
Ren R, Cheng J, He XW et al. HybridTune: Spatio-temporal performance data correlation for performance diagnosis of

Big Data systems. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 34(6): 1167–1184 Nov. 2019. DOI

10.1007/s11390-019-1968-y

HybridTune: Spatio-Temporal Performance Data Correlation for

Performance Diagnosis of Big Data Systems

Rui Ren1,2, Member, CCF, IEEE, Jiechao Cheng3, Xi-Wen He1, Lei Wang1, Member, CCF
Jian-Feng Zhan1,∗, Member, CCF, ACM, IEEE, Wan-Ling Gao1, Member, CCF, ACM, IEEE
and Chun-Jie Luo1,2, Member, CCF

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Computing, National University of Singapore, Singapore 117417, Singapore

E-mail: renrui@ict.ac.cn; jetrobert19@gmail.com
E-mail: {hexiwen, wanglei 2011, zhanjianfeng, gaowanling, luochunjie}@ict.ac.cn

Received September 6, 2018; revised September 4, 2019.

Abstract With tremendous growing interests in Big Data, the performance improvement of Big Data systems becomes

more and more important. Among many steps, the first one is to analyze and diagnose performance bottlenecks of the Big

Data systems. Currently, there are two major solutions. One is the pure data-driven diagnosis approach, which may be

very time-consuming; the other is the rule-based analysis method, which usually requires prior knowledge. For Big Data

applications like Spark workloads, we observe that the tasks in the same stages normally execute the same or similar codes

on each data partition. On basis of the stage similarity and distributed characteristics of Big Data systems, we analyze the

behaviors of the Big Data applications in terms of both system and micro-architectural metrics of each stage. Furthermore, for

different performance problems, we propose a hybrid approach that combines prior rules and machine learning algorithms

to detect performance anomalies, such as straggler tasks, task assignment imbalance, data skew, abnormal nodes and

outlier metrics. Following this methodology, we design and implement a lightweight, extensible tool, named HybridTune,

and measure the overhead and anomaly detection effectiveness of HybridTune using the BigDataBench benchmarks. Our

experiments show that the overhead of HybridTune is only 5%, and the accuracy of outlier detection algorithm reaches up to

93%. Finally, we report several use cases diagnosing Spark and Hadoop workloads using BigDataBench, which demonstrates

the potential use of HybridTune.

Keywords Big Data system, spatio-temporal correlation, rule-based diagnosis, machine learning

1 Introduction

Recently, computing industry has witnessed an un-

precedented increasing popularity of Big Data. Op-

timizing the performance of Big Data systems is a

big concern in both academia and industry. However,

considering the configuration diversity and the system

complexity, performance analysis and optimization face

great challenges. First, the node configurations, e.g.,

processors, memory, disks, and networks, are multitudi-

nous among homogeneous or heterogeneous clusters, es-

pecially varied accelerator configurations. Second, the

software stacks of Big Data systems usually have hun-

dreds of adjustable parameters, and further increase the

difficulties of performance optimization.

A series of research efforts focus on the performance

analysis and optimization of Big Data systems, such as

Hitune[1], SONATA[2], Theia[3], Mochi[4], Artemis[5],

and Starfish[6]. Among them, either data-driven or

rule-based analysis methods are used in these perfor-

mance analysis tools. The pure data-driven diagnosis

approach is promising for simple distributed applica-

tions, while time-consuming and difficult for complex

Big Data systems. Meanwhile, the rule-based analysis

Regular Paper

This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000601.
∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

1168 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

methods usually require prior knowledge, which is diffi-

cult to obtain in real scenarios. For example, when the

system performance deteriorates, it is difficult to build

priori rules online to find the bottleneck immediately.

For Big Data applications like Spark workloads, we

observe that the tasks in the same stage normally exe-

cute similar or even the same codes on each data par-

tition, which we call stage similarity. Taking advan-

tages of the stage similarity and distributed character-

istics of Big Data systems, we analyze the behaviors

of the Big Data applications in terms of both system

and architecture metrics of each stage, and propose a

hybrid approach that utilizes prior knowledge rules or

data-driven machine learning algorithms to detect per-

formance anomalies, such as straggler tasks, task as-

signment imbalance, data skew, abnormal nodes and

performance outlier.

For specific performance data, either priori know-

ledge rules or data-driven machine learning algorithms

are used to detect performance anomalies. For in-

stance, prior knowledge rules (e.g., threshold setting)

are used to detect straggler tasks, task assignment im-

balance and skew data size; while for detecting uneven

data placement, abnormal nodes and performance out-

lier, we use machine learning algorithms, such as the

Euclidean distance outlier algorithm for uneven data

placement detection, the cosine similarity-based ap-

proach for abnormal node detection, and the perfor-

mance outlier detection approach based on distance and

magnitude.

Following this methodology, we design and imple-

ment a lightweight, extensible tool, named HybridTune.

It collects the performance data of the whole software

and hardware stacks without modifying user program

and software.

Then we validate the overhead and anomaly detec-

tion effectiveness of HybridTune using BigDataBench[7]

workloads. Our experiments show that the accuracy

of outlier detection reaches 93%, while the overhead

caused by HybridTune is lower than 5%. Also, we

take several Spark and Hadoop workloads as examples,

to demonstrate how HybridTune supports the perfor-

mance analysis and diagnosis efficiently on Big Data

applications.

The rest of the paper is organized as follows. Sec-

tion 2 states our motivation. Section 3 introduces

the spatio-temporal characteristics of Big Data sys-

tems. Section 4 describes how to detect performance

anomalies in different scenarios. Section 5 presents the

HybridTune implementation. Section 6 presents the

experiments. Section 7 discusses several case studies.

A brief discussion of related work is presented in Sec-

tion 8. Finally, conclusions are drawn in Section 9.

2 Motivation

Since the distribution characteristics of Big Data

systems, the performance problems may exist on a large

number of subsystems, such as multi-core processors,

memory subsystems, disk, and network subsystems.

When some performance bottlenecks occur on a cer-

tain subsystem, it is likely to cause some performance

problems in other subsystems. This means that the

performance issues of different subsystems can be cor-

related and spread. Moreover, Big Data applications

are always built on complex software stacks, and the

deeper the software stacks, the more the factors that

affect the performance. Fig.1 illustrates the stack of

Big Data systems and causes of performance degrada-

tion. For instance, the affecting factors of bad perfor-

mance include: 1) the error user operation, code bugs,

data skew or application co-location in the application

level; 2) the imbalance scheduling, improper configura-

tion parameters of software framework (e.g., configura-

tion of Hadoop/Spark, Java heap, GC (Garbage Col-

lection)) in software stack level; 3) resource contention,

system failure, bad OS parameters (e.g., NUMA (Non

Uniform Memory Access Architecture), memory page)

in the system level; 4) the hardware configurations (e.g.,

SMT (Simultaneous Multi-Threading), memory capac-

ity) and machine crashing in the architecture and hard-

ware level.

Taking Hadoop as an example, if the data is parti-

tioned on a key space that has too little entropy, i.e., a

few keys correspond to a lot of data, then the partitions

will differ in sizes[8], and the corresponding tasks will

run longer time because they have a lot of work to do.

For system resource utilization level, if the disk loads

on one node are much heavier than those of the other

nodes, the reduce tasks on the node that has heavy

disk loads are likely to be outliers. For runtime level,

the behavior of a MapReduce job in Hadoop is con-

trolled by the settings of more than 190 configuration

parameters[6], such as HDFS configuration, and task

scheduling parameters. The impacts of so many para-

meters on performance are intricate. In addition, the

performance issues of different levels may be interre-

lated and cross-correlated.

Thus, in order to find out a variety of anomalies

that exist at different levels, we need to collect mul-

tiple levels of performance data, and use specific data

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1169

Input Data+User Code

Runtime Environments: Hadoop or Spark

Block of Hadoop Error User Operation

Data Skew Code Bugs

Application

Co-Location

Imbalance

Scheduling

Resource

Contention/

System Failure

Machine

Crash

Software Stack

Configuration

JVM Parameters

OS Parameters

Architecture

Configuration

B
a
d
 C

o
n
fi
g
u
ra

ti
o
n

RDD of Spark

JVM JVMJVM

OS OSOS

Architecture ArchitectureArchitecture

(b)(a)

Fig.1. (a) Stack of Big Data systems and (b) causes of performance degradation.

types (e.g., configuration parameters, data sizes, task

execution status, and resource usages) and abnormal

determination rules for fine-grained anomaly detection.

Simultaneously, to find out whether the performance

issues at different levels have mutual influence or cor-

relation relationship, we need to conduct unified asso-

ciation analysis for the multiple performance data.

3 Spatio-Temporal Data Correlation

Generally speaking, jobs on Big Data systems are di-

vided into several stages, and each stage owns multiple

tasks, which are assigned to multiple distributed nodes.

That means Big Data applications have the temporal-

spatial characteristics.

1) Stage Characteristics. We observe that the jobs

on different Big Data systems are generally executed

in stages or in the stage-like process, and tasks in the

same stage are normally executed by the same or simi-

lar code on the data partition. In other words, the

Big Data applications have the characteristics of stage

similarity. For example, a Hadoop job executes in two

stages: Map and Reduce. In the map phase, several

map tasks are executed in parallel to process the corre-

sponding input data. After all map tasks are finished,

the intermediate results are transferred to the reduce

tasks for further processing. Spark splits stages and

partition data, and then generates the DAG (Directed

Acyclic Graph) of stage dependency specifically, and

the tasks in one stage are executed by the same code

and portioned into various data fragments[9]. A Dryad

job contains a set of stages and each stage consists of an

arbitrary set of vertex (each vertex runs on a distinct

data partition) replicas, and meanwhile all graph edges

of the stage constitute point-to-point communication

channels[10].

2) Distribution Characteristics[11]. As Big Data sys-

tems are used for processing a huge amount of data,

a single node is impossible to complete the big tasks

quickly. Therefore Big Data systems generally use

the large-scale distributed cluster architecture. They

mainly utilize the distributed file system or distributed

database to store data, and use parallel programming

model to process tasks. That is to say, the tasks of Big

Data applications will be scheduled into different nodes.

And the distributed parallel architect distributes data

across multiple servers, and it can improve data pro-

cessing speeds. Therefore we consider that the Big Data

applications have distribution characteristics in spatial

dimension.

Based on these characteristics, we propose a spatio-

temporal correlation approach that involves timestamp

information and distributed nodes information to pro-

cess the data in multiple layers, which is shown in Fig.2.

Specifically, in order to implement association in tem-

poral dimension, the time synchronization of clusters

must be guaranteed. Here, the network time protocol

(NTP) is used to synchronize computer time in our Big

Data systems. Then, according to the stage character-

istics, we combine the stage runtime information of Big

Data applications with the resources utilization.

1170 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Spatio-Temporal Model

Correlation
Correlation

Correlation

System Metrics

Stage 1

System
Metrics

A
p
p
li
c
a
ti
o
n

S
p
a
ti
o
 D

im
e
n
si

o
n

Architecture
Metrics

Node_1

Task0_1

Task2_1

System
Metrics

A
p
p
li
c
a
ti
o
n

Architecture
Metrics

Temporal Dimension

Node_κ

Task1_1

Task3_1

Stage i

Architecture

Metrics

Formatted Data

Stage_id

Stage_name

Job_id

App_id

Start_time

End_time

Attempt_id

Task_id

Attempt_id

Stage_id

Job_id

App_id

Node

Task_type

Task_status

Start_time

End_time

Locality

Node

Timestamp

IPC

L2_MPKI

L3_MPKI

L1I_MPKI

ITLB_MPKI

DTLB_MPKI

MUL_Ratio

DIV_Ratio

FP_Ratio

LOAD_Ratio

STORE_Ratio

BFR_Ratio

Node

Timestamp

Cpu_usage

Mem_usage

ioWaitRatio

Weighted_io

diskR_band

diskW_band

netS_band

netR_band

Stage Task

...

...

...

...

...

...
...

...

...

...

...
...

...

Fig.2. The collected multi-layer performance data is processed into formatted data with timestamp information and nodes information,
and correlated based on the spatio-temporal characteristics of Big Data systems.

4 Anomalies Detection

After the multi-level performance data is corre-

lated through the spatio-temporal correlation method,

we propose several anomalies detection approaches for

straggler tasks, task assignment imbalance, data skew,

abnormal node and outlier metrics. For different types

of anomalies, we first select different features and vec-

torize these features, and then utilize some rule-based

and machine learning algorithms to detect anomalies.

And the universal symbols are listed in Table 1.

4.1 Straggler Tasks

A straggler task is a task that executes longer time

than other tasks in a stage. Because a stage cannot

complete until all the tasks within it have completed, a

straggler task significantly delays the completion time

of the stage. For example, according to the report from

[8], we know 25% stages have more than 15% outlier

tasks. Note that the outlier task is the task that has

more than 1.5 times runtime compared with the median

task duration in its stage.

Therefore we define the detection rule of straggler

tasks and straggler nodes as follows.

1) The task j of stage si is an straggler task, when

(Dsi
j /median(Dsi)) > Th D. Here,median(Dsi) is the

median task runtime duration in stage si. Th D repre-

sents a predefined threshold of outlier tasks, which can

be set as Th D = 1.5.

2) The node k is a straggler node, when

(Dsi
k /median(Dsi)) > Th D. Here, Dsi

k is the average

task runtime of stage si on node k.

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1171

Table 1. Universal Symbols

Symbol Description

J Jobs of Big Data application

si The i-th stage in job J

j The j-th task in job J

SNumJ Stage number of job J

k Node k in cluster, 1 6 k 6 p, and p is the num-
ber of slaves in the cluster

TNum
si
k

Task number of stage si on node k

dataSize
si
j

In stage si, the data size that task j processes

localityl The l-th category of data locality

D
si
j Runtime of task j in the stage si

metrickn∗ The n∗-th performance metric on node k

Th D Threshold of straggler task

Th UB Threshold of jobs with task assignment imbal-
ance

Th size Threshold of data size

Th simi Threshold of similarity

4.2 Task Assignment Imbalance

We consider the uneven task assignment as task as-

signment imbalance. For example, the tasks assigned

to one node are much more or less than those to the

other nodes in a stage. And we propose an algorithm

to detect whether the task assignment of an application

is balanced, which is described in Algorithm 1.

Algorithm 1. Determining Task Assignment Imbalance

Input:

TNum
si
k
, BC, Th UB, J

Output:

unbalanced si, unbalanced J

1: Ratio UB = 0;

2: Count UB = 0;

3: for i = 1; i < n; i++ do

4: Set Diffsi = 0;

5: for k = 1; k < p; k ++ do

6: Diff TNumk = TNum
si
k

− TNumsi ;

7: Diffsi = Diffsi + |Diff TNumk |;

8: end for

9: if Diffsi > BC × TNumsi × p then

10: Print ‘task assignment at stage si is unbalanced’.

11: Count UB ++;

12: end if

13: end for

14: Ratio UB=

Count UB
SNumsi

;

15: if Ratio UB > Th UB then

16: Print ‘task assignment of job J is unbalanced’.

17: end if

We first define BC × TNumsi as the measurement

of task assignment imbalance in stage si. The balance

coefficient (BC) refers to the degree of workload imbal-

ance which can be tolerated. TNumsi in (1) indicates

the average number of tasks in stage si in the clus-

ter (with p slaves) after removing ultrashort tasks, and

TNumsi
k refers to the volume of tasks in the stage si

on the node k after removing ultrashort tasks. Since in

some special cases, stages with a number of ultrashort

tasks (e.g., failed tasks) running on nodes greatly affect

the judgment of task assignment imbalance, we decide

to eliminate the ultrashort tasks.

TNumsi =
∑

TNumsi
k /p. (1)

In order to determine whether the task assignment

imbalance exists in a stage, we define Diff TNumk to

indicate the difference between TNumsi
k and TNumsi

on node k. If the absolute value |Diff TNumk| is

greater than the number of tolerated imbalanced tasks

BC×TNumsi, the workload on this node is considered

as imbalanced. Moreover, if the sum Diff si is greater

than BC × TNumsi × p, we consider that the task as-

signment imbalance exists in a stage.

Further more, we assume that the stage number of

the job J is SNumsi , and define Ratio UB to indi-

cate the ratio of imbalance stage in a job, which is the

proportion of the unbalanced stage to the total stage

number. If Ratio UB > Th UB (here, Th UB is a

threshold of the job having task assignment imbalance,

which can be set by users), we consider that the job J

has workload imbalance.

4.3 Data Skew

Data skew mainly includes two situations: skew

data size and uneven data placement.

4.3.1 Skew Data Size

The data size varies across tasks in a stage, and it

will affect task runtime and lead to workload imbal-

ance. For example, if the data is partitioned on a key

space that has too little entropy, i.e., a few keys cor-

respond to a lot of data, then the partitions will differ

in sizes[8], and the corresponding tasks will run a long

time because they have a lot of work to do.

From existing experience, the data skew phe-

nomenon would exist in a task if the data size of the

processing task is much larger or smaller than that of

the other tasks in a stage. And a similar phenomenon

exists in a node if the average size of data is far different

from the other nodes in a stage. Furthermore, the data

1172 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

skew of a stage would be deemed to be in existence if

data skew was found in the task or node on this stage.

To measure the size of skew data, we choose the

data size of each task processed dataSizesij as the fea-

ture, and then we calculate the ratio of data size to the

median value of data size median(dataSizesi). After-

wards the results of value comparison of the ratio and

the threshold Th size help us to measure the skew data

size. And the detection rules of skew data size are as

follows.

1) The data size of task j is skew, when

dataSizej/median(dataSizesi) > Th size, which can

be used to determine whether an outlier task has data

skew.

2) The node k has data size skew, when

dataSizek/median(dataSizesi) > Th size, which can

determine whether an outlier node has data skew.

4.3.2 Uneven Data Placement

The data placement is another critical factor for

task imbalance. Because the hardware and workloads

are different in the distributed cluster environment, the

partitioned data may be placed unevenly, and the exe-

cution time of tasks can be very different. In order

to find uneven data placement, we define data locality

that refers to the data placement. And we focus on the

impact of different data localities on the duration of the

tasks.

First, we classify the runtime of tasks with some lo-

cality types into two categories: 1) normal execution

time, and 2) abnormal execution time, which is de-

fined as oulierDsi
j . Abnormal execution time rep-

resents much longer running time than the normal

one. Second, we determine whether the data place-

ment leads to abnormal execution time or not, by set-

ting several different weights for distinct localities given

the priority of locality. localityl and pri(localityl)

are utilized here to infer to categories of locality and

weights of locality respectively. For example, we

set pri(RACK LOCAL/NODE LOCALITY) to 1,

pri(ANY/OFF SWITCH) to 2, and some weights to

0 (0 means these localities are not supposed to cause

uneven problems of the data placement).

Meanwhile, we calculate Num(oulierD)locality
l

k ,

which refers to the number of abnormal runtime

of localityl on node k. In addition, we define

Ratio(localityl, k) in (2), and it indicates the ra-

tio of uneven data placement on node k. When

Ratio(localityl, k) is larger than 0, the uneven data

placement occurs. The uneven data placement detec-

tion algorithm is based on Euclidean distance, and the

whole procedure is demonstrated in Algorithm 2.

Ratio(localityl, k)

=
Num(oulierD)locality

l

k

TNumsi
k

× pri(localityl). (2)

Algorithm 2. Uneven Data Placement Detection Based on
Euclidean Distance Outlier Algorithm

Input:

Dsi , localityl

Output:

Ratio(localityl , k)

1: Calculate median(Dsi), standard deviation std(Dsi);

2: Calculate the distance dis from each D
si
j to median(Dsi):

disj = D
si
j −median(Ds

i);

3: for j = 1; j < Numsi ; j ++ do

4: Summarize: sum(dis) =
∑

(disj);

5: Calculate the mean value of dis: mean(dis);

6: if |disj | > mean(dis) then

7: Put D
si
j into the suspicion group SuspG;

8: end if

9: end for

10: for each D
si
j in SuspG do

11: if ||disj | −mean(dis)| > std(Dsi)× 1.96 then

12: Put D
si
j into outlier list(D);

13: Find the corresponding nodej and localityj of Dsi
j

14: end if

15: end for

16: Ratio UP=0;

17: for k = 1; k < p; k ++ do

18: for each localityl in locality categories do

19: Calculate Num(oulierD)locality
l

k
;

20: Calculate Ratio(localityl , k);

21: if Ratio(localityl , k) > 0 then

22: Output Ratio(localityl , k), and its corresponding

node k and localityl, which has uneven data place-

ment

23: end if

24: end for

25: end for

4.4 Abnormal Node

Execution behaviors of various tasks at the same

stage show a striking similarity while these tasks run-

ning on a homogeneous cluster; thus characteristics of

nodes in the homogeneous cluster at one stage are sup-

posed to be analogous. When a node shows significantly

different characteristics compared with the other nodes

at the same stage, the node would be regarded as an

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1173

abnormal node with potential bottlenecks. For exam-

ple, machine failure or resource contention affects the

task runtime and leads to workload imbalance. Also, if

the disk loads on one node are much heavier than that

of the other nodes, the reduce tasks on the node that

has heavy disk loads are likely to be outliers.

In this subsection, we figure out cosine similarity

between nodes to check abnormal machines. First, we

convert collected performance metrics into metric vec-

tor v. Here, vk = {avg(metrick1), ..., avg(metrickn∗)},

avg(metrickn∗) refers to the average value of metricn∗ ,

and n∗ refers to the n∗-th collected metric. Then, we

calculate the cosine similarity in the metric vector on

between node k (vk) and node k∗ (vk∗), as seen in (3).

The closer the cosine value is to 1, the smaller the angle

between two vectors and the more similar nodes we get.

simi(vk,vk∗) = cos (θ) =
vk · vk∗

||vk|| × ||vk∗ ||
. (3)

For the sake of detecting abnormal nodes, we aban-

don the pairwise comparison method that lacks intui-

tive results. Instead, we measure the average simila-

rity simi(vk,vothers) between each node and all rest

nodes shown in (4). If simi(vk,vothers) of node k is

smaller than a specified similarity threshold Th simi,

then the node k is regarded as an abnormal node. Here,

{Slaves \ k} refers to the slave nodes without node k.

simi(vk,vothers)

=

∑

node∈{Slaves\k} simi(vk,vnode)

p− 1
. (4)

4.5 Outlier Metrics

Generally, if there are abnormal nodes during a

stage, by observing frommetric level, individual metrics

of abnormal nodes always have abnormal states. Even

if some nodes are only subject to interferences, the in-

terfered metrics will also behave differently. Therefore

the metrics on one node have different behaviors from

the metrics’ behaviors on the other node, which can

be regarded as outlier metrics. In this subsection, we

compare the differences between the principal compo-

nent metrics at each node in the cluster, and try to find

the root cause of performance bottlenecks by observing

the anomalies of metrics.

Here, we define performance metric matrix X,

which is an m× n∗ matrix at a stage, column n∗ refers

to the number of collected metrics and row m is col-

lection times during a stage, that is, each row in the

matrix determines feature values in a particular times-

tamp during a stage, for example, metrictmn∗ refers to

metricn∗ at the timestamp tm.

X =





















metrict1k1 metrict1k2 ... metrict1kn∗

metrict2k1 metrict2k2 ... metrict2kn∗

...
...

...
...

metrictmk1 metrictmk2 ... metrictmkn∗





















.

Based on the performance metric matrix X,

through principal component analysis, time series

transformation, normalization and outlier detection, we

could find the abnormal metrics.

4.5.1 Principal Component Analysis

According to the observations, we learn that not all

performance metrics are closely associated with perfor-

mance anomalies, for some metrics remain stable even if

an outlier appears. Furthermore, different applications

and stages are sensitive to different metrics; hence we

use principal component analysis (PCA) for relevant

metrics selection.

In general terms, PCA uses an orthogonal transfor-

mation to convert to a large set of data observations.

The number of principal components is usually less than

or equal to that of original variables, and the first prin-

cipal component accounts for the most variability in the

data. In addition, the cumulative contribution rate of

PCA is used in our evaluation for selecting and deter-

mining an appropriate dimension of eigenspace. And

in the experiment, we set the cumulative contribution

rate to 95%.

4.5.2 Time Series Transformation

After principal component analysis, we perform

time series transformation on the metric sequences.

Here, we introduce two different methods of time-

frequency transformation for input data, and the details

of both two transformations are described as follows.

1) Mean Value. Average value comparison of the

performance metric on different nodes is a typical ap-

proach for time series transformation. If there are sub-

stantial differences in average value of one performance

metric between certain nodes and the other nodes, then

we believe that this performance metric is a potential

key metric, and the calculation method is shown in (5).

mean(metricsikn∗) =

∑N

tm=1 metrictmkn∗

N
. (5)

1174 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

2) Fast Fourier Transform. Fast Fourier transform

(FFT)[12] is often utilized to transform original data

from time-space domain to frequency domain and vice

versa, which is an efficient method of discrete Fourier

transform (DFT). Moreover, FFT rapidly computes

such transformations by factorizing the DFT matrix

into a product of sparse (mostly zero) factors. As a

result, FFT manages to reduce the complexity of com-

puting DFT from O(n2), which arises if one simply ap-

plies the definition of DFT, to O(n logn), where n is

the data size. After the fast Fourier transform of met-

ric sequence, we will get fft(metricsikn∗).

4.5.3 Normalization

Different performance metrics in a cluster normally

have varied sizes and units. For instance, the units

of cpu usage and mem usage are percentage (%), and

its value is between zero and one. However, the units

of diskR band and netS band may be MB/s, which is

different with the percentage. To adjust metrics mea-

sured at the stage on different scales to a common scale

notionally, normalization is applied into the data pre-

processing, and with the help of that, it would be more

normal to process the data with consistent statistical

properties.

In this subsection, we use the linear min-max

normalization to convert the original metrics into val-

ues ranging from 0 to 1. (6) is the transforma-

tion expression, y is a sample in mean(metricsikn∗) or

fft(metricsikn∗), max is the maximum value of the

samples, and min is the minimum value of the sam-

ples. However, the disadvantage of this normalization

method is that max and min might be redefined when

inputting the extra new data.

y∗ =
y −min

max−min
. (6)

4.5.4 Outlier Detection

In statistics, an outlier is an observation point that

is distant from other observations. In this subsection,

we propose an unsupervised method combing with dis-

tance and magnitude for outlier detection to distinguish

the metrics that do not belong to any expected pattern

in the dataset or show certain similarities to other met-

rics.

Our distance-based outlier model borrows ideas

from the distribution-based approaches. It is also suit-

able for situations where the observed distribution does

not fit any standard distribution[13]. Specifically, an ob-

ject o in a dataset D is an DB(pct, dmin)-outlier, if at

least a fraction pct of all data objects in D lies at a

distance greater than the threshold dmin, from o. We

use the term DB(pct, dmin)-outlier as the shorthand

notation for a distance-based outlier (detected using

parameters pct and dmin). Of course, the choice of

parameters pct and dmin, and validity checking (i.e.,

deciding whether each DB(pct, dmin)-outlier is a real

outlier), require expert knowledge or experience.

Even though our distance-based outlier algorithm

with appropriate parameter settings is able to detect

most of outliers in the dataset, some outliers could

still be missed. For instance, the normalized mean

value of cpu usage on each node is [hw073: 0.006 838,

hw106: 0.156 043 99, hw114: 0.178 105 99]. However,

there would exist no outlier as setting dmin equal to

0.5 and pct equal to 1. Actually, we could consider

0.006 838 as an outlier value here. To make our outlier

detection model still work in this case, we apply the log-

arithm method (e.g., log(10)) in the beginning to obtain

data’s order of magnitude by transforming the original

data. For example, the order of magnitude on several

nodes [hw073: −2, hw106: 0, hw114: 0] shows signifi-

cant disparity and we can suppose hw073 is a potential

outlier, then the remaining two nodes would be ana-

lyzed through the distance-based detection algorithm.

Algorithm 3 is the detailed pseudo-code, and de-

scribes the outlier detection algorithm based on dis-

tance and magnitude. In this algorithm, we predefine

the parameter pct with a default value 1, and dmin is

adjustable. In addition, we use two methods to cal-

culate the representative point of class A or B. One

method is to compute the maximum/minimum value

of the larger class, and the other method is to compute

the median value of the larger class. In the subsequent

experiments, we will compare the results of outlier de-

tection by the maximum/minimum value method and

the median value method with different dmin for the

larger class.

4.6 Summary

In addition, since the performance data and the

anomalies at the application level are related, the sys-

tem performance metrics are also helpful for detecting

straggler tasks, task assignment imbalance, data size

skew and uneven data placement. The application logs

can be used to discover abnormal nodes, too, for exam-

ple, extracting the corresponding features and building

the anomaly detection models, which can be used to

detect abnormal nodes. In the future work, we will

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1175

propose more anomaly detection methods to build a

comprehensive library of anomaly detection.

Algorithm 3. Outlier Detection Algorithm Based on
Distance and Magnitude

Input:

normalized meanSet(metricsi) or fftSet(metricsi)
Output:

outlier metrics
1: if min−max 6 −2 log(10) then

2: log(10) conversion for input dataset
3: Call the magnitude-based outlier algorithm:
4: 1) Find the center of mass (median);
5: 2) Calculate the distance dis from each point to the center

of mass
6: if dis > avg(dis) then

7: Add the point into the suspicion group SuspG.
8: end if

9: 3) Compute the distance dis(SuspG) from the point in
SuspG to the center of mass;

10: if (dis(SuspG)− avg(dis)) > variance then

11: This point in SuspG is counted as outlier;
12: end if

13: else

14: Call the distance-based outlier algorithm:
15: 1) Select the maximum and minimum values for the cur-

rent point in classes A and B;
16: 2) Calculate the distance dis(A) and dis(B) from each

point to the two current points;
17: if dis(A) < Th knn then

18: Assign the point to class A;
19: else

20: Assign the point to class B;
21: end if

22: if Num(A) < Num(B) then

23: 3) Compute the distance dis(a, B) from the point a in
A to the class B (the representative point of class B);

24: if dis(a, B) > dmin then

25: This point a is counted as outlier.
26: end if

27: else

28: 3) Compute the distance dis(b, A) from the point b in
B to the class A (the representative point of class A);

29: if dis(b, A) > dmin then

30: This point b is counted as outlier.
31: end if

32: end if

33: end if

5 HybridTune Implementation

Based on our general performance diagnosis ap-

proach, we have implemented HybridTune, a scalable,

lightweight, model-based and data-driven performance

diagnosis tool utilizing spatio-temporal correlation. In

this section, we describe the implementation of Hy-

bridTune, and the workflow of HybridTune is shown

in Fig.3.

5.1 Data Collection

We use the data collector of BDtune[11] to gather

the performance information and application logs from

the software stack of Big Data systems at different lev-

els. Specifically, the data collector collects architecture-

level metrics, system-level metrics and application logs.

Hardware performance monitoring unit (PMU) and

Perf 1○ are used for data sampling of architecture-level

metrics in the data collector, and metrics consist of in-

struction ratio, instructions per cycle (IPC), cache miss,

translation lookaside buffer (TLB) miss, etc. Then, we

use Hmonitor[11] to collect raw data from the filesys-

tem/proc, which provides key parameters (e.g., CPU

usage, memory access, disk I/O bandwidth, network

bandwidth) of system performance. Furthermore, we

use log collection tools to collect the application logs

(e.g., history job logs of Spark and Hadoop).

5.2 Data Preprocessing

Data preprocessing is an important step, since log

files and performance data with non-uniform formats

are generally collected from different nodes. Therefore,

we parse the performance data and application logs,

and then unify the data format, preprocess the raw data

and load the data into our MySQL database.

Data Collection

Log Collection
Tool

Application Logs

Hmonitor

System Metrics

PMU & Perf

Architecture
Metrics

D
is

tr
ib

u
te

d

Data Preprocessing

D
a
ta

 P
a
rs

in
g

Metrics
Related
Tables

Applications
Related
Tables

DataBase

S
p
a
ti
o
-T

em
p
o
ra

l
C

o
rr

el
a
ti
o
n

Feature Selection
and Vectorization

Data Driven
Approach

Defining Prior
Knowledge

Rule-Based
Approach

Anomalies Detecion

Straggler Tasks

Task Assignment
Imbalance

Data Skew

Abnormal Nodes

Outlier Metrics

Fig.3. Workflow of HybridTune.

1○https://perf.wiki.kernel.org/index.php/Main Page, Sept. 2019.

1176 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

5.2.1 Data Parsing

In order to deal with different log formats of ap-

plications, we establish various log parsing templates

compatible with different applications’ logs. In our im-

plementation, we collect the history job logs of Hadoop

and Spark, which are JSON formats and record vari-

ous information about jobs’ run. Then we parse and

extract some useful application data from these his-

tory job logs, which include: 1) runtime information:

the submission time, completion time and runtime of

jobs, stages and tasks; 2) dataflow information: the

data flow information between nodes in each stage of

jobs, including reading and writing data, reading and

writing time, input and output data of tasks, and so on;

3) application configuration information: the configu-

ration parameter information of Hadoop/Spark, etc; 4)

job runtime parameters: job-level parameters and task-

level parameters, for example, the “counters” informa-

tion of Hadoop and the “task metrics” information of

Spark.

Simultaneously, we use the collected raw metrics to

calculate the selected performance metrics which are

shown in Table 2. For different performance metrics,

there are different calculation methods, for instance,

cpu usage can be calculated by metrics of usr, nice,

sys, idle, iowait, irq and softirq.

5.2.2 Data Storage

In addition, we design a tagging mechanism and

propose an incremental table approach to match the

scalability need of date aggregation and storage.

Specifically, we set corresponding labels for tables of

different applications. For instance, if Type F lag = 0,

then the tables represent the parsed Hadoop log con-

tents; if Type F lag = 1, we know that tables store the

parsed Spark logs. Moreover, we provide public table

interfaces and unique table interfaces for different ap-

plication logs, because the contents of application logs

are not always the same. For example, both Hadoop

and Spark consist of public table interfaces like app ta-

ble, job table, stage table and task table. The unique

table interfaces for Hadoop are task attempt table and

counters table. Spark’s unique table interfaces are rdd

table and task metrics table. When collecting Storm

logs and storing parsed data into MySQL, the data pre-

processor needs to adjust its log parsing template only

for Storm applications, and then it creates unique ta-

bles of Storm, parses data, preprocesses raw data, loads

data into existed public tables and its unique tables,

and sets Type F lag.

Table 2. Selected Typical Performance Metrics

Layer Metrics Description

System cpu usage CPU utilizations

level mem usage Memory usage

ioWaitRatio Percentage of CPU time spent
by IO wait

weighted io Average weighted disk io time

diskR band Disk read bandwidth

diskW band Disk write bandwidth

netS band Network send bandwidth

netR band Network receive bandwidth

Architecture IPC Instructions per cycle

level L2 MPKI Misses per kilo instructions of
L2 cache

L3 MPKI Misses per kilo instructions of
L3 cache

L1I MPKI Misses per kilo instructions of
L1I cache

ITLB MPKI Misses per kilo instructions of
ITLB

DTLB MPKI Misses per kilo instructions of
DTLB

MUL Ratio MUL operations’ percentage

DIV Ratio DIV operations’ percentage

FP Ratio Floating point operations’ per-
centage

LOAD Ratio Load operations’ percentage

STORE Ratio Store operations’ percentage

BR Ratio Branch operations’ percentage

5.3 Anomalies Detection

The performance anomalies detection module of Hy-

bridTune is equipped with a plug-in mechanism, which

enables the analysis engine to adapt different applica-

tion occasions and different diagnosis methods. Among

these plug-in mechanisms, some are universal (e.g., sta-

tistical analysis of performance metrics), while some

are application-specific (e.g., critical path computing

of different jobs).

Specifically, we build the corresponding rules or al-

gorithms to detect the anomalies. For instance, the

detection methods of straggler tasks, task assignment

imbalance and skew data size are based on prior rules.

The detection methods of uneven data placement, ab-

normal nodes, outlier metrics are based on the improved

machine learning algorithms. For example, uneven data

placement detection is based on the Euclidean distance

outlier algorithm, abnormal node detection is based on

cosine similarity, and outlier detection is based on dis-

tance and magnitude. And the details have been de-

scribed in Section 4.

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1177

6 Evaluations

6.1 Experiment Settings

The Hadoop cluster used in our experiment consists

of one master machine and six slave machines, and the

Spark cluster is deployed on the Hadoop Yarn frame-

work. In our cluster, we use the NTP (Network Time

Protocol) service to ensure clock synchronization across

nodes, and each compute node has a hardware config-

uration in Table 3. In addition, the evaluations about

impacts of configurations on system performance are

not included in this paper; thus our machines in the

cluster are homogeneous machines with the same ma-

chine configurations and cluster configuration parame-

ters.

Table 3. Server Configurations

Component Description

Processor Intelr Xeonr CPU E5645@2.40 GHz

Disk 8 Seagate Constellation ES (SATA 6 Gb/s)-
ST1000NM0011 [1.00 TB]

Memory 32 GB per server

Network Broadcom Corporation NetXtreme II BCM5709
Gigabit Ethernet (rev 20)

Kernel Linux Kernel 3.11.10

6.2 Anomaly Simulation

To further determine whether the workload imbal-

ance, straggler nodes, data skew and abnormal machine

states exist, and evaluate the effectiveness of our auto-

matic diagnosis tool for performance bottleneck detec-

tion, we decide to simulate anomalies by the following

methods.

1) Reducing the Computing Power of Some Nodes.

For example, you can attempt to disable a core in a

multi-core machine. However, this does not work for

a few certain cores, like the core 0. And disabling too

many cores would result in a system crash.

2) Making Disk Storage Imbalance. In our experi-

ments, we fill the space of disks on some nodes with

data.

3) Mixing Interference Workloads. In our experi-

ments, Linux stress testing tool Stress 2○ is utilized to

impose extra load on CPU, memory, IO and disk.

4) Cache Flusher Adjustment. We use a cache

flusher to load the certain volume of data according

to the size of the last-level cache, for inserting cache

anomalies.

6.3 Runtime Overheads

Because data collector needs to gather multi-level

metrics through PMU, Perf and HMonitor on each

node, while the aggregation and the analysis of col-

lected data are performed on a separated node in an

offline fashion, the data collector is the major source of

runtime overheads in HybirdTune.

We first measure the baseline completion time when

jobs are running without the data collector. Then we

set the interval of collecting the system-level metrics

and architecture-level metrics as one second, and mea-

sure the instrumented completion time when jobs are

running with the data collector. Fig.4 shows the ra-

tio of the instrumented completion time over the base-

line completion time for selected benchmarks in Big-

dataBench suite[7] (WordCount, Sort, Grep of Hadoop

and Spark). The datasets of WordCount and Grep are

60 GB and 120 GB respectively, which are from the text

data generater of BDGS[14], and the dataset of Sort is

60 GB, which is from the sort data generater of BDGS.

It is clear that the additional overhead caused by Hy-

birdTune is very low for the evaluated benchmarks. It

can be seen that the data collection tool of HybirdTune

is a lightweight, low-overhead, non-intrusive tool, which

does not bring great impact on Big Data systems.

H
-W

or
dC

ou
nt

S-
W
or
dC

ou
nt

H
-S
or
t

H
-G

re
p

S-
So

rt

S-
G
re
p

1.2

1.0

0.8

0.6

0.4

0.2

0.0

R
a
ti
o
 o

f
C

o
m

p
le

ti
o
n
 T

im
e

1.022 1.046 1.029 1.056 1.0241.011

Fig.4. Ratio of the instrumented completion time over the base-
line completion time. H: Hadoop; S: Spark.

6.4 Anomalies Detection Evaluation Results

In this subsection, over 90 programs on 342 stages

are tested and executed. We also try a number of

workload executions, e.g., Wordcount, Grep, Sort, K-

means on BigDataBench, FPGrowgh and PrefixSpan

on Spark MLlib[15]. Due to that the bottlenecks at

the application level (such as workload imbalance and

data skew) may be related to the users’ subjective view

2○http://people.seas.harvard.edu/∼apw/stress/stress-1.0.4.tar.gz, Sept. 2019.

1178 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

even more, we plan to use the artificially setting thresh-

olds. For example, we can set Th D = 1.5, BC = 0.1,

Th UB = 0.6 and Th size = 1.5[11]. Here, we mainly

evaluate the threshold selection of abnormal nodes and

outlier metrics, as well as the effect of outlier detection.

Due to the rule-based detection methods and de-

tection algorithm of uneven data placement, we have

set the corresponding thresholds according to experi-

ence. Therefore in this subsection, we mainly evaluate

the effectiveness of abnormal node and outlier metrics

detection with different thresholds.

6.4.1 Determining Abnormal Node

To determine whether or not node k is an abnor-

mal node, we compare simi(vk,vothers) ((4) in Subsec-

tion 4.4) with the predefined threshold Th simi. If the

similarity value is smaller than the threshold, then the

node is judged as an abnormal node. As for how to set

the size of threshold Th simi, we utilize (7) to measure

the proportion of real abnormal nodes in the detected

abnormal nodes detected just by predefined threshold

Th simi, and the results are shown in Table 4.

Ratio(Ab Node)

=
number of abnormal nodes

number of detected abnormal nodes
. (7)

6.4.2 Effect of Outlier Detection

We evaluate the effectiveness of outlier metrics de-

tection through three indicators: Precision, Recall and

F1-Score ((8), (9) and (10) respectively)[16].

Precision =
number of successful detections

number of total alarms
, (8)

Recall =
number of successful detections

number of total outliers
, (9)

F1-Score =
2× Precision× Recall

Precision+Recall
. (10)

Table 4. Proportion of Real Abnormal Nodes in

the Detected Abnormal Nodes

Th simi Ratio(Ab Node) (%)

0.40 96.5

0.45 92.5

0.50 83.8

0.55 69.4

0.55 65.7

0.55 54.1

0.55 42.1

We see the similar results of the outlier metrics de-

tection by mean-value transformation and FFT trans-

formation from Fig.5 and Fig.6 respectively. If we uti-

lize the median value to represent the larger class, then

Precision is higher than Recall. As shown in Fig.5

and Fig.6, when dmin equals 0.5 or 0.6, Precision

reaches more than 92%, however Recall is slightly

lower: 67% and 70% respectively. In addition, if us-

ing maximum/minimum value as the larger class, in

contrast, Recall would be higher than Precision, then

we see Recalls in Fig.5 and Fig.6 are both over 84% no

M
ax

/M
in
,
dm
in

=
0.
4

M
ed

ia
n,
 d
m
in

=
0.
4

M
ax

/M
in
,
dm
in

=
0.
5

M
ed

ia
n,
 d
m
in

=
0.
5

M
ax

/M
in
,
dm
in

=
0.
6

M
ed

ia
n,
 d
m
in

=
0.
6

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

V
a
lu

e

Pression Recall F1-Score

0.628

0.877

0.732

0.864

0.784 0.781

0.862

0.820

0.952

0.814

0.712

0.849
0.804 0.826

0.934

0.780

0.670
0.717

Fig.5. Effectiveness of outlier detection by using mean-value transformation.

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1179

M
ax

/M
in
,
dm
in

=
0.
4

M
ed

ia
n,
 d
m
in

=
0.
4

M
ax

/M
in
,
dm
in

=
0.
5

M
ed

ia
n,
 d
m
in

=
0.
5

M
ax

/M
in
,
dm
in

=
0.
6

M
ed

ia
n,
 d
m
in

=
0.
6

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

V
a
lu

e

Pression

0.619

0.858 0.854

0.764

0.847
0.803 0.804

0.703

0.811
0.849

0.922

0.776

0.670

0.829

0.940

0.717

0.779

0.719

Recall F1-Score

Fig.6. Effectiveness of outlier detection by using FFT transformation.

matter what dmin is. In other words, there are more

outliers able to be detected and the false negative rate

is much lower. Contrary to Recall, Precision is a little

low. If the dmin value is 0.4, 0.5 or 0.6, then Precision

ranges from 62% to 81%, which means that lots of nor-

mal metrics are misjudged as outliers, thus resulting

in a high false positive rate. Additionally, when the

maximum/minimum value represents the larger class

and dmin is 0.6, then Accuracy closes to 83%. How-

ever, if dmin is set to 0.5, Accuracy is about 80% when

using the maximum/minimum value and the median

value, and setting dmin to 0.4 would further decrease

Accuracy.

7 Case Studies

In this section, based on our detection and diagnos-

tic methods, we share our experiences on tuning and

diagnosing the performance of Spark and Hadoop ap-

plications. In detail, we illustrate the three Spark cases

which have reported in [11] and a case for Hadoop job.

7.1 Case-1: Uneven Data Placement

From [11] we know that the S-WordCount job’s

stage spark stage app-20160630230531-0000 0 has a

straggle outlier node hw114 when Th D = 1.5, and

workload imbalance when BC = 0.1. In this paper,

we give the automatic diagnostic results in Fig.7.

In contrast to the other nodes, the priority of data

locality of the hw114 node is “ANY” and the average

similarity between hw114 and the other slave nodes is

23.57%, because the uneven data phenomenon place-

ment exists in hw114. We find that every task on

node hw114 needs to read data from the other nodes

rather than the local, so that their task runtime is rela-

tively longer. Therefore we decide to utilize the HDFS

(Hadoop Distributed File System) balancer to optimize

the data distribution, and then the completion time of

this S-WordCount job is reduced from 218 seconds to

167 seconds, approximately 23.21%.

Stage id: spark_stage_app-20160630230531-0000_0

Detected straggle outlier node: hw114

Detected workload imbalance: hw114

— Data skew diagnosis:

 Skew data size: Null

 Uneven data placement : hw114 [ANY:0.06875]

— Abnormal node diagnosis:

 Similarity analysis: Similarity ([hw089, hw062, hw073,

hw103, hw114, hw106], other nodes): [0.8048, 0.7838, 0.8242,

0.7870, 0.2359, 0.8171]

 Detected abnormal node: hw114

— Outlier metrics diagnosis:

 Mode: [Mean-Value,median, CCRated=0.95, dmin=0.5]:

 hw114:(mem_usage, ioWaitRatio, diskR_band, netS_band,

 netR_band)

Fig.7. Automatic diagnostic results of Spark job for case-1.

In addition, we also give an automatic diagnostic

results of Hadoop’s mapStage job 1493084522519 0014

in Fig.8. We find that this map stage of Hadoop has no

1180 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

obviously straggle outlier node, but there exist work-

load imbalances. In fact, we check the task assign-

ments of hw106, hw114, hw062 and hw073, which are

228, 159, 44 and 23 respectively. It is obvious that

the assigned tasks in hw073 and hw062 are signifi-

cantly less than that in the other two nodes, and the

reason is that the localities of hw073 and hw062 are

“RACK LOCAL”, while the localities of hw106 and

hw114 are “NODE LOCAL”.

Stage id: mapStage_job_1493084522519_0014

Detected straggle outlier node: Null

Detected workload imbalance: hw106, hw073, hw062, hw114

— Data skew diagnosis:

 Skew data size: Null

 Uneven data placement : hw073[RACK LOCAL:0.09469],

 hw062 [RACK LOCAL:0.00379]

— Abnormal node diagnosis:

 Similarity analysis: Similarity ([hw062, hw073, hw114,

 hw106], other nodes): [0.8571, 0.8143,0.8784, 0.8807]

 Detected abnormal node: Null

— Outlier metrics diagnosis:

 Mode: [Mean_Value, median, CCRated=0.95, dmin=0.5]:

 Null

Fig.8. Automatic diagnostic results of Hadoop job for case-1.

7.2 Case-2: Abnormal Node

We also give the automatic diagnostic results of

the case spark stage app-20160719212517-0001 2 (re-

ported in [11]) in Fig.9. From the automatic diagnos-

tic results we know that hw089 is a straggle outlier

node and has workload imbalance, and it is a abnor-

mal node whose similarity between the others is about

11.98%. Nevertheless, these bottlenecks are not mainly

caused by data skew. However, we do find some outlier

metrics, and just find an abnormal metric: the ave-

rage weighted io of hw089 calculated by mean-value

method is −4 177 890.23, contrary to common sense.

The io time weighted value is 4 294 936 240 at 22:35:49

2016-07-19, and the io time weighted value is 258 900

at 22:35:50 2016-07-19.

In order to diagnose the root cause, we further view

the system logs, and find that the disk of hw089 has

experienced a high temperate alarm and raw read er-

ror rate[11]. Therefore we think that it is necessary

to analyze the correlation between the outlier met-

rics, for some outlier metrics may be caused by other

metrics, such as case-2, where the abnormal metric

weighted io leads to the outlier metrics cpu usage and

ioWaitRatio. Furthermore, in order to locate the root

cause of abnormal metrics, the diagnosis based on the

system or RAS logs is also needed.

Stage id: spark_stage_app-20160719212517-0001_2

Detected straggle outlier node: hw089

Detected workload imbalance: hw089

— Data skew diagnosis:

 Skew data size: Null

 Uneven data placement: Null

— Abnormal node diagnosis:

 Similarity analysis: Similarity ([hw089, hw062, hw073,

 hw103, hw114, hw106], other nodes): [0.1198, 0.7667,0.8017,

 0.7774, 0.7995, 0.7974]

 Detected abnormal node: hw089

— Outlier metrics diagnosis:

 Mode: [Mean-Value, median, CCRated=0.95, dmin=0.5]:

 hw089: (cpu_usage, ioWaitRatio, weighted io)

Fig.9. Automatic diagnostic results of Spark job for case-2.

7.3 Case-3: Intra-Node Resource Interference

The automatic diagnostic results of the case

spark stage app-20160703145107-0001 0 (reported in

[11]) are in Fig.10. From the automatic diagnostic

results we know that, there exist two straggle outlier

nodes hw062 and hw106, and they are caused neither

by data skew nor abnormal nodes. However, the auto-

matic diagnosis tool of BDTune finds that the average

values of L3 MPKI in these two nodes are both larger

than those in the other nodes while the node similarity

of all nodes in the cluster is 93.3%.

Stage id: spark_stage_app-20160703145107-0001_0

Detected straggle outlier node: hw062, hw106

Detected workload imbalance:

— Data Skew diagnosis:

 Skew data size: Null

 Uneven data placement : Null

— Abnormal node diagnosis:

 Similarity analysis: Similarity ([hw089, hw062, hw073,

hw103, hw114, hw106], other nodes): [0.9593, 0.9255,0.9228,

0.9437, 0.9513, 0.9432]

 Detected abnormal node: Null

— Outlier metrics diagnosis:

 Mode: [FFT, median, CCRated=0.95, dmin=0.5]:

 hw062:(L3_MPKI); hw106:(L3_MPKI)

Fig.10. Automatic diagnostic results of Spark job for case-3.

8 Related Work

Performance Analysis. There have been many

prior studies on building tools to analyze performance

for MapReduce applications. SONATA[2] provides a

correlation-based performance analysis approach for

full-system MapReduce optimization. It correlates

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1181

different phases, tasks and resources for identifying crit-

ical outliers and recommends optimization suggestions

based on embedded rules, which just uses the model-

based method. HiTune[1], a dataflow-driven perfor-

mance analysis approach, reconstructs the high-level,

dataflow-based, distributed and dynamic execution pro-

cess for each Big Data application. Mochi[4] is a vi-

sual, log-analysis based debugging tool that correlates

Hadoop’s behavior in space, time and volume, and ex-

tracts a causal, unified control and dataflow model of

Hadoop across the nodes of a cluster.

Besides the above tools used to analyze MapRe-

duce applications, tools for other platforms are also

proposed. Ousterhout et al.[17] used blocked time

analysis to quantify the performance bottlenecks in

Spark framework, and Microsoft used Artemis[5] to an-

alyze Dryad application, which is a plug-in mechanism

which uses statistical and machine learning algorithms.

Roots[18] is a full-stack monitoring and analysis sys-

tem for performance anomaly detection and bottleneck

identification in cloud platform-as-a-service (PaaS) sys-

tems. Table 5 shows the comparison of performance

analysis tools for Big Data systems.

Performance Anomaly Detection and Diagnosis. In

general, anomaly detection is an essential part of perfor-

mance diagnosis for Big Data systems. And anomaly

detection techniques can be classified into two meth-

ods: data-driven and model-based. Data-driven meth-

ods include nearest neighbor based methods includ-

ing distance-based[13], k-nearest neighbor[19], local out-

lier factor[20], and k-means clustering[21]. Specifi-

cally, a number of node comparison methods have

been adopted for anomaly detection in large-scale

systems[22]. For example, Kahuna[23] aims to diag-

nose performance in MapReduce systems based on

the hypothesis that nodes exhibit peer-similarity un-

der fault-free conditions and some faults result in peer-

dissimilarity. Ganesha[24] is a black-box diagnosis tech-

nique that examines OS-level metrics to detect and di-

agnose faults in MapReduce systems, and especially can

diagnose faults that manifest asymmetrically at nodes.

Eagle[25] is a framework for anomaly detection at eBay,

which uses density estimation and PCA algorithms

for user behavior analysis. Kasick et al.[26] developed

anomaly detection mechanisms in distributed environ-

ments by comparing system metrics among nodes. Yu

and Lan[22] presented a practical and scalable anomaly

detection method for large-scale systems, based on hier-

archical grouping, non-parametric clustering, and two-

phase majority voting.

Table 5. Comparison of Performance Analysis Tools for Big Data Systems

Tool Name Target
System

Collection Tool Data Type Analytical Method Extensibility Timeliness

HybirdTune Hadoop,
Spark

PMU, Perf,
HMonitor

Architecture metrics,
system metrics,
application logs

Spatio-temporal data and
model driven diagnosis

Yes Semi
real-time

SONAT MapReduce Ganglia Resource metrics,
application traces

Correlation analysis,
rules-based optimization

No Offline

HiTune Hadoop Chukwa Hadoop logs Dataflow-driven analysis No Offline

Theia Hadoop Ganglia Logs, performance data Visual analysis No Offline

Mochi Hadoop SALSA Logs Control- and dataflow
model analysis

No Offline

Artemis Dryad Data-collection
front-end

Dryad logs, performance
counters data, XML
data, binary data

Diagnosis plug-ins based
on statistical and machine
learning algorithms

No Offline

Trace-analysis Spark Instrumentation Spark traces Blocked time analysis No Offline

Ganesha MapReduce Sysstat’s sadc
program

OS-level metrics Black box diagnosis No Offline

Hadoop vaidya MapReduce Logging tool MapReduce job data Rule-based diagnosis No Offline

Eagle Hadoop Logging tool Audit log Density estimation, PCA No Real-time

Mantri MapReduce
(Dryad)

Scope compiler,
cosmos scheduler

MapReduce job logs Outlier analysis and
optimization

No Real-time

1182 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Representative model-based techniques include rule

based methods[27], support vector machine (SVM)

based methods[28], probability model[29], Bayesian net-

work based methods[30], etc. For example, Hadoop

vaidya 3○ is a rule-based performance diagnostic tool

from MapReduce jobs. Although it can provide

recommendations based on the analysis of runtime

statistics, it cannot facilitate full-system optimiza-

tion. CloudDiag[31] can efficiently pinpoint fine-grained

causes of the performance problems through a black-

box tracing mechanisms and without any domain-

specific knowledge. Mantri[8] is a system that monitors

tasks and culls outliers based on their causes, and then

delivers the effective mitigation of outliers in MapRe-

duce networks. Jia et al.[32] presented an approach of

diagnosing anomalous run-time behaviors in distributed

services from execution logs, and they mined a hy-

brid graph model including a service topology and a

time-weighted control flow graph (TCFG) that cap-

tures healthy execution flows of each service. Ren et

al.[33] proposed an online anomaly detection detection

approach based on stage-task behaviors modeling.

Moreover, the pure data driven diagnosis approach

is promising for relatively simple distributed applica-

tions, but it is very time-consuming and difficult to be

used in the complex Big Data systems. The model-

driven approach requires more detailed prior knowledge

to achieve better accuracy, and it is also difficult to

adapt for Big Data scale. Distinguished from the above

work, HybridTune is a lightweight and extensible tool,

which uses a hybrid method via combining the data-

driven and the rule-based analysis approach. It pro-

vides fine-grained spatio-temporal correlation analysis

and different diagnosis. Due to the stage-based and

multi-level performance data correlation, it can be eas-

ily extended to semi-realtime detection and can improve

the time effectiveness of diagnosis.

9 Conclusions

In this paper, taking advantage of the stage simi-

larity and the distributed characteristics of Big Data

systems, we analyzed the behaviors of the Big Data

applications in terms of both system and architectural

metrics of each stage, and proposed a hybrid approach

that utilizes prior knowledge rules or data-driven ma-

chine learning algorithms to detect performance anoma-

lies, such as straggler tasks, task assignment imbalance,

data skew, abnormal nodes and performance outlier. In

addition, we designed and implemented a lightweight,

extensible tool HybridTune, and then validated its over-

head and anomalies detection effectiveness. The over-

head caused by HybridTune is just 5%, the accuracy of

outlier detection could reach 93%. Then we reported

several use cases, which show that our approach can

pinpoint performance bottlenecks and provide perfor-

mance optimization recommendations for Big Data ap-

plications efficiently.

Acknowledgement We are very grateful to anony-

mous reviewers.

References

[1] Dai J, Huang J, Huang S, Huang B, Liu Y. HiTune:

Dataflow-based performance analysis for big data cloud. In

Proc. the 2011 USENIX Conference on USENIX Annual

Technical Conference, June 2011, Article No. 27.

[2] Guo Q, Li Y, Liu T, Wang K, Chen G, Bao X, Tang

W. Correlation-based performance analysis for full-system

MapReduce optimization. In Proc. the 2013 IEEE Interna-

tional Conference on Big Data, October 2013, pp.753-761.

[3] Garduño E, Kavulya S P, Tan J, Gandhi R, Narasimhan

P. Theia: Visual signatures for problem diagnosis in large

Hadoop clusters. In Proc. the 26th Large Installation Sys-

tem Administration Conference, December 2012, pp.33-42.

[4] Tan J, Pan X, Kavulya S, Gandhi R, Narasimhan P. Mochi:

Visual log-analysis based tools for debugging Hadoop. In

Proc. USENIX Workshop on Hot Topics in Cloud Com-

puting, June 2009, Article No. 1.

[5] Cretu-Ciocarlie G, Budiu M, Goldszmidt M. Hunting for

problems with Artemis. In Proc. the 1st USENIX Work-

shop on Analysis of System Logs, Dec. 2008, Article No. 2.

[6] Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin F,

Babu S. Starfish: A self-tuning system for big data analy-

tics. In Proc. the 5th Biennial Conference on Innovative

Data Systems Research, January 2011, pp.261-272.

[7] Wang L, Zhan J, Luo C, Zhu Y, Yang Q, He Y, Gao W, Jia

Z, Shi Y, Zhang S, Zheng C, Lu G, Zhan K, Qiu B. Big-

DataBench: A Big Data benchmark suite from internet ser-

vices. In Proc. the 20th IEEE International Symposium on

High Performance Computer Architecture, February 2014,

pp.488-499.

[8] Ananthanarayanan G, Kandula S, Greenberg A, Stoica I,

Lu Y, Saha B, Harris E. Reining in the outliers in Map-

Reduce clusters using Mantri. In Proc. the 9th USENIX

Conference on Operating Systems Design and Implemen-

tation, October 2010, pp.265-278.

[9] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley

M, Franklin M, Shenker S, Stoica I. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proc. the 9th USENIX Symposium on Net-

worked Systems Design and Implementation, April 2012,

pp.15-28.

3○http://hadoop.apache.org/docs/r1.2.1/vaidya.html, Sept. 2019.

Rui Ren et al.: HybridTune: Spatio-Temporal Performance Data Correlation 1183

[10] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad:

Distributed data-parallel programs from sequential build-

ing blocks. In Proc. the 2007 EuroSys Conference, March

2007, pp.59-72.

[11] Ren R, Jia Z, Wang L, Zhan J, Yi T. BDTUne: Hierarchi-

cal correlation-based performance analysis and rule-based

diagnosis for big data systems. In Proc. the IEEE Interna-

tional Conference on Big Data, Dec. 2016, pp.555-562.

[12] Cochran W, Cooley J, Favin D, Helms H, Kaenel R, Langa

W, Maling G, Nelson D, Rader C, Welch P. What is the

fast Fourier transform? IEEE Transactions on Audio and

Electroacoustics, 1967, 55(10): 1664-1674.

[13] Knorr E M, Ng R T. Algorithms for mining distance-

based outliers in large datasets. In Proc. the 24th Interna-

tional Conference on Very Large Data Bases, August 1998,

pp.392-403.

[14] Ming Z, Luo C, Gao W, Han R, Yang Q, Wang L, Zhan

J. BDGS: A scalable Big Data generator suite in Big Data

benchmarking. In Proc. the 2013 Workshop Series on Big

Data Benchmarking, July 2014, pp.138-154.

[15] Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S,

Liu D, Freeman J, Tsai D B, Amde M, Owen S, Xin D, Xin

R, Franklin M J, Zadeh R, Zaharia M, Talwalkar A. MLlib:

Machine learning in Apache Spark. J. Mach. Learn. Res.,

2016, 17: Article No. 34.

[16] Wang C, Talwar V, Schwan K, Ranganathan P. Online de-

tection of utility cloud anomalies using metric distributions.

In Proc. the IEEE/IFIP Network Operations and Mana-

gement Symposium, April 2010, pp.96-103.

[17] Ousterhout K, Rasti R, Ratnasamy S, Shenker S, Chun B.

Making sense of performance in data analytics frameworks.

In Proc. the 12th USENIX Symposium on Networked Sys-

tems Design and Implementation, May 2015, pp.293-307.

[18] Jayathilaka H, Krintz C, Wolski R. Detecting per-

formance anomalies in cloud platform applica-

tions. IEEE Transactions on Cloud Computing. doi:

10.1109/TCC.2018.2808289.

[19] Ramaswamy S, Rastogi R, Shim K. Efficient algorithms

for mining outliers from large data sets. In Proc. the 2000

ACM SIGMOD International Conference on Management

of Data, May 2000, pp.427-438.

[20] Breunig M M, Kriegel H P, Ng R T, Sander J. LOF: Identi-

fying density-based local outliers. In Proc. ACM SIGMOD

International Conference on Management of Data, May

2000, pp.93-104.

[21] Yu D, Sheikholeslami G, Zhang A. FindOut: Finding out-

liers in very large datasets. Knowledge and Information

Systems, 2002, 4(4): 387-412.

[22] Yu L, Lan Z. A scalable, non-parametric method for detect-

ing performance anomaly in large scale computing. IEEE

Transactions on Parallel and Distributed Systems, 2016,

27(7): 1902-1914.

[23] Tan J, Pan X, Marinelli E, Kavulya S, Gandhi R,

Narasimhan P. Kahuna: Problem diagnosis for MapReduce-

based cloud computing environments. In Proc. the

IEEE/IFIP Network Operations and Management Sympo-

sium, April 2010, pp.112-119.

[24] Pan X, Tan J, Kavulya S, Gandhi R, Narasimhan P. Gane-

sha: BlackBox diagnosis of MapReduce systems. SIGMET-

RICS Performance Evaluation Review, 2009, 37(3): 8-13.

[25] Gupta C, Sinha R, Zhang Y. Eagle: User profile-based

anomaly detection for securing Hadoop clusters. In Proc.

the 2015 IEEE International Conference on Big Data, Oc-

tober 2015, pp.1336-1343.

[26] Kasick M P, Tan J, Gandhi R, Narasimhan P. Black-box

problem diagnosis in parallel file systems. In Proc. the

8th USENIX Conference on File and Storage Technologies,

February 2010, pp.43-56.

[27] Fu X, Ren R, McKeez S A, Zhan J, Sun N. Digging deeper

into cluster system logs for failure prediction and root cause

diagnosis. In Proc. IEEE International Conference on Clus-

ter Computing, September 2014, pp.103-112.

[28] Khan L, Awad M, Thuraisingham B. A new intrusion detec-

tion system using support vector machines and hierarchical

clustering. The VLDB Journal, 2007, 16(4): 507-521.

[29] Lee S, Shin K G. Probabilistic diagnosis of multiprocessor

systems. ACM Computing Surveys, 1994, 26(1): 121-139.

[30] Das K, Schneider J. Detecting anomalous records in cate-

gorical datasets. In Proc. the 13th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, August 2007, pp.220-229.

[31] Mi H, Wang H, Zhou Y, Lyu M R, Cai H. Toward fine-

grained, unsupervised, scalable performance diagnosis for

production cloud computing systems. IEEE Transactions

on Parallel and Distributed Systems, 2013, 24(6): 1245-

1255.

[32] Jia T, Chen P, Yang L, Li Y, Meng F, Xu J. An approach

for anomaly diagnosis based on hybrid graph model with

logs for distributed services. In Proc. the 2017 IEEE Inter-

national Conference on Web Services, June 2017, pp.25-32.

[33] Ren R, Tian S, Wang L. Online anomaly detection frame-

work for Spark systems via stage-task behavior modeling.

In Proc. the 15th ACM International Conference on Com-

puting Frontiers, May 2018, pp.256-259.

Rui Ren received her B.S. degree

in computer science from the Sichuan

University, Chengdu, in 2009, her M.S.

degree in computer architecture from

Chinese Academy of Sciences, Beijing,

in 2012, and her Ph.D. degree in com-

puter software and theory from Chinese

Academy of Sciences, Beijing, in 2019.

She is currently an engineer in the Institute of Computing

Technology, Chinese Academy of Sciences, Beijing. Her

research interests include big data, performance analysis

and optimization.

1184 J. Comput. Sci. & Technol., Nov. 2019, Vol.34, No.6

Jiechao Cheng received his M.S.

degree in software engineering at

Wuhan University, Wuhan, in 2018,

and B.S. degree at Yangtze Univer-

sity, Jingzhou, in 2014. He recently

is a Master student at School of

Computing, National University of Sin-

gapore, Singapore. His current interests

focus on natural language processing and machine learning.

Xi-Wen He received his B.S. degree

in computer science and technology

from Jilin University, Changchun, in

2014, his M.S. degree in computer

architecture from University of Chinese

Academy of Sciences, Beijing, in 2017.

He is currently an engineer in the

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing. His research

interests include big data and performance analysis.

Lei Wang received his B.S. degree

in applied mathematics from Beijing

University of Technology, Beijing, in

1999, and his M.S. degree in computer

engineering and his Ph.D. degree in

computer software and theory from

the University of Chinese Academy of

Sciences, Beijing, in 2006 and 2016,

respectively. He is currently a senior engineer with the

Institute of Computing Technology, Chinese Academy of

Sciences, Beijing. His current research interest includes

benchmarking and resource management of cloud systems.

Jian-Feng Zhan received his Ph.D.

degree in computer engineering from

Chinese Academy of Sciences, Beijing,

in 2002. He is currently a professor

of computer science with the Institute

of Computing Technology, Chinese

Academy of Sciences, Beijing. His

current research interests include big

data, distributed and parallel systems.

Wan-Ling Gao is an assistant

professor in computer science at the

Institute of Computing Technology,

Chinese Academy of Sciences, and

University of Chinese Academy of

Sciences, Beijing. Her research interests

focus on big data benchmark and big

data analytics. She received her B.S.

degree in software engineering from Huazhong University

of Science and Technology, Wuhan, in 2012, and her Ph.D.

degree in computer software and theory from Institute of

Computing Technology, Chinese Academy of Sciences, and

University of Chinese Academy of Sciences, Beijing, in

2019.

Chun-Jie Luo is a Ph.D. candidate

at the Institute of Computing Techno-

logy, Chinese Academy of Sciences,

Beijing. His research interests include

artificial intelligence and benchmark.

He received his M.S. degree in computer

application technology from Chinese

Academy of Sciences, Beijing, in 2012.

