
Xi SQ, Yao Y, Xiao XS et al. Bug triaging based on tossing sequence modeling. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 34(5): 942–956 Sept. 2019. DOI 10.1007/s11390-019-1953-5

Bug Triaging Based on Tossing Sequence Modeling

Sheng-Qu Xi1, Yuan Yao1,∗, Member, CCF, Xu-Sheng Xiao2, Member, ACM, IEEE, Feng Xu1, Member, CCF
and Jian Lv1, Fellow, CCF

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland

Ohio 44106-7071, U.S.A.

E-mail: xsq@smail.nju.edu.cn; y.yao@nju.edu.cn; xusheng.xiao@case.edu; {xf, lj}@nju.edu.cn

Received March 1, 2019; revised August 5, 2019.

Abstract Bug triaging, which routes the bug reports to potential fixers, is an integral step in software development and

maintenance. To make bug triaging more efficient, many researchers propose to adopt machine learning and information

retrieval techniques to identify some suitable fixers for a given bug report. However, none of the existing proposals simulta-

neously take into account the following three aspects that matter for the efficiency of bug triaging: 1) the textual content in

the bug reports, 2) the metadata in the bug reports, and 3) the tossing sequence of the bug reports. To simultaneously make

use of the above three aspects, we propose iTriage which first adopts a sequence-to-sequence model to jointly learn the

features of textual content and tossing sequence, and then uses a classification model to integrate the features from textual

content, metadata, and tossing sequence. Evaluation results on three different open-source projects show that the proposed

approach has significantly improved the accuracy of bug triaging compared with the state-of-the-art approaches.

Keywords bug triaging, tossing sequence, software repository mining

1 Introduction

Software defects, i.e., bugs, appear during software

development and maintenance, and fixing bugs is a

time-consuming and costly task. To better manage

bugs and bug fixing histories, bug tracking systems such

as Bugzilla are widely used[1]. When a new bug report

is submitted or reported, the manager (a senior develo-

per or the project leader) will choose a developer to fix

the bug described in the report. During the bug fix-

ing process, developers and reporters will communicate

with each other through comments, and they can up-

load additional resources such as screenshots to support

bug fixing. Furthermore, the developer can reassign the

bug report to other developers[2]. Such reassignment is

called bug tossing. Common reasons for bug tossing in-

clude that bugs are assigned to developers by mistake,

or the developer wants to include other developers with

additional expertise to fix the bug. After the bug is

fixed, the status of the bug report will be changed.

Manually inspecting and assigning bug reports is

tedious and time-consuming, especially in those soft-

ware projects that have a large amount of bug reports

and developers. For example, the Eclipse and Mozilla

projects receive several hundreds of bug reports per

day and properly assigning each of them to one of the

several thousands of developers would be very time-

consuming[2]. To aid in finding the appropriate deve-

lopers, automatic bug triaging approaches have been

proposed[3−6]. These approaches can be roughly di-

vided into two classes. The first class adopts informa-

tion retrieval techniques by constructing the representa-

tions of bug reports and developers, and then matching

the bug reports to the most related developers. The

second class adopts machine learning techniques by ex-

tracting features or learning representations of bug re-

ports and treating the developers as labels. For both

classes of methods, the key idea is to extract the rep-

Regular Paper

Special Section on Software Systems 2019

A preliminary version of the paper was published in the Proceedings of Internetware 2018.

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61690204, 61672274, and 61702252,
and the Collaborative Innovation Center of Novel Software Technology and Industrialization at Nanjing University.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 943

resentations of bug reports. For this purpose, some

existing methods use the vector space model (VSM) to

represent a bug report (i.e., a bug report is treated as a

vector of terms and their frequencies). However, these

representations are less accurate as developers often use

various terms to express the same meaning. Later, topic

modeling (e.g., Latent Semantic Indexing/Analysis and

Latent Dirichlet Allocation) which infers the inherent

latent topics of a textual document has been used as a

way to learn the semantic meanings of bug reports[6,7].

More recently, deep learning techniques such as convo-

lutional neural networks (CNNs) and recurrent neural

networks (RNNs) have also been used to improve the

representation learning[8,9]. Although topic modeling

and deep learning can learn better representations of

the textual content in bug reports, none of them simul-

taneously consider the features of metadata and toss-

ing sequence. Meanwhile, these two features have been

shown to be effective in terms of improving the triaging

accuracy[2,5].

In this paper, we propose to make use of both tex-

tual content and metadata in the bug reports while si-

multaneously modeling the tossing sequence. We put

special focus on the tossing sequence due to the fol-

lowing reasons. First, for some bug reports, the bug

reporter himself/herself is one of the developers in the

project, and he/she is likely to fix the corresponding

bugs in the future. For example, based on our empir-

ical study of the datasets, we find that there are near

25% of the bug reports that are fixed by their corre-

sponding reporters. Therefore, the bug reporter should

be encoded into the tossing sequence. Second, while

existing approaches aim to suggest fixers for a new bug

report, some bug reports may already be assigned or

reassigned to a few developers (we name such bug re-

ports as halfway bug reports). The existing tossing

sequences may provide valuable information and thus

may be helpful for the bug triaging task. For example,

a reassignment in the tossing sequence indicates the re-

lationships between the two developers, and identifying

one of them may help us find the other suitable fixers.

To simultaneously make use of the above three as-

pects, we propose iTriage which contains two steps. In

the first step, since both textual contents and tossing

sequences can be seen as sequences, we use a sequence-

to-sequence model to interactively learn the textual fea-

ture for the bug content and the routing feature for

the tossing sequence. The sequence-to-sequence model

mainly consists of two components: encoder and de-

coder. The encoder component takes the textual con-

tent of a bug report as input, and outputs the hidden

state/feature for each word as well as the final repre-

sentation of the content. We add the attention mech-

anism between the encoder and the decoder, and the

hidden state for each word is used as the input of at-

tention. The decoder component takes the final rep-

resentation of the encoder as input and outputs the

tossing sequence for the input bug report. In particu-

lar, the decoder component takes the reporter token

as the initial token, and then fits all the developers in

the corresponding tossing sequence. Through such a

sequence-to-sequence model, the features of bug con-

tent and tossing sequence are jointly learned for the

bug triaging task.

In the second step, we create a classification model

to predict the final responsible fixer. The inputs of

the classification model include the textual feature, the

routing feature, and the metadata feature. For the

textual feature and the routing feature, we use the

outputs of the sequence-to-sequence model in the first

step. Specially, the routing feature is generated by

the current tossing sequence of the bug report (new

or halfway). For new bug reports, the routing feature

only depends on the reporter. For halfway bug reports,

the routing feature depends on both the reporter and

the already-tossed developers. For metadata features,

we use a lookup table to map and update the represen-

tations of each metadata.

In summary, this paper mainly makes the following

contributions.

• We propose a bug triaging approach iTriage

which simultaneously models textual content, meta-

data, and the tossing sequence. All the three aspects

matter for the accuracy of bug triaging. The proposed

approach can handle both new and halfway bug reports.

To the best of our knowledge, this is the first work that

pays special attention on the triaging of halfway bug

reports.

• We propose a novel way to learn the represen-

tations of the tossing sequence by considering the fol-

lowing two aspects: 1) the bug reporter could be the

corresponding fixer, and 2) the tossing sequence for a

bug report presents the dependencies and relationships

among potential fixers.

• We conduct evaluations on three open-source

projects with over 670 000 bug reports in total, and

the results show that iTriage outperforms the exist-

ing machine learning and information retrieval based

approaches in terms of identifying the right fixer. For

example, the proposed iTriage improves the state-



944 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

of-the-art TopicMinerMTM[6] by 9.39% on average in

terms of top-1 accuracy.

• We extend our previous work SeqTriage[10] in two

aspects: we 1) modify the model structure (i.e., by

treating SeqTriage as an intermediate step to learn fea-

tures and applying a classification model to suggest fix-

ers directly) to integrate tossing sequence properly and

make iTriage applicable to halfway bug reports, and

2) add metadata into iTriage to increase the predic-

tion accuracy.

The rest of this paper is organized as follows. Sec-

tion 2 introduces some background information. Sec-

tion 3 presents the proposed approach. Section 4 states

the research questions and describes the evaluation

setup, and Section 5 shows the evaluation results. Sec-

tion 6 discusses the threats to validity. Section 7 re-

views related work, and Section 8 concludes the paper.

2 Background and Preliminary Study

In this section, we present some background know-

ledge and a preliminary study about bug reports.

2.1 Bug Report

A sample bug report of the Eclipse project is shown

in Fig.1. Fig.1(a) is the bug content which provides

the information of the bug report. Fig.1(b) is the bug

history which records the changes of this bug report.

The bug content of a bug report is widely used

in automatic bug triaging. The title (also known as

summary), and the description are the major types of

textual information that are used by the existing ap-

proaches. In addition to the textual information, there

are four types of metadata. The “Product” metadata

and the “Component” metadata have been shown to be

useful in bug report related studies[5,6,11]. The “Status”

metadata identifies the resolution of bug reports, and

the existing approaches mainly select the bug reports

that are marked as fixed (referred to as “fixed bug re-

ports”) as their datasets. The “Assignee” metadata

points out one developer who is responsible for fixing

the bug report.

The bug history records the historical changes of

the bug report. Each change is organized as a tuple of

“who”, “when”, “what”, “removed”, and “added”. The

“what” element describes the name of the bug field that

(b)

(a)

Fig.1. Example bug report in Eclipse Bugzilla (bug ID: 535091).



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 945

has been changed, with the previous value in “removed”

and the new value in “added”. For example, in the sec-

ond row of the bug history in Fig.1, the assignee is

changed from “cdt-core-inbox” to “dschaefer”. Then,

in the fifth and the sixth rows, “dschaefer” took five

days to fix the bug, and changed the “Status” metadata

to “RESOLVED FIXED”. In this example, the bug re-

port is routed from “dschaefer” to himself/herself, and

no further tossing is performed. In other bug reports,

the assignee may be changed from one developer to an-

other, and each of such changes is a step of tossing.

Additionally, one bug report could be tossed by several

developers until the last developer fixes the bug. We

refer to the last developer as the real fixer.

2.2 Preliminary Study

To investigate how the characteristics of bug re-

ports can be used for better bug triaging, we conduct

a preliminary study on three projects, i.e., Eclipse 1○,

Mozilla 2○, and Gentoo 3○. As shown in Fig.1, we can see

that the “Assignee” metadata is different from that in

the bug history through the raw HTML file (i.e., “Doug

Schaefer” vs “dschaefer”). Apparently, these two names

stand for the same person in this case. To make it eas-

ier to match the same person, we use REST APIs 4○ to

crawl bug reports and change histories from Bugzilla.

In the REST APIs, each user is described by their ID,

login name (e.g., dschaefer), and real name (e.g., Doug

Schaefer). We can easily match the login name with

the real name to identify the same person. The basic

information of these datasets is presented in Table 1.

We next present the results and the important findings

of our preliminary study.

Table 1. Raw Dataset Information

Name Period Number of Reports

Eclipse 2008.01–2017.03 210 487

Mozilla 2008.01–2017.02 300 165

Gentoo 2009.01–2017.11 165 483

Reporter Locality. We conjecture that reporters

tend to be focused on certain sub-areas of the project.

Thus, we first study the locality of bug reporters

(i.e., their focused sub-areas) in the collected datasets.

The datasets we collected contain various sub-areas.

For example, Eclipse has the product CDT to sup-

port C/C++ development, and JDT to support Java

development. CDT and JDT are both based on PDE

(plug-in development environment) but they are inde-

pendent with each other. One developer could be re-

sponse to develop one of them, and one end-user might

only use either CDT or JDT based on his/her favorite

language.

As a result, we may assume that the reporters only

focus on several sub-areas of the project. To evaluate

this assumption, we combine the “Product” and the

“Component” metadata as a pair, and compute the

number of product-component pairs for each reporter

who has submitted reports. The results are shown in

Table 2. As we can see, most reporters only focus on

1 or 2 sub-areas (i.e., product-component pairs). Only

7% of reporters have submitted bug reports to more

than five product-component pairs. This gives us con-

fidence that a reporter could be helpful in automatic

bug triaging, as the fixer may be interested in the same

product or component.

Table 2. Reporter Locality in Eclipse

Number of Sub-Areas Count Percentage (%)

1 11 841 68.49

2 2 327 13.46

3–5 1 829 10.58

> 5 1 290 7.46

Tossing Sequence. Tossing a bug report is time-

consuming and each tossing step takes more than 10

days regularly[2]. Therefore, reducing the tossing se-

quence length can greatly reduce the bug fixing time.

To understand the costs of tossing sequences, we next

measure the average length of the tossing sequences.

We use the number of developers that are involved in

a tossing sequence as its length. The results are shown

in Table 3. As we can see, over 40% of the bug reports

could be fixed in the first assignment (either by the re-

porter self or by another developer), and there are near

60% of the bug reports that need further tossing. This

indicates if we can directly route the bug report to the

final developer in the sequence based on the existing

tossing sequences to save time.

1○https://bugs.eclipse.org/bugs, July 2019.
2○https://bugzilla.mozilla.org, July 2019.
3○https://bugs.gentoo.org, July 2019.
4○https://wiki.mozilla.org/Bugzilla:REST API, July 2019.



946 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Table 3. Tossing Length in Eclipse

Tossing Length Count Percentage (%)

1 87 339 41.49

2 72 681 34.53

3–5 37 516 17.82

> 5 12 951 6.15

3 Proposed Approach

In this section, we present the proposed approach

iTriage for bug triaging.

We start with an overview of the proposed approach

in Fig.2. We first model the textual contents and toss-

ing sequences, extracted from the bug repository (i.e.,

datasets), via a sequence-to-sequence model to interac-

tively learn the textual features and the routing fea-

tures. We name this model as feature learning model

in the figure. Next, we integrate the textual feature,

the routing feature, and the metadata feature of a bug

report into a classifier to recommend developers. We

name it as the fixer suggestion model.

Bug 
Repository

Textual 

Contents

Tossing 

Sequences

Feature 

Learning Model

New 

Bug 

Report

Halfway 

Bug 

Report

Meta

Information

Fixer Suggestion

Model

Reassignments

Fig.2. iTriage framework.

3.1 Feature Learning Model

We use a sequence-to-sequence model to learn the

interactive features for bug reports and tossing se-

quences (including the reporter). The overview of this

part is shown in Fig.3. It has two components: en-

coder and decoder. The encoder component is used to

generate the textual representations based on the input

bug reports. The decoder component is used to simu-

late the bug tossing process. The general idea is to

learn the tossing sequence based on the content of bug

reports. Furthermore, the attention mechanism is ap-

plied between the encoder and the decoder components.

In the following, we first describe the encoder compo-

nent and the decoder component, and then move on to

the attention mechanism.

Encoder

Context Vector

Decoder

Status

y5 y4 y3 y2 y1 y0

s0

w5w2 w3 w4w1

Fig.3. Feature learning model.

3.1.1 Encoder Component

As mentioned in the introduction, the key of bug

triaging approaches is to extract the representations

of bug reports. In our encoder component, we aim

to learn the overall representation for the bug report

as well as the presentation for each single word in the

bug content. Formally, given a bug report with n words

{w1, w2, . . . , wn}, the encoder component generates the

overall representation s0 for these n words and the rep-

resentations {h1, h2, . . . , hn} for each word (i.e., hi is

the presentation for word wi).

To generate these representations, a recent trend

is to use RNNs with neurons LSTM or GRU as they

have been successfully applied in various sequence

modeling tasks (e.g., language translation[12], speech

recognition[13], and textual classification[14,15]). In this

work, we use bidirectional RNNs as a way to generate

textual representations, and we use the GRU neuron as

it has less parameters. The structure of GRU is listed

as follows[16],

zi = σ(Wz · xi +Uz · hi−1),

ri = σ(Wr · xi +Ur · hi−1),

ui = tanh(W · xi +U · (ri ◦ hi−1)),

hi = (1 − zi) ◦ hi−1 + zi ◦ ui,



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 947

where ◦ indicates the element-wise product, σ is the

sigmoid activation function, xi is the current input of

the GRU neuron (obtained from word wi), and hi is

the current hidden state (the representation of word

wi). zi and ri are the update gate vector and the reset

gate vector defined by GRU, respectively. Note that

s0 equals hn in the GRU neuron. In this work, we ap-

ply word embedding before feeding words into GRU, as

word embedding can generate meaningful low dimen-

sion representations and has shown its effectiveness in

many text related tasks.

There are two outputs from the encoder component.

One is the textual representation for each word (the in-

put of the context vector in Fig.3), and the other is the

overall representation of the text (denoted as status in

Fig.3).

3.1.2 Decoder Component

Intuitively, modeling the tossing sequences can help

bug triaging by capturing the dependencies between

developers. For this purpose, we use RNNs in the de-

coder component to model tossing sequences. The de-

coder component works as follows. For the first pre-

diction target in the sequence (i.e., the first developer

in the tossing sequence), there are three inputs. The

first input is the initial state (i.e., status s0 in Fig.3).

The second one is the initial token as input (i.e., y0 in

Fig.3). Note that instead of using a 〈start〉 token as the

initial state, we use the reporter as the first token. The

third input is the context vector c which is computed

based on the output of each GRU neuron. Next, for

the other prediction targets, we use the previous state,

the real developer in the previous prediction, and the

context vector as input. By doing so, each prediction

is closely related to the previous predictions. Specially,

the context vectors are different for different prediction

targets (see Subsection 3.1.3). Consider the example in

Fig.3. The decoder component first takes the encoder

status s0 and the reporter token y0 as input, computes

the first context vector c1, and then predicts the first

developer y1. Next, the decoder component predicts

the next developer y2 based on context vector c2, the

hidden state s1 from the previous GRU neuron, and the

previous token y1. This process repeats until it predicts

the special token 〈end〉 which indicates the end of se-

quence.

In the decoder component, we aggregate different

context vectors for different prediction targets. To

compute the context vector c for each prediction tar-

get, we resort to the attention mechanism (see Subsec-

tion 3.1.3). The basic idea is to pool the representa-

tions from each word. That is, let A = {a1, a2, . . . , an}

be the attention weights for {h1, h2, . . . , hn}, and the

j-th context vector cj is computed as

cj =

n∑

i=1

ai · hi,

where ai is a scalar and hi is a vector.

3.1.3 Attention

We assume that not all words contribute equally to

the representation of the text for a given prediction tar-

get. When the decoder generates a single prediction, we

first define the score of word i as

ei = tanh(We · sj−1 +Ue · hi),

where we use We and Ue as the weight matrices, and

sj−1 is the previous hidden state defined above. Then,

the attention weight ai for word i could be defined as

follows.

ai =
exp(ei)∑n

k=1 exp(ek)
.

3.2 Fixer Suggestion Model

In this fixer suggestion model, we treat the prob-

lem as a classification problem and use a classification

model to predict the final fixer for a given bug report.

Note that we can deal with both new bug reports and

halfway bug reports. Specially, we treat each develo-

per as a label and recommend the developer with the

maximum softmax probability.

The structure of this model is shown in Fig.4. As we

can see, the prediction of a bug report depends on three

kinds of features, i.e., textual feature, routing feature,

and metadata feature. For the previous two, they are

directly obtained from the feature learning model. That

is, we directly input the content of the given bug report

into the encoder part of the feature learning model to

obtain its textual feature. For the routing feature, if the

bug report is a new bug report, we input the reporter in

the decoder part of the feature learning model to obtain

the routing feature; if the bug report is a halfway one,

we input the bug reporter as well as the existing deve-

lopers in the tossing sequence into the decoder to obtain

the routing feature. For the metadata feature, we add

an embedding layer. That is, we treat the metadata

embedding as the metadata feature and look it up in

an embedding matrix by the unique index of metadata.



948 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Finally, we combine the three features by concatenat-

ing them into one vector, and then feed the vector into

a fully-connected layer before the softmax layer. The

softmax layer serves to predict the probability distri-

bution over all the developers for the given bug report.

We choose the one with the highest probability as the

suggested fixer.

Textual
Feature

Routing

Feature

Meta

Meta 

Feature

Embedding

Full Connection

Softmax

Combine

Fig.4. Fixer suggestion model.

4 Research Questions

In this section, we present the research questions.

4.1 Research Questions

We seek to answer the following four research ques-

tions in this paper.

RQ1: Can the proposed approach outperform the ex-

isting approaches in terms of bug triaging accuracy?

First of all, we study whether the proposed iTriage

approach can outperform the existing approaches. For

this research question, we do not distinguish between

new bug reports and halfway bug reports, and conduct

experiments on all the bug reports to make the com-

parisons. The compared methods are listed as follows.

• SVM + BOW [3]. This method uses the TF-IDF

value of each word as the textual features for bug re-

ports, and applies SVM to treat the bug triaging prob-

lem as a classification problem.

• TopicMinerMTM [6]. This is the state-of-the-art

information retrieval method for bug triaging. It ap-

plies topic models to learn the textual representations

of bug reports, and integrates the metadata of product

and component. Similarities between developers and

bug reports are computed to recommend developers.

• DBRNN + A[9]. Since we build our model upon

RNNs, we compare iTriage with another bug triaging

method DBRNN+A which is also built upon RNNs.

This method utilizes RNNs with attention to learn tex-

tual representations of bug reports, and then directly

adds a softmax layer to recommend developers.

• CNN Triager[8]. This method is similar to

DBRNN+A except that it applies CNNs to learn the

representations of bug reports.

• DeepTriage[17]. DeepTriage is another method

that uses RNNs to model textual content. It further

considers metadata and the activity degrees of deve-

lopers.

RQ2: How does the proposed approach perform for

halfway bug reports? As mentioned above, this is the

first work that pays special attention to halfway bug

reports. Thus, for the second research question, we

would like to evaluate whether our approach is accu-

rate for halfway bug reports. To do so, we group the

test data according to their tossing length, and report

the accuracy results. For example, for a bug report in

the test set whose tossing length is 4, we hide the last

developer (i.e., the fixer), and put this sample in the

groups whose length is less than 4.

RQ3: Is the routing feature and meta feature use-

ful in bug triaging? For the third research question,

we want to look into our approach. We integrate three

different types of features to recommend the fixer, and

we would like to evaluate whether all the three types

of features are useful for bug triaging. Specifically, we

modify the fixer suggestion model by removing the rout-

ing feature, the metadata feature, and both of them.

For this research question, we also experiment on all

the bug reports including both new bug reports and

halfway bug reports.

4.2 Dataset Construction

To evaluate our approach, we collect the bug reports

in three bug tracking systems as described in Subsec-

tion 2.2. Then, we preprocess the raw datasets. Not all

bug reports are suitable for training a model. Anvik et

al.[3] filtered out some noise data, such as bug reports

with the resolution being “wontfix” or “worksforme”.

Following the previous studies[2−4,6,18], we only keep

bug reports with the resolution being “FIXED” and

the status being “CLOSED”, “RESOLVED”, or “VER-

IFIED”. Furthermore, we also remove “REOPENED”

bug reports as they are different from the original

ones 5○. Xia et al.[6] noticed that the “Assigned To”

5○The reopen behavior might take place long after the bug is fixed, and developers are likely to add comments to explain new
observations such as unsuitable fixs or reappear due to version changes.



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 949

metadata might have the values of “unassigned”, “is-

sues”, or “AJDT-inbox” in many bug reports. Obvi-

ously, they do not specify particular developers. We

do not want to recommend them as the final fixers and

remove them by keyword matching. We also exclude

some inactive developers who have fixed less than 10

bug reports. The statistics of the resulting datasets are

shown in Table 4.

Table 4. Statistics of Datasets

Name Time #Reportsraw #Developersraw #Reportsprocessed #Developersprocessed #Terms

Eclipse 2008.01–2017.03 210 487 1 785 120 468 1 014 12 854

Mozilla 2008.01–2017.02 300 165 2 164 161 098 1 497 16 975

Gentoo 2009.01–2017.11 165 483 1 475 94 530 973 9 242

For each bug report in the resulting datasets, we ex-

tract the summary and the description, as well as the

metadata (product and component) and the tossing se-

quence. For each summary and description, we follow

the preprocessing step of the existing work[9] by filtering

out the code snippets, the hex code, the URLs, and the

stack traces. Then, we employ NLTK 6○ to tokenize the

texts, keep the stopwords, remove punctuation marks

and low-frequency words, and transfer them to lower

cases. Finally, we truncate the preprocessed text. We

use 100 as the maximum of text length, and notice that

more than 80% of bug reports are within the threshold;

thus we do not abandon too much data. The tossing

sequence is also limited to the length of 5, as we find

out most tossing sequences are within this length.

In order to simulate the real scenarios, we first sort

all the bug reports by their creation time. Then, we

averagely divide the sorted bug reports into 11 non-

overlapping frames, and execute 10-fold iterations to

cover all frames as shown in Fig.5. For example, in fold

1, we use frame 1 as training data, and frame 2 as test

data; in fold 2, we use the first two frames as train-

ing data, and frame 3 as test data; and so on and so

forth. Such setup is widely used by existing work[4,6,18].

For each iteration, we recommend one developer as the

fixer, and compute the average accuracy in each test

frame. Here a prediction is accurate if it recommends

the right fixer as in the datasets.

Fold 1

Fold 2 11 Frames

Train Test

Train Test

Fig.5. 10-fold experimental setting. We split the dataset into
11 frames. For each fold K, we choose first K frames as training
data and the K + 1 frame as test data.

4.3 Implementation Details

The implementation details are as follows.

For the classification models based on bag-of-word

representations (i.e., SVM+BOW), we use the Gen-

sim library 7○ to generate TF-IDF textual vectors.

SVM is implemented by using libsvm[19] with python

interface 8○. We tune the parameters of SVM by our-

selves and report the best results.

For TopicMinerMTM, we implement it by ourselves

since the source code is not publicly available. Spe-

cially, we implement it with CVB0[20] learning. We fol-

low the settings of the weights described in the paper

that introduces TopicMinerMTM[6].

For the deep learning based methods, we use

Keras 9○ to implement them and let them share the

same settings (e.g., embedding dimensions, hidden

state dimensions). For the proposed method, the tex-

tual input is truncated by the length of 100. Each word

is embedded with 100 dimensions and is initialized with

pre-trained embedding from Glove[21]. The tossing se-

quence length is limited to 5, since most of tossing se-

quences are in this range. Reporters and developers are

embedded with 50 dimensions. For GRU neurons, the

hidden state size is set to 100. Since the encoder uses

bidirectional RNNs, the output size of each word is 200

in total (100 for one direction). The embedding size

of metadata is set to 100. We also employ dropout[22]

to avoid over-fitting, with dropout rate set to 0.5. The

above settings are similarly applied for the competitors

for fairness. For the proposed model, we use “categor-

ical crossentropy” provided by Keras as our loss func-

tion and we use “nadam” optimizer[23] which automat-

ically adjusts the learning rate to train the model. For

other parameters, we limit the vocabulary size up to

6○http://www.nltk.org, July 2019.
7○https://radimrehurek.com/gensim/, July 2019.
8○https://www.csie.ntu.edu.tw/c̃jlin/libsvm/#python, July 2019.
9○https://keras.io/, July 2019.



950 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

50 000 words that are most frequently used in bug re-

ports, and use minibatch stochastic gradient descent

with the batch size of 64.

We use a PC with a 3.40 GHz Intel i7-4770 CPU,

32 GB physical memory and a Nvidia GTX1080 GPU

to execute all these methods. For SVM+BOW and

TopicMinerMTM, they only execute on CPU. And for

deep learning based methods, we use GPU to accelerate

the training and testing steps.

5 Evaluation Results

In this section, we present the evaluation results for

the three research questions.

5.1 Results for RQ1

The comparison results on three datasets are in Ta-

ble 5 and Fig.6, where we report the top-1 accuracy and

the top-5 accuracy. Here, Table 5 shows the average re-

sults over the 10 folds and Fig.6 shows the results on

each fold. The x-axis in the figure indicates the frame

number, and the y-axis is the prediction accuracy. First

of all, we can observe that iTriage outperforms all its

competitor methods in all the frames for top-1 accuracy.

For example, across all three projects, iTriage on ave-

rage improves the prediction accuracy of SVM+BOW

by 22.93%, DBRNN+A by 21.96%, CNN Triager by

21.76%, TopicMinerMTM by 9.39%, and DeepTriage

by 5.83%. Although the relative improvements in the

top-5 case are smaller than that in the top-1 case, we

have also tested the significance of the improvements

with Wilcoxon signed rank test, and the results show

that the proposed iTriage significantly outperforms

all the competitors with p-value < 0.01, which means

the proposed approach can still significantly outper-

form the existing approaches in terms of the average

improvements as shown in Table 5. Second, methods

use only textual information without considering the

metadata and the tossing sequences (i.e., SVM+BOW,

DBRNN-A, and CNN Triager) are less accurate than

the other competitors. This supports the effectiveness

of metadata and tossing sequences. Third, iTriage

performs better than the other deep learning competi-

tors. The main reason is that we integrate more infor-

mation as input. Notice that, deep learning methods

that use only textual information are still a little better

than SVM+BOW. Fourth, we find that the accuracy re-

sults in Mozilla are relatively lower. The reason is that

Mozilla has more developers than the other projects

(near 49% more than Eclipse and 53% more than Gen-

too). Fifth, in all the 10 folds, the average accuracy

of each method is relatively stable. The reason might

be that with the number of bug reports increasing, the

number of developers and the size of vocabulary are also

increasing. In other words, the complexity/difficulty of

the problem increases as the training data increases.

For completeness, we also report the training time

and the testing time for the compared methods. The

results are shown in Tables 6–9. As we can see from

the tables, the proposed approach spends less or com-

parable time with its competitors in terms of both the

training stage and the testing stage. Moreover, the pro-

posed approach scales linearly in both the training stage

and the testing stage w.r.t. the data size.

Summary. Overall, the results show that the pro-

posed iTriage can outperform the existing bug triag-

ing baselines while introducing little additional time

overhead.

5.2 Results for RQ2

Next, we study how iTriage performs for halfway

bug reports. The results are shown in Fig.7. The x-

axis in the figures indicates the tossing length, and the

y-axis is the prediction accuracy. Notice that, tossing

length zero means a new bug report.

As we can see from Fig.7, the accuracy of our ap-

proach generally increases as the tossing length grows

on all the three datasets. In other words, if we have

more developers in the current tossing sequence, we can

identify the right fixer more accurately. The reason is

as follows. The developers in the predicted tossing se-

quence are related to each other; thus, given the pre-

Table 5. Top-1 Accuracy and Top-5 Accuracy on Average

Project SVM+BOW TopicMinerMTM DBRNN+A CNN Triager DeepTriage iTriage

Eclipse@1 0.280 57 0.368 95 0.287 11 0.289 23 0.416 55 0.478 60

Eclipse@5 0.514 67 0.800 56 0.522 44 0.541 07 0.802 57 0.824 29

Mozilla@1 0.204 31 0.290 43 0.207 40 0.208 32 0.323 15 0.373 08

Mozilla@5 0.412 54 0.651 86 0.429 22 0.433 50 0.682 74 0.701 63

Gentoo@1 0.227 64 0.459 10 0.247 10 0.249 99 0.485 78 0.543 32

Gentoo@5 0.510 20 0.813 70 0.544 70 0.554 60 0.787 50 0.799 10



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 951

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9

T
o
p
-
1
 A

c
c
u
ra

c
y

T
o
p
-
1
 A

c
c
u
ra

c
y

T
o
p
-
1
 A

c
c
u
ra

c
y

T
o
p
-
5
 A

c
c
u
ra

c
y

T
o
p
-
5
 A

c
c
u
ra

c
y

T
o
p
-
5
 A

c
c
u
ra

c
y

Folds

SVM+BOW TopicMinerMTM
DBRNN+A CNN Triager
DeepTriage ITRIAGE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

SVM+BOW TopicMinerMTM
DBRNN+A CNN Triager
DeepTriage ITRIAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9

SVM+BOW TopicMinerMTM
DBRNN+A CNN Triager
DeepTriage ITRIAGE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9

SVM+BOW TopicMinerMTM
DBRNN+A CNN Triager
DeepTriage ITRIAGE

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7 8 9

SVM+BOW TopicMinerMTM
DBRNN+A CNN Triager
DeepTriage ITRIAGE

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9

SVM+BOW TopicMinerMTM
DBRNN+A CNN Triager
DeepTriage ITRIAGE

(c)

Folds

(d)

Folds

(a)

Folds

(b)

Folds

(e)

Folds

(f)

Fig.6. Top-1 and top-5 accuracy comparisons in (a) Eclipse data (top-1), (b) Eclipse data (top-5), (c) Mozilla data (top-1), (d) Mozilla
data (top-5), (e) Gentoo data (top-1), and (f) Gentoo data (top-5).

Table 6. Training Time (min) on Eclipse

Approach Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total

SVM+BOW 5.94 12.59 19.31 26.13 32.89 38.86 45.48 52.50 59.20 66.01 358.91

TopicMinerMTM 62.54 132.59 203.39 275.18 346.34 409.20 478.86 552.82 623.35 695.01 3 779.28

DBRNN+A 7.26 15.39 23.61 31.94 40.20 47.50 55.59 64.18 72.37 80.69 438.73

CNN Triager 6.28 13.31 20.42 27.63 34.78 41.09 48.09 55.52 62.60 69.80 379.52

DeepTriage 6.67 14.14 21.69 29.35 36.94 43.64 51.07 58.96 66.48 74.12 403.06

iTriage 7.83 16.60 25.46 34.45 43.36 51.23 59.95 69.21 78.04 87.01 473.14

vious tossing sequence, we can guess the final tossed

developer based on the developers’ tossing habit. Ad-

ditionally, when the tossing length is larger than 3, the

accuracy does not increase any more. We manually in-

spect several bug reports and point out two potential

reasons. First, for long tossing sequences, there are

cases when two or more developers reassign the bug re-

ports to each other repeatedly. Second, there are cases

when the finally tossed developer is far from the first

tossed developer in long tossing sequences (e.g., from



952 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Table 7. Training Time (min) on Mozilla

Approach Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total

SVM+BOW 12.06 24.61 39.95 52.96 68.41 81.87 94.23 107.02 120.17 135.51 736.79

TopicMinerMTM 124.92 254.96 413.86 548.66 708.69 848.13 976.19 1 108.67 1 244.88 1 403.75 7 632.71

DBRNN+A 15.12 30.86 50.09 66.41 85.78 102.66 118.16 134.19 150.68 169.91 923.86

CNN Triager 12.54 25.59 41.54 55.07 71.13 85.13 97.98 111.28 124.95 140.90 766.11

DeepTriage 13.10 26.74 43.40 57.54 74.32 88.94 102.37 116.26 130.54 147.20 800.41

iTriage 15.63 31.90 51.78 68.65 88.67 106.12 122.14 138.72 155.76 175.64 955.01

Table 8. Training Time (min) on Gentoo

Approach Fold 0 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Total

SVM+BOW 3.16 6.28 9.34 12.23 15.36 18.25 21.59 24.98 28.09 31.02 170.30

TopicMinerMTM 33.55 66.72 99.23 129.93 163.18 193.84 229.30 265.33 298.39 329.45 1 808.92

DBRNN+A 3.81 7.58 11.27 14.76 18.54 22.02 26.05 30.14 33.89 37.42 205.48

CNN Triager 3.43 6.82 10.14 13.28 16.68 19.81 23.44 27.12 30.50 33.68 184.90

DeepTriage 3.64 7.24 10.77 14.10 17.71 21.04 24.89 28.80 32.39 35.76 196.34

iTriage 4.27 8.49 12.63 16.54 20.77 24.67 29.18 33.77 37.98 41.93 230.23

Table 9. Average Predicting Time (s) per Bug Report

Dataset SVM+BOW TopicMinerMTM DBRNN+A CNN Triager DeepTriage iTriage

Eclipse 0.36 3.79 0.44 0.39 0.41 0.47

Mozilla 0.56 5.84 0.72 0.58 0.60 0.73

Gentoo 0.22 2.33 0.26 0.24 0.25 0.29

totally different product or component). Further in-

vestment is needed for such cases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 > 2

Tossing Length

T
o
p
-
1
 A

c
c
u
ra

c
y

Eclipse Mozilla Gentoo

Fig.7. Accuracy of iTriage with different tossing lengths. In
general, the proposed iTriage is more accurate for halfway bug
reports.

Summary. Overall, the results show that the pro-

posed iTriage can make use of the existing developers

in the tossing sequence so as to improve the triaging

accuracy.

5.3 Results for RQ3

For RQ3, we study the effectiveness of components,

i.e., the three types of features in our fixer suggestion

model. The result is listed in Table 10. In the ta-

ble, we test three variants of the proposed approach:

“text” which means only the textual feature is used,

“text+meta” which means that both the textual feature

and the metadata feature are used, and “text+routing”

which means that both the textual feature and the rout-

ing feature are used.

As we can see from Table 10, the accuracy of “text”

group is relatively low, indicating the importance of

the other two types of features. Then, when either

the metadata feature or the routing feature is added,

the performance significantly increases, that is, both

components are useful. Furthermore, we manually in-

spect some results and find that even if the performance

of “text+meta” and “text+routing” is close, they do

well at different cases. For “text+meta”, it is more

likely to predict the most active developer within the

product and the component. For “text+routing”, it

is more likely to predict the reporter directly. Such

a phenomenon can be further leveraged and we leave

it as future work. Finally, iTriage is better than all

the component methods. This means the combination

of the three aspects of features is helpful for the bug

triaging task.

Table 10. Accuracy of Feature Combinations

Name Text Text+Meta Text+Routing iTriage

Eclipse 0.297 4 0.459 3 0.461 8 0.478 6

Mozilla 0.213 4 0.321 9 0.352 7 0.373 0

Gentoo 0.249 3 0.457 4 0.503 7 0.543 3

Summary. Overall, the results show that all the

three aspects (i.e., textual content modeling, metadata

modeling, and tossing sequence modeling) of iTriage

are useful to improve the triaging accuracy.



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 953

6 Threats to Validity

In this section, we identify some threats to validity

of this work.

For internal validity, we mainly consider two as-

pects. First, for the ground truth of the suitable fixer,

we follow the previous approaches to select the “As-

signee” (also known as “Assigned To”) metadata[6,18].

However, the actual fixer might not be the best develo-

per to fix the bug report, and other developers could

also have the ability to fix it. To this end, some re-

searchers (e.g., [3]) proposed to construct a dataset

where the developers who may be able to fix the bug are

manually labeled. However, this would be too expen-

sive to achieve given that our dataset is much larger.

Second, when processing the raw datasets, we filter out

the developers who have fixed less than 10 bugs. It is

possible that these developers would fix the future bugs,

and our model will produce false negatives. However,

these developers are generally inactive in these projects,

and after deleting them we still have plenty of active

developers for each project. Collecting the bug reports

for a longer period or focusing on only bug reports of

the finished projects can alleviate such issues. Addi-

tionally, we have deleted the reopened bug reports in

the datasets. The reason is that these bug reports may

have two different fixers and tossing sequences which

could mislead the training process of the proposed ap-

proach. We leave the treatment for these reopened bug

reports as future work.

For external validity, in this paper, we have crawled

and analyzed three open source projects. However,

open source projects might be different with industry

projects. Therefore, we are not certain whether our re-

sults can be generalized to industry projects. However,

if the two facts (i.e., reporter locality and tossing re-

lationships) also hold for industry projects, there is a

high chance that the proposed approach will work well

for the industry projects.

7 Related Work

In this section, we review related work. Bug re-

ports play an important role in software development

and maintenance. Many researchers have studied re-

lated topics to help developers fix bugs more efficiently.

We mainly discuss about two research topics in the ex-

isting work. The first one is to route the bug reports

to suitable fixers, and the second one is to optimize the

quality of the bug reports.

7.1 Bug Triaging

In the area of automatic bug triaging, researchers

have proposed a series of machine learning (e.g., [2-4,

24]) and information retrieval based approaches (e.g.,

[5, 6, 25]). Machine learning based approaches usually

regard developers as labels, and predict suitable deve-

lopers with a classification model. Many classification

models have been used by existing methods. For exam-

ple, Anvik et al.[3] modeled this task as a text classifica-

tion problem with Naive Bayes classifier, and Cubranic

and Murphy[26] used the SVM classifier instead. As

for information retrieval methods, they constructed the

representations of both developers and bug reports and

then computed their similarities. For example, Tam-

rawi et al.[18] used fuzzy set and developer caching to

calculate the similarities between developers and bug

reports; Naguib et al.[25], Yang et al.[5], and Xia et al.[6]

used topic models to compare the similarities between

the bug reports and the developers. Instead of these

two categories of methods, some developers reformu-

lated the bug triaging problem. For example, Alenezi et

al.[27] focused on redistributing the load of overloaded

developers. Zou et al.[28] introduced feature selection

to improve the accuracy of bug triaging and reduced

the training sets. Park et al.[29] proposed a cost-aware

approach to balance accuracy and cost.

In terms of the input used by these existing ap-

proaches, the textual content of bug reports is the key

part. Additionally, metadata, tossing sequence, rela-

tionships between developers, the developer roles, and

the code annotations have also been used. For example,

Yang et al.[5] and Bhattacharya and Neamtiu[4] consi-

dered the meta data. Jeong et al.[2] and Bhattacharya

Neamtiu[4] used tossing graph to optimize the recom-

mendation list; Hu et al.[30] modeled the relationship

between developers and source code components, as

well as their associated bugs. Zhang et al.[31] used more

social relationships between developers. There are also

some other studies related to the tossing graph. For

example, Wang et al.[32] proposed to analyze the col-

laborations in bug repositories. Wu et al.[33] studied

what factors affect the length of tossing path, and found

that working theme, product, component, and degree

centrality are key factors.

Recently, deep learning techniques have been used

to improve the performance of bug triaging. For ex-

ample, Lee et al.[8] proposed to use CNNs and Mani

et al.[9] proposed to use Bidirectional RNNs with at-

tention. However, the focus of these approaches is on

the textual content of bug reports. Different from these



954 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

approaches, the key novelty of our approach is to simul-

taneously integrate the following three aspects: 1) the

textual content in the bug reports, 2) the metadata in

the bug reports, and 3) the tossing sequences of bug

reports.

7.2 Bug Report Quality

Several researches have proposed to study the qua-

lity of bug reports. For example, Hooimeijer and

Weimer[34] measured the bug report quality and pre-

dicted whether bug reports can be resolved within a

given time. Demeyer and Lamkanfi[35] noticed that bug

reports may contain errors such as wrong components,

and proposed to predict such cases for a particular bug

report; Herraiz et al.[36] held the opinion that the bug

reports of Bugzilla are too complex, and found that the

severity of bug reports can be reduced from seven op-

tions to three. Wu et al.[37] found that bug reports are

often incomplete and proposed to check the completion

of a given bug report. Zanetti et al.[38] focused on the

validity of bug reports. They extracted features from

collaboration networks between team members to de-

termine whether the bug report is valid or not. Fan

et al.[39] extended the extracted features and improved

the performance. These techniques could enhance the

overall quality of bug reports, which also benefits auto-

matic bug triaging process.

The detection of duplicate bug reports has also

been widely studied. Anvik et al.[3] conducted a large-

scale empirical study on the bug repositories of Eclipse

and Firefox, and found that a large percentage of bug

reports are identified as duplicate by the developers.

Hiew[40] made the first attempt to detect duplicate bug

reports by calculating the similarities between bug re-

ports. Runeson et al.[41] studied the duplicate detection

problem with industrial projects and they considered

more textual features (e.g., software versions, testers,

the submission date). Wang et al.[42] used natural lan-

guage information and execution information to suggest

a small set of the most similar bug reports. Nyugen

et al.[43] employed topic models to obtain the textual

representations and then computed their similarities to

detect duplicate bug reports. Tian et al.[44] proposed to

consider the similarity between a new bug report and

multiple existing bug reports (instead of only the most

similar one) to decide whether the bug reported in the

new bug report is actually a duplicate bug. Besides,

some researchers began to conduct empirical studies on

duplicate bug reports[45−47].

All these existing researches are complementary

with our work. That is, we may consider to first im-

prove the quality of bug reports before assigning them

to suitable fixers.

8 Conclusions

In this paper, we proposed a novel approach,

iTriage, to simultaneously integrate the following

three aspects: 1) the textual contents in the bug re-

ports, 2) the metadata in the bug reports, and 3)

the tossing sequences of bug reports. The proposed

approach consists of two models, namely, the feature

learning model and fixer suggestion model. The fea-

ture learning model is a sequence-to-sequence model to

learn the textual feature and the routing feature at the

same time. The fixer suggestion model is a classifi-

cation model to combine the textual feature, the meta-

data feature, and the routing feature to predict the bug

fixers. The experimental results showed that iTriage

improves the accuracy of the bug triaging compared

with the state-of-the-art approaches.

In the future, we plan to explore the usage of code

snippets, URLs, and stack traces in the textual content,

which are currently excluded by our model. We believe

that these contents can provide extra information to

improve the accuracy of the bug triaging. We also plan

to further investigate the tossing sequence, and under-

stand why developers toss bug reports to each other.

References

[1] Bertram D, Voida A, Greenberg S, Walker R. Commu-

nication, collaboration, and bugs: The social nature of

issue tracking in small, collocated teams. In Proc. the

2010 ACM Conference on Computer Supported Coopera-

tive Work, February 2010, pp.291-300.

[2] Jeong G, Kim S, Zimmermann T. Improving bug triage with

bug tossing graphs. In Proc. the 7th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software En-

gineering, August 2009, pp.111-120.

[3] Anvik J, Hiew L, Murphy G C. Who should fix this bug? In

Proc. the 28th International Conference on Software Engi-

neering, May 2006, pp.361-370.

[4] Bhattacharya P, Neamtiu I. Fine-grained incremental learn-

ing and multi-feature tossing graphs to improve bug triag-

ing. In Proc. the 2010 IEEE International Conference on

Software Maintenance, September 2010, Article No. 41.

[5] Yang G, Zhang T, Lee B. Towards semi-automatic bug

triage and severity prediction based on topic model and

multi-feature of bug reports. In Proc. the 38th Annual Com-

puter Software and Applications Conference, July 2014,

pp.97-106.



Sheng-Qu Xi et al.: Bug Triaging Based on Tossing Sequence Modeling 955

[6] Xia X, Lo D, Ding Y, Al-Kofahi J M, Nguyen T N, Wang

X. Improving automated bug triaging with specialized topic

model. IEEE Transactions on Software Engineering, 2017,

43(3): 272-297.

[7] Zhang T, Yang G, Lee B, Lua E K. A novel developer rank-

ing algorithm for automatic bug triage using topic model

and developer relations. In Proc. the 21st Asia-Pacific Soft-

ware Engineering Conference, December 2014, pp.223-230.

[8] Lee S R, Heo M J, Lee C G, Kim M, Jeong G. Apply-

ing deep learning based automatic bug triager to industrial

projects. In Proc. the 11th Joint Meeting on Foundations

of Software Engineering, September 2017, pp.926-931.

[9] Mani S, Sankaran A, Aralikatte R. DeepTriage: Ex-

ploring the effectiveness of deep learning for bug

triaging. arXiv:1801.01275, 2018. https://arxiv.or-

g/pdf/1801.01275.pdf, June 2019.

[10] Xi S Q, Yao Y, Xiao X S, Xu F, Lu J. An effective approach

for routing the bug reports to the right fixers. In Proc. the

10th Asia-Pacific Symposium on Internetware, September

2018, Article No. 11.

[11] Zhang X F, Yao Y, Wang Y J, Xu F, Lu J. Exploring meta-

data in bug reports for bug localization. In Proc. the 24th

Asia-Pacific Software Engineering Conference, December

2017, pp.328-337.

[12] Bahdanau D, Cho K, Bengio Y. Neural machine translation

by jointly learning to align and translate. arXiv:1409.0473,

2014. https://arxiv.org/pdf/1409.0473.pdf, June 2019.

[13] Hinton G, Deng L, Yu D et al. Deep neural networks for

acoustic modeling in speech recognition: The shared views

of four research groups. IEEE Signal Processing Magazine,

2012, 29(6): 82-97.

[14] Johnson R, Zhang T. Supervised and semi-supervised

text categorization using LSTM for region embed-

dings. arXiv:1602.02373, 2016. https://arxiv.org/p-

df/1602.02373.pdf, June 2019.

[15] Yang Z C, Yang D Y, Dyer C, He X D, Smola A, Hovy

E. Hierarchical attention networks for document classifica-

tion. In Proc. the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, June 2016, pp.1480-1489.

[16] Cho K, van Merrienboer B, Gülçehre C, Bahdanau

D, Bougares F, Schwenk H, Bengio Y. Learning

phrase representations using RNN encoder-decoder for

statistical machine translation. arXiv:1406.1078, 2014.

https://arxiv.org/pdf/1406.1078.pdf, June 2019.

[17] Xi S Q, Yao Y, Xu F, Lu J. Bug triaging approach based

on recurrent neural networks. Journal of Software, 2018,

29(8): 2322-2335. (in Chinese)

[18] Tamrawi A, Nguyen T T, Al-Kofahi J M, Nguyen T N.

Fuzzy set and cache-based approach for bug triaging. In

Proc. the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engi-

neering, September 2011, pp.365-375.

[19] Chang C C, Lin C J. LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and

Technology, 2011, 2(3): Article No. 27.

[20] Hoffman M, Bach F R, Blei D M. Online learning for la-

tent Dirichlet allocation. In Proc. the 24th Annual Confe-

rence on Neural Information Processing Systems, Decem-

ber 2010, pp.856-864.

[21] Pennington J, Socher R, Manning C. Glove: Global vectors

for word representation. In Proc. the 2014 Conference on

Empirical Methods in Natural Language Processing, Octo-

ber 2014, pp.1532-1543.

[22] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I,

Salakhutdinov R R. Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv:1207.0580,

2012. https://arxiv.org/pdf/1207.0580.pdf, June 2019.

[23] Sutskever I, Martens J, Dahl G, Hinton G. On the impor-

tance of initialization and momentum in deep learning. In

Proc. the 30th International Conference on Machine Learn-

ing, June 2013, pp.1139-1147.

[24] Lin Z P, Shu F D, Ye Y, Hu C Y, Wang Q. An empiri-

cal study on bug assignment automation using Chinese bug

data. In Proc. the 3rd International Symposium on Empir-

ical Software Engineering & Measurement, October 2009,

pp.451-455.

[25] Naguib H, Narayan N, Brügge B, Helal D. Bug report as-

signee recommendation using activity profiles. In Proc. the

10th Working Conference on Mining Software Repositories,

May 2013, pp.22-30.

[26] Cubranic D, Murphy G C. Automatic bug triage using text

categorization. In Proc. the 16th International Conference

on Software Engineering & Knowledge Engineering, June

2004, pp.92-97.

[27] Alenezi M, Magel K, Banitaan S. Efficient bug triaging us-

ing text mining. Journal of Software, 2013, 8(9): 2185-2190.

[28] Zou WQ, Hu Y, Xuan J F, Jiang H. Towards training set re-

duction for bug triage. In Proc. the 35th Annual Computer

Software and Applications Conference, July 2011, pp.576-

581.

[29] Park J, Lee M W, Kim J, Hwang S, Kim S. CosTriage: A

cost-aware triage algorithm for bug reporting systems. In

Proc. the 25th AAAI Conference on Artificial Intelligence,

August 2011, Article No. 22.

[30] Hu H, Zhang H Y, Xuan J F, Sun W G. Effective bug

triage based on historical bug-fix information. In Proc. the

25th International Symposium on Software Reliability En-

gineering, November 2014, pp.122-132.

[31] Zhang W, Wang S, Wang Q. KSAP: An approach to bug

report assignment using KNN search and heterogeneous

proximity. Information and Software Technology, 2016, 70:

68-84.

[32] Wang S, Zhang W, Yang Y, Wang Q. DevNet: Exploring

developer collaboration in heterogeneous networks of bug

repositories. In Proc. the 2013 ACM/IEEE International

Symposium on Empirical Software Engineering and Mea-

surement, October 2013, pp.193-202.

[33] Wu H R, Liu H Y, Ma Y T. Empirical study on developer

factors affecting tossing path length of bug reports. IET

Software, 2018, 12(3): 258-270.

[34] Hooimeijer P, Weimer W. Modeling bug report quality. In

Proc. the 22nd IEEE/ACM International Conference on

Automated Software Engineering, November 2007, pp.34-

43.

[35] Demeyer S, Lamkanfi A. Predicting reassignments of bug re-

ports — An exploratory investigation. In Proc. the 17th Eu-

ropean Conference on Software Maintenance and Reengi-

neering, March 2013, pp.327-330.



956 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

[36] Herraiz I, Germán D M, González-Barahona J M, Robles G.

Towards a simplification of the bug report form in Eclipse.

In Proc. the 2008 International Working Conference on

Mining Software Repositories, May 2008, pp.145-148.

[37] Wu L, Xie B Y, Kaiser G E, Passonneau R J. BUGMINER:

Software reliability analysis via data mining of bug reports.

In Proc the 23rd International Conference on Software En-

gineering & Knowledge Engineering, July 2011, pp.95-100.

[38] Zanetti M S, Scholtes I, Tessone C J, Schweitzer F. Cate-

gorizing bugs with social networks: A case study on four

open source software communities. In Proc. the 35th Inter-

national Conference on Software Engineering, May 2013,

pp.1032-1041.

[39] Fan Y R, Xia X, Lo D, Hassan A E. Chaff from

the wheat: Characterizing and determining valid bug

reports. IEEE Transactions on Software Engineering.

doi:10.1109/TSE.2018.2864217.

[40] Hiew L. Assisted detection of duplicate bug reports [Ph.D.

Thesis]. University of British Columbia, 2006.

[41] Runeson P, Alexandersson M, Nyholm O. Detection of du-

plicate defect reports using natural language processing. In

Proc. the 29th International Conference on Software Engi-

neering, May 2007, pp.499-510.

[42] Wang X Y, Zhang L, Xie T, Anvik J, Sun J. An approach

to detecting duplicate bug reports using natural language

and execution information. In Proc. the 30th International

Conference on Software Engineering, May 2008, pp.461-

470.

[43] Nguyen A T, Nguyen T T, Nguyen T N, Lo D, Sun C.

Duplicate bug report detection with a combination of in-

formation retrieval and topic modeling. In Proc. the 27th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, September 2012, pp.70-79.

[44] Tian Y, Sun C, Lo D. Improved duplicate bug report identi-

fication. In Proc. the 16th European Conference on Software

Maintenance and Reengineering, March 2012, pp.385-390.

[45] Bettenburg N, Premraj R, Zimmermann T, Kim S. Dupli-

cate bug reports considered harmful ... really? In Proc. the

24th International Conference on Software Maintenance,

September 2008, pp.337-345.

[46] Cavalcanti Y C, de Almeida E S, da Cunha C E A, Lucrédio

D, Meira S R. An initial study on the bug report duplication

problem. In Proc. the 14th European Conference on Soft-

ware Maintenance & Reengineering, March 2010, pp.264-

267.

[47] Cavalcanti Y C, Almeida E S, Cunha C E A et al. The bug

report duplication problem: An exploratory study. Software

Quality Journal, 2013, 21(1): 39-66.

Sheng-Qu Xi currently is a Ph.D.

student of a five-year educational sys-

tem in State Key Laboratory for Novel

Software, the Department of Computer

Science and Technology at Nanjing

University, Nanjing. He received his

B.S. degree in computer science from

Nanjing University, Nanjing, in 2014.

His major research interest includes mining bug reports

and deep learning for software engineering.

Yuan Yao is an assistant researcher

in State Key Laboratory for Novel

Software, the Department of Computer

Science and Technology at Nanjing

University, Nanjing. He received his

Ph.D. degree in computer science from

Nanjing University, Nanjing, in 2015.

His current research interest includes

mining networked data with applications to social media

analytics and software analytics.

Xu-Sheng Xiao is an assistant pro-

fessor in the Department of Electrical

Engineering and Computer Science

at Case Western Reserve University,

Cleveland. He received his Ph.D. degree

in computer science from North Car-

olina State University, Raleigh, advised

by Prof. Tao Xie and Prof. Laurie

Williams in 2014. He was a visiting student at University

of Illinois at Urbana-Champaign in 2013–2014. His general

research interests span between software engineering and

computer security.

Feng Xu is a professor in State

Key Laboratory for Novel Software,

the Department of Computer Science

and Technology at Nanjing University,

Nanjing. He received his B.S. and M.S.

degrees in computer science from Hohai

University, Nanjing, in 1997 and 2000,

respectively. He received his Ph.D.

degree in computer science from Nanjing University,

Nanjing, in 2003. His research interests include software

defect localization, data mining, recommender systems

and trust management.

Jian Lv is a professor in the De-

partment of Computer Science and

Technology and the director of the

State Key Laboratory for Novel Soft-

ware Technology at Nanjing University,

Nanjing. He received his B.S. and

Ph.D. degrees in computer science from

Nanjing University, Nanjing, in 1982

and 1988 respectively. He serves on the Board of the

International Institute for Software Technology of the

United Nations University (UNU-IIST). He also serves

as the director of the Software Engineering Technical

Committee of CCF. His research interests include software

methodologies, software automation, software agents, and

middleware systems.


