
 

FDNet: A Deep Learning Approach with Two Parallel Cross
Encoding Pathways for Precipitation Nowcasting

Bi-Ying Yan1, 2 (闫碧莹), Member, CCF, Chao Yang3, 4, * (杨　超), Senior Member, CCF, Member, ACM, IEEE
Feng Chen2, 5 (陈　峰), Kohei Takeda6, and Changjun Wang7

1 University of Chinese Academy of Sciences, Beijing 100049, China
2 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
3 School of Mathematical Sciences, Peking University, Beijing 100871, China
4 Peng Cheng Laboratory, Shenzhen 518052, China
5 Guiyang Academy of Information Technology, Guiyang 550081, China
6 NTT DATA Corporation, Tokyo 163-8001, Japan
7 NTT DATA Institute of Management Consulting Inc., Tokyo 163-8001, Japan

E-mail: biying@iscas.ac.cn; chao_yang@pku.edu.cn; chenfeng@iscas.ac.cn; Kohei.Takeda@nttdata.com
wanvc@nttdata-strategy.com

Received October 22, 2020; accepted May 6, 2021.

Abstract    With the goal of predicting the future rainfall intensity in a local region over a relatively short period time,

precipitation nowcasting has been a long-time scientific challenge with great social and economic impact. The radar echo

extrapolation approaches for precipitation nowcasting take radar echo images as input, aiming to generate future radar

echo images by learning from the historical images. To effectively handle complex and high non-stationary evolution of

radar echoes, we propose to decompose the movement into optical flow field motion and morphologic deformation. Follow-

ing this idea, we introduce Flow-Deformation Network (FDNet), a neural network that models flow and deformation in

two parallel cross pathways. The flow encoder captures the optical flow field motion between consecutive images and the

deformation encoder distinguishes the change of shape from the translational motion of radar echoes. We evaluate the pro-

posed network architecture on two real-world radar echo datasets. Our model achieves state-of-the-art prediction results

compared with recent approaches. To the best of our knowledge, this is the first network architecture with flow and defor-

mation separation to model the evolution of radar echoes for precipitation nowcasting. We believe that the general idea of

this work could not only inspire much more effective approaches but also be applied to other similar spatio-temporal pre-

diction tasks.
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1    Introduction

Precipitation  nowcasting  is  the  task  of  providing

precise and timely prediction of rainfall intensity in a

local  region  over  a  very  short  range  (e.g.,  0  hour–6
hour) based on radar echo maps, rain gauge, and oth-

er observation data. Accurate prediction plays a vital

role in our daily life as well as many public safety sce-

narios such as road condition alarms and flight sched-

ules. Since the accuracy and timeliness are highly de-

sired,  compared  with  other  traditional  forecasting

tasks like weekly average temperature prediction, pre-

cipitation nowcasting has become a more challenging

mission in the field of weather forecasting. Of particu-

lar  note  is  the  forecasting  of  heavier  rainfall,  which

occurs  less  often but  has  a  higher  real-world  impact.
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Forecasting has become extremely difficult because of

the low frequency of heavier rainfall events.

Existing methods  for  precipitation nowcasting in-

clude  numerical  weather  prediction  (NWP)  based

methods  and  radar  echo  extrapolation  based

methods[1].  NWP  is  one  of  the  most  successful  ap-

proaches  to  conducting  medium- and  long-range  (up

to six days) weather prediction[1, 2]. The core of NWP

is the complex and meticulous simulation of the phys-

ical equations in the atmosphere model. These physi-

cal  equations  are  coincident  with  our  current  beliefs

about  the  dynamical  behaviors  of  the  atmosphere.

The  NWP-based  approaches  have  high  computing

complexity  and  their  accuracy  strongly  relies  on  the

initial  conditions,  which  could  make  them  lose  com-

petitiveness  to  the  extrapolation-based  methods  in  a

short period forecast.

Recently,  radar  echo  extrapolation based  meth-

ods  have  been  noticed  and  widely  adopted[3, 4] these

years. These methods[3, 4] rely on the extrapolation of

observations  by  ground-based  radars  via  optical  flow

techniques  or  neural  network  models.  Optical  flow-

based  methods[4–6],  as  typical  extrapolation-based

methods, have drawn increasingly more attention, ow-

ing  to  their  fast  speeds  and  high  accuracies.  Optical

flow-based  methods  are  conducted  in  two  stages  by

the  extrapolation  of  radar  observations.  Firstly,  the

wind is estimated by comparing two or more precipi-

tation  fields  as  seen  by  radar  based  on  the  optical

flow estimation algorithms developed in computer vi-

sion.  Secondly,  the precipitation field is  moved along

the  estimated  directions  of  the  wind.  However,  the

success of these optical flow-based methods is limited

because  the  flow estimation  step  and  the  radar  echo

extrapolation step are separated and it is not easy to

determine the most appropriate model parameters.

Neural  network  models  consider  precipitation

nowcasting  as  a  real  application  of  spatio-temporal

predictive  learning  which  generates  images  condi-

tioned on given consecutive frames and has shown the

models' advantages[7–9] in  many  real-world  datasets.

In  spatio-temporal  predictive  learning,  there  are  two

crucial  aspects:  spatial  correlations  and temporal  dy-

namics, and previous studies[7, 9] mainly focus on how

to  model  these  two  sides  in  a  unified  architecture.

The  Convolutional  LSTM  (ConvLSTM)[7] architec-

ture  naturally  considers  these  two  aspects  jointly  by

plugging  the  convolutional  operations  in  recurrent

connections.  Predictive  RNN  (PredRNN)[9] extends

ConvLSTM  and  involves  a  new  spatio-temporal

LSTM  (ST-LSTM)  unit  aiming  to  memorize  both

spatial appearances and temporal variations in a uni-

fied  memory  pool.  Just  the  opposite  of  PredRNN,

MCNet[10] captures the spatial layout of an image and

the corresponding temporal dynamics independently.

In  general,  the  evolution  of  radar  echoes  can  be

resolved into optical flow field motion and morpholog-

ic deformation. As shown in Fig.1, the pixels are mov-

ing from left  to  right  as  a  whole.  But zooming in to

the  detail,  the  accumulation,  deformation,  and  dissi-

pation of the radar echoes are happening in every re-

gion at every moment. Therefore, it is difficult to cap-

ture  all  these  fine-grained  evolution  patterns  with  a

uniform encoding structure.
 

        

(a)

        

(b)

        

(c)

        

(d)

Fig.1.  Example of 12 consecutive radar echo maps to illustrate
the  optical  flow  field  motion  and  morphologic  deformation  of
radar  echoes,  where t is  the  time  step.  (a)  Visualizations  of  a
typical  radar  echo  sequence.  (b)  Translational  motion  of  the
main  body  of  radar  echoes  (in  red  boxes).  (c)  Accumulation
and deformation of the radar echoes (in green boxes). (d) The
radar  echoes  in  blue  boxes  dissipate  and  blend  into  the  main
body.
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Unfortunately, previous work only considers these

two  aspects  of  evolution  together,  which  may  lose

sight of fine-grained variation. Since atmospheric mo-

tion  is  a  complex  physical  process  and the  shapes  of

radar echoes may expand, contract or change rapidly,

modeling  morphologic  deformation  is  significant  for

the prediction of radar echo maps. Motivated by this,

we present a new prediction architecture called Flow

Deformation Network (FDNet), which considers opti-

cal  flow  field  motion  and  morphologic  deformation

separately,  aiming  to  capture  the  fine-grained  evolu-

tion  of  radar  echoes.  FDNet  separates  the  informa-

tion streams (the position and the shape) into differ-

ent  encoding  pathways.  It  applies  a  neural  optical

flow estimation method to the position stream to ex-

tract the spatial  coherence motion and a differencing

operation  on  the  shape  stream  to  capture  the  fine-

grained  spatial  deformation.  The  proposed  architec-

ture  is  evaluated  on  two  real-world  radar  echo

datasets,  and  the  results  show  that  it  outperforms

previous  approaches[8–12],  especially  for  longer  future

time steps.

The  rest  of  the  paper  is  organized  as  follows.  A

brief review of related work is given in Section 2 and

some  preliminaries  are  introduced  in Section 3.  The

detailed  structure  of  the  proposed  network  is  de-

scribed  in Section 4.  Implementation  details  and  ex-

perimental  results  on  challenging  benchmarks  are  il-

lustrated in Section 5. The paper is concluded in Sec-

tion 6. 

2    Related Work

The  precipitation  nowcasting  task  can  be  formu-

lated  as  a  spatio-temporal  prediction  problem  in

which  both  the  input  and  the  prediction  target  are

spatio-temporal  sequences.  Convolutional  neural  net-

works  (CNNs)[13] and  recurrent  neural  networks

(RNNs)[14] have been widely used for learning spatial

correlations and temporal dependencies from a spatio-

temporal  sequence.  Naturally,  CNNs  are  applied  to

extract  spatial  features.  As  for  temporal  dynamics,

the existing architecture  can be generally  divided in-

to two types: 1) CNNs-based models which treat the

spatio-temporal sequence as multiple channels[15, 16] or

the depth dimension of the image[17] and apply CNNs

to  capture  the  spatial  features;  2)  RNNs-based  mod-

els[7–11, 18–20] which  use  RNNs  to  learn  the  variations

over time.

ConvLSTM[7] firstly integrates CNN and RNN to-

gether by replacing the fully connection with convolu-

tional structures in both the input-to-state and state-

to-state transitions in the long short-term memory re-

current  neural  network  (LSTM).  The  proposal  of

ConvLSTM  has  become  a  milestone  in  the  field  of

spatio-temporal  prediction  and  most  of  the  subse-

quent  approaches  are  built  upon  ConvLSTM.  Our

model also employs ConvLSTM to capture the spatio-

temporal correlations.

From the perspective of state transition functions,

dynamic  filter  network  (DFN)[21] extends  ConvLS-

TM[7] by  generating  the  filters  between  state  transi-

tions  dynamically  conditioned  on  input  data.  Traj-

GRU[8] actively  learns  the  location-variant  structure

for recurrent connections and performs better on rota-

tion motion. MIM[11] involves stacked multiple LSTM-

similar blocks to replace the saturating forget gate in

the  LSTM  unit  and  exploits  the  differential  signals

between  adjacent  recurrent  states  to  model  the  non-

stationary  process.  In  the  aspect  of  the  encoder-fore-

caster  architecture,  PredRNN[9] adds  a  new  memory

(called  spatio-temporal  memory)  cell  in  each  LSTM

unit  which  is  allowed  to  zigzag  through  all  RNN

states  across  different RNN layers,  aiming to extract

and memorize spatial and temporal representations si-

multaneously.

In addition, E3D-LSTM[22] integrates 3D-convolu-

tion  into  RNNs  to  make  local  perceptrons  of  RNNs

motion-aware.  Conv-TT-LSTM[23] involves  a  higher-

order  convolution  LSTM with  a  tensor-train  module

that  combines  convolutional  features  across  time  to

learn  long-term  forecasting.  Self-Attention  ConvL-

STM[24] introduces  the  self-attention  mechanism  into

convolution  LSTM  to  extract  spatial  features  with

both global and local dependencies. There are also ef-

forts that extend the training data from 2D radar im-

ages  to  3D  images,  while  adapting  the  above  Con-

vRNN  models  for  the  3D-radar-extrapolation

problem[25].

However, all above work considers the motion and

deformation  together,  which  may  lose  sight  of  fine-

grained evolutions. To the best of our knowledge, on-

ly  MCNet[10] decomposes  the  motion  and  content

which  independently  captures  the  spatial  layout  and

the corresponding temporal dynamics, but it does not

consider the variation of the content such as accumu-

lation, deformation, and dissipation. By contrast, our

model is characterized to learn not only the tendency

of global motion but also the variation of local defor-

mation. 
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3    Preliminaries
 

3.1    Structured Sequence Predictive Learning

K

J

Sequence predictive learning is the problem of pre-

dicting the most likely future length-  sequence giv-

en the previous  observations: 

x̂t+1, ..., x̂t+K= argmax
xt+1,...,xt+K

p(xt+1, ...,xt+K|xt−J+1, ...,xt),

xt ∈ D t D

xt

where  is  an observation at  time  and  de-

notes the domain of the observed features. The struc-

tured  sequence  is  a  type  of  special  sequences  where

features  of  the  observations  are  not  independent

but  linked  by  pairwise  or  spatial  relationships.  Such

structures may be regular grid-structured like the 2D

radar  echo  map  or  graph-structured  like  the  traffic

network.

xt

M ×N

M N

P

xt X ∈ RP×M×N

xt

In this paper, we mainly focus on the regular grid-

structured  sequence  predictive  learning  problem. 

can  be  viewed  as  signals  on  an  grid  which

consists of  rows and  columns. Inside each cell in

the  grid,  measurements  are  varying  over  time.

Thus,  can be represented by a tensor .

For  precipitation  nowcasting,  is  a  2D  radar  echo

map. 

3.2    Convolutional LSTM

Convolutional LSTM (ConvLSTM)[7] is  a popular

model for regular grid-structured sequences, which ex-

plicitly  encodes  the  structured  information  into  ten-

sors  by  replacing  the  multiplications  of  dense  matri-

ces  in  classical  LSTM  with  convolutions.  The  main

equations of ConvLSTM are shown as follows: 

gt = tanh(Wxg ∗ Xt +Whg ∗ Ht−1 + bg),

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ⊙ Ct−1 + bf),

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ⊙ Ct−1 + bf),
Ct = ft ⊙ Ct−1 + it ⊙ gt,

ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ⊙ Ct + bo),

Ht = ot ⊙ tanh(Ct),

σ(·) ∗
⊙

i f o

W(.) b X
H C

where  is  the  sigmoid  activation  function, and 

and  denote  the  convolution  operator  and  the

Hadamard product, respectively. Here, ,  and  are

the input gate, forget gate and output gate respective-

ly,  are the parameters,  is  the bias term,  is

the input,  is the hidden state and  is the cell memory.

ConvLSTM determines  the  future  state  of  a  cer-

tain cell  in the grid by the inputs and past states of

its local neighbors, which is achieved by using a con-

volution  operator  in  the  state-to-state  and  input-to-

state transitions.  If  the states  are viewed as the hid-

den  representations  of  moving  objects,  a  ConvLSTM

with  a  larger  transitional  kernel  should  be  able  to

capture  faster  motions  while  one  with  a  smaller  ker-

nel  can  capture  slower  motions[7].  ConvLSTM  has

been  adopted  as  a  building  block  in  many  complex

structures[9–11] since  its  proposal.  We  also  employ

ConvLSTM  as  an  elementary  building  block  in  our

proposed FDNet architecture. 

4    Model Architecture of FDNet

J

xt−J ,xt−J+1, ...,xt

K xt+1,xt+2, ...,xt+K

K

J

We take an end-to-end learning approach to pre-

dict future radar echo maps: given a dataset consist-

ing  of  the  previous  radar  echo  map  sequences

 and the ground truth future length-

 radar  echo  map  sequences ,  we

train  a  network  to  predict  the  future  length-  se-

quence  directly  from the  previous  length-  sequence.

The overall  architecture  of  the  proposed Flow-Defor-

mation Network (abbreviated as FDNet) is described

in Fig.2.

K

FDNet  is  comprised  of  five  components:  position

encoder, shape encoder, flow encoder, deformation en-

coder,  and  combination  &  decoder.  The  position  en-

coder and the shape encoder extract meaningful posi-

tion  features  and  shape  features  of  the  radar  echoes

from  a  single  frame,  respectively.  The  flow  encoder

takes  the  spatial  correspondence  between  two  adja-

cent frames as an input, and feeds it into ConvLSTM

layers to produce the hidden representation encoding

the optical flow of the sequence. The deformation en-

coder  takes  the  difference  between  the  current  mo-

ment  shape  representation  and  the  predicted  shape

representation  (computed  from  the  previous  shape

representation), and the optical flow representation as

an  input,  and  outputs  the  hidden  representation  of

the  morphologic  deformation.  Finally,  the  combina-

tion  &  decoder  takes  the  outputs  from the  deforma-

tion  encoder  and  the  shape  encoder  as  inputs,  and

combines  them to  produce  a  pixel-level  prediction  of

the next frame. The prediction of multiple frames can

be achieved by recursively performing the above pro-

cedures  over  time  steps.  We  will  describe  the  de-

tailed  configuration  of  the  proposed  architecture  as

follows. 

4.1    Position Encoder and Shape Encoder

The position encoder extracts typical position fea-
tures  of  pixels  from a  single  frame  in  a  sequence  by
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mt = f pos(xt) mt ∈ Rw×h×c

f pos

,  where  is  the  representa-

tion of the position feature of the current frame. 

is  implemented by a CNN including convolution lay-

ers and activation layers.

st = f shape(xt)

st ∈ Rw′×h′×c′

f shape

The shape encoder has the similar structure of the

position encoder. It extracts important shape features

from  a  single  frame  by ,  where

 is  the  representation  of  the  shape  fea-

ture  of  the  current  frame.  is  also  implemented

by a CNN.

In  order  to  examine  whether  the  shape  encoder

and the position encoder can extract the characteris-

tics of the shape and the position, Fig.3 visualizes the

output feature maps from them. We can see that the

model has learned to extract shape features and posi-

tion features, and is working in the way as expected.

The  shape  encoder  learns  the  fine  shape  details  in-

cluding  pixel  light  and  shade,  while  the  position  en-

coder  captures  coarse  localization  and  outline  of  the

image.
 

4.2    Flow Encoder

The flow encoder aims to capture the optical flow

field motion between consecutive frames without con-

sidering the deformation of the content in the frames.

But how to capture the features of the flow effective-

ly? TrajGRU[8] tackles the problem by stacking both

input  images  together  and  feeds  them  through  a

rather generic convolutional neural network, allowing

the network itself to decide how to process the image

pair  to  extract  the  motion  information.  But  it  only

roughly uses the previous time period optical flow to

do the next time period transformation.

Considering  that  the  optical  flow  is  variable  and

the variation is coherent, it could be beneficial to de-

sign  a  strategy  to  extract  the  features  of  the  optical

flow  and  feed  them  into  a  time  series  modeling  net-

 

Position Encoder

Flow Encoder

Shape Encoder

Deformation Encoder

Combination & 

Decoder

Loss

x x  x
x x  x x x  x

^ ^ ^

Fig.2.  Architecture of FDNet. FDNet is a sequence-to-sequence trainable network architecture with flow and deformation separa-
tion to model the spatio-temporal dynamics for pixel-level future prediction in radar echo maps.

 

(a) (b) (c)

Fig.3.   Visualizations  of  the  output  from the  shape encoder  and the  position encoder.  (a)  Original  radar  echo image.  (b)  Feature
maps from the shape encoder. (c) Feature maps from the position encoder. From the output results of the position encoder, we can
roughly see the outline of the radar echo. The shape encoder focuses more on pixel-level details, which is obviously different from the
position encoder.
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work to  learn  the  variation.  But  what  could  be  con-

sidered  as  the  hidden  representation  of  the  optical

flow? It is natural to take the correlation between two

consecutive  images  directly  as  the  hidden  feature  of

the  optical  flow.  However,  how  would  the  network

find this correlation?

corr

mt−1 ∈ Rw×h×c mt ∈ Rw×h×c

t− 1

t w h c

d

px,y mt−1 corr

px,y q

[x− d, y − d]× [x+ d, y + d]

mt px1,y1

qx2,y2

px1,y1
qx2,y2

We take a similar “ ” function as that in [26]

to perform multiplicative patch comparisons between

two feature maps. Let ,  be

multi-channel  feature  maps  in  time  step  and

time  step ,  respectively,  and ,  and  are  their

width, height and the number of channels respective-

ly.  Given a  maximum displacement ,  for  each loca-

tion  in the first feature map , the  func-

tion  will  compute  the  correlations  between  the  fea-

ture  of  and  every  point  in  the  region

 in the second feature map

. The “correlation” between point  in the first

feature map and point  in the second feature map

is  defined  as  the  dot  product  of  feature  vectors  in

point  and point : 

corr(px1,y1
, qx2,y2

) = mt−1[x1][y1] ·mt[x2][y2].

w2 × h2 × d2

d ≈ w/3

64× 64 d = 21

32× 32

d = 11

Computing correlations among all patch combina-

tions  involves  computations,  which  is

time  consuming.  For  computational  reasons  we  limit

the  maximum  displacement .  Specifically,  if

the size of the feature map is ,  we set ,

and  if  the  size  of  the  feature  map  is ,  we  set

. Besides, we introduce striding in both feature

maps, and in our experiment we set the stride to 2.

corr

(2d+ 1)2

w × h× (2d+ 1)2

The result produced by the  function is three-

dimensional:  for  every  combination  of  two  2D  posi-

tions  we  obtain  a  correlation  value,  and  there  are

 combinations,  and  thus  we  obtain  a  final

output of size .

corrThe output of the  function will be fed into a

ConvLSTM  (see Subsection 3.2)  layer  to  encode  the

correlations.  The  advantage  of  such  a  structure  is

that  we  could  learn  the  variation  of  the  optical  flow

by learning the parameters of the ConvLSTM.

After  that,  we  take  a  one-hidden-layer  convolu-

tional neural network to extract the optical flow. Tra-

jGRU[8] claims  that  motion  patterns  have  different

neighborhood  sets  for  different  locations  and  there-

fore  the “optical  flow” should  not  be  just  one  but  a

set.  In  our  experiments,  we  test  both  single  optical

flow and multiple optical flows. But the results show

that  the  single  optical  flow approach achieves  a  bet-

ter performance.

mt−2 mt−1

t− 2 t− 1

t ut,l,vt,l

As  described  in Fig.4(a),  the  flow  encoder  takes

the  position  encoders  and  at  time  step

 and  time  step  as  input,  respectively,  and

produces  the  hidden  representations  of  the  optical

flow  at  time  step ,  which  are  denoted  by .

Fig.5(a)  visualizes  the “flow” information  that  the

flow  encoder  outputs.  We  can  see  that  the  network

has learned reasonable optical flow field motion infor-

mation. 

4.3    Deformation Encoder

The evolution of the radar echo map sequence is a

complex process. The shapes of radar echo maps may

expand,  contract,  or  change  rapidly  due  to  the  com-

plex  atmospheric  environment,  which  is  quite  differ-

ent  from  that  of  other  video  sequences  like  moving

digits[7] and KTH actions[9]. Therefore, it is necessary

to distinguish the changes of shapes from the transla-

tional motions of radar echoes, and this idea inspires

the design of the deformation encoder.

warp

But what could be considered as the hidden repre-

sentation of the deformation? In our study, the trans-

formation of two adjacent radar echo maps is divided

into  two  aspects:  the  optical  flow  fields  movement

and  the  shape  deformation.  Therefore  the  shape  fea-

ture  of  the  former  image  is  conducted  by  a “ ”
function which is the same with that in [8] to let the

precipitation  field  move  along  the  estimated  optical

flow that the flow encoder outputs, and then the de-

formation is  computed by the difference between the

result and the shape feature of the latter image.

st−1

t− 1 ut,l,vt,l l

warp(st−1,ut,l,vt,l)

ut,l,vt,l st−1

M =

warp(I,U ,V ) M, I ∈ Rc×h×w U ,V ∈ Rh×w

Let  be the shape feature of the image at time

step , and  be  optical flows that the flow

encoder  outputs.  selects  the  posi-

tions  pointed  out  by  from  via  the  bilin-

ear  sampling  kernel[12, 27].  If  we  denote 

 where  and  ,

we have: 

Mc,i,j =
h∑

m=1

w∑
n=1

Ic,m,n ×max(0, 1− |i+ Vi,j −m|)×

max(0, 1− |i+ Ui,j − n|).

Mc,i,j M Ui,j Vi,j

U ,V M, I
warp

Ic, m, n I

Here,  is an element of , and ,  are

elements of optical flows , respectively.  are

output and input feature maps of `` " function, re-

spectively, and  is an element of .

warp st−1

wt wt

We denote the output of the  function on 

as .  Intuitively,  can  be  viewed  as  the  inferred
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t

st−1

ut,l,vt,l wt

t diff

diff

dt+1

diff

shape  feature  at  time  step ,  which  is  generated  by

transforming  using  the  predicted  optical  flow

. We deliver  and shape features of the im-

age at time step  to a “ ” function, which is de-

fined  as  element-wise  subtraction.  The  output  of  the

 function will  be fed into a stack of  the ConvL-

STM  layers  to  encode  the  deformation,  denoted  as

, as described in Fig.4(b). We use the hidden fea-

tures out from the ConvLSTM layers rather than the

 function as the encoder of the deformation, aim-

ing  to  learn  the  evolution  of  the  deformation  over

time.

The  output  feature  maps  of  the  deformation  en-

coder  are  visualized  in Fig.5(b).  It  can  be  observed

that  the  deformation  encoder  captures  radar  echo

changes at different hierarchies. For example, the fea-

ture maps in orange boxes pay more attention to the

darkest  pixels,  while  the  feature  maps  in  red  boxes

are  sensitive  to  the  pixel  changes  in  multiple  scat-

tered areas. 

 

(a)
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Fig.4.   Detail  of  FDNet.  (a)  Position  encoder  and  flow  encoder.  Blue  arrows  carry  optical  flow  field  motion  information.
(b) Shape encoder, deformation encoder, and combination & decoder. Brown arrows carry morphologic deformation information. The
input can be either the ground truth frame for the input sequence, or the generated frame at the previous time step. One frame is
generated at each time step as the output.
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4.4    Combination & Decoder

wt dt

x̂t+1 ∈ Rw×h×c

ct = gcomb([dt,wt])

[dt,wt] ∈ Rw′×h′×2c′

dt wt ct ∈ Rw′×h′×c′

gcomb

The outputs from the above deformation encoder,

 and , encode high-level representation of the in-

ferred  image  after  optical  flow  field  movement  and

shape deformation, respectively. Given the representa-

tion, the goal of the decoder is to generate a pixel-lev-

el prediction of the next frame . For this

purpose,  it  first  combines  these  two  representations

into  a  unified  representation  by  ,

where  denotes the concatenation of

 and  in  the  depth dimension,  and 

denotes the combined high-level representation of op-

tical  fields  motion.  is  implemented  by  a  CNN

layer.

ct

ct x̂t+1 = gdec(ct)

Then  is  delivered to the decoder,  which places

 back into the original pixel space by  .

gdec

We employ  the  deconvolution  network[28] for  our

decoder  network ,  which  is  composed  of  multiple

successive  operations  of  deconvolution,  rectification,

and convolution. 

5    Experiments
 

5.1    Dataset Description

We verify our model on two real-world radar echo

datasets,  HKO-7[8] and  SRAD2020①,  collected  by

Hong  Kong  Observatory  and  Shenzhen  Meteorologi-

cal Bureau, respectively. Each dataset contains radar

CAPPI reflectivity images recorded every six minutes,

as detailed below. 

5.1.1    HKO-7

pixel = ⌊255× (R + 10)/70 + 0.5⌋

The HKO-7 dataset contains radar echo data from

2009  to  2015  collected  by  Hong  Kong  Observatory.

The radar CAPPI reflectivity images, which have res-

olution  of  480  × 480  pixels,  are  taken  from  an  alti-

tude of 2 km and cover an area of 512 km × 512 km

centered in Hong Kong. The raw logarithmic radar re-

flectivity factors are linearly transformed to pixel val-

ues  via  where R is

 

           

(a)

           

(b)

Fig.5.  Visualization of the output from the flow encoder and the deformation encoder. (a) Visualization of the optical flow field mo-
tion that the network has learned. From left to right, we select the radar echo images at t = 1, 4, 7, and 10 respectively. It can be
seen that the optical flow field information learned by the model is basically consistent with the actual motion of the radar echoes.
(b) Visualization of output feature maps of the deformation encoder. We select the corresponding feature maps with the same time
step as that in (a).
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the radar CAPPI reflectivity factor and are clipped to

be between 0 and 255. The dataset contains 800 days

for  training,  50  days  for  validation  and 120  days  for

test.  We use  the  previous  five  time  steps  radar  echo

maps to predict 20 time steps into the future, cover-

ing  the  next  two hours.  The  distribution  of  different

rainfall intensities of the data is shown in Table 1.
 
 

Table  1.    Rain Rate Statistics of the HKO-7 Dataset

Rain Rate (mm/h) Proportion (%) Rainfall Level

0 ⩽ x < 0.5 89.94 No/hardly noticeable

0.5 ⩽ x < 2 4.32 Light

2 ⩽ x < 5 2.51 Light to moderate

5 ⩽ x < 10 1.63 Moderate

10 ⩽ x < 30 1.17 Moderate to heavy

x ⩾ 30 0.43 Rainstorm warning

Note: x means the rain rate.
 

5.1.2    SRAD2020

The SRAD2020 dataset  contains  radar  echo data

collected  by  Shenzhen  Meteorological  Bureau  in  re-

cent  years.  The  radar  CAPPI  reflectivity  images

which have the resolution of 256 × 256 pixels are tak-

en from an altitude of 2.5 km and covering an area of

255 km × 255 km. There are 20 000 radar echo data

cases in the SRAD2020 dataset, each of which covers

four hours and is a 41-length radar echo sequence. We

filter the noisy data cases which have abrupt all-zero

radar echo data in a sequence.  The final  dataset has

15 939 data  cases  for  training, 1 002 data  cases  for

validation  and 2 541 data  cases  for  test.  We  predict

20  time  steps  into  the  future,  covering  the  next  two

hours by observing 21 time steps. The statistical dis-

tribution of radar reflectivity values in the dataset is

shown in Table 2. 

5.2    Experimental Setting
 

5.2.1    Evaluated Algorithms

We  compare  our  method  with  five  competitive

precipitation  nowcasting  models  (including  ConvL-

STM[7], TrajGRU[8], PredRNN[9], MIM[11] and ConvT-

TLSTM[23]).  We  use  one  layer  ConvLSTM  with  128

hidden  states  for  the  flow encoder  and two layers  of

ConvLSTM with  128  hidden  states  for  the  deforma-

tion  encoder  in  FDNet.  For  the  ConvLSTM  model

and the TrajGRU model,  we use  a  3-layer  encoding-

forecasting  structure  with  the  number  of  hidden

states for the RNNs set to 64, 192, 192 as in [8]. We

3× 3

also use a stack of three layers of ST-LSTM with 128

hidden  states  for  the  PredRNN model  and  the  MIM

model.  For  the  Conv-TT-LSTM  model,  we  use  a

stack of eight layers of Conv-TT-LSTM with 64 hid-

den states for the first layer and 128 hidden states for

the  other  layers.  The  order  of  CTTD[23] is  set  to  3,

the  rank  of  CTTD  is  set  to  8  and  the  time  step  of

CTTD is set to 3 for the Conv-TT-LSTM model. The

convolution  filters  inside  ConvLSTMs,  ST-LSTMs

and  Conv-TT-LSTMs  are  all  set  to .  Since  the

ConvLSTM  model  and  the  TrajGRU  model  reduce

the size of feature maps at higher layers, for fair com-

parison, we use dilated convolution at higher layers to

get  a  larger  receptive  field  for  FDNet,  PredRNN,

MIM and Conv-TT-LSTM.

Considering the memory and computation factors,

we  conduct  downsampling  on  the  original  images  to

reduce  the  resolution,  and  after  prediction  upsam-

pling  is  used  to  restore  the  resolution.  The  2D-CNN

encoders and the 2D-CNN decoders are similar in FD-

Net,  PredRNN,  MIM  and  Conv-TT-LSTM. Table 3

shows the details of the encoder and the decoder. 

5.2.2    Loss Function

D = {x(n)
1,...,t,...,T}N

n=1 x(n)
t ∈ Rw×h

x(n)
1 , ...,x(n)

t x(n)
t+1, ...,x

(n)
T

We use  an objective  function  composed of  multi-

ple weighted losses for all models. Given the training

data  where ,  we  use

 to  predict .  Our  model  is

trained to minimize the prediction loss by 

L =
N∑

n=1

Limg(x
(n), x̂(n))

= λpixelLpixel(x
(n), x̂(n)) + λgdlLgdl(x

(n), x̂(n)).

x x̂

λpixel λgdl

Lpixel

Here,  and  are  the  target  and  predicted

frames,  respectively.  and  are  hyperparame-

ters that control the effect of each sub-loss during op-

timization.  is  designed  to  guide  the  model  to

 

Table   2.      Radar  Reflectivity  Statistics  of  the  SRAD2020
Dataset

Radar Reflectivity
Factor

Proportion (%) Rainfall Level

0 ⩽ x < 20 77.53 No to light

20 ⩽ x < 30 11.35 Light to moderate

30 ⩽ x < 40 8.55 Moderate to heavy

40 ⩽ x < 50 2.37 Heavy to rainstorm

50 ⩽ x ⩽ 80 0.20 Large rainstorm to
extraordinary
rainstorm

Note: x means the radar reflectivity factor.
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Lgdl

λpixel = 1 λgdl = 1

match the  average  pixel  values  directly,  while  is

expected to guide the model to match the gradients of

such pixel values, to alleviate the image blurring ten-

dency of predicted frames. In our experiments, we set

 and , which means that these two as-

pects have the same effect.

Lpixel

As  shown  in Fig.1 and Fig.2,  the  frequencies  of

different  rainfall  levels  are  highly  imbalanced.  It  is

known  that  heavier  rainfalls  always  have  much

greater  social  impacts.  Since it  has been proved that

training  with  the  balanced  loss  function  is  essential

for good nowcasting performance of heavier rainfall[8],

we use the weighted loss function in the sub-loss .

Therefore we get 

Lpixel(y, z) =
∑
p

T∑
k=1

w, h∑
i, j

wk,i,j||yk,i,j − zk,i,j||pp,

y, z ∈ RT×w×h T

yk,i,j (i, j) k

y zk,i,j (i, j)

k z wk,i,j

(i, j) k

where  are  two -length  frame  se-

quences,  is  the -th  pixel  value  in  the -th

frame in , and  is the -th pixel value in the

-th frame in .  is the weight corresponding to

the -th  pixel  in  the -th  frame,  which is  related

to its rainfall intensity or radar reflectivity value.

p = 1, 2In  our  experiments,  we  set  respectively,

and thus we get 

Lpixel(y, z) =
T∑

k=1

w, h∑
i, j

wk,i,j(|yk,i,j − zk,i,j|+

|yk,i,j − zk,i,j|2).

r

x

x

As  for  the  HKO-7  dataset,  if  we  define  as  the

corresponding rainfall intensity of pixel , we set the

weight of pixel  as: 

w(r) =


1, if r < 2,
2, if 2 ⩽ r < 5,
5, if 5 ⩽ r < 10,
10, if 10 ⩽ r < 30,
30, if r ⩾ 30.

(1)

x

As for  the  SRAD2020 dataset,  we set  the  weight

of pixel  as: 

w(x) =


1, if 0 ⩽ x < 20,
2, if 20 ⩽ x < 30,
5, if 30 ⩽ x < 40,
10, if 40 ⩽ x < 50,
30, if 50 ⩽ x ⩽ 80.

(2)

L1 L2

Lgdl(y, z)

However, both  loss and  loss produce blurry

predicted  frames  and  the  generated  images  are  get-

ting  much  blurrier  in  longer  future  predictions.  To

sharpen the image prediction, we take a gradient dif-

ference  loss  (GDL)[15] as  a  mitigation  strategy.  The

GDL loss  is defined as: 

Lgdl(y,z)=
T∑

k=1

w, h∑
i, j

(|(|yk,i,j−yk,i−1,j|−|zk,i,j −zk,i−1,j|)|λ+

|(|yk,i,j − yk,i,j−1| − |zk,i,j − zk,i,j−1|)|λ),

λ ⩾ 1 λ

λ = 1

where  and  is  an  integer.  Considering  the

training time, we only set , which means that we

only take the differencing between adjacent pixels.

We  also  conduct  experiments  without  GDL  loss

on the SRAD2020 dataset, and the results show that

the  GDL  loss  improves  the  CSI  score  and  the  HSS

score by 0.007 for all models on average. 

5.2.3    Optimizer and Learning Rate

We train all  compared models using Pytorch and

 

Table  3.    Details of the Encoder and the Decoder

Module Layer Kernel Stride Padding Output-Padding Channel I/O Type

Encoder econv1 3× 3 2× 2 1× 1 - 1/8 2D-Conv, GroupNorm, LeakyReLU

econv2 3× 3 1× 1 1× 1 - 8/16 2D-Conv, GroupNorm, LeakyReLU

econv3 3× 3 2× 2 1× 1 - 16/32 2D-Conv, GroupNorm, LeakyReLU

econv4 3× 3 1× 1 1× 1 - 32/32 2D-Conv, GroupNorm, LeakyReLU

econv5 3× 3 2× 2 1× 1 - 32/64 2D-Conv, GroupNorm, LeakyReLU

econv6 3× 3 1× 1 1× 1 - 64/64 2D-Conv, GroupNorm, LeakyReLU

Decoder dconv1 3× 3 1× 1 1× 1 1 128/64 Transposed 2D-Conv, GroupNorm②, LeakyReLU[29]

dconv2 3× 3 2× 2 1× 1 2 64/32 Transposed 2D-Conv, GroupNorm, LeakyReLU

dconv3 3× 3 1× 1 1× 1 1 32/32 Transposed 2D-Conv, GroupNorm, LeakyReLU

dconv4 3× 3 2× 2 1× 1 2 32/16 Transposed 2D-Conv, GroupNorm, LeakyReLU

dconv5 3× 3 1× 1 1× 1 1 16/8 Transposed 2D-Conv, GroupNorm, LeakyReLU

dconv6 3× 3 2× 2 1× 1 1 8/1 Transposed 2D-Conv

Note: “-” means  no  padding, “2D-Conv” means  2D-Convolution, “Transposed  2D-Conv” means  Transposed  2D-Convolution  and
“GroupNorm” means Group Normalization.
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optimize them to converge using ADAM[30]. For Con-

vLSTM,  TrajGRU,  PredRNN  and  MIM,  we  set  the

initial  learning  rate  to  0.001,  and  for  FDNet,  we  set

the  initial  learning  rate  to  0.000  1.  We  use  gradient

clipping with clipping value of 50 for these models. As

Su et  al.[23] reported,  we  find  that  the  Conv-TT-

LSTM model is unstable at a high learning rate such

as 0.001, but learns poorly at a low learning rate such

as  0.000  1.  Therefore  we  use  gradient  clipping  with

the learning rate of 0.001 and the clipping value of 1

as in [23].

We apply the scheduled sampling strategy[31] to all

of  the  models,  to  gently  change  the  training  process

from  a  fully  guided  scheme  using  the  true  previous

data, towards a less guided scheme which mostly us-

es the generated data instead. 

5.2.4    Parameter Initialization

All  convolutional  kernels  are  initialized  by

Xavier's  normalized  initializer[32],  and  the  initial  hid-

den/cell  states  in  ConvLSTM,  ST-LSTM and  Conv-

TT-LSTM are initialized as zeros. 

5.3    Experimental Results

To  evaluate  the  performance  of  our  model,  we

measure the balanced mean square error (BMSE) and

balanced mean average error (BMAE)[8]. BMSE is de-

fined as: 

BMSE =
1

N

N∑
k=1

w, h∑
i, j

w(xk,i,j)(xk,i,j − x̂k,i,j)
2,

and BMAE is defined as: 

BMAE =
1

N

N∑
k=1

w, h∑
i, j

w(xk,i,j)|xk,i,j − x̂k,i,j|,

N w(·)where  is the total number of frames and  is the

weight defined in (1) and (2).

CSI =

TP/(TP + FN + FP )

We also calculate the critical  success index (CSI)

and  Heidke  skill  score  (HSS)  for  multiple  thresholds

that correspond to different rainfall levels. We choose

to use the thresholds of 20 dBZ, 30 dBZ, 40 dBZ and

50 dBZ respectively. The CSI score is defined as 

 and the HSS score is defined as
 

HSS = (TP × TN − FN × FP )/((TP + FN)×
(FN + TN) + (TP + FP )(FP + TN)),

TP FP

TN FN

where  means true positive,  means false posi-

tive,  means  true  negative  and  means  false

negative. A higher CSI score or a higher HSS score in-

dicates a better prediction result.

Table 4 shows  the  comparisons  of  different  ap-

proaches for the BMSE score of the average of all 20

time steps (up to two hours), 30 minutes, 60 minutes,

90  minutes,  and  two  hours  ahead  precipitation  on

both  datasets.  We  can  observe  that  FDNet  outper-

forms the compared models on the average BMSE of

20-time-step  predictions.  Besides,  though  FDNet  is

not the best one for short-term prediction (30 minutes),

it shows a stable superiority for long-term predictions.

Table 5 shows the comparisons of different meth-

ods  under  CSI,  HSS,  BMSE  and  BMAE  on  the

SRAD2020  dataset.  It  is  worth  noting  that  the  CSI

and HSS scores for thresholds of 40 dBZ and 50 dBZ

reflect  whether  the  models'  predictions  of  heavy pre-

cipitation are accurate, and therefore it is often more

concerned  by  meteorological  experts.  FDNet  per-

forms the  best  under  the  CSI  and HSS score  for  the

thresholds  of  30  dBZ,  40  dBZ and  50  dBZ.  We also

give a frame-wise comparison of the HSS score under

thresholds  of  30  dBZ,  40  dBZ  and  50  dBZ  in Fig.6.

HSS-40  and  HSS-50  indicate  the  probabilities  of  se-

vere weather conditions. FDNet performs better than

baseline  methods  in  most  cases  (except  for  MIM un-

der HSS-50 at time steps 4–9).
 

 

Table  4.    Performance Comparisons of Different Approaches for Precipitation Nowcasting

Model HKO-7 SRAD2020

AVG 30 min 60 min 90 min 120 min AVG 30 min 60 min 90 min 120 min

ConvLSTM[7] 5 806.72 3 714.66 5 861.75 7 609.86 9 120.39 1 753.22 1 174.59 1 801.63 2 284.70 2 669.52

TrajGRU[8] 5 818.12 3 717.82 5 872.09 7 619.20 9 170.61 1 721.95 1 197.60 1 767.28 2 273.62 2 546.11

PredRNN[9] 5 785.60 3 698.48 5 865.60 7 597.90 9 048.29 1 730.27 1 195.47 1 777.83 2 219.29 2 623.05

MIM[11] 5 784.17 3 701.48 5 854.50 7 571.12 9 045.05 1 835.40 1 292.99 1 885.64 2 336.53 2 713.84

Conv-TT-LSTM[23] 6 104.29 4 012.97 6 096.10 7 852.03 9 373.00 1 970.42 1 312.84 2 013.77 2 549.43 2 993.48

FDNet 5 781.21 3 716.69 5 842.25 7 564.48 9 043.71 1 671.10 1 174.67 1 722.38 2 126.85 2 504.76

Note:  We take BMSE as the metrics  for  all  these settings.  AVG means the average BMSE of  20 time steps predictions.  A lower
value means a better prediction performance. We mark the best result within a specific setting in bold.
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5.4    Ablation Studies

We  perform  four  ablation  studies  to  analyze  the

respective contribution of each module in our model.

1) Necessity  of  the  Shape  Encoder  and  the  Posi-
tion Encoder. In order to verify the necessity of sepa-

rately extracting shape features and position features

of input frames, we conduct an ablation experiment in

which only one encoder is used to extract features of

input frames. The results of group 1 in Table 6 show

that  without  separating  the  encoder  the  model  per-

forms very poorly.

2) Sensitivity of Our Model to the Number of Con-
vLSTM  Layers  in  the  Flow  Encoder. We  evaluate

models  with  0/1/2  ConvLSTM  layer(s)  in  the  flow

encoder in group 2 as shown in Table 6. It shows that

 

Table  5.    Performance Comparisons of Different Approaches under CSI, HSS, BMSE, and BMAE on the SRAD2020 Dataset

Model ↑CSI ↑HSS ↓BMSE ↓BMAE

20 ⩽ x < 30 30 ⩽ x < 40 40 ⩽ x < 50 x ⩾ 50 20 ⩽ x < 30 30 ⩽ x < 40 40 ⩽ x < 50 x ⩾ 50

ConvLSTM[7] 0.604 8 0.456 1 0.218 6 0.011 8 0.666 5 0.556 3 0.333 3 0.021 7 1 753 8 659

TrajGRU[8] 0.578 2 0.439 3 0.207 8 0.025 7 0.646 1 0.552 6 0.321 2 0.047 3 1 721 8 540

PredRNN[9] 0.595 5 0.450 7 0.217 2 0.034 2 0.652 5 0.554 2 0.329 2 0.061 4 1 730 8 769

MIM[11] 0.584 3 0.451 2 0.221 6 0.046 4 0.635 9 0.554 5 0.334 7 0.083 9 1 835 9 151

Conv-TT-LSTM[23] 0.576 2 0.428 2 0.203 2 0.010 7 0.638 4 0.543 4 0.271 3 0.020 0 1 920 9 016

FDNet 0.597 7 0.457 7 0.226 0 0.050 9 0.660 3 0.566 5 0.341 5 0.091 0 1 671 8 698

↑ ↓
x ⩾ τ

Note: Each cell contains the mean score of the 20 predicted frames. `` '' means that the higher the score, the better. `` '' means that
the lower the score, the better. `` '' means the skill score at the τ dBZ. We mark the best result within a specific setting in bold.
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the proposed model with one ConvLSTM layer in the

flow encoder performs the best.

3) Effect  of  the  Number of  ConvLSTM Layers  in
the  Deformation  Encoder. We  also  test  the  effect  of

the  number  of  ConvLSTM layers  in  the  deformation

encoder.  We  evaluate  models  with  0/1/2/3  ConvL-

STM layer(s) in group 3 as shown in Table 6. The re-

sult  shows  that  two  ConvLSTM  layers  get  the  best

score.  It  is  a  trade-off:  applying  too  few  layers  leads

to  inadequate  deformation  modeling  capability  while

the excessively deep recurrent model leads to training

difficulty.

wt

dt+1 st

4) Contribution of Flow Modeling Branch and De-
formation  Modeling  Branch. To  see  how  the  flow

modeling  branch  and  the  deformation  modeling

branch contribute to the final result, we conduct a se-

ries  of  experiments,  by  1)  removing  the  deformation

modeling  branch  from  the  proposed  model  (omitting

the orange branch in Fig.4(b)), 2) only delivering the

output from the flow modeling branch (  inFig.4(b))

to  the  decoder,  and  3)  feeding  the  concatenation  of

the  output  from  the  deformation  modeling  branch

and the shape encoder to the decoder (concatenation

of  and  in Fig.4(b)).  The  difference  between

settings 1 and 2 is that the latter still retains the de-

formation modeling information to iterate the predic-

tion  of  the  next  step.  The  corresponding  results  are

shown in group 4 of Table 6. The poor performance of

the  setting  without  the  deformation  encoder  indicat-

esthat  the  deformation  modeling  branch  is  very  im-

portant  to  the  proposed  model.  The  behavior  of  the

restruction  from the  flow  branch  is  the  most  similar

to the proposed model, but there still remains a little

gap in large rainstorm conditions (> 50 dBZ). The ad-

vantage is that the deformation branch tends to fore-

cast  heavier  rainfall.  Therefore  the  concatenation  of

these  two  complementary  branches  is  necessary  and

achieves better results. 

5.5    Results Visualization

wt

dt+1 st

We visualize four typical sequences of the predict-

ed  radar  echo   map  in Figs.7–10,  respectively.  The

first line shows the original radar echo map sequence.

We  compare  the  predicted  results  of  our  model

and five  baseline  methods.  In  order  to  see  how  our

two proposed pathways work, we also give the visual-

izations  of  partial  predictions  labelled  with “flow

branch restruction” and “deformation branch restruc-

tion”. This is done by delivering the output from the

flow encoder (  in Fig.4(b)) to the decoder and the

concatenation of the output from the deformation en-

coder and the shape encoder to the decoder (concate-

nation  of  and  in Fig.4(b)),  respectively.  All

compared  models  take  21  historical  radar  echo  im-

ages as inputs, and predict the next 20 images (radar

echo maps for the next two hours).

warp

It can be seen that the flow encoder mainly focus-

es on the movement of radar echoes as a whole,  and

can remember the general outline and scope. It helps

the  model  avoid  extreme  expansions  of  radar  echoes

in  prediction  which  appear  in  all  baseline  methods

(see Fig.7 and Fig.8). The deformation encoder is very

sensitive  to  pixel  changes,  especially  the  information

lost  during  the ‘‘ ’’ procedure.  Therefore  it  helps

the  proposed  model  remember  the  heavy  rainfall  in-

formation for a long time (see Fig.8 and Fig.9), while

the other models all lose this information step by step

when  modeling  motion  and  transformation  together.

The  deformation  branch  also  equips  the  model  with

the  capability  of  predicting  new  coming  rainfall  (see

Fig.10).  Overall,  benefiting  from  these  two  separate

encoding  pathways,  FDNet's  results  are  not  only

sharp  enough  but  also  more  deterministic  in  future

predictions. 

6    Conclusions

In this paper, we proposed a flow-deformation net-

work FDNet for precipitation nowcasting. FDNet em-

ploys two parallel cross encoding pathways and learns

 

Table  6.    Experimental Results Under Ablated Settings

GroupSeparating
Encoder

  no.f   no.d  out.f  out.dBMSEHSS-
30

HSS-
40

HSS-
50

1 ✘ 1 1 ✔ ✔ 2 323 0.49 0.11 0.009

✔ 1 1 ✔ ✔ 1 864 0.55 0.33 0.070

2 ✔ 0 1 ✔ ✔ 1 898 0.55 0.33 0.070

✔ 1 1 ✔ ✔ 1 864 0.55 0.33 0.070

✔ 2 1 ✔ ✔ 1 863 0.55 0.33 0.060

3 ✔ 1 0 ✔ ✔ 2 245 0.47 0.17 0.050

✔ 1 1 ✔ ✔ 1 864 0.55 0.33 0.070

✔ 1 2 ✔ ✔ 1 671 0.56 0.34 0.090

✔ 1 3 ✔ ✔ 1 934 0.54 0.33 0.070

4 ✔ 1 ✘ ✔ ✘ 2 587 0.45 0.15 0.010

✔ 1 2 ✔ ✘ 1 690 0.55 0.33 0.060

✔ 1 2 ✘ ✔ 1 903 0.53 0.30 0.150

✔ 1 2 ✔ ✔ 1 671 0.56 0.34 0.090

Note: We use BMSE, HSS-30, HSS-40 and HSS-50 to measure
the prediction quality. We conduct four groups of comparisons.
In this table, “no.f” means the number of ConvLSTM layers in
the  flow  encoder; “no.d” means  the  number  of  ConvLSTM
layers  in  the  deformation  encoder,  and “✘” in “no.d” means
that  we  reduce  the  deformation  modeling  branch; “out.f”
denotes  if  the  output  from  the  flow  modeling  branch  is
delivered  to  the  decoder,  and “out.d” denotes  if  the  output
from  the  deformation  modeling  branch  is  delivered  to  the
decoder.
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to  decompose  optical  flow  field  motion  and  morpho-

logic deformation of radar echoes. The model consists

of a flow encoder to capture tendencies of the overall

displacement  of  radar  echoes,  and  a  deformation  en-

coder  to  perceive  the  variations  of  the  deformation.

Experimental  results  suggested  that  separate  model-
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Fig.7.  Showcase 1: an example of overall movement of radar echoes. The pixels tend to move from left to right as a whole. Though
all these models try to predict the sequence under this movement, the baseline models above the line all suffer from a distinct blur
effect with a long tail, especially the frames in MIM. (a) Input sequence. (b) Ground truth. (c) ConvLSTM. (d) TrajGRU. (e) Pre-
dRNN. (f) MIM. (g) Conv-TT-LSTM. (h) FDNet. (i) Flow branch restruction. (j) Deformation branch restruction.
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ing offlow and deformation reduces the uncertainty of

the  forecast  and  slows  down  the  tendency  of  image

blurring.  Our  model  performed  favorably  compared

with  the  state-of-the-art  methods  on  precipitation
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Fig.8.  Showcase 2: a challenging example with accumulation and dissipation of radar echoes happening in different regions at the
same  time.  (a)  Input  sequence.  (b)  Ground  truth.  (c)  ConvLSTM.  (d)  TrajGRU.  (e)  PredRNN.  (f)  MIM.  (g)  Conv-TT-LSTM.
(h) FDNet. (i) Flow branch restruction. (j) Deformation branch restruction. The pixels tend to move up and right as a whole, but
zoom into the detail and the echoes at the left bottom (in the blue boxes of (b)) dissipate, while the rainfall range in the middle is
expanding. All baseline models above the line, i.e., (c)–(g), fail to perceive the dissipation at the left bottom and lose the heavy rain-
fall information in the middle area (in the grey boxes in (b)). Only FDNet captures all these fine-grained evolutions and predicts rel-
atively correct frames, especially for longer future time steps.
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nowcasting, especially for relatively longer future pre-

dictions. For future work, we plan to train an intelli-

gent model to distinguish different evolution patterns

among radar echo sequences, and treat them with the

most suitable model individually.
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Fig.9.   Showcase  3:  the  intensities  of  radar  echoes  remain  the  same  on  the  whole,  with  a  slight  increase.  (a)  Input  sequence.
(b) Ground truth. (c) ConvLSTM. (d) TrajGRU. (e) PredRNN. (f) MIM. (g) Conv-TT-LSTM. (h) FDNet. (i) Flow branch restruc-
tion. (j) Deformation branch restruction. All baseline methods above the line, i.e., (c)–(g), predict that the rainfall in the middle area
(in the white boxes in (b)) would get abating. Only FDNet successfully predicts the long-lasting heavy rain.
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