “wider” tracks.

A disk for which all the tracks are overlapped would

likely be impractical for use as a random-access block

storage device, and thus a suitable layout scheme for the

written blocks and tracks is essential to maintain exist-

ing functionality of magnetic hard drives. If a shingled

write disk (an SMR drive) were to write all its tracks

in a shingled manner, then from one edge of the plat-

ter to the other, all tracks would be overlapped. This

would mean that updating any previously written track

would necessitate pre-reading all adjacent tracks that

would be affected, so as to write them back to the disk

after updating the desired track. Unfortunately, this

would not be limited to a handful of tracks adjacent to

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 857

Increased Data Density

Overlapped "Narrower" Tracks

"Wide" Write
Destructive for Preceding Tracks

Weak Field
Narrow Tracks

Unstable Medium

Strong Field
Wider Tracks

Stable Medium

Shielded Strong Field
Narrow Tracks
Stable Medium

(b)(a)

Fig.3. Shingled magnetic recording (SMR), increasing data density through the use of overlapping tracks, written through the use of
a shielded disk head. (a) A shielded disk head, with side and trailing edges shielded. This protects tracks written on one side of the
head. (b) Increased track and disk density thanks to shingled magnetic recording. Such a shingled-write disk gains storage density by
overlapping successively written tracks, leaving “narrower” tracks in its wake.

the track being updated, but as each track would itself

have to be written back to the disk, this would result in

the need to read further tracks as the neighboring tracks

are restored (as restoring each of the neighboring tracks

would itself be equivalent to the original request to up-

date the first track). In this manner, any update of an

earlier track in its existing location would necessitate

re-writing the entire disk if it were completely shingled.

To avoid the need to update a complete disk to ac-

commodate the update of a previously written track,

and to effectively localize updates to smaller discrete

portions of the disk, a shingled write disk is arranged

into distinct bands[11,16,34,35]. We illustrate the logi-

cal view of such bands in Fig.4. The number of tracks

assigned to a band, the workload observed, and the

manner in which written block is handled by the data

layout scheme affect the performance of a shingled disk.

Band i-2Band i-1Band iBand i+1

Shingled Tracks of Band i

Final Track of Band i + Inter-Band Gap

Fig.4. Logical view of a shingled write disk divided into bands,
allowing the in-place update of a band, although at the expense
of a destructive track write within an individual band.

3 SMR in Server Environments

An initial evaluation of the impact of shingled writ-

ing under varying workloads and for different device

parameters (band size and buffer capacity) was done in

[44]. To evaluate the impact of varied workloads on an

SMR drive, we attempt to gather performance metrics

that are as universal as possible. We wanted to avoid

metrics that depend heavily on physical characteristics

of disks, including those yet to be built. We focused

on the functional nature of the drives, the shingling

of tracks within a band, and the resulting impact on

data transfer tasks. While we were investigating the

use of LBA distances to evaluate the performance of

SMR drives, we found that LBA is unreliable as a met-

ric to analyze movements in SMR drives. For drive-

managed SMR drives, to maintain the consistency of

data next to the written block and efficiently update

data, LBA address may be dynamically mapped to an-

other physical block address (PBA). To this end, we

used metrics such as the logical block movements (block

distance) instead of time to read/write a block of data.

The number of block movements is the difference be-

tween the logical address of the first block visited and

that of the next block visited. We also collected other

logical “movement” metrics, such as track movements

(one movement of which results from the need to move

the disk head from one track to another) and band

movements (when the head moves from one band to an-

other band). Another metric is the number of direction

changes (i.e., the number of times the order of access

to blocks, tracks, or bands changed). Such direction

858 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

changes measure how often the disk head is required to

move in another direction or to skip a block/track/band

on the move. For example, if the head is reading track

0, and going to track 6 due to a read request, we have

one logical track direction change. We collected all of

these metrics and found that aside from differences in

scale, they are largely correlated. Therefore, our ex-

perimental results presented in this paper use the block

movements metric.

In Section 4 “Building SMR-Aware Disk Arrays”

we propose one possible approach to building an SMR

aware disk array suitable for use in a server environ-

ment. We, therefore, first evaluate the impact of data

placement and benefits or lack of them from interleav-

ing workloads that involve writes originating from mul-

tiple sources on these disk arrays. Whether an array of

shingled disks is arranged as a simple spanning arrange-

ment, or a striped arrangement (aimed at increasing ef-

fective bandwidth), can dramatically affect the amount

of data relocation and re-writing required to maintain

a shingled write drive. We find that a workload that

originates from a heavily interleaved mix of sources is

detrimental to shingled write disk performance. We

reached these preliminary conclusions through the re-

play of recorded workload traces.

The workload types collected are block I/O level

traces[45] drawn from a variety of system types, block

traces reconstructed from web server HTTP request

logs 6○, and new block-level traces which we have col-

lected from general file system usage. From both the

reconstructed web traces and our own traces, we were

able to generate workloads representative of specialized

applications. The web traces demonstrate the beha-

vior of a block storage device used to host web pages,

while one of our file system traces was drawn from a

file system being used to host the image files of a local

VMWARE installation.

To evaluate the impact of shingled writing when em-

ployed on disks arranged in array, we took the same

four recorded workloads and replayed them against a

simulated drive to measure the number of track-to-track

movements that would be incurred under different con-

ditions. We did not consider disk parallelism in this

case to simplify the results.

Fig.5 shows the logical arrangement of blocks we

evaluated, while Fig.6 shows a sample of the prelimi-

nary results we observed for the amount of inter-track

movement resulting from a total of eight different con-

figurations of block arrangement and workload inter-

leaving. All the results in Fig.6 were based on a shin-

gled write disk utilizing a log-structured write scheme

to minimize the need to copy overlapped blocks when

an in-band update was required. The pure workload

shows the total amount of disk activity across four disks

arranged in sequence, with workloads replayed sequen-

tially and including no interleaving. In other words,

four consecutive traces were each replayed in their en-

tirety, and consecutively, against a disk array employ-

ing a spanning layout. This effectively simulated the

behavior of a workload that varied over time, but the

pure workload at no point included requests interleaved

with others of a different workload. The striped work-

load combines four different workloads, and replays the

composite workload against a striped organization of

disk blocks across four disks. The workload was gene-

rated by randomly interleaving the operations from

each of the four workloads in limited bursts. The x-

axis of the figure represents each burst size, increasing

from a minimum of 1 (where the interleaving is max-

imized) up to bursts of 1 000 operations. Finally, the

dedicated results represent the behavior of the shingled

write disks when each disk is dedicated to an individual

source workload.

A A A

A

B B B

B

C C C

C

D D D

D

(b)(a) (c) (d)

Fig.5. Logical view of a simple array of disks. In the striped
arrangement, blocks 0, 1, and 2 are arranged as A1, B1, and
C1, respectively. In pure arrangements, blocks 0, 1, and 2 are
arranged as A1, A2, and A3, respectively. (a) Disk A. (b) Disk
B. (c) Disk C. (D) Disk D.

 103

 104

 105

 0 100 200 300 400 500 600 700 800 900 1000

T
o
ta

l
T
ra

ck
 S

w
it
ch

e
s

(Τ
1
0

6
)

Workload Burst Size

Striped

Pure

Dedicated

Fig.6. Disk activity when replaying multi-source traces against
a simulated array of shingled write disks.

6○NASA. http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, Mar. 2011.

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 859

Fig.6 shows that as the degree of interleaving in the

composite workload traces is reduced (and the burst

sizes increase) for the array, we see a reduction in the

amount of disk activity that approaches that of the pure

configuration. This is predictable and expected, as re-

playing a sequence of traces without any interleaving is

exactly what is done by that configuration, and is the

ultimate destination of extending burst sizes until they

encompass an individual workload trace in its entirety.

The surprising observations are just how much more

activity results when unrelated operations are finely

merged into a composite trace, and how further im-

provement can be achieved by separating workloads

from different sources to individual dedicated disks. For

a workload created from interleaving operations from

multiple sources into small bursts, the amount of move-

ment caused by relocating disk bands rises dramatically

(up to 40 times in this instance, though quickly drop-

ping as the burst size increases to the level of 50 and

250 operations per burst). We attribute this behavior

to the increased likelihood of unrelated data being writ-

ten in adjacent positions increasing the likelihood of an

update being required that is unrelated to much of the

data on the same band. This problem is alleviated as

the burst sizes increase, and eliminated entirely when

individual dedicated disks are used. The difference in

the dedicated configuration is that, unlike the pure con-

figuration, it will never result in the writing of data from

different data sources to the same device. Because the

dedicated configuration avoids this risk entirely, we see

a further drop in disk activity of around 25%. Based on

these observations, in Section 4, “Building SMR-Aware

Disk Arrays”, we will propose RAID 4SMR which is

a disk array system based on RAID 4[46] using SMR

disks.

4 Building SMR-Aware Disk Arrays

In computer storage, there are several different stan-

dard and non-standard RAID (redundant array of in-

dependent disks) configurations such as RAID 0, 1, 2,

3, 4, 5, 6, 10. These configurations help to build a

large reliable storage system from more than two com-

mon hard drives. This can be done by using one or

more of the techniques of striping, mirroring, or par-

ity. In this manuscript, we choose to focus our study

around RAID 4, instead of RAID 5 (distributed par-

ity blocks) or RAID 6 (extra parity blocks), because it

is the simplest and lowest overhead version of parity-

based RAID, and therefore allows us to evaluate the

impact of SMR integration most cleanly (i.e., without

introducing additional variables that are tangential to

the question of SMR’s impact). When we structure

data appropriately in the log fashion, there is no advan-

tage of RAID 5 over RAID 4. RAID 6 deals with multi-

disk failure which creates more overhead compared with

RAID 4.

Shingled write disk with the SMR technology can

help us triple data density in the future[2], but it comes

with a price of update in-place. The degradation of per-

formance gets worse if we just switch regular HDDs to

SMRs in RAID arrays[7]. We now propose RAID 4SMR

in Fig.7 as an approach to utilizing SMR devices in

a disk array arrangement which is a hybrid system of

three SMRs and two HDDs for a redundant array. We

have chosen a scheme that maintains a traditional block

interface so that an SMR device will integrate easily

into existing storage architectures. On the SMR disks

we eliminate the update-in-place operation due to the

high cost of updating. The regular HDD has the ad-

vantage of in-place update efficiency; but as we are not

limited to traditional hard drives, we can use tradi-

tional HDDs or recently popular SSDs. The mapping

table can be easily stored in battery-backed memory

(called NVRAM).

Data

SMR 1

Data

HDD

XOR

SMR-Eliminate Update In-Place Update

RAID 4SMR

D

Data

SMR 2

D

Data

SMR 3

D

Parity

HDD

P

Fig.7. When the data is first written to the array, parity disk will
store P = XOR(D1, D2, D3, DataHDD). Data HDD blocks
are expected to be zero-initialized.

When dealing with garbage collection, only actively

updated blocks are tracked in a hash table along with

a location of the actual block in Data HDD. If a band

with a block number is in the mapping table, it will

be considered as an invalid or dirty block. In addi-

tion to the mapping table, a simple lookup table for

a number of invalid blocks in a band is maintained to

quickly identify when the garbage collection procedure

will be triggered (which reduces the number of active

860 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

re-mappings that need to be tracked). Together, only

modest mapping and lookup tables are necessary to re-

trieve the correct data.

Since SMR is the most suitable for archival storage

or a WORM (Write One Read Many) disk, we design

our SMR RAID to be a solution for reliable data sto-

rage arrays. The reason why we chose RAID 4 instead

of other RAIDs is that RAID 4 stores frequently up-

dated parity blocks on a dedicated disk, and the rest

three data disks can be all replaced by SMR disks.

One of the advantages of the RAID 4SMR design is

that we can chain many RAID 4SMR systems together

with one large Data HDD (or SSD to avoid performance

bottleneck) as shown in Fig.8. The Data HDD does

not need to be the same size with other SMRs and the

Parity HDD. This scheme is suitable for the enterprise

level where a lot of the data is archival. All the data in

the system is protected by one or more parity disks in

chaining systems.

Data
SMR 1

Data
HDD

XOR

RAID 4SMR Chaining

D

Data
SMR 2

D

Data
SMR 3

D

Parity
HDD

P

Data
SMR 1

XOR

D

Data
SMR 2

D

Data
SMR 3

D

Parity
HDD

P

SMR-Eliminate Update In-Place Update

Fig.8. RAID 4SMR can be chained together to form a bigger
array.

We anticipate that the volume size for this sim-

ple standalone RAID 4SMR would be around 30 TB–

40 TB. This could be accomplished with an array of

3×10 TB SMR disks and 2×10 TB regular HDD disks

(for both parity and data disks).

In Fig.7 we illustrate our approach to maintaining

a block interface for a disk array built around shingled

write devices. In this example, data is held primarily on

disks D1–D3, which are all SMR devices, while parity

is held on disk P , which is not a shingled write disk, but

may be composed of one or more traditional magnetic

disks, or a device built around a storage class memory

technology or flash-based SSDs (recommended). The

system is augmented with an additional mass storage

device (labeled Data HDD in the figure). This last de-

vice can be a traditional magnetic disk with update-

in-place efficiency. Its purpose is to serve as a collec-

tion of updated data blocks. With this design, Data

SMR disks (D1–D3) only update whole bands during

garbage collection. However, this last device need not

be a different storage technology but could utilize shin-

gled writing if it serves as a journal to hold each block

update.

With an updating intensive workload, all the up-

dates will be redirected to the Data HDD so that the

Data HDD now becomes the potential performance bot-

tleneck as well as the Parity HDD disk. We recommend

a high-performance disk used in this case.

Since the Data HDD can be updated in an update

in-place fashion, and will only serve to hold updated

data blocks that could not be updated in-place on Data

SMR disks, it will hold a very small fraction of the data

in the entire array. But as it needs to be protected

against single-device failures, it requires that the par-

ity disk be capable of efficient updates in-place. The

parity will need to be updated with every write to the

Data SMR disks, or any write that is redirected to this

Data HDD (as illustrated in Fig.9). This is why we re-

quire the parity disk to be capable of efficient in-place

updates. In prior work, we have found that utilizing a

hybrid arrangement of data and parity disks, with the

parity disk employing a different storage technology, of-

fers performance and reliability benefits for the overall

system[47].

While such an architecture might seem to impose a

heavy burden on storage capacity, as it appears to re-

quire an additional device for every RAID-like storage

array, this is not the case in practice. If we estimate

that fewer than 5% of all disk blocks are ever updated

in most mass storage scenarios, then we can see that

the capacity of Data HDD disks will go largely unused.

It is therefore possible to utilize the same Data HDD

device with multiple RAID 4SMR arrays, as illustrated

in Fig.8. This will have a slightly negative impact on

overall system reliability, as it creates an interdepen-

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 861

dency among up to 20 different arrays (estimate 5%

updates) that could potentially be linked in this man-

ner. However, it is important to point out that this is a

very minor impact, as each and every array would still

be capable of surviving the loss of an individual disk

device (including the shared device, for which different

portions of its data are necessary for, and dependent

on, different arrays).

Data

SMR 1

Data

HDD

XOR

RAID 4SMR

D1

Data

SMR 2

D2

Data

SMR 3

D3

Parity

HDD

P ' D2'

Update D2 to D2'

SMR-Eliminate Update In-Place Update

Fig.9. When one of the blocks in the shingled array is updated,
the data on SMR disks will be left unchanged, but the updated
block will be written into Data HDD and the corresponding par-
ity block is recalculated.

When chaining several RAID 4SMR systems to-

gether, we need a scheduling policy to choose which

RAID 4SMR disk groups to write. Choosing the right

algorithm will also affect the performance when data is

retrieved later. In general cases, we can implement a

simple round-robin (RR) algorithm to more evenly dis-

tribute the burden across disk groups. If one decided

to deploy RAID 4SMR disk groups over a complex net-

work fabric, a shortest path algorithm might be a way

to improve the load as well.

Assuming a read is randomly distributed over the

range of all blocks and we anticipate that 5% of write-

operations are rewritten blocks. In the worst case, all

updated blocks are in Data HDD (without garbage col-

lection). That means the Data HDD will only be read

5/100 (or 1/20) of the time. In the case of 20 chained

RAID 4SMR subsystems, randomly distributed read

is going to put the whole system at its highest read

performance. It will demand the highest read perfor-

mance from the Data HDD to avoid performance bot-

tleneck. Because the Data HDD will only be read 1/20

of the time, the read speed of the Data HDD should

be greater than the read performance of a standalone

RAID 4SMR. Typical read speed for a currently availa-

ble SMR disk is around 150 MB/s (Seagate 8 TB SMR

drive 7○). Since RAID 4SMR data is distributed over

three Data SMR disks, the expected read speed of a

RAID 4SMR subsystem is 3× 150 MB/s or 450 MB/s.

With a latest SSD disk (the read speed is around

500 MB/s — Samsung SSD 850 EVO 8○) used in place

of the Data HDD disk (which we recommended), the

Data HDD should not be a performance bottleneck.

In Fig.10 we show how RAID 4SMR works when

operation requests arrived. If the operation is read (R),

we just look up the mapping table and retrieve the

data from the appropriate disk and block. The read

operation can read from any Data SMR[1−3] or Data

HDD disk. If the operation is write (W), we need to

figure out whether the write operation is first written

to a unique block or update data of a block. If it is

the first time that we write to the block, we can sim-

ply write data to the next available block in one of the

Data SMRs (D1, D2, D3) (the SMR disk only appends

a block to a band to avoid destroying data blocks next

to it). The controller can write a single block instead of

stripe-distributed blocks across all data disks. Because

of this, RAID 4SMR can be deployed in a fabric over

the network if needed. If the operation is intended to

update a block of a Data SMR disk (D1, D2, or D3),

we now redirect the write to the Data HDD and mark

the stale block invalid in the mapping table. In case

the total number of invalid blocks in the band across

three data SMR disks is more than pre-defined varia-

ble threshold i, the garbage collection process is trig-

gered. The garbage collection process will read valid

data blocks in bands from across three data SMRs (D1,

D2, D3) and the Data HDD disks and rewrite the bands

with valid blocks, new block, and updated blocks in the

Data HDD. Also, the mapping table will be updated.

4.1 RAID 4SMR Fault Tolerance

Every hard drive fails eventually. Both RAID 4SMR

and RAID 4 have a fault tolerance of one drive.

RAID 4SMR can survive one drive failure in any drive.

This is guaranteed to work since RAID 4SMR does not

distribute blocks in a stripe across all data disks. In-

stead, it will rely on the controller to only deal with

a single block. The controller with a mapping table

7○Seagate Technology — ST8000AS0002. https://www.seagate.com/www-content/product-content/hdd-fam/seagate-archive-
hdd/en-us/docs/archive-hdd-ds1834-5c-1508us.pdf, Jan. 2019.

8○Samsung Electronics Co., Ltd. https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850evo, Jan. 2019.

862 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

Data
SMR

↼D֒D֒D↽

Write to Data
SMR ↼D֒D֒D↽

R/W?

Start

Update?

R

W

Data
HDD

Read from

Garbage
Collection

#Invalid>i?

No

Yes

No

Yes

1. Read Data

2. Re-Write Band

Write to
Data HDD

Write to

Fig.10. Flowchart of how RAID 4SMR works.

will be able to collect all required blocks to get the

data back. This mechanism even works when we up-

date more blocks in the same stripe which are eventu-

ally written to the Data HDD. At any time, all blocks

can be retrieved to get the data back, and any block

in a RAID 4SMR system will be protected with a par-

ity block. When one of the disks fails, the array is

in degraded mode and the failed drive needs to be re-

placed. The repair procedure is much the same as that

for RAID 4.

Parity bit in RAID 4SMR is calculated as P =

D1⊕D2 ⊕D3 ⊕DataHDD. If the failed drive is one

of the data disks, we can calculate the lost value based

on the parity disk and the other three online disks. If

the failed drive is the parity disk, we just recalculate

the parity value again. If the failed drive is the Data

HDD, we can also calculate the lost value as we have

the parity disk and other online disks.

In the design of RAID 4SMR, we maintain the re-

liability of RAID 4, in which the array can tolerate

one drive failure (any drive, including the crucial Data

HDD). In case of updated blocks, data is redirected

to Data HDD first before being written back to a

Data SMR in the garbage collection process. When

a block is written to Data HDD, the related par-

ity block is also updated with the new parity value

P = D1 ⊕ D2 ⊕ D3 ⊕ DataHDD. The new parity

value ensures the new block written to the Data HDD

is still protected. These new parity values also guaran-

tee all the blocks in the Data HDD are protected with

other SMR disks and the parity disk. In case the cru-

cial Data HDD fails, the data in it can be restored from

the other three Data SMRs and the parity HDD.

4.2 RAID 4SMR Space Efficiency

Space efficiency is the fraction of the total drives’

capacity that is available to use for data (as opposed to

parity) blocks. The expression has a value between 0

and 1. The higher value is the better.

Let n represent the number of disks in an array.

Standard RAID 4 (with n = 4) has a space efficiency

of 1 − 1
4 = 75% because data is distributed over three

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 863

disks and one of the four disks is used as a parity disk.

Unlike standard RAIDs, RAID 4SMR space effi-

ciency varies widely depending on the number of its

updated blocks. Archival data which is never rewrit-

ten is actually not taking advantage of the dedicated

Data HDD. In this worst case, the data blocks can all

be stored on three SMR disks (without update) in an

array of five disks. The best case is when all the data

SMRs are filled up and the Data HDD is also filled up

with updated blocks. In this case, data is stored on

four disks (all three SMRs and the Data HDD) and

only the parity disk counts against the space efficiency.

The space efficiency for RAID 4SMR is in this range:

1−
1 + c

n
6 space efficiency 6 1−

c

n
,

where n is the number of disks, and c is the number of

chaining systems in RAID 4SMR array. With n = 5

and c = 1 (simple standalone RAID 4SMR array), the

efficiency has a range from 60% to 80%.

Let u represent the percent of updated blocks. Be-

fore the garbage collection, the space efficiency is sup-

posed to be lower at u percent as we do not have to

reclaim those invalid blocks.

When chaining multiple sub RAID 4SMR systems

to take advantage of Data HDD and form a massive

storage system (Fig.8), we anticipate the efficiency is

in line with RAID 4. Let us say we are chaining 20

RAID 4SMR systems, n will be 81 (four disks for each

RAID 4SMR system and only one Data HDD needed),

c will be 20, and the efficiency has a range from 74% to

75%.

4.3 RAID 4SMR Reliability

In this subsection we evaluate the long-term relia-

bility of a simple standalone RAID 4SMR disk array

consisting of four data disks and a parity disk. The

reliability of RAID 4SMR is different than that of stan-

dard RAID 4. The most popular way to estimate the

reliability of a redundant disk array is using mean time

to data loss (MTTDL). When a disk fails, the repair

process is triggered immediately. Let us assume that

disk failures are independent events, exponentially dis-

tributed, denoted by λ as failure rate. The repair is

exponentially distributed with rate µ.

To simplify the calculation, we analyze a simple

RAID 4SMR array with five disks. The Markov Chain

diagram in Fig.11 displays the simplified state transi-

tion probability for a RAID 4SMR array without chain-

ing. State <0> is the ideal state which represents the

normal state of the array when all five disks are opera-

tional as expected. The starting state is state < 0 >

(safe), from which we transition to state < 1 > (de-

graded) at rate 5λ whenever one of the five disks fails.

As we know, RAID 4SMR can recover from one disk

failure, and a failure of a second disk would bring the

array to data loss state.

0
Safe

1
Degraded

Data
Loss

µ

5λ 4λ

Fig.11. State transition probability diagram — Markov chain
for RAID 4SMR.

The Kolmogorov system of differential equations de-

scribing the behavior of the RAID 4SMR array has the

form:

dp0(t)

dt
= −5λp0(t) + µp1(t),

dp1(t)

dt
= 5λp0(t)− (4λ+ µ)p1(t),

where pi(t) is the probability that the system is in state

<i> at time t with the initial conditions p0(0) = 1 and

p1(0) = 0.

The Laplace transforms of these equations are:

sp∗0(s) = −5λp∗0(s) + µp∗1(s) + 1,

sp∗1(s) = 5λp∗0(s)− (4λ+ µ)p∗1(s).

Observing that the mean time to data loss

(MTTDL) of the array is given by:

MTTDL =
∑

i

p∗i (0).

We solve the system of Laplace transforms for s = 0

and use this result to obtain the MTTDL of the array:

MTTDL =
µ+ 9λ

20λ2
,

with mean time to failure (MTTF) and mean time to

repair (MTTR) defined as:

MTTF =
1

λ
,

MTTR =
1

µ
.

864 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

4.4 RAID 4SMR with Garbage Collection

Evaluation

We showed how RAID 4SMR[48] works without

garbage collection, which is an ideal situation as we

do not have to reclaim the freed blocks. In this subsec-

tion, we evaluate the same RAID 4SMR with garbage

collection in our simulation to determine the trade-off

of using an SMR disk in RAID 4SMR vs a standard

RAID 4 array. Below is the simple pseudo code for the

garbage collection algorithm.

if totalInvalidBlocksInBands() >pre-defined-i then

buf ← getData(DataSMR(D1 ,D2, D3), DataHDD);
deleteOldBlocksInDataHDD(); // blocks stored in
buf ;
rewriteSMRBands(buf);

end

In order to perform garbage collection, we add the

support for reclaiming freed blocks in our simulation.

This garbage collection process will be triggered when

we have enough i freed blocks, which is a pre-defined

value. Value of i is in the range of 0 < i < 3×band size.

The highest value means all blocks in three bands across

the three Data SMR disks are invalid. In the simula-

tion, i is chosen as the number of blocks in a band (or

band size). It means that when the garbage collection is

triggered, i blocks of updated blocks are read from the

Data HDD. These blocks will replace invalid blocks in

related bands across three SMR disks. After that, these

all valid bands will be written back to three SMR disks.

The bands are now fully updated with valid blocks.

Using the collection of workloads we gathered, we

mix those workloads in the same category together to

form newly-merged workloads to simulate the multi-

user environments. Although these new workloads have

the same name, they may not have the same cha-

racteristics as standalone workloads. We have plotted

the new workload’s percentage of written and updated

blocks in Fig.12. We define an update as an operation

attempting to write to a block that was previously writ-

ten during the observation period. The update percent

is the percentage of total blocks that were updated.

The number on the x-axis is the number of write ope-

rations in the case of the write percent and the number

of update operations for the update percent. Workloads

show a variation of the percentage of updates across and

within workload types.

As an SMR drive cannot simply perform an update

in-place, we paid particular attention to block update

operations. It is these operations that, unless they hap-

pen to fall at the last track of a band, would require us

to address the update-in-place restriction. Our analysis

differs from prior art[35] in that we do not track updates

as simply blocks that were written more than twice as

a percentage of the write operations experienced by the

device. We plot the percentage of blocks that were ob-

served to be writes or updates. At each data point,

we plot the percentage of all blocks that were written

100.00%

10.00%

1.00%

0.10%

0.01%

100.00%

10.00%

1.00%

100.00%

10.00%

1.00%

100.00%

10.00%

1.00%

0.10%

0.01%
1 2 3 4 5 6

Number of Operations

7

Blocks Written
Blocks Updated

8 9 10

(a)

1 2 3 4 5 6

Number of Operations

7 8 9 10

(b)

1 2 3 4 5 6

Number of Operations

7 8 9 10

(c)

1 2 3 4 5 6

Number of Operations

7 8 9 10

(d)

Blocks Written
Blocks Updated

Blocks Written
Blocks Updated

Blocks Written
Blocks Updated

Fig.12. Four merged workloads from the same category. (a) NASA: 0.031% writes, 0.019% updates. (b) RSRCH: 0.016% writes,
0.006% updates. (c) VMWare: 5.286% writes, 1.382% updates. (d) WEB: 2.387% writes, 1.016% updates.

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 865

at most x times, where x is given on the x-axis as a

percentage of all blocks. Similarly we also plot the per-

centage of all blocks that were updated at most x times

as a percentage of all blocks. These quantities are re-

lated, but while the percentage of blocks updated at

most x times might appear to be the same as the per-

centage of blocks written at most x + 1 times, that is

not necessarily the case.

The y-axis is presented in log-scale. Same generated

workloads (NASA, RSRCH, VMWare, and WEB) will

be used for all RAID 4, RAID 4SMR, and RAID 4SMR

with garbage collection. With that, we can calcu-

late the overhead of garbage collection in the same

RAID 4SMR systems as well as RAID 4 with SMR

disks. In this subsection, we will evaluate the use of an

SMR disk in a RAID 4SMR array with garbage collec-

tion.

If a RAID 4SMR uses a parity bit to protect the ar-

ray from a drive failure, it will cost more for a write

intensive system. In the best case scenario, we can

expect blocks are distributed all over the data disks,

which means the maximum of read/write performance

is (n− c− 1)X .

If the array is in degraded mode, it will affect the

system performance since all the related disks (though

not the replaced data disk) will need to be read in or-

der to get the data back. Since most of the data on

the SMR disk is archival data, the overall system per-

formance will not be impacted so much as that with

regular RAID arrays where data is accessed/updated

frequently. The performance of the RAID arrays, in

any case, is only restored when a new SMR/HDD is re-

placed and data is re-synced. The process to re-sync a

4 TB data disk nowadays can take more than 10 hours

in a hardware RAID system. This is even worse if the

scheme is implemented in a software RAID array.

To evaluate the efficiency of RAID 4SMR over

RAID 4, we calculate the ratio of RAID 4SMR over

RAID 4 (by the number of block movements as usual).

To be fair, the number of movements only counts for the

first three data disks in both RAID 4 and RAID 4SMR

(parity and Data HDD disks movement do not count)

because the standard RAID 4 has only four disks.

The result table’s (Table 1) last column shows that

RAID 4SMR always performs better than standard

RAID 4 thanks to the deferring of update operations to

the Data HDD in RAID 4SMR. In the case of RSRCH

mixed workload with extremely low write and update

percents, we can see a slight improvement of 1.5%.

This improvement can go up to 56% in our evaluation

with WEB mixed workload (high write and update per-

cents).

When adding garbage collection to a RAID 4SMR

scheme, we expect to see some overhead for garbage

collection operations. This overhead should not add

a tremendous amount of extra block movements. By

calculating the ratio of RAID 4SMR with garbage col-

lection (RAID 4SMR gc) and RAID 4SMR (Table 1)

in the first column, we are confident that RAID 4SMR

gc is usable in the real world with different types of

workloads. The maximum overhead of 2.11% in the

case of a VMWare mixed workload (5.28% written and

1.38% updated) is very low. RAID 4SMR with garbage

collection is ideal for archival workloads which have al-

most no overhead for garbage collection and less block

movements compared with standard RAID 4. While

deploying SMR disks in a chain of RAID 4SMR, the

benefits will be even more pronounced since space effi-

ciency can max out at 80% compared with the 75% of

a standard RAID 4. In general, RAID 4SMR (with or

without garbage collection) performs better than stan-

dard RAID 4 with fewer block movements.

Table 1. Ratio of Number of Block Movements for RAID 4,

RAID 4SMR, and RAID 4SMR gc with SMR Disk

Workload RAID 4SMR gc/ RAID 4SMR gc/ RAID 4SMR/

RAID 4SMR (%) RAID 4 (%) RAID 4 (%)

NASA 100.00 97.72 97.72

RSRCH 100.00 98.57 98.57

VMWare 102.11 52.52 51.44

WEB 100.78 44.66 44.32

5 Conclusions

We started out evaluating an SMR disk with our

simulation with many different traces. Later, we ran

the simulation with SMR disks in array configurations.

We found that without a proper scheme, SMR disks are

almost unusable in an array configuration.

In this manuscript, we proposed RAID 4SMR with

SMR disks in places of data disks in a RAID 4 ar-

ray. Contrary to the popular belief that an SMR drive

is only suitable for archival storage and would per-

form worse in RAID arrays, our evaluation showed that

with proper design modifications, such as our proposed

RAID 4SMR, SMR disks can be effectively employed

in place of standard HDDs. With RAID 4SMR, SMR

drives can greatly improve not just data density, but

also performance, while maintaining the same reliabi-

lity. In other words, an appropriately SMR-aware ar-

rangement, like RAID 4SMR, allows the SMR disk to

866 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

be more effectively used for mass storage systems or

over network fabrics.

With SMR disks, it is easy to assume that any work-

load that is heavily biased toward writes would be prob-

lematic. Our workload analysis has shown the opposite.

Considering the percentage of blocks that experience

updates is at least as important as taking into account

the number that experience writes. In other words, a

single write not to be repeated at the same location is

very different from multiple writes to the same location

at different times. We used a logical distance metric

based on the number of block movements, which is in-

dependent from request timings and changes in precise

physical performance characteristics of devices.

While our previous results in [44] show a negative

impact when dealing with heavily interleaved work-

loads, they also demonstrate the positive affect of re-

ducing such interleaving. This can be achieved ei-

ther by rethinking a traditional array layout and dedi-

cating disks and bands, or by directing independent

workloads to different devices/bands. Our proposed

RAID 4SMR with garbage collection scheme clearly

demonstrated the feasibility of using SMR disks in a

RAID 4 array by outperforming the use of SMR disks

in a standard RAID 4 with update in-place by 56%.

Directing different workloads to different devices can

be aided by existing efforts on workload differentiation

and tagging[49], and would be a simple way to avoid

heavily interleaved workloads.

We started with RAID 4 because it is the simplest

and lowest overhead version of parity-based RAID,

and best allows us to focus on the impacts of using

SMR in generic RAID arrangements. Other standard

RAID arrays such as RAID 5 and RAID 6 come with

some unique characteristics which require more detailed

and focused studies to evaluate the impact of SMR

in more specific contexts. Increasing the reliability of

RAID 4SMR can also be done by using extra parity

disks in a two-dimensional RAID array[50].

For future work, a kernel driver for this RAID 4SMR

with garbage collection is needed to adapt the design

to the real world. Also, a fabric that interconnects to

the individual drives using erasure coding techniques is

considered for new development since disk performance

is quite unpredictable in large-scale data centers.

References

[1] Shiroishi Y, Fukuda K, Tagawa I, Takenoiri S, Tanaka H,

Yoshikawa N. Future options for HDD storage. IEEE Trans-

actions on Magnetics, 2009, 45(10): 3816-3822.

[2] Tagawa I, Williams M. High density data-storage us-

ing shingle-write. http://www.intermagconference.com/in-

termag2009/src/Program1.pdf, May 2019.

[3] Kryder M, Kim C. After hard drives — What comes next?

IEEE Transactions on Magnetics, 2009, 45(10): 3406-3413.

[4] Greaves S, Kanai Y, Muraoka H. Shingled recording for 2–3

Tbit/in2. IEEE Transactions on Magnetics, 2009, 45(10):

3823-3829.

[5] Aghayev A, Shafaei S, Desnoyers P. Skylight — A window

on shingled disk operation. ACM Transactions on Storage,

2015, 11(4): Article No. 16.

[6] Wacha R, Brandt Sent J, Maltzahn C. RAID4S:

Adding SSDs to RAID arrays. https://users.soe.ucs-

c.edu/∼carlosm/Papers/S11.pdf, May 2019.

[7] Le Q, Holliday J, Amer A. The peril and promise of shingled

disk arrays: How to avoid two disks being worse than one.

In Proc. Poster Session at the 10th USENIX Conference

on File and Storage Technologies, Feb. 2012.

[8] Jin C, Xi W, Ching Z, Huo F, Lim C. HiSMRfs: A high

performance file system for shingled storage array. In Proc.

the 30th IEEE Symposium on Mass Storage Systems and

Technologies, Jun. 2014, Article No. 1.

[9] Liu W, Feng D, Zeng L, Chen J. Understanding the

SWD-based RAID System. In Proc. the 2014 International

Conference on Cloud Computing and Big Data, November

2014, pp.175-181.

[10] Lu Z, Zhou G. Design and implementation of hybrid shin-

gled recording RAID system. In Proc. the 14th IEEE Int.

Conf. Dependable, Autonomic and Secure Computing, 14th

Int. Conf. Pervasive Intelligence and Computing, 2nd Int.

Conf. Big Data Intelligence and Computing and Cyber Sci-

ence and Technology Congress, August 2016, pp.937-942.

[11] Kasiraj P, New R, Souza J, Williams M. System

and method for writing data to dedicated bands of a

hard disk drive. United States Patent 7490212, 2009.

http://www.freepatentsonline.com/7490212.html, March

2019.

[12] Krishnan A, Radhakrishnan R, Vasic B. LDPC decoding

strategies for two-dimensional magnetic recording. In Proc.

the 2009 Global Communications Conference, Nov. 2009,

Article No. 606.

[13] Krishnan A, Radhakrishnan R, Vasic B, Kavcik A, Ryan W,

Erden F. 2-D magnetic recording: Read channel modeling

and detection. IEEE International Magnetics Conference,

2009, 45(10): 3830-3836.

[14] Chan S K, Radhakrishnan R, Eason K, Elidrissi R, Miles

J, Vasic B, Krishnan A. Channel models and detectors for

two-dimensional magnetic recording. IEEE Transactions on

Magnetics, 2010, 46(3): 804-811.

[15] Wu Y, O’Sullivan J, Singla N, Indeck R. Iterative detection

and decoding for separable two-dimensional intersymbol in-

terference. IEEE Transactions on Magnetics, 2003, 39(4):

2115-2120.

[16] Gibson G, Polte M. Directions for shingled-write and

two-dimensional magnetic recording system architec-

tures: Synergies with solid-state disks. Technical Report,

Carnegie Mellon University Parallel Data Lab, 2009.

http://www.pdl.cmu.edu/PDL-FTP/PDSI/CMU-PDL-09-

104.pdf, March 2019.

Quoc Le et al.: RAID Array with SMR Disk for Mass Storage Systems 867

[17] Kadekodi S, Pimpale S, Gibson G. Caveat-scriptor: Write

anywhere shingled disks. In Proc. the 7th USENIX Work-

shop on Hot Topics in Storage and File Systems, July 2015,

Article No. 16.

[18] Pease D, Amir A, Real L, Biskeborn B, Richmond M. The

linear tape file system. In Proc. the 26th IEEE Symposium

on Mass Storage Systems and Technology, May 2010, Arti-

cle No. 8.

[19] Zhang X, Du D, Hughes J, Kavuri R. HPTFS: A high per-

formance tape file system. In Proc. the 14th NASA God-

dard Conference on Mass Storage Systems and Technolo-

gies, the 23rd IEEE Symposium on Mass Storage Systems,

May 2006.

[20] Lin C, Park D, He W, Du D. H-SWD: Incorporating hot

data identification into shingled write disks. In Proc. the

20th IEEE International Symposium on Modelling, Ana-

lysis & Simulation of Computer and Telecommunication

Systems, August 2012, pp.321-330.

[21] Moal L D, Bandic Z, Guyot C. Shingled file system host-

side management of Shingled Magnetic Recording disks. In

Proc. the 2012 IEEE International Conference on Con-

sumer Electronics, January 2012, pp.425-426.

[22] He W, Du D. Novel address mappings for shingled write

disks. In Proc. the 6th USENIX Workshop on Hot Topics

in Storage and File Systems, June 2014, Article No. 6.

[23] Hall D, Marcos J, Coker J. Data handling algorithms for au-

tonomous shingled magnetic recording HDDs. IEEE Trans-

actions on Magnetics, 2012, 48(5): 1777-1781.

[24] Ousterhout J, Douglis F. Beating the I/O bottleneck: A

case for log-structured file systems. SIGOPS Operating Sys-

tems Review, 1989, 23(1): 11-28.

[25] Rosenblum M. The design and implementation of a log-

structured file system [Ph.D. Thesis]. UC Berkeley, 1992.

[26] Rosenblum M, Ousterhout J. The design and implementa-

tion of a log-structured file system. In Proc. the 13th ACM

Symposium on Operating System Principles, October 1991,

pp.1-15.

[27] Kohl J, Staelin C, Stonebraker M. HighLight: Using a log-

structured file system for tertiary storage management. In

Proc. the 1993 USENIX Winter Technical Conference, Jan-

uary 1993, pp.435-448.

[28] Selzer M, Bostic K, McKusick M, Staelin C. An implemen-

tation of a log-structured file system for UNIX. In Proc.

the 1993 USENIX Winter Technical Conference, January

1993, pp.307-326.

[29] Dai H, Neufeld M, Han R. ELF: An efficient log-structured

flash file system for micro sensor nodes. In Proc. the 2nd

International Conference on Embedded Networked Sensor

Systems, November 2004, pp.176-187.

[30] Finlayson R, Cheriton D. Log files: An extended file service

exploiting write-once storage. In Proc. the 11th ACM Sym-

posium on Operating Systems Principles, November 1987,

pp.139-148.

[31] Lee S, Moon B. Design of flash-based DBMS: An in-page

logging approach. In Proc. the 2007 ACM SIGMOD Inter-

national Conference on Management of Data, June 2007,

pp.55-66.

[32] Lomet D. The case for log structuring in database systems.

In Proc. the 6th International Workshop on High Perfor-

mance Transaction Systems, September 1995, pp.136-140.

[33] Neefe J, Roselli D, Costello A, Wang R, Anderson T. Im-

proving the performance of log-structured file systems with

adaptive methods. In Proc. the 16th ACM Symposium on

Operating Systems Principles, October 1997, pp.238-251.

[34] Casutto Y, Sanvido M, Guyot C, Hall D, Bandic Z. Indi-

rection systems for shingled-recording disk drives. In Proc.

the 26th IEEE Symposium on Mass Storage Systems and

Technology, May 2010, Article No. 27.

[35] Amer A, Long D, Miller E, Paris J, Schwarz T. Design is-

sues for a shingled write disk system. In Proc. the 26th IEEE

Symposium on Mass Storage Systems and Technology, May

2010, Article No. 26.

[36] Jones S, Amer A, Miller E, Long D, Pitchumani R, Strong

C. Classifying data to reduce long term data movement

in shingled write disks. In Proc. the 31st Symposium on

Mass Storage Systems and Technologies, May 2015, Article

No. 12.

[37] Schwarz T, Amer A, Kroeger T, Miller E, Long D, Pâris

J. RESAR: Reliable storage at exabyte scale. In Proc. the

24th IEEE International Symposium on Modeling, Ana-

lysis, and Simulation of Computer and Telecommunication

Systems, September 2016, pp.211-220.

[38] Pâris J, Schwarz T, Long D, Amer A. When MTTDLs are

not good enough: Providing better estimates of disk array

reliability. In Proc. the 7th International Information and

Telecommunication Technologies Symposium, Dec. 2008.

[39] Amer A, Pâris J, Schwarz T, Ciotola V, Larkby-Lahet

J. Outshining mirrors: MTTDL of fixed-order spiral lay-

outs. In Proc. the 4th International Workshop on Storage

Network Architecture and Parallel I/Os, September 2007,

pp.11-16.

[40] Pâris J, Schwarz T, Amer A, Long D. Highly reliable two-

dimensional RAID arrays for archival storage. In Proc.

the 31st IEEE International Performance Computing and

Communications Conference, December 2012, pp.324-331.

[41] Greenan K, Plank J, Wylie J. Mean time to meaningless:

MTTDL, Markov models, and storage system reliability. In

Proc. the 2nd USENIX Workshop on Hot Topics in Storage

and File Systems, June 2010, Article No. 7.

[42] Yang M, Chang Y, Wu F, Kuo T, Du D. Virtual persis-

tent cache: Remedy the long latency behavior of host-

aware shingled magnetic recording drives. In Proc. the 2017

IEEE/ACM International Conference on Computer-Aided

Design, November 2017, pp.17-24.

[43] He W, Du D. SMaRT: An approach to shingled magnetic

recording translation. In Proc. the 15th USENIX Confe-

rence on File and Storage Technologies, February 2017,

pp.121-134.

[44] Le Q, SathyanarayanaRaju K, Amer A, Holliday J. Work-

load impact on shingled write disks: All-writes can be al-

right. In Proc. the 19th Annual IEEE/ACM International

Symposium on Modelling, Analysis & Simulation of Com-

puter and Telecommunication Systems, July 2011, pp.444-

446.

[45] Narayanan D, Donnelly A, Rowstron A. Write off-loading:

Practical power management for enterprise storage. In Proc.

the 6th USENIX Conference on File and Storage Technolo-

gies, February 2008, pp.253-267.

868 J. Comput. Sci. & Technol., July 2019, Vol.34, No.4

[46] Patterson D, Gibson G, Katz R. A case for redundant arrays

of inexpensive disks (RAID). In Proc. the 1988 ACM SIG-

MOD International Conference on Management of Data,

June 1988, pp.109-116.

[47] Chaarawi S, Paris J, Amer A, Schwarz T, Long D. Using a

shared storage class memory device to improve the reliabil-

ity of RAID arrays. In Proc. the 5th Petascale Data Storage

Workshop, 2010, pp.1-5.

[48] Le Q, Amer A, Holliday J. SMR disks for mass storage

systems. In Proc. the 23rd IEEE International Symposium

on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, October 2015, pp.228-231.

[49] Mesnier M, Chen F, Luo T, Akers J. Differentiated storage

services. In Proc. the 23rd ACM Symposium on Operating

Systems Principles, October 2011, pp.57-70.

[50] Pâris J, Estrada-Galinanes V, Amer A, Rincon C. Using

entanglements to increase the reliability of two-dimensional

square RAID arrays. In Proc. the 36th IEEE International

Performance Computing and Communications Conference,

December 2017, Article No. 27.

Quoc Le is a Ph.D. candidate in the

Department of Computer Engineering

at the Santa Clara University in Silicon

Valley, focusing on disk performance

and reliability in data centers. At the

same time, he serves as a member of

Technical Staff at Apstra, Inc., working

on data center automation. Formerly,

he was a senior software developer at data center business

unit at Cisco where his team focuses on developing central

management of Cisco Unified Computing System (UCS).

He received his Master’s degree in software engineering

from the University of Wisconsin–La Crosse, in 2008.

Ahmed Amer is a faculty mem-

ber of the Department of Computer

Engineering, the Santa Clara Univer-

sity, Santa Clara. His research areas

are systems, particularly storage and

file systems, operating systems, and

distributed systems. He is especially

interested in alternative and upcoming

storage technologies, and their most practical and effective

application. He received his Ph.D. degree in computer sci-

ence from the University of California, Santa Cruz, in 2002.

JoAnne Holliday is an associate

professor of computer science and en-

gineering at the Santa Clara University,

Santa Clara. She also is a co-director

of Center for Advanced Study and

Practice of Information Assurance,

Santa Clara University, Santa Clara.

She is interested in doing research in

distributed replicated databases, including concurrency

control, distributed deadlock detection and avoidance, and

wireless communication issues including reliable multicast

and mobile, ad-hoc networks. She has recently begun

research in wireless networks and distributed storage

structures.

