
Li X, Wu Z, Pan F et al. A geometric strategy algorithm for orthogonal projection onto a parametric surface. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 34(6): 1279–1293 Nov. 2019. DOI 10.1007/s11390-019-1967-z

A Geometric Strategy Algorithm for Orthogonal Projection onto a

Parametric Surface

Xiaowu Li1, Zhinan Wu2, Feng Pan3, Senior Member, CCF, Juan Liang4, Jiafeng Zhang1

and Linke Hou5,∗

1College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China

2School of Mathematics and Computer Science, Yichun University, Yichun 336000, China

3School of Software Engineering, South China University of Technology, Guangzhou 510006, China

4Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China

5Center for Economic Research, Shandong University, Jinan 250100, China

E-mail: lixiaowu002@126.com; zhi nan 7@163.com; panf@vip.163.com; liangjuan76@126.com
E-mail: {jiafengzhang, abram75}@163.com

Received January 13, 2019; revised September 4, 2019.

Abstract In this paper, we investigate how to compute the minimum distance between a point and a parametric surface,

and then to return the nearest point (foot point) on the surface as well as its corresponding parameter, which is also called the

point projection problem of a parametric surface. The geometric strategy algorithm (hereafter GSA) presented consists of

two parts as follows. The normal curvature to a given parametric surface is used to find the corresponding foot point firstly,

and then the Taylor’s expansion of the parametric surface is employed to compute parameter increments and to get the

iteration formula to calculate the orthogonal projection point of test point to the parametric surface. Our geometric strategy

algorithm is essentially dependent on the geometric property of the normal curvature, and performs better than existing

methods in two ways. Firstly, GSA converges faster than existing methods, such as the method to turn the problem into a

root-finding of nonlinear system, subdividing methods, clipping methods, geometric methods (tangent vector and geometric

curvature) and hybrid second-order method, etc. Specially, it converges faster than the classical Newton’s iterative method.

Secondly, GSA is independent of the initial iterative value, which we prove in Theorem 1. Many numerical examples confirm

GSA’s robustness and efficiency.

Keywords point projection problem, point inversion problem, normal curvature, normal curvature sphere, convergence

analysis

1 Introduction

In this paper, we discuss how to compute the mini-

mum distance between a point and a parametric sur-

face, and to return the nearest point (footpoint) on the

surface as well as its corresponding parameter, which

is also called the point projection problem (the point

inversion problem) of a parametric surface. It is a very

interesting problem in geometric modeling, computer

graphics and computer vision[1]. Both projection and

inversion are essential for interactively selecting curves

and surfaces[1−2], for the curve fitting problem[1−2],

for reconstructing surfaces[3−5] and for projecting of a

space curve onto a surface in surface curve design[1]. It

is also a key issue in the ICP (iterative closest point)

algorithm for shape registration[6].

The most classical method for solving nonlinear

equation or system of nonlinear equations is Newton-

Regular Paper

This work is supported by the National Natural Science Foundation of China under Grant No. 61263034, the Feature Key Lab-
oratory for Regular Institutions of Higher Education of Guizhou Province of China under Grant No. [2016]003, the Key Laboratory
of Advanced Manufacturing Technology of Ministry of Education of China with Guizhou University under Grant No. KY[2018]479,
the Training Center for Network Security and Big Data Application of Guizhou Minzu University under Grant No. 20161113006, the
Shandong Provincial Natural Science Foundation of China under Grant No. ZR2016GM24, the Progress Project for Young Science and
Technology Scholars of Guizhou Provincial Department of Education under Grant No. KY[2016]164.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

1280 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Raphson method[7−11]. Mortenson[7] turned the pro-

jection problem into the one to find the root of a poly-

nomial by using the Newton-Raphson method. Zhou

et al.[8] presented an algorithm to find the stationary

points of the squared distance functions between two

point sets by solving equations expressed in the tensor

product Bernstein basis. Limaien and Trochu[9] com-

puted the orthogonal projection of a point onto para-

metric curves and surfaces by constructing an auxiliary

function and finding its zeros. Polak and Royset[10]

presented a new feedback precision-adjustment rule for

use with a smoothing technique and standard uncon-

strained minimization algorithms in the solution of fi-

nite minimax problems. Patrikalakis and Maekawa[11]

transformed distance functions problem to solving sys-

tems of nonlinear polynomial equations. The common

technique is to turn the problem into the one to use

the Newton’s iterative method for finding the roots of

a nonlinear equation system, which is dependent on the

initial iterative value.

The second classical method for orthogonally pro-

jecting a point onto parametric curve or surface is the

subdividing method[1,12−15]. By subdividing Bézier

curve or surface and making use of the relationship

between control points and curve or surface (the con-

trol points being a very good sample of the target,

including derivatives), Ma and Hewitt[1] proposed an

algorithm to project a point onto a parametric curve

or surface. Johnson and Cohen[12] presented a robust

search for distance extrema between a point and a curve

or a surface for finding all local extrema. Based on

the algorithm of Ma and Hewitt[1], Selimovic[13] pre-

sented improved algorithms for the projection of points

onto NURBS curve and surface. Cohen et al.[14] pro-

vided classical subdivision algorithms, which have been

widespreadly applied in computer-aided geometric de-

sign, computer graphics, and numerical analysis. Piegl

and Tiller[15] presented an algorithm for point projec-

tion onto the NURBS surface by subdividing a NURBS

surface into quadrilaterals, projecting the test point

onto the closest quadrilateral, and then recovering the

parameter from the closest quadrilateral. The common

feature in this branch of the literature is to use the

subdivision method firstly, and to use the Newton’s ite-

rative method in the last step. The method with sub-

division processing is time-consuming, while the New-

ton’s iterative method used in the last step to find the

roots for a nonlinear equation system depends on the

initial iterative value.

The third classical method transforms the point pro-

jection problem into specific solvers’ methods[16−20].

By using multivariate rational functions, Elber and

Kim[16] established a solver for a set of geometric con-

straints represented by inequalities. When the di-

mension of the solver is larger than zero, they subdi-

vided the multivariate function(s) in order to desig-

nate the function values to a specified domain. Bor-

rowing from [16] but with more effectiveness, a hy-

brid parallel method in [17] develops both the CPU

and the GPU multi-core architectures to figure out

systems under multivariate constraints. Those GPU-

based subdivision methods essentially explore the in-

herent parallelism in the subdivision of multivariate

polynomial. Compared with the existing subdivision-

based CPU, the performance of the geometric-based al-

gorithm has been improved to a certain extent. Two

blending schemes in [18] efficiently eliminate no-root

domains, and thereby greatly decrease the number of

subdivisions. For a nonlinear equation system, a sim-

ple linear combination of functions can remove no-root

domain and then find out all control points for its

Bernstein-Bézier bases with the same sign, which must

be consistent with the seek function. During the subdi-

vision process, it can continuously yield these types of

functions to eliminate the no-root domain. As a conse-

quence, van Sosin and Elber[19] efficiently constructed

a variety of complex piecewise polynomial systems with

zero or inequality constraints in zero-dimensional or

one-dimensional solution spaces. On the basis of their

own studies[16,19], Bartoň et al.[20] came up with a new

solver to solve a non-constrained (piecewise) polyno-

mial system. Two termination criteria are adopted

in the subdivision-based solver: the no-loop test and

the single-component test. Once the subdivision-based

solver has met the two termination criteria, it then can

obtain the domains which have a single monotone uni-

variate solution. The advantage of these methods is

that they can find all the root solutions, while their

disadvantage is that they are computationally expen-

sive and may need many subdivision steps.

The fourth classical method for the point projection

problem is clipping technique[21−23]. Chen et al.[21,22]

provided methods for computing the minimum distance

between a point and a NURBS curve (or a clamped

B-spline surface). Analogously, based on an efficient

culling technique to eliminate redundant curves or sur-

faces with no projection from the given point, Oh et

al.[23] presented an efficient algorithm for projecting a

given point to its closest point on a family of freeform

curves and surfaces. This branch of the literature uses

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1281

the clipping methods[21−23] and then uses the Newton’s

iterative method in the last step. But the method with

clipping processing is time-consuming and the Newton’s

iterative method in the last step depends on the initial

iterative value.

The fifth classical method for the point projection

problem makes use of five types of geometric meth-

ods: tangent cones method[12], torus patch method[24],

curvature information method[25−27], tangent vector

method[28−30] and geometric hybrid method[31−33]. Us-

ing geometric operations with tangent cones rather

than numerical methods, Johnson and Cohen[12] pre-

sented a robust search for distance extrema between

a point and a curve or a surface for finding all local

extrema. The technique of torus patch approxima-

tion to a local surface was proposed by Liu et al.[24]

It was proved that the approximation torus patch and

the original surface are both second-order osculating.

An algorithm with curvature information for orthogo-

nal projection onto curves and surfaces has been pre-

sented by Hu and Wallner[25]. Li et al.[26] presented a

second-order curvature geometry method for comput-

ing the minimum distance between a point and a spa-

tial parametric curve. Li et al.[27] gave a convergence

analysis of the point projecting onto the planar para-

metric curve algorithm in [25]. Utilizing the tangent

vector method, the first-order algorithm for point pro-

jection problem (point inversion problem) of a paramet-

ric curve or surface has been realized by Hartmann[28],

Hoschek and Lasser[29] and Hu et al.[30], respectively

(hereafter H-H-H method). For some special cases

where the H-H-H method diverges, Liang et al.[31] cre-

ated the hybrid second-order method for orthogonal

projection onto parametric curve in an n-dimensional

Euclidean space. Besides, Li et al.[32] presented the

hybrid second-order iterative algorithm for orthogonal

projection onto parametric surface. The robustness of

the two algorithms[31,32] is improved compared with the

H-H-H method. Based on the tangent vector method

and combining with Newton’s iterative method, Li et

al.[33] presented an integrated hybrid second-order al-

gorithm for orthogonal projection onto a planar implicit

curve. This branch of literature shares the adoption of

geometric methods such as tangent cone, tangent vec-

tor, torus patch, curvature information or geometric

hybrid. But their geometry convergence rates are not

very fast.

In a word, these algorithms have been presented

to investigate various techniques such as Newton’s

iterative method, root-finding methods, subdividing

methods, clipping technique, transform-based solvers

methods and various geometric methods. Regarding

the projection problem, Ko and Sakkalis[34] systemati-

cally and completely summarized literatures before

2014. To avoid the algorithms’ dependence on the ini-

tial iterative value, we use the geometric iterative strat-

egy. It uses only such second-order information of the

surface under consideration. We firstly construct the

normal curvature sphere to a given parametric surface,

and then specify its radius and center. Secondly, we

find the footpoint on the line segment between the test

point and the center of the normal curvature sphere.

Finally we use the Taylor’s expansion of the surface

to compute parameter increments and get the iteration

formula to compute the orthogonal projection point of

the test point to the parametric surface (see Fig.1).

We prove that GSA is independent of the initial ite-

rative value. Numerical examples are shown to illus-

trate the efficiency and robustness of the geometric ite-

rative strategy.

p0

p

q

m

s↼u֒ v↽

p
G

Fig.1. Graphic demonstration for GSA.

The rest of this paper is organized as follows. Sec-

tion 2 presents GSA for the point projection problem

and Section 3 describes its convergence analysis. The

experimental results about the evaluation of perfor-

mance of various methods are given in Section 4. Fi-

nally, Section 5 concludes the paper.

2 Orthogonal Projection onto a Parametric

Surface

2.1 Description of GSA

Assume that a surface has a parametric form Γ:

s(u, v) = (f1(u, v), f2(u, v), f3(u, v)) in R
3. The scalar

product of vectors x,y ∈ R
3 is 〈x,y〉. Partial deriva-

tives with respect to the parameters u and v will be

denoted by ∂s
∂u

= (∂f1(u,v)
∂u

, ∂f2(u,v)
∂u

, ∂f3(u,v)
∂u

) and ∂s
∂v

=

1282 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

(∂f1(u,v)
∂v

, ∂f2(u,v)
∂v

, ∂f3(u,v)
∂v

). The unit normal vector of

the parametric surface s(u, v) on the point s(u0, v0)

could be defined as n =
∂s

∂u
× ∂s

∂v

‖ ∂s

∂u
× ∂s

∂v‖
|(u0,v0). A test point

p (p = (p1, p2, p3)) is projected onto a surface as fol-

lows. Assume an initial iteration point p0 = s(u0, v0),

and then we find q by projecting test point p onto the

tangent plane determined by p0.

q − p0 ≈
∂s

∂u
∆u +

∂s

∂v
∆v. (1)

Multiplying both sides of (1) by ∂s
∂u

, ∂s
∂v

, respectively,

we get










〈
∂s

∂u
,
∂s

∂u
〉∆u+ 〈

∂s

∂u
,
∂s

∂v
〉∆v = 〈q − p0,

∂s

∂u
〉,

〈
∂s

∂u
,
∂s

∂v
〉∆u + 〈

∂s

∂v
,
∂s

∂v
〉∆v = 〈q − p0,

∂s

∂v
〉,

(2)

where symbol 〈 , 〉 is the inner product. Therefore

∆u,∆v can be computed as a solution of a regular sys-

tem of linear equations in (2). We update u0, v0 by

adding ∆u,∆v, respectively. This first-order geomet-

ric iteration method can be found in [28-30]. They are

simply referred to as the H-H-H method hereafter.

In order to improve efficiency, we propose the fol-

lowing geometric approximation by normal curvature.

Vector p − p0 can be expressed as a linear combina-

tion of the tangent vectors ∂s
∂u

, ∂s
∂v

and the unit normal

vector n at p0 which is actually the following formula

(3),

p− p0 = α1
∂s

∂u
+ α2

∂s

∂v
+ α3n. (3)

By simplifying, the unit normal vector can be specifi-

cally expressed as the following,

n =
A

B
=

(A1, A2, A3)
√

A2
1 +A2

2 +A2
3

, (4)

where A1 = ∂f2(u,v)
∂u

∂f3(u,v)
∂v

− ∂f3(u,v)
∂u

∂f2(u,v)
∂v

,

A2 = ∂f3(u,v)
∂u

∂f1(u,v)
∂v

− ∂f1(u,v)
∂u

∂f3(u,v)
∂v

and A3 =
∂f1(u,v)

∂u

∂f2(u,v)
∂v

− ∂f2(u,v)
∂u

∂f1(u,v)
∂v

. Multiplying both

sides of (3) by ∂s
∂u

, ∂s
∂v

, n, respectively, we obtain






































































α1〈
∂s

∂u
,
∂s

∂u
〉+ α2〈

∂s

∂u
,
∂s

∂v
〉+ α3〈

∂s

∂u
,n〉

= 〈p− p0,
∂s

∂u
〉,

α1〈
∂s

∂u
,
∂s

∂v
〉+ α2〈

∂s

∂v
,
∂s

∂v
〉+ α3〈

∂s

∂v
,n〉

= 〈p− p0,
∂s

∂v
〉,

α1〈
∂s

∂u
,n〉+ α2〈

∂s

∂v
,n〉+ α3〈n,n〉

= 〈p− p0,n〉.

(5)

The coefficients of the first fundamental form are given

by E = 〈 ∂s
∂u

, ∂s
∂u

〉, F = 〈 ∂s
∂u

, ∂s
∂v

〉, G = 〈∂s
∂v

, ∂s
∂v

〉. On the

other hand, in order to conveniently express the deriva-

tion of the following formulas, the coefficients 〈 ∂s
∂u

,n〉,

〈∂s
∂v

,n〉, 〈n,n〉, 〈p− p0,
∂s
∂u

〉, 〈p− p0,
∂s
∂v

〉, 〈p− p0,n〉

can be simplified as C1 = 〈 ∂s
∂u

,n〉, C2 = 〈∂s
∂v

,n〉,

C3 = 〈n,n〉 = 1, S1 = 〈p− p0,
∂s
∂u

〉, S2 = 〈p− p0,
∂s
∂v

〉,

S3 = 〈p− p0,n〉. By simplifying (5), it is easy to get






α1E + α2F + α3C1 = S1,
α1F + α2G+ α3C2 = S2,
α1C1 + α2C2 + α3C3 = S3.

(6)

By computing the solution of a regular system of linear

equations in (6) about α1, α2 and α3, we obtain the

parameters α1, α2, α3 as follows (notice C3 = 1),


















α1=−
C1C2S2−C1GS3−C2

2
S1+C2FS3−FS2+GS1

C2

1
G−2C1C2F+C2

2
E−EG+F 2 ,

α2=
C2

1
S2−C1C2S1−C1FS3+C2ES3−ES2+FS1

C2

1
G−2C1C2F+C2

2
E−EG+F 2 ,

α3=−C1FS2−C1GS1−C2ES2+C2FS1+EGS3−F 2S3

C2

1
G−2C1C2F+C2

2
E−EG+F 2

.

(7)

According to the definition of normal curvature of dif-

ferential geometry, if two curves on parametric surface

s(u, v) at point p0 have the same unit tangent vec-

tor, then the two curves have the same normal curva-

ture at point p0. In fact, it is not difficult to know

that the tangent vector on surface s(u, v) at point p0

is T = α1
∂s
∂u

+ α2
∂s
∂v

, and then the corresponding unit

tangent vector of T is T

‖T ‖ = α1

‖T ‖
∂s
∂u

+ α2

‖T ‖
∂s
∂v

. There-

fore the normal curvature of parametric surface s(u, v)

along the unit tangent vector T

‖T ‖ at point p0 can be

defined as

kn(
T

‖T ‖
) =

Lα2
1 + 2Mα1α2 +Nα2

2

‖T ‖2
, (8)

where L, M , N are the coefficients of the second fun-

damental form of parametric surface of differential geo-

metry. More specifically, L, M , N can be defined as

L = 〈 ∂
2
s

∂u2 ,n〉, M = 〈 ∂2
s

∂u∂v
,n〉, N = 〈∂

2
s

∂v2 ,n〉, where

∂2s

∂u2
= (

∂2f1(u, v)

∂u2
,
∂2f2(u, v)

∂u2
,
∂2f3(u, v)

∂u2
),

∂2s

∂u∂v
= (

∂2f1(u, v)

∂u∂v
,
∂2f2(u, v)

∂u∂v
,
∂2f3(u, v)

∂u∂v
),

∂2s

∂v2
= (

∂2f1(u, v)

∂v2
,
∂2f2(u, v)

∂v2
,
∂2f3(u, v)

∂v2
).

From the tangent vector T , we get the following expres-

sion,

‖T ‖2 = 〈α1
∂s

∂u
+ α2

∂s

∂v
, α1

∂s

∂u
+ α2

∂s

∂v
〉

= Eα2
1 + 2Fα1α2 +Gα2

2,
(9)

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1283

where the coefficients E, F , G are the first fundamen-

tal form of parametric surface of differential geometry.

Based on (7)–(9), the normal curvature can be specifi-

cally expressed as

kn(
T

‖T ‖
) =

II(T ,T)

I(T ,T)
=

Lα2
1 + 2Mα1α2 +Nα2

2

Eα2
1 + 2Fα1α2 +Gα2

2

. (10)

Here, let us make a few explanations about the unique-

ness of the normal curvature of (10). According to the

basic definition of normal curvature of differential geo-

metry, countless values of the normal curvature can

exist at a specified point p0 on a parametric surface

s(u, v). But the normal curvature at this moment is

unique along the tangential direction of the current

normal transversal curve at the initial iterative point

p0. And the current normal transversal curve is created

when the current normal section plane Π determined by

the unit normal vector n at the initial iterative point p0

and the vector
−−−−→
p− p0 intersects the parametric surface

s(u, v) (see Fig.2(b)).

In the following, we present the iterative formula for

computing parameter increment ∆u, ∆v determined by

normal curvature kn(
T

|T |) or kn. The radius R and cen-

ter m of normal curvature sphere of parametric surface

s(u, v) at point p0 can be represented by the following

formulas respectively.

R =

∣

∣

∣

∣

1

kn

∣

∣

∣

∣

. (11)

p0 +
n

kn
= m. (12)

From (11) and (12), we can obtain the equation of nor-

mal curvature sphere:

‖x−m‖ = R, (13)

where x = (x, y, z). On the other hand, the parametric

equation of the line segment connecting the test point p

and the center m of normal curvature sphere (13) can

be expressed as,

x = p+ (m− p)w, (14)

where w (0 < w < 1) will be an undetermined parame-

ter. Since the footpoint q = (q1, q2, q3) is the intersec-

tion of the line segment (14) and the normal curvature

sphere (13), substituting (14) into (13), the undeter-

mined parameter w could be specifically expressed as

w = 1±
R

‖m− p‖
. (15)

Since the footpoint q lies between the line segment mp

determined by the center m of the normal curvature

sphere and the test point p, the parameter w is in (0, 1).

By (15), the parameter w should be

w = 1−
R

‖m− p‖
. (16)

This time, the footpoint q can be expressed as

q = p+ (m− p)w. (17)

Analogous to the first-order geometric iteration

method[28−30], we can get the most core iterative for-

mula associated with the GSA,

q − p0 ≈
∂s

∂u
∆u+

∂s

∂v
∆v. (18)

Through multiplying both sides of (18) by ∂s
∂u

, ∂s
∂v

, re-

spectively, we have the iterative form:
{

E∆u+ F∆v = C4,
F∆u+G∆v = C5,

(19)

P

s↼u֒v↽

p

q

m

c↼θ↽

(b)↼a↽

p0

pΓ

Fig.2. Entire graphic demonstration of convergence analysis for GSA. (a) The normal section plane Π intersects the surface s(u, v) of
a normal transversal curve. (b) The normal section plane Π traverses the current normal curvature sphere to form a curvature circle.

1284 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

where C4 =
〈

q − p0,
∂s
∂u

〉

, C5 =
〈

q − p0,
∂s
∂v

〉

. Solving

the system of linear equations in (19), we can get the

iterative increment formula associated with the GSA:














∆u =
C4G− C5F

EG− F 2
,

∆v = −
C4F − C5E

EG− F 2
.

(20)

We now update u0 and v0 according to u0 +∆u →

u0, v0 + ∆v → v0, and the procedure (20) is repeated

again, with s(u0, v0) as a new initial point, until u0

and v0 make the desired accuracy criteria being met.

Namely, we increase u0, v0 by ∆u, ∆v respectively and

repeat the above procedure (20) until ∆u and ∆v are

less than a given tolerance (|∆u| < ε and |∆v| < ε or

they satisfy the inequality |∆u|
2
+ |∆v|

2
< ε). In this

way, we can compute the orthogonal projection point

pΓ of test point p onto the surface (see Fig.1). The

algorithm with the geometric strategy can be realized

as Algorithm 1.

Algorithm 1. Geometric Strategy Algorithm

Input: the initial parametric value t0 = (u0, v0)T, the para-
metric surface s(u, v) and test point p

Output: the final iterative parametric value tn = (un, vn)T or
the orthogonal projection point pΓ

Step 1. Input the initial iterative parametric value t0.

Step 2. Use (20), compute the parametric incremental value
∆t = (∆u,∆v)T, and update t0+∆t to t0, namely, t0 = t0+∆t.

Step 3. Judge whether the norm of difference between the for-
mer t0 and the latter t0 is near 0 (‖∆t‖ < ε). If so, end this
algorithm; if not, go to step 2.

Remark 1. We give a geometric interpretation of

GSA in Fig.1, where s(u, v) is a parameter surface,

p0 = s(u0, v0) with the initial iterative parameter

(u0, v0) on the parametric surface s(u, v) is the initial

iterative point. According to the basic characteristic

of elementary differential geometry, the initial iterative

point p0 = s(u0, v0) and the vector
−−−−→
p− p0 determine

a unique normal curvature (defined by (10)). Conse-

quently, the unique normal curvature sphere with the

radius R and the center m is determined by (11)–(13).

The point q is the intersection of the line segment pm

and the normal curvature sphere. pΓ is the correspond-

ing orthogonal projection point of the test point p onto

the parametric surface s(u, v). u0 and v0 are updated

according to u0 +∆u → u0, and v0 +∆v → v0 respec-

tively. The procedure (20) is repeated with s(u0, v0)

as a new initial point until u0 and v0 make the desired

accuracy criteria being met.

2.2 Processing Degenerate Status with kn = 0

It is well known that the most important iterative

increment formula associated with GSA is the iterative

formula (20). If the normal curvature of the iterative

formula (10) is zero, the whole iteration process will

degenerate. In order to solve this special degeneration,

we adopt a small perturbation of normal curvature of

(10) in programming implementation of GSA. Namely,

the normal curvature of (10), kn, could be incremented

by a small positive constant ε, i.e., kn = kn+ε, and the

iteration in (20) continues to compute the parametric

incremental value ∆t = (∆u,∆v)
T
, and update t0+∆t

to t0. Of course, this special degeneration status seldom

appears in the actual programming implementation of

GSA. If this kind of special degeneration occurs, we will

try to find all the plane patches or line segments of the

parametric surface s(u, v). We then directly seek the

point (written as p0 Γ) with the minimum distance be-

tween the test point p and all the plane patches or the

line segments of the parametric surface s(u, v). After

that, we orthogonally project the test point p onto the

parametric surface with the elimination of all patches

or line segments by using GSA, where the correspond-

ing orthogonal projection point is written as pΓ. Then,

from two points p0 Γ and pΓ, a corresponding point

is selected such that the distance between the corre-

sponding point and the test point p is the minimum

one. If the entire program terminates, the minimum

distance and its corresponding parameter value are ac-

quired. Therefore this avoids repeated small perturba-

tion by using (10) directly.

3 Convergence Analysis

In this section, we consider the convergence analysis

of iterative technique given in (20). We try to prove

that GSA is independent of the initial iterative value.

Theorem 1. GSA is independent of the initial ite-

rative value.

Proof. The proof is divided into two parts, the first

part is the analysis and proof of the case with the cor-

responding unique orthogonal projection point for the

test point p and the second part is the analysis and

proof of the case with the corresponding multiple or-

thogonal projection points for the test point p.

Part 1. Firstly, we give a geometric interpretation

of GSA in Fig.1 and Fig.2. From Fig.1, the line seg-

ment ppΓ and the line segment pm span into a nor-

mal section plane Π (see Fig.2(a)). It is not hard to

find that the initial iterative point p0 is also on the

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1285

normal section plane Π. Based on the basic character-

istic of differential geometry, the normal section plane

Π intersects the surface s(u, v) of a normal transversal

curve (the brown curve of Fig.2(a) which is the normal

transversal curve is exactly the same as the brown curve

of Fig.2(b)). And the normal section plane Π traverses

the current normal curvature sphere to form a curva-

ture circle in Fig.2(b) which has the same center m and

radius with the normal curvature sphere. Red, black,

green, yellow and blue points represent the test point

p, the initial iterative point p0, the center m of curva-

ture circle, the intersection q of the line segment pm

and the curvature circle, and the orthogonal projecting

point pΓ, respectively (see Fig.2(b)).

Secondly, we interpret the geometric meaning of the

algorithm described in Fig.2(b). There is a paramet-

ric curve c(θ) defined by the normal transversal curve

which is the intersection determined by the normal sec-

tion plane Π, the surface s(u, v) and a test point p,

where the parameter θ is associated with two parame-

ters u and v of the parametric surface s(u, v). We pa-

rameterize the curvature circle c (see Fig.2(b)) such

that it shares the same Taylor’s polynomial with the

parametric curve c(θ). Then this equality holds:

q = c(θ0 +∆θ)

= c(θ0 +∆θ) + o(∆θ2)

= c(θ0) + ∆θc′(θ0) +
∆θ2

2
c′′(θ0) + o(∆θ2). (21)

In R
2, we deal with (21) using the method in [18, 33]

and get det(q−c(θ0), c
′′(θ0)) = ∆θ det(c′(θ0), c

′′(θ0))+

o(∆θ2), which yields the iterative formula

∆θ =
det(q − c(θ0), c

′′(θ0))

det(c′(θ0), c′′(θ0))

=
1

k ‖c′‖
3 det(q − c(θ0), c

′′(θ0)), (22)

where k is the curvature of curvature circle at θ = θ0.

θ is updated by θ0+∆θ → θ0 and the procedure (22) is

repeated with c(θ) as a new initial point until θ0 meets

the desired accuracy criteria. This is the classic curva-

ture circle method which orthogonally projects the test

point onto the planar parametric curve[25].

From the above description of the transformation

process, GSA in essence is equivalent to the classic cur-

vature circle method for the point projection problem.

Since Theorem 3 in [27] has proved that the classic cur-

vature circle method[25] is independent of the initial it-

eration value, GSA is also independent of the initial

iterative value.

Part 2. For the case with corresponding multiple or-

thogonal projection points of the test point p, let us as-

sume that there are n corresponding orthogonal projec-

tion points p1 Γ, p2 Γ, ..., pn Γ. According to the most

essential geometric characteristics of GSA, once the ini-

tial iteration point p0 = s(u0, v0) is determined, the

corresponding unique orthogonal projection point must

be satisfied with the proximity principle such that the

two points distance function ‖p0 − pi Γ‖ (i = 1, 2, ..., n)

must be minimal. Then corresponding unique orthogo-

nal projection point is also be determined by the initial

iteration point p0. Namely, once the initial iterative

point p0 is determined by two parameters u0 and v0,

the initial iterative point p0 can always find a unique

orthogonal projection point in all n corresponding or-

thogonal projection points p1 Γ, p2 Γ, ..., pn Γ such that

the distance between the current initial iterative point

p0 and the current orthogonal projection point must

be minimal. This conclusion indicates that GSA is also

independent of the initial iterative value for the corre-

sponding multiple orthogonal projection points of the

test point p. �

Remark 2. In Theorem 1, we prove that GSA is in-

dependent of the initial value. In addition, if the test

point p is not on the parametric surface s(u, v), it is not

difficult to find that the convergence order of GSA is 1.

On the contrary, if the test point p is on the parametric

surface s(u, v), it is not hard to demonstrate that the

convergence order of GSA is 2. The proof method is

analogous to that of Theorem 1 in [34].

4 Experimental Results

In order to explain the advantage of GSA to other

algorithms (the H-H-H method, the Newton’s method,

etc.), we present two numerical examples to verify its

robustness and high efficiency. From Tables 1–10, we

can find that the iterative termination criterion is sat-

isfied with two conditions (un+1 − α)2 + (vn+1 − β)2 <

1E − 14 and (un+1 − un)
2 + (vn+1 − vn)

2 < 1E − 14.

All numerical results were computed through g++ in

a Fedora Linux 8 environment. The approximate zero

is reached up to the 14th decimal place. These results

of our two examples are obtained from the computer

hardware configuration with T2080 1.73 GHz CPU and

2.5 GB memory. In the following 10 tables of the two

examples, the test time is measured in nanosecond.

Example 1. We consider the surface s(u, v) =

(u + v, sin(u) + 2 cos(v), sin(u + v)) with a test point

p = (p1, p2, p3) = (1.0, 2.0, 2.0). Using GSA, the

corresponding orthogonal projection parametric point

1286 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

is (1.289 024 00, 2.000 000 00, 0.960 564 136), and the

initial iterative values (u0, v0) are (23, 23), (23,−23),

(−23, 22), (−23,−23), (15, 15), (15,−15), (−15, 14),

(−13,−15), respectively. Each initial iterative value

repeatedly iterates 10 times, respectively, and yields 10

different iteration time in nanosecond. In Table 1, the

mean running time of GSA is 69 077, 11 113, 45 886,

67 531, 67 453, 11 632, 43 421, 63 451 nanoseconds for

eight different initial iterative values, respectively. In

the end, the totally average running time in Table 1

is 47 445 nanoseconds (= 0.047 445 ms). Using the H-

H-H method, the corresponding orthogonal projection

parametric point and the initial iterative values (u0, v0)

remain the same. Using the same iteration frequency,

we also get 10 different iteration time in nanosecond. In

Table 2, the mean running time of the H-H-H method

is 214 328, 195 087, 209 855, 178 796, 172 946, 181 253,

172 951, 172 811 nanoseconds for eight different initial

iterative values, respectively. In the end, the ave-

rage running time in Table 2 is 187 253 nanoseconds

(= 0.187253 ms). We then change the corresponding

orthogonal projection parametric points with value of

(1.289 024 00, 2.000 000 00, 0.960 564 136), and the ini-

tial iterative values (u0, v0) are set as (5, 5), (5,−5),

(−4, 5), (−5,−5), (2, 2), (2,−2), (−2, 3), (−2,−2), re-

spectively, while the statistical method to generate the

iteration time is exactly the same as that in Table 1

and Table 2. The new results of GSA and the H-H-

H method are reported. The mean running time of

GSA is 50 188, 10 996, 42 344, 56 155, 48 388, 11 189,

48 733, 45 027 nanoseconds for eight different initial

iterative values, respectively. As a result, the ave-

rage running time of GSA is 39 128 nanoseconds (=

0.039 128 ms). Using the H-H-H method, the corre-

sponding orthogonal projection parametric point is also

(1.289 024 00, 2.000 000 00, 0.960 564 136) and the ini-

tial iterative values (u0, v0) are (5, 5), (5,−5), (−4, 5),

(−5,−5), (2, 2), (2,−2), (−2, 3), (−2,−2), respectively.

Each initial iterative value repeatedly iterates 10 times,

respectively, and yields 10 different iteration time with

the time unit of nanosecond. The mean running time of

the H-H-H method is 176 507, 174 899, 177 187, 179 365,

170 479, 208 636, 205 302, 179 656 nanoseconds for eight

different initial iterative values, respectively. As a re-

sult, the overall average running time of the H-H-H

method is 184 004 nanoseconds (= 0.184 004 ms). Table

3 shows the results of different methods with different

initial iterative values (u0, v0). In this table, NC means

that it cannot converge to the needed root. From Table

3, it can be found that the H-H-H method and GSA

have better convergence and robustness, while New-

ton’s second-order method is dependent on the initial

iterative value and unstable. Furthermore, GSA con-

verges faster than the H-H-H method. Table 4 and Ta-

ble 5 adopt parametric incremental iterative procedure

with increment of (∆u,∆v) for the H-H-H method and

GSA where the test point is p = (1, 2, 2) and the ini-

tial parametric value is (1, 2). To sum up, although the

Table 1. Running Time (ns) for Different Initial Iterative Values by GSA

(u0, v0) 1 2 3 4 5 6 7 8 9 10 Average Total Average

(23, 23) 67 896 68 157 67 948 68 587 68 359 69 655 69 883 70 038 69 732 70 515 69 077 47 445

(23, –23) 11 396 11 169 10 938 11 208 11 149 11 076 11 151 11 245 11 310 10 483 11 113

(–23, 22) 46 384 46 644 45 677 45 679 45 975 46 364 44 970 45 722 46 097 45 345 45 886

(–23, –23) 67 080 67 328 67 520 67 443 67 443 67 711 67 476 67 683 66 731 68 893 67 531

(15, 15) 68 042 67 780 67 126 67 998 68 144 67 674 67 259 67 257 65 363 67 891 67 453

(15, –15) 11 603 11 624 11 682 11 686 11 684 11 493 11 607 11 720 11 672 11 551 11 632

(–15, 14) 44 025 41 123 42 481 42 252 42 472 43 481 44 086 43 824 45 453 45 017 43 421

(–13, –15) 62 899 63 333 63 598 62 946 63 172 63 440 64 062 63 648 63 190 64 217 63 451

Table 2. Running Time (ns) for Different Initial Iterative Values by the H-H-H Method

(u0, v0) 1 2 3 4 5 6 7 8 9 10 Average Total Average

(23, 23) 237 547 221 936 224 999 223 054 222 835 178 692 220 057 179 441 202 800 231 916 214 328 187 253

(23, –23) 184 946 185 304 185 252 235 680 184 976 184 932 184 923 184 783 184 805 235 270 195 087

(–23, 22) 246 152 235 524 208 764 187 238 237 375 230 656 187 015 191 404 187 265 187 161 209 855

(–23, –23) 171 961 185 132 186 333 185 534 185 930 186 408 172 052 171 674 171 325 171 615 178 796

(15, 15) 172 908 173 107 172 917 172 947 172 914 172 935 172 940 172 941 172 924 172 929 172 946

(15, –15) 171 122 171 064 171 066 212 833 171 165 171 071 230 814 171 196 171 067 171 129 181 253

(–15, 14) 172 963 172 977 173 059 172 901 172 909 172 875 172 881 172 975 173 001 172 964 172 951

(–13, –15) 170 647 177 460 170 546 170 727 170 557 170 538 170 551 170 545 170 571 185 964 172 811

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1287

H-H-H method and GSA are both first-order conver-

gence, the number of iterations for GSA is significantly

less than that for the H-H-H method, e.g., GSA per-

forms far superior (see Fig.3).

Table 3. Comparison of Number of Iteration for Three

Iterative Methods with Different Initial Parametric Values

(u0, v0) H-H-H Method GSA Newton’s Method

(1.0, 2.0) 282 29 NC

(2.0, 0.5) 284 33 NC

(–1.0, –2.5) 288 32 NC

(1.0, –0.5) 284 31 NC

(–0.3, –0.5) 288 26 NC

(–1.0, 1.1) 283 30 NC

(–0.7, 0.4) 284 30 NC

Table 4. Parametric Incremental Iterative

Procedure According to (∆u,∆v) of the H-H-H Method

with the Test Point p = (1, 2, 2) and the Initial Parametric

Value (1, 2) in Example 1

Step ∆u ∆v

1 −6.51× 10−1 −1.29× 100

10 1.02× 10−1 6.40× 10−2

20 4.48× 10−2 2.83× 10−2

30 2.07× 10−2 1.31× 10−2

40 9.64× 10−3 6.09× 10−3

50 4.50× 10−3 2.85× 10−3

60 2.10× 10−3 1.33× 10−3

70 9.84× 10−4 6.22× 10−4

80 4.60× 10−4 2.91× 10−4

90 2.15× 10−4 1.36× 10−4

100 1.01× 10−4 6.36× 10−5

110 4.70× 10−5 2.97× 10−5

120 2.20× 10−5 1.39× 10−5

130 1.03× 10−5 6.50× 10−6

140 4.80× 10−6 3.04× 10−6

150 2.25× 10−6 1.42× 10−6

160 1.05× 10−6 6.64× 10−7

170 4.91× 10−7 3.11× 10−7

180 2.30× 10−7 1.45× 10−7

190 1.07× 10−7 6.79× 10−8

200 5.02× 10−8 3.17× 10−8

210 2.35× 10−8 1.48× 10−8

220 1.10× 10−8 6.94× 10−9

230 5.13× 10−9 3.24× 10−9

240 2.40× 10−9 1.52× 10−9

250 1.12× 10−9 7.09× 10−10

260 5.24× 10−10 3.32× 10−10

270 2.45× 10−10 1.55× 10−10

275 −1.67× 10−10 −1.06× 10−10

280 1.15× 10−10 7.25× 10−11

281 −1.06× 10−10 −6.72× 10−11

282 9.84× 10−11 6.22× 10−11

Table 5. Parametric Incremental Iterative Procedure

According to (∆u,∆v) of the GSA with the Test Point

p = (1, 2, 2) and the Initial Parametric

Value (1, 2) in Example 1

Step ∆u ∆v

1 −6.50× 10−1 −1.29× 100

2 1.40× 10−1 4.69× 10−2

3 2.89× 10−2 −2.89× 10−3

4 1.48× 10−2 −5.75× 10−3

5 8.15× 10−3 −5.62× 10−3

6 4.13× 10−3 −3.84× 10−3

7 1.96× 10−3 −1.96× 10−3

8 9.19× 10−4 −9.19× 10−4

9 4.30× 10−4 −4.30× 10−4

10 2.01× 10−4 2.01× 10−4

11 9.39× 10−5 −9.39× 10−5

12 4.39× 10−5 −4.39× 10−5

13 2.05× 10−5 −2.05× 10−5

14 9.57× 10−6 −9.57× 10−6

15 4.47× 10−6 −4.47× 10−6

16 2.09× 10−6 −2.09× 10−6

17 9.76× 10−7 −9.76× 10−7

18 4.56× 10−7 4.56× 10−7

19 2.13× 10−7 −2.13× 10−7

20 9.96× 10−8 −9.96× 10−8

21 4.65× 10−8 −4.65× 10−8

22 2.17× 10−8 −2.17× 10−8

23 1.02× 10−8 −1.02× 10−8

24 4.75× 10−9 −4.75× 10−9

25 2.22× 10−9 −2.22× 10−9

26 1.04× 10−9 1.04× 10−9

27 4.84× 10−10 −4.84× 10−10

28 2.26× 10−10 −2.26× 10−10

29 1.06× 10−10 −1.06× 10−10

Fig.3. Graphic demonstration for example 1.

Remark 3. From the result of example 1, the overall

average running time of GSA is 43.29 µs. The over-

all average running time of the H-H-H method[28−30] is

1288 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

185.63 µs. From the results of example 1 and exam-

ple 2 in [24], the overall average running time of the

algorithm of [24] is 336.22 µs. From the results in [25],

the overall average running time of the algorithm of

[25] is 379.36 µs. From the results of three examples

in [22], the overall average running time of the algo-

rithm of [22] is 293.84 µs. From the results in [1], the

overall average running time of the algorithm of [1] is

418.57 µs. From the results in [13], the overall ave-

rage running time of the algorithm of [13] is 514.23 µs.

From the results of the third line of Table 2 in [35],

the overall average running time of the algorithm of

[35] is 425.34 µs. Table 6 shows the time comparison

for these algorithms. In short, the robustness and the

efficiency of GSA are superior to those of the existing

algorithms[1,13,22,24,25,28−30,35].

Table 6. Time Comparison of Various

Algorithms with Example 1

Algorithm Time (µs)

GSA 43.29

H-H-H method[28−30] 185.63

Algorithm in [24] 336.22

Algorithm in [25] 379.36

Algorithm in [22] 293.84

Algorithm in [1] 418.57

Algorithm in [13] 514.23

Algorithm in [35] 425.34

Example 2. We consider the surface s(u, v) =

(u4v3 + uv + u, u3 + v3, u + v) with a test point

p = (p1, p2, p3) = (3.0, 4.0, 5.0). If the initial ite-

rative values (u0, v0) take one of (5, 5), (5,−5), (−4, 5),

(−5,−5), (2, 2), (2,−2), (−2, 3) and (−2,−2), the cor-

responding orthogonal projection parametric value

and the corresponding orthogonal projection point

will be (0.761 843 756 757 090, 1.562 910 200 608 70)

and (3.238 610 455 103 38, 4.259 881 072 120 84,

2.324 753 957 365 79), respectively. The statistical

method to generate iteration time is exactly the same

as that in Table 1 and Table 2. For each initial iterative

value, the procedure repeats 10 times, yielding 10 it-

eration time. The average running time of GSA, the

H-H-H method and the Newton’s method are 20 341,

27 769 and 74 911 nanoseconds, respectively. Table 7

compares the running time for various algorithms in

Table 6, including the GSA, the H-H-H method and

the Newton’s method. GSA is faster than the H-H-

H method and the Newton’s method. Both the classic

Newton’s method and GSA can solve the system of non-

linear equations and need to calculate the second-order

derivatives. The advantage of GSA is its independence

of the initial iterative value, while the Newton’s method

is dependent on the initial iterative value and is locally

convergent. Therefore, in the case of point orthogonal

projection onto parametric surface, GSA is superior to

the Newton’s method in terms of the robustness and the

efficiency. In the same way, Table 7 verifies once again

that the convergence rate of GSA method is faster than

those of the existing methods[1,13,22,24,25,28−30,32,35], in-

cluding the classic Newton’s method. Therefore, the

robustness and the efficiency of GSA are better than

those of existential methods including the classic New-

ton’s method and the H-H-H method. Table 8, Table

9 and Table 10 adopt parametric incremental iterative

procedure with the increment of (∆u,∆v) for the H-

H-H method, the Newton’s method and GSA where

the test point is p = (3, 4, 5) and the initial value is

(2,−2). The H-H-H method needs 25 iterations and

the Newton’s method needs 35 iterations, while GSA

only needs 20 iterations. Although the H-H-H method

and GSA are all first-order convergent, GSA saves five

iterations less than the H-H-H method. Moreover, the

Newton’s method is second-order convergent, with the

largest number of iterations among the three methods.

Once more it is shown that GSA is superior to the

H-H-H method and the Newton’s method (see Fig.4).

Remark 4. Thanks to the reviewers’ insightful com-

ments, this remark is added to make a clear comparison

between GSA and the method in [25]. The two methods

share a great similarity, but they are very different in

the parametric incremental iterative formula. For this

reason, we give a detailed explanation.

Table 7. Time Comparison of Various

Algorithms with Example 2

Algorithm Time (µs)

GSA 20.34

H-H-H method[28−30] 27.77

Algorithm in [24] 336.22

Algorithm in [25] 379.36

Newton’s method 74.91

Algorithm in [22] 293.84

Algorithm in [1] 418.57

Algorithm in [13] 514.23

Algorithm in [35] 425.34

Algorithm in [32] 237.90

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1289

Table 8. Parametric Incremental Iterative

Procedure According to (∆u,∆v) of the H-H-H Method

with the Test Point p = (3, 4, 5) and the Initial

Parametric Value (2,−2) in Example 2

Step ∆u ∆v

1 −1.38× 10−1 5.03 × 10−1

2 −1.25× 10−1 4.03 × 10−1

3 −7.54× 10−2 3.79 × 10−1

4 −2.79× 10−2 4.00 × 10−1

5 −2.52× 10−2 7.64 × 10−1

6 −1.71× 10−2 1.04 × 10−1

7 −1.77× 10−4 −2.69 × 10−2

8 −8.13× 10−5 3.36 × 10−3

9 1.14× 10−5 −5.81 × 10−4

10 −1.96× 10−6 9.73 × 10−5

11 3.29× 10−7 −1.64 × 10−5

12 −5.54× 10−8 2.75 × 10−6

13 9.31× 10−9 −4.63 × 10−7

14 −1.57× 10−9 7.79 × 10−8

15 2.63× 10−10 −1.31 × 10−8

16 −4.43× 10−11 2.20 × 10−9

17 7.45× 10−12 −3.71 × 10−10

18 −1.25× 10−12 6.23 × 10−11

19 2.11× 10−13 −1.05 × 10−11

20 −3.53× 10−14 1.76 × 10−12

21 5.90× 10−15 −2.96 × 10−13

22 −1.20× 10−15 4.98 × 10−14

23 1.11× 10−16 −8.38 × 10−15

24 8.90× 10−17 1.36 × 10−15

25 1.48× 10−16 −2.71 × 10−16

26 0 0

The corresponding formulas of (6) and (7) in [25]

are the following two formulas,

area(c′, q − c(t0)) =
∆t2

2
area(c′, c′′) + o(∆t2), (23)

and

∆t2 ≈ 2
area(c′, q − c(t0))

area(c′, c′′)

= 2
area(c′, q − c(t0))

k ‖c′‖
3 , (24)

where area(x,y) = ‖x× y‖ and area(x,y)2 =

〈x,x〉 〈y,y〉 − 〈x,y〉
2
. From (24), we can get

∆t2

= 2
area(c′, q − c(t0))

k ‖c′‖
3

= 2
〈c′, c′〉 〈q − c(t0), q − c(t0)〉 − 〈c′, q − c(t0)〉

2

k ‖c′‖3
.

(25)

Table 9. Parametric Incremental Iterative

Procedure According to (∆u,∆v) of the Newton’s Method

with the Test Point p = (3, 4, 5) and the Initial

Parametric Value (2,−2) in Example 2

Step ∆u ∆v

1 1.62× 10−1 −1.50× 10−1

2 1.56× 10−1 −1.33× 10−1

3 1.57× 10−1 −1.11× 10−1

4 1.75× 10−1 −6.95× 10−2

5 2.51× 10−1 5.23× 10−2

6 −5.59× 100 −9.17× 100

7 5.14× 10−1 5.84× 10−1

8 4.75× 10−1 5.39× 10−1

9 4.38× 10−1 4.97× 10−1

10 4.05× 10−1 4.59× 10−1

11 3.74× 10−1 4.24× 10−1

12 3.45× 10−1 3.91× 10−1

13 3.18× 10−1 3.61× 10−1

14 2.94× 10−1 3.33× 10−1

15 2.71× 10−1 3.08× 10−1

16 2.51× 10−1 2.84× 10−1

17 2.31× 10−1 2.62× 10−1

18 2.14× 10−1 2.42× 10−1

19 1.98× 10−1 2.24× 10−1

20 1.83× 10−1 2.07× 10−1

21 1.69× 10−1 1.91× 10−1

22 1.57× 10−1 1.76× 10−1

23 1.46× 10−1 1.63× 10−1

24 1.35× 10−1 1.50× 10−1

25 1.26× 10−1 1.38× 10−1

26 1.14× 10−1 1.29× 10−1

28 6.61× 10−2 1.34× 10−1

30 −1.02× 10−2 1.02× 10−1

32 −2.17× 10−4 1.31× 10−3

33 −5.28× 10−7 3.08× 10−6

34 −3.03× 10−12 1.70× 10−11

35 −5.46× 10−17 6.14× 10−17

Taking the square root of the both sides of (25), it is not
difficult to obtain the following incremental iterative
formula about parameter t,

∆t

= ±(
2(〈c′, c′〉〈q − c(t0), q − c(t0)〉 − 〈c′, q − c(t0)〉

2)

k‖c′‖3
)
1

2 .

(26)

In [25], the sign of the incremental iterative formula

(26) about parameter t is determined by the sign of

right-hand side of (27). Namely, if the inner product

〈c′, q − c(t0)〉 is positive, then the left-hand side of the

incremental iterative formula (26) is positive; otherwise

it is negative.

sign(∆t) = sign(〈c′, q − c(t0)〉). (27)

1290 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Table 10. Parametric Incremental Iterative Procedure

According to (∆u,∆v) of the GSA with the Test Point p =

(3, 4, 5) and the Initial Parametric Value (2,−2) in Example 2

Step ∆u ∆v

1 −1.38× 10−1 5.03 × 10−1

2 −1.25× 10−1 4.04 × 10−1

3 −7.57× 10−2 3.82 × 10−1

4 −2.90× 10−2 4.21 × 10−1

5 −3.08× 10−2 1.00 × 100

6 −1.05× 10−2 −1.46 × 10−1

7 3.18× 10−4 −3.22 × 10−2

8 −3.81× 10−5 −1.02 × 10−3

9 −9.29× 10−6 5.42 × 10−6

10 −9.78× 10−7 6.96 × 10−7

11 −1.05× 10−7 6.84 × 10−8

12 −1.12× 10−8 7.61 × 10−9

13 −1.20× 10−9 7.98 × 10−10

14 −1.28× 10−10 8.61 × 10−11

15 −1.37× 10−11 9.16 × 10−12

16 −1.46× 10−12 9.81 × 10−13

17 −1.57× 10−13 1.05 × 10−13

18 −1.68× 10−14 1.13 × 10−14

19 −1.62× 10−15 1.09 × 10−15

20 −2.44× 10−16 6.83 × 10−17

21 0 0

Fig.4. Graphic demonstration for example 2.

In [25], in order to successfully realize the iterative

formula of parameter increment ∆t, the authors took

into account a plane section of the given surface with

the initial iterative point p0 being on the plane. Ac-

cording to the expression in [25], there is a parametric

curve c(t) with the same parameter where they assumed

c(0) = p0. And the tangent vector of the parameter

curve c(t) can be expressed by (28),

c′(0) = λ1s.1 + λ2s.2. (28)

This tangent vector (28) is exactly the tangent vector

T = α1
∂s
∂u

+α2
∂s
∂v

of our paper, where λi = αi, i = 1, 2,

because point c(t0) = c(0) is the initial point p0. The

radius of the curvature circle of the parameter curve

c(t) is defined as |1/kn|, where the curvature circle is

located on the plane mentioned above and has its cen-

ter m = p0 + n/kn. The test point p is projected

onto the curvature circle, and then the curvature cir-

cle intersects the line segment mp at the intersection

point q. Because of existing digital errors in the ac-

tual operation of computer systems, sometimes the pla-

nar curvature circle does not intersect the line segment

mp. To avoid the non-intersect situation happening,

we have optimized this case. Under the condition that

the center and the radius of the planar curvature cir-

cle remain unchanged, we change the planar curvature

circle into a spatial curvature sphere. In this way, the

spatial curvature sphere and the line segment mp can

ensure intersection at point q at any time. ∆t is cal-

culated through (26) and (27) and c(∆t) approximates

the orthogonal projection of the test point p. Combin-

ing (26) and (27), (26) can be naturally transformed

into the following formula,

∆t = sign(〈T , q − p0〉)

(
2(‖T ‖

2
‖q − p0‖

2
− 〈T , q − p0〉

2
)

k ‖c′‖
3)

1

2 . (29)

Therefore the iterative formula of parameter increments

is as follows,
{

∆u = α1∆t,

∆v = α2∆t.
(30)

After a series of rigorous deduction and analysis, the

biggest difference between GSA and the method in [25]

is the iterative formula (20) and the iterative formulas

(29) and (30), where previous steps of iteration for each

of two methods are exactly the same. From the iterative

formula (20), it is not difficult to find that it needs

17 operations including calculating five formulas E, F ,

G, C4, C5 and 12 operations of subtracting, multiply-

ing, quotient and squaring while the iterative formulas

(29) and (30) require 22 operations through computing

of four formulas T , q, p0, k, subtracting, multiplying,

quotient, square root operation, square operation, cu-

bic operation, operation of norm ‖T ‖, ‖q − p0‖, inner

product 〈T , q − p0〉 and the judgment of positive and

negative signs.

Remark 5. GSA in the iterative formula (20) is an

orthogonal projection which projects a test point onto

a parametric surface s(u, v). For the multiple orthog-

onal projection points situation, the basic idea of our

approach is as follows.

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1291

1) Divide a parametric region [a, b] × [c, d] of para-

metric surface s(u, v) into M2 sub-regions [ai, ai+1] ×

[cj , cj+1], i, j = 0, 1, 2, ...,M − 1, where a = a0, ai+1 −

ai =
b−a
M

, b = aM , c = c0, cj+1 − cj =
d−c
M

, d = cM .

2) Randomly select an initial iterative parametric

value in each sub-region.

3) Use GSA and use each initial iterative paramet-

ric value, do iteration, respectively. Let us assume that

the final iterative parametric values are (αi, βj), i, j =

0, 1, 2, ...,M − 1, respectively.

4) Compute the local minimum distances dij , i, j =

0, 1, 2, ...,M − 1, where dij = ‖p− s(αi, βj)‖.

5) Compute global minimum distance d =

‖p− s(α, β)‖ = min {dij} , i, j = 0, 1, 2, ...,M − 1. If

we try to find all solutions as soon as possible, divide

a parametric region [a, b] × [c, d] of parametric surface

s(u, v) into M2 sub-regions [ai, ai+1] × [cj , cj+1], i, j =

0, 1, 2, ...,M − 1, where a = a0, ai+1 − ai = b−a
M

,

b = aM , c = c0, cj+1 − cj = d−c
M

, d = cM such that

M is very large.

Remark 6. In addition to the two examples, we

have also tested many other examples. According to

these test results, for different initial iterative values,

it can converge to the corresponding orthogonal pro-

jection point by using GSA, namely, if the initial ite-

rative value is (u0, v0) ∈ [a, b] × [c, d], which belongs

to the parametric region of parametric surface s(u, v),

and the corresponding orthogonal projection paramet-

ric value for the corresponding orthogonal projection

point of the test point p = (p1, p2, p3) is (α, β), then

the test point p and its corresponding orthogonal pro-

jection parametric value (α, β) satisfy two inequality

relationships:











|〈p− s(α, β),
∂s(u, v)

∂u
|(α, β)〉| < 1E− 14,

|〈p− s(α, β),
∂s(u, v)

∂v
|(α, β)〉| < 1E− 14.

According to GSA, these two inequality relationships

satisfy the requirement of (31),











|〈p− s(α, β),
∂s(u, v)

∂u
|(α, β)〉| = 0,

|〈p− s(α, β),
∂s(u, v)

∂v
|(α, β)〉| = 0.

(31)

Thus it illustrates that GSA is independent of the initial

iterative value and GSA is robust and efficient which

are satisfied with the previous three of 10 challenges

proposed in [36].

5 Conclusions

This paper investigated the problem related to a

point projection onto a parametric surface by using

normal curvature information. The method is indepen-

dent of the initial iterative value. Experimental results

showed that GSA under consideration is robust and ef-

ficient. An area for future research is to develop a more

efficient algorithm with higher order convergence for

computing the minimum distance between a point and

a parametric surface.

Acknowledgements We take the opportunity to

thank anonymous reviewers for their thoughtful and

meaningful comments, and thank JCST editors for their

careful guidance and great help in our paper.

References

[1] Ma Y L, Hewitt W T. Point inversion and projection for

NURBS curve and surface: Control polygon approach.

Computer Aided Geometric Design, 2003, 20(2): 79-99.

[2] Yang H P, Wang W P, Sun J G. Control point adjustment

for B-spline curve approximation. Computer-Aided Design,

2004, 36(7): 639-652.

[3] Johnson D E, Cohen E. A framework for efficient minimum

distance computations. In Proc. the 1998 IEEE Interna-

tional Conference on Robotics & Automation, May 1998,

pp.3678-3684.

[4] Piegl L, Tiller W. Parametrization for surface fitting in

reverse engineering. Computer-Aided Design, 2001, 33(8):

593-603.

[5] Pegna J, Wolter F E. Surface curve design by orthogonal

projection of space curves onto free-form surfaces. Journal

of Mechanical Design, 1996, 118: 45-52.

[6] Besl P J, McKay N D. A method for registration of 3-D

shapes. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 1992, 14(2): 239-256.

[7] Mortenson M E. Geometric Modeling (1st edition). Wiley,

1985.

[8] Zhou J M, Sherbrooke E C, Patrikalakis N. Computation

of stationary points of distance functions. Engineering with

Computers, 1993, 9(4): 231-246.

[9] Limaien A, Trochu F. Geometric algorithms for the intersec-

tion of curves and surfaces. Computers & Graphics, 1995,

19(3): 391-403.

[10] Polak E, Royset J O. Algorithms with adaptive smooth-

ing for finite minimax problems. Journal of Optimization:

Theory and Applications, 2003, 119(3): 459-484.

[11] Patrikalakis N, Maekawa T. Shape Interrogation for Com-

puter Aided Design and Manufacturing (1st edition).

Springer, 2002.

[12] Johnson D E, Cohen E. Distance extrema for spline mod-

els using tangent cones. In Proc. the 2005 Conference on

Graphics Interface, May 2005, pp.169-175.

[13] Selimovic I. Improved algorithms for the projection of

points on NURBS curves and surfaces. Computer Aided Ge-

ometric Design, 2006, 23(5): 439-445.

1292 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

[14] Cohen E, Lyche T, Riesebfeld R. Discrete B-splines and sub-

division techniques in computer-aided geometric design and

computer graphics. Computer Graphics and Image Process-

ing, 1980, 14(2): 87-111.

[15] Piegl L, Tiller W. The NURBS Book. Springer, 1995.

[16] Elber G, Kim M S. Geometric constraint solver using mul-

tivariate rational spline functions. In Proc. the 6th ACM

Symposiumon Solid Modeling and Applications, June 2001,

pp.1-10.

[17] Park C H, Elber G, Kim K J, Kim G Y, Seong J K. A

hybrid parallel solver for systems of multivariate polynomi-

als using CPUs and GPUs. Computer-Aided Design, 2011,

43(11): 1360-1369.

[18] Bartoň M. Solving polynomial systems using no-root elim-

ination blending schemes. Computer-Aided Design, 2011,

43(12): 1870-1878.

[19] van Sosin B, Elber G. Solving piecewise polynomial con-

straint systems with decomposition and a subdivision-based

solver. Computer-Aided Design, 2017, 90: 37-47.

[20] Bartoň M, Elber G, Hanniel I. Topologically guaranteed

univariate solutions of underconstrained polynomial sys-

tems via no-loop and single-component tests. Computer-

Aided Design, 2011, 43(8): 1035-1044.

[21] Chen X D, Yong J H, Wang G Z, Paul J C, Xu G. Comput-

ing the minimum distance between a point and a NURBS

curve. Computer-Aided Design, 2008, 40(10/11): 1051-

1054.

[22] Chen X D, Xu G, Yong J H, Wang G Z, Paul J C. Comput-

ing the minimum distance between a point and a clamped

B-spline surface. Graphical Models, 2009, 71(3): 107-112.

[23] Oh Y T, Kim Y J, Lee J, Kim M S, Elber G. Efficient point-

projection to freeform curves and surfaces. Computer Aided

Geometric Design, 2012, 29(5): 242-254.

[24] Liu X M, Yang L, Yong J H, Gu H J, Sun J G. A torus patch

approximation approach for point projection on surfaces.

Computer Aided Geometric Design, 2009, 26(5): 593-598.

[25] Hu S M, Wallner J. A second-order algorithm for orthog-

onal projection onto curves and surfaces. Computer Aided

Geometric Design, 2005, 22: 251-260.

[26] Li X, Wu Z, Hou L, Wang L, Yue C, Xin Q. A geometric

orthogonal projection strategy for computing the minimum

distance between a point and a spatial parametric curve.

Algorithms, 2016, 9(1): Article No. 15.

[27] Li X, Wang L, Wu Z, Hou L, Liang J, Li Q. Convergence

analysis on a second-order algorithm for orthogonal projec-

tion onto curves. Symmetry, 2017, 9(10): Article No. 210.

[28] Hartmann E. On the curvature of curves and surfaces de-

fined by normalforms. Computer Aided Geometric Design,

1999, 16(5): 355-376.

[29] Hoschek J, Lasser D. Fundamentals of Computer Aided Ge-

ometric Design (1st edition). A K Peters/CRC Press, 1996.

[30] Hu S M, Sun J G, Jin T G, Wang G Z. Computing the

parameter of points on Nurbs curves and surfaces via mov-

ing affine frame method. J. Software, 2000, 11(1): 49-53.

(in Chinese).

[31] Liang J, Hou L, Li X, Pan F, Cheng T, Wang L. Hybrid

second-order method for orthogonal projection onto para-

metric curve in n-dimensional Euclidean space. Mathemat-

ics, 2018, 6(12): Article No. 306.

[32] Li X, Wang L, Wu Z, Hou L, Liang J, Li Q. Hybrid second-

order iterative algorithm for orthogonal projection onto a

parametric surface. Symmetry, 2017, 9(8): Article No. 146.

[33] Li X, Pan F, Cheng T, Wu Z, Liang J, Hou L. Integrated hy-

brid second order algorithm for orthogonal projection onto

a planar implicit curve. Symmetry, 2018, 10(5): Article

No. 164.

[34] Ko K H, Sakkalis T. Orthogonal projection of points in

CAD/CAM applications: An overview. Journal of Compu-

tational Design and Engineering, 2014, 1(2): 116-127.

[35] Wang X P, Zhang W Z, Huang X. Computation of point in-

version and ray-surface intersection through tracing along

the base surface. The Visual Computer, 2015, 31(11): 1487-

1500.

[36] Piegl L A. Ten challenges in computer-aided design.

Computer-Aided Design, 2005, 37(4): 461-470.

Xiaowu Li received his M.S. degree

in computer science from Chongqing

University, Chongqing, in 2006, and

Ph.D. degree in mathematics science

from Chongqing University, Chongqing,

in 2011. He is currently a profes-

sor of College of Data Science and

Information Engineering in Guizhou

Minzu University, Guiyang. His research interests include

numerical solution of partial differential equation, pattern

recognition, computation geometry and computer aided

geometric design.

Zhinan Wu received his M.S. degree

in computer science from Chongqing

University, Chongqing, in 2006. He

is currently a doctoral candidate at

Jiangxi University of Finance and Eco-

nomics, Nanchang, and also currently

an associate professor in Yichun Uni-

versity, Yichun. His research interests

include software engineering, pattern recognition, image

processing, computation geometry and computer aided

geometric design.

Feng Pan received his M.S. degree

in computer software and theory from

Guizhou University, Guiyang, in 2008.

He is currently a doctoral candidate of

South China University of Technology,

Guangzhou. He is a senior member

of CCF. His research interests include

software engineering, big data and

machine learning.

Xiaowu Li et al.: Orthogonal Projection onto a Parametric Surface by GSA 1293

Juan Liang received her M.S. degree

in applied mathematics from Chongqing

University, Chongqing, 2013, and her

B.S. degree in applied mathematics from

Datong University, Datong, 2010. She

works at Taiyuan Institute of Techno-

logy, Taiyuan, currently. Her research

interests include complex system model-

ing and simulation, statistical analysis and data processing.

Jiafeng Zhang received his Ph.D.

degree in computer science and

technology from Southwest Jiaotong

University, Chengdu, in 2014, his M.S.

and B.S. degrees in applied mathemat-

ics from Southwest Jiaotong University,

Chengdu, and Huaibei Normal Uni-

versity, Huaibei, in 2007 and 2004,

respectively. He is currently a professor at the School of

Data Science and Information Engineering in Guizhou

Minzu University, Guiyang. His main research interests

include automated reasoning and multiple-valued logic.

Linke Hou received his Ph.D. degree

in agricultural and applied economics

from Chinese Academy of Sciences,

Beijing, in 2012. He is currently an

associate professor at the Center for

Economic Research, Shandong Univer-

sity, Jinan. His main research interests

include computation in economics and

social networks.

