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Abstract    Image deraining is a highly ill-posed problem. Although significant progress has been made due to the use of

deep convolutional neural networks, this problem still remains challenging, especially for the details restoration and gener-

alization to real rain images. In this paper, we propose a deep residual channel attention network (DeRCAN) for deraining.

The channel attention mechanism is able to capture the inherent properties of the feature space and thus facilitates more

accurate estimations of structures and details for image deraining. In addition, we further propose an unsupervised learn-

ing approach to better solve real rain images based on the proposed network. Extensive qualitative and quantitative evalu-

ation results on both synthetic and real-world images demonstrate that the proposed DeRCAN performs favorably against

state-of-the-art methods.

Keywords    deraining, deep convolutional neural network (DCNN), channel attention, detail restoration, unsupervised

finetuning

 

 1    Introduction

Images  taken  in  a  rain  environment  are  usually

degraded by rain. Such images usually affect the high-

level  vision  tasks,  e.g.,  object  detection[1],  image

recognition[2], and semantic segmentation[3, 4]. Thus, it

is a great of interest to remove rain from the rain im-

ages. The goal of image deraining is to recover a clear

image from a rain image. It is a highly ill-posed prob-

lem  as  the  degradation  process  is  complex  and  only

the rain image is known. To solve this problem, many

kinds  of  image  priors  have  been  proposed,  such  as

sparse prior[5–9],  layer prior[10],  and Gaussian Mixture

Model  (GMM)  prior[11],  to  make  the  problem  well-

posed.  These  methods  are  effective  for  images  with

little rain. However, they usually involve complex de-

signs  of  image  priors  and are  less  effective  when im-

ages contain heavy rain.

To avoid developing hand-crafted priors  and bet-

ter  capture  the  inherent  properties  of  clear  images,

numerous  deep  learning  based  methods  have  been

proposed[12–16]. These deep learning based methods us-

ually  perform  better  than  conventional  hand-crafted

prior based methods by large margins. However, most

of  them  have  poor  estimations  of  structural  details.

To  overcome  this  problem,  several  methods[14, 15, 17]

introduce  an  image  decomposition  model  into  deep

convolutional  neural  networks  (DCNNs)  to  estimate

structural  details  and  remove  rain  streaks.  However,

it  is  impractical  to  decompose  the  background  and

rain layers accurately. Generally, the decomposed rain

layer  either  contains  some background details  or  un-

derestimates the rain.

To further improve the performance of image de-

raining,  some  methods  focus  on  feature  representa-

tion.  Yang et  al.[18] proposed  an  effective  method  to

combine rain detection and rain removal in a unified

DCNN.  Fu et  al.[19] proposed  a  deep  detail  network,

which introduces negative residual mapping to obtain

high-frequency  detail  features.  Li et  al.[16] and  Fu et
al.[20] proposed  a  non-locally  enhanced  encoder-de-

coder  network  and  a  Gaussian-Laplacian  pyramid
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model respectively to model multi-scale feature repre-

sentation. Chen et al.[21] proposed a gated context ag-

gregation  model,  which  uses  dilated  convolutions  to

expand  the  feature  receptive  field.  Fu et  al.[22] pro-

posed a deep tree structured fusion network to aggre-

gate  features  to  reconstruct  rain-free  images.  Ren et
al.[23] and  Li et  al.[24] proposed  recursive  neural  net-

works to refine learned features, and then remove rain

streaks  completely.  As  demonstrated  in  [25],  these

methods may struggle to handle kinds of rain streaks.

Subsequently, Zhang and Patel[25] developed an effec-

tive  density-aware  image  deraining  method  and

achieved  decent  results.  However,  it  does  not  distin-

guish image structures and details,  which has a poor

effect  on  detail  estimation.  These  existing  image  de-

raining methods have a poor effect on detail  restora-

tion.

To  restore  a  clear  image  with  fine  details,  moti-

vated by that the attention mechanism can model the

most important structures and details of an image, we

develop  an  effective  method  based  on  a  deep  neural

network with a residual channel attention mechanism,

namely  DeRCAN.  The  attention  mechanism  is  ap-

plied to the feature space of images. By doing so, the

proposed  method  is  able  to  facilitate  more  accurate

estimations of structures and details in the image de-

raining.  In  addition,  to  generate  realistic  images,  we

develop  a  perceptual  constraint  in  the  feature  space.

Although significant improvement has been made, the

above methods  tend to  overfit  the  training data  and

fail  to  generalize  well  in  real-world  applications.  To

better solve real-world rain images, we develop an un-

supervised  finetuning  method  based  on  the  proposed

DeRCAN.  The  main  contributions  of  our  work  are

summarized as follows.

• We propose an effective image deraining method

based  on  a  deep  neural  network  with  the  residual

channel  attention  mechanism.  The  attention  mecha-

nism  is  applied  to  the  feature  space  to  capture  the

most important features for image deraining.

• We analyze the effectiveness of the channel at-

tention  mechanism  and  develop  a  perceptual  con-

straint  in  the  feature  space,  and  we  use  a  residual

learning  method  to  model  the  structural  details  and

generate realistic images.

• We propose an unsupervised finetuning method

based on the proposed DeRCAN and exploit an unsu-

pervised loss to better handle real-world rain images.

• We train  the  proposed DeRCAN in an end-to-

end manner and discuss the effectiveness of key com-

ponents  in  removing  rain  streaks.  Extensive  experi-

mental results show that our method performs favor-

ably against  state-of-the-art  methods on both bench-

mark datasets and real-world images.

The rest of this paper is organized as follows. Sec-

tion 2 introduces  related  work  including  the  derain-

ing methods based on image priors and DCNNs. The

supervised learning details of the proposed method on

synthetic benchmarks are presented in Section 3. Sec-

tion 4 presents the unsupervised finetuning of the pro-

posed method in real-world rain scenes.  In Section 5,

we  compare  the  proposed  method  with  11  state-of-

the-art image deraining methods and implement suffi-

cient  ablation  studies  to  verify  the  effectiveness  of

each component. Section 6 summarizes the main con-

tents of the paper.

 2    Related Work

Recent  years  have  witnessed  significant  progress

in  image  deraining  due  to  the  use  of  kinds  of  image

priors[5, 6, 11] and deep neural networks[12–16]. In this sec-

tion, we briefly review the most related work and put

this work in proper context.

 2.1    Rain Removal Based on Image Priors

Luo et al.[6] proposed a discriminative sparse cod-

ing for  single  image deraining.  Zhu et  al.[7] separated

the rain layers from rain images based on the sparse

representation, the rain streak directions, and the rain

streak  layer  priors.  Wang et  al.[8] utilized  a  quasi-

sparse  prior  to  detect  rain  streaks  and  separate  rain

layers from backgrounds. Deng et al.[9] built a mathe-

matical global sparse model for deraining. Du et al.[10]

used the low correlation between background and rain

streak  images  in  the  gradient  domain  to  separate

clean  rain-free  backgrounds  from  rain  images.  Li et
al.[11] used layer priors to restore the background lay-

er and the rain streak layer.

 2.2    Rain Removal Based on DCNNs

Motivated  by  the  success  in  high-level  vision

tasks,  deep  learning  has  been  developed  to  solve  the

image  deraining  problem.  Fu et  al.[12] proposed  a

method  called  DerainNet,  which  is  the  first  CNN-

based deraining method. Pan et al.[13] proposed a du-

al  convolution  neural  network  (DualCNN)  to  jointly

restore details and structures from rain images. Wang
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et al.[14] learned motion blur kernels to guide the syn-

thesis  of  rain  streak  masks,  and  then  used  them  to

subtract  from  input  images  to  obtain  clean  back-

grounds.  Ye et  al.[15] proposed  a  deep  symmetry  en-

hanced network (DSEN) to model rain streaks in dif-

ferent  directions  so  as  to  further  help  remove  com-

plex  rain  streaks  in  images.  Li et  al.[16] proposed  a

non-locally  enhanced  encoder-decoder  network

(NLEDN)  which  not  only  enables  to  model  rain

streaks accurately but also can preserve details. Li et
al.[17] proposed  a  deep  decomposition  composition

(DDC) network,  which first  decomposes the rain im-

age  into  a  background layer  and a  rain  streak layer,

and  then  reconstructs  them,  respectively.  The  final

generated  streak  layer  is  fused  with  the  background

layer to form a new rain image, and the rain image is

constrained  by  the  input  rain  image  to  promote  the

generation of the intermediate deraining image. Yang

et  al.[18] extracted  a  binary  mask  to  detect  the  posi-

tion and shape of rain streaks, thus restoring a clean

background image. Fu et al.[20] introduced a Gaussian-

Laplacian  pyramid  model  into  the  CNNs  and  pro-

posed a lightweight pyramid network (LPNet) for sin-

gle  image  deraining.  Chen et  al.[21] proposed  a  gated

context  aggregation  network  (GCANet),  and  Fu et
al.[22] proposed a deep tree-structured fusion network.

They  used  dilated  convolutional  neural  networks  for

single  image  deraining.  Li et  al.[24] proposed  a  recur-

sive  context  aggregation  network  called  RESCAN,

consisting  of  the  squeeze-and-excitation  blocks  to  re-

move  rain  streaks  in  a  stage-by-stage  manner.  Be-

sides, in addition to traditional CNNs, the generative

adversarial  networks  (GANs)  are  also  applied  to  the

image  deraining  tasks  (e.g.,  [26– 29]).  However,  it  is

difficult to generate high-quality images using the rel-

atively  shallow  CNNs,  while  the  deeper  neural  net-

works cannot be easily solved. Fortunately, this prob-

lem has been further improved with the advent of the

residual network (ResNet) by [30].

ResNet  allows  the  deep  neural  networks  to  be

trained easily. In some low-level vision tasks, ResNet

is able to preserve more abundant details[31]. Motivat-

ed by the success  of  ResNet,  significant  progress  has

been made in image deraining. Fu et al.[19] proposed a

deep detail network (DDN), which uses ResNet as its

parameter  layers  and  introduces  negative  residual

mapping  into  the  network  to  obtain  high-frequency

details. Ren et al.[23] considered network architecture,

input  and  output,  and  loss  functions,  and  then  pro-

posed  a  progressive  recurrent  network  (PReNet)  for

single image deraining. Zhang and Patel[25] focused on

the  rain-density  levels  and  proposed  a  density-aware

multi-stream  dense  network  (DID-MDN)  for  image

deraining.  The  residual-aware  classifier  of  DID-MDN

generates  rain-density  labels  to  guide  the  multi-

stream dense network to remove rain streaks. Fan et
al.[32] proposed  a  residual  guidance  network  (RGN),

which  uses  the  features  from  shallow  residual  blocks

to guide deeper ones to obtain more accurate details.

In  recent  years,  weakly-supervised  image  derain-

ing  methods  have  been  proposed.  Wei et  al.[33] pro-

posed  a  semi-supervised  transfer  learning  framework

to utilize simultaneously supervised and unsupervised

knowledge for image deraining. Lin et al.[34] proposed

a  weakly-supervised  deraining  method  based  on

knowledge distillation. These two methods require on-

ly unpaired rainy and clean images to generate super-

vision  for  the  restoration  of  rain-free  images.  Al-

though  significant  improvement  has  been  made,  the

aforementioned networks tend to over-fit the training

data. They are not generalized well  in the real-world

applications.

 3    Proposed Method

 3.1    Network Architecture

The flowchart of the proposed DeRCAN is shown

in Fig.1.  It  contains three basic  modules:  the feature

extraction  module,  feature  refinement  module,  and

image  reconstruction  module.  The  feature  extraction

module  is  composed  of  a  single  convolutional  layer,

which  extracts  features  from  the  input  image.  The

core  of  the  proposed  network  is  the  feature  refine-

ment  module.  The  feature  refinement  module  con-

tains a series of cascaded residual blocks, a feature fu-

sion  submodule,  and  a  long  skip  connection.  The

residual block is composed of two convolution layers,

a rectified linear unit (ReLU) layer, a skip connection,

and an element-wise operation. Using a residual block

can  enlarge  the  receptive  field  of  the  network  and

avoid  gradient  vanishing.  In  addition,  the  skip  con-

nection  in  the  residual  block  directly  transfers  fea-

tures  to  the  output,  thus  avoiding  information  loss.

To better explore useful features for image deraining,

we further  develop the  channel  attention  (CA) mod-

ule described in Subsection 3.2 and embed it into each

residual  block  called  channel  attention  residual  mod-

ule (CARM), which enables useful features to be ob-

tained.  Note  that  we  can  use  more  than  one  feature

refinement module in the proposed network (denoted

Di Wang et al.: Single Image Deraining Using Residual Channel Attention Networks 441



as FRM). In Subsection 5.3, the effect of the number

of  the  FRMs  on  performance  is  analyzed.  After  the

feature refinement module, the feature fusion module

is  developed  to  fuse  the  features  generated  by

CARMs. In addition, in order to prevent information

loss  during  the  feature  refinement  process,  we  use  a

long skip connection to transfer  the features  extract-

ed by the feature extraction module to the image re-

construction module for better image restoration. The

image reconstruction module is a single convolutional

layer as well, and it converts the refined features into

an RGB rain-free image reversely. The proposed net-

work  is  trained  in  an  end-to-end  fashion  and  can  be

achieved in a supervised learning manner (Subsection

3.3)  or  an  unsupervised  finetuning  manner  (Section

4).

 3.2    CA Module

H ×W × C

1× 1× C

W

C

C

F = (f1, ..., fm, ..., fC)

H ×W m lm fm

Motivated by the SENet[35] and CBAM[36],  we in-

tend  to  use  the  channel  attention  mechanism  to  re-

fine the features by exploiting the channel-wise inter-

dependencies. As shown in Fig.1, the CA module con-

sists  of  a  global  average  pooling  layer,  two  convolu-

tion layers, a ReLU layer, and a sigmoid function lay-

er.  The  global  average  pooling  layer  aims  to  squeeze

the  feature  maps  with  spatial  dimension 

into  a  feature  label  sequence  with  dimension

; therefore it  represents the global receptive

field. Here H and  are the height and the width of

the  feature  map  respectively,  and  refers  to  the

number of the feature channels. Suppose we input 

feature  maps  with  the  size  of

,  then  the -th  label  corresponding  to 

can be obtained by (1).
 

lm =
1

H ×W

H∑
i=1

W∑
j=1

fm (i, j) , (1)

fm (i, j) m

(i, j)

L = (l1, l2, ..., lm, ..., lC) , L ⊆ RC

wDown reduction = 16

L

where  denotes the -th feature map at posi-

tion . We obtain a channel-wise feature sequence

.  Then,  we  use  the

downscaling  convolutional  layer  with  a  weight  set

 and a reduction factor  to down-

scale  the  global  sequence  nonlinearly  (shown  in

(2)). 

L̂Down = ReLU(Conv↓(L,wDown, 1/reduction)), (2)

Conv↓
ReLU

where  denotes  the  downscaling  convolutional

layer  with  a  filter  size  of  1  × 1.   denotes  the

ReLU activation function.

wUp reduction = 16

L̂Up

L̂

We  then  use  the  upscaling  convolutional  layer

with  a  weight  set  and  to  upscale

the  sequence .  Continuously,  we  exploit  a  simple

gating  mechanism  with  a  sigmoid  function  to  model

the channel-wise interdependencies and capture a new

channel-wise feature sequence  (shown in (3)). 

L̂Up = Conv↑(L̂Down, wUp, reduction),

L̂ = Sigmoid(L̂Up),
(3)

Conv↑
Sigmoid

where  denotes the upscaling convolutional lay-

er with a filter size of 1 × 1 and  denotes the

sigmoid  gating  function.  Finally,  we  can  update  the

features as shown in (4). 

f̂m = l̂m ⊗ fm, (4)

⊗
fm ⊆ RH×W

l̂m ⊆ R1×1

where  denotes  the  channel-wise  multiplication  be-

tween  the  feature  map  and the  channel-

wise feature .

In  this  way,  the  network  enables  to  increase  the

sensitivity  to  useful  information and suppress  useless

information  adaptively  by  utilizing  the  channel-wise

interdependencies,  thus making the network focus on

…

Input Output

Convolution ReLU Layer Global Average Pooling Sigmoid Function Element-Wise Product Element-Wise Sum

Long Skip Connection

Channel Attention Channel Attention

Feature 

Extraction

Feature 

Fusion

Feature 

Reconstruction

Feature Refinement

CARM CARM

 
Fig.1.  Architecture of the proposed DeRCAN. It consists of three modules: feature extraction, feature refinement, and image recon-
struction. The network can be used to remove rain streaks on synthetic or real rain images. The network structure shows a super-
vised learning process on synthetic rain datasets.
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more  valuable  features.  We  will  demonstrate  the  ef-

fectiveness of the CA mechanism in Subsection 5.3.

 3.3    Supervised Learning

{x̂i}Ns

i=1 {xi}Ns

i=1Let  and  denote  the  predicted  im-

ages by the supervised learning approach and the cor-

responding clear images, respectively. We use the pix-

el-wise  content  loss  function  (shown  in  (5))  to  con-

strain the network. 

L1 =
Ns∑
i=1

∥x̂i − xi∥1 , (5)

Ns

L1

where  denotes  the  number  of  synthetic  training

images and the  norm is used. We note that (5) is

able to remove artifacts but tends to over-smooth im-

age details (see Fig.2(b)).

 

(b)(a) (c)
 

Lp Lp

Fig.2.   Effect  of  the  loss  functions  on image deraining.  (a)  In-
put. (b) Results without . (c) Results with .
 

To generate more realistic images,  we further de-

velop  a  perceptual  loss  (shown  in  (6))  based  on  the

features  that  are  estimated  by  the  VGG[37] network

pre-trained on ImageNet[38]. 

Lp =
Ns∑
i=1

∥∥ψk
j (x̂i)− ψk

j (xi)
∥∥2

2
, (6)

ψk
j (x̂) ψk

j (x) k

x̂ x j

where  and  denote the -th feature maps

of  and  extracted from the -th layer of the VGG-

19  network,  respectively.  Based  on  above  considera-

tions, the loss function used for the supervised train-

ing is defined as (7). 

L = L1 + λLp, (7)

λwhere  is a positive weight parameter. The effect of

the perceptual loss is analyzed in Subsection 5.3.

 4    Unsupervised Finetuning

We  note  that  existing  image  deraining  methods

based  on  deep  neural  networks  tend  to  overfit  the

training  datasets  and  cannot  generalize  well  on  real

rain  images.  To  overcome  this  problem,  we  propose

an unsupervised finetuning method based on the pro-

posed DeRCAN. As the ground truths of real rain im-

ages  are  not  available,  using  the  loss  functions  pro-

posed in Subsection 3.3 to constrain the proposed net-

work is not feasible. We note that the total variation-

al (TV)[39] regularization as an effective image prior is

able  to  model  the  distribution  of  clear  image  gradi-

ents. We use it to constrain the network to handle re-

al-world images. The TV regularization is defined as: 

LTV =
1

Nr

Nr∑
i=1

(∥∂hx̂i∥2 + ∥∂vx̂i∥2) . (8)

{x̂i}Nr

i=1 Nr

∂h ∂v

Here  denotes  the  network  outputs.  de-

notes  the  number  of  real  training  images.  and 

denote horizontal and vertical  gradient operators,  re-

spectively. Note that we only use (8) to constrain this

unsupervised  learning  method.  The  effectiveness  of

the  proposed  unsupervised  finetuning  method  is  dis-

cussed in Subsection 5.3.

 5    Experimental Results

In  this  section,  we  first  present  details  about  the

training  and  testing  datasets  and  the  parameter  set-

tings. Then, we analyze the effect of each component

of the proposed DeRCAN on image deraining. Finally,

we evaluate the proposed method against state-of-the-

art  methods  including:  DerainNet[12] (TIP  2017),

JORDER[18] (TPAMI  2020),  DDN[19] (CVPR  2017),

RGN[32] (ACM MM 2018),  LPNet[20] (TNNLS 2019),

NLEDN[16] (ACM  MM  2018),  RESCAN[24] (ECCV

2018),  DID-MDN[25] (CVPR  2018),  GCANet[21]

(WACV 2019),  PReNet[23] (CVPR  2019),  SPANet[40]

(CVPR 2019), and Rain O'er Me[34] (TIP 2020), and

show the qualitative and quantitative results. We use

the  peak  signal-to-noise  ratio  (PSNR)[41] and  struc-

tural similarity (SSIM)[42] as metrics.

 5.1    Datasets

Synthetic Datasets. Table 1 shows a description of

the datasets  used for  training and testing.  The DID-

Table  1.   Description of the Datasets

Dataset Number of
Training Images

Number of
Testing Images

Label

Rain100L[18] 1 800 200 Yes

Rain100H[18] 1 800 200 Yes

Rain14000[19] 12 600 1 400 Yes

DID-MDN[25] 12 000 1 200 Yes

Real-world 300 50 No
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600

MDN training dataset contains 12 000 images degrad-

ed by medium rain, heavy rain, and light rain, respec-

tively. During the training phase, we randomly select

11 400 images from the DID-MDN training dataset for

training and use the remaining  images for valida-

tion.  During  the  testing  phase,  we  use 1 200 images

from  the  DID-MDN  testing  dataset  to  measure  the

performance of the proposed DeRACN.

300

50

Real-World  Datasets.  We  collect  real-world

rain images from the Internet for the training process

of  unsupervised  learning.  We use  images  for  test-

ing.

 5.2    Network Parameters and Training

Settings

3× 3

20

16

Network  Parameters.  Our  network  is  trained  in

two  manners:  supervised  learning  and  unsupervised

finetuning, which share the same network parameters.

The filter size of all convolutional layers is , ex-

cept for  the upscaling and downscaling convolutional

layers in the CA module of the network. For the fea-

ture refinement module, we use  residual blocks em-

bedded  in  the  CARM  in  each  FRM.  The  reduction

factor is .

16 32× 32

256

10
−4

10

β1 = 0.9 β2 = 0.999

200 0.9

Training  Settings.  During  the  training,  the  batch

size is  and the patch size is . The number of

feature  channels  is .  The  learning  rate  is  initial-

ized  to  and  decreases  to  half  every  epochs

during  the  training.  The  optimizer  is  adaptive  mo-

ment  estimation  (Adam)[43],  and  its  parameters  are

set to  and , respectively. We train

 epochs  with  momentum  of .  For  the  super-

vised  learning,  we  use  (7)  to  constrain  the  network.

λ 5.0

According  to  the  analysis  in Table 2,  we  empirically

set  to . For the unsupervised finetuning, we fine-

tune  the  proposed  network  trained  on  the  DID-

MDN[25] dataset with the constraint (8) using the re-

al-world training set  described in Table 1.  The other

settings are the same as those of the supervised learn-

ing.
 
 

λ
Lp

Table  2.   Analysis for Weight Parameter  of Perceptual Loss
Function 

λ PSNR SSIM

1.0 34.18 0.929 5
5.0 34.24 0.930 2

10.0 34.20 0.930 2

50.0 34.07 0.929 9
100.0 34.04 0.929 4

Note: The best results are displayed in bold.

 5.3    Ablation Studies

Ba Bb Bf

We examine  the  effectiveness  of  each  component

of our DeRCAN and train the baselines on the DID-

MDN dataset[25] with the same settings for  fair  com-

parisons. Fig.3 and Table 3 provide  comprehensive

experiment results in training and evaluation aspects,

respectively. In Table 3, , , ...,  refer to the ex-

periments conducted for ablation analysis.

Effectiveness of the Number of FRMs. To extract

more useful features for image deraining, we use sev-

eral  FRMs  in  the  proposed  network. Fig.3(a)  shows

that a higher PSNR tendency is obtained using more

FRMs  in  our  network  during  the  training  process.

However,  the  result  of  using  four  FRMs  is  basically

the same as that of using three FRMs in the network.

Consequently,  considering the size and parameters of
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(b)(a) 
Fig.3.  Training convergence on PSNR of our method. (a) Comparisons of our method with different numbers of FRMs. (b) Influ-
ence of CA mechanism and loss functions. ``FRM-N" denotes that we use N FRMs in the proposed DeRCAN.
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Ba Bd Bb Be

Bc Bf

0.05 0.33

the  network  model,  we  finally  decide  to  use  three

FRMs  to  perform  the  image  deraining  task.  Three

groups of contrast experiments ( , ), ( , ) and

( , ) in Table 3 show that PSNR values of using

three FRMs are  dB to  dB higher than those

of using one FRM.

1

Lp

Lp

Lp

Bb Bc

Be Bf

0.13 0.15

Loss  Functions. We  use L  norm  as  the  funda-

mental  pixel-level  content  loss  function  of  the  pro-

posed  network.  To constrain  the  network  in  the  fea-

ture space so as to learn better parameters, we intro-

duce the perceptual loss function  described in (6).

Fig.3(b)  also  shows  that  the  PSNR  tendency  of  the

network  with  is  slightly  higher  than  that  of  the

network without  during the training. Correspond-

ingly,  two  groups  of  contrast  experiments  ( , )

and ( , )  in Table 3 show that  using (6)  will  in-

crease  the  PSNR  by  dB  to  dB.  Visually,

Fig.2(c)  demonstrates  that  using  perceptual  loss  is

able to recover more structural details.

Ladv

Adversarial  Loss. To  explain  the  effect  of  GANs

for  image  deraining  clearly,  we  introduce  adversarial

loss  ( )  to  constrain  our  network. Table 4 shows

Ladv

Ladv

the quantitative results of the models constrained by

different loss functions. We find the results with 

have lower PSNR and SSIM values than our method.

This is because  constrains the network to achieve

finer  and more  realistic  details  that  approximate  the

true  data  distribution.  Although  the  visual  effect

looks more realistic, noise and artifacts in the smooth

regions of the images are also introduced. As shown in

Fig.4,  texture  regions  in Fig.4(b)  and Fig.4(c)  con-

tain  more  structural  details  than  those  in Fig.4(c),

while  there  exist  more  noise  and  artifacts  in  the

smooth regions.

 
 

Table  4.   Quantitative Results of the Models Constrained by
Different Loss Functions on DID-MDN Dataset

PSNR SSIM

L1 32.19 0.920 6

L1 Ladv+ 33.81 0.929 5

L1 Ladv Lp+ + 34.12 0.929 8

L1 Lp+  (ours) 34.24 0.930 2

Note: The best results are displayed in bold.
 

Ba Bb Bd Be

1.6 2.0

Bd Be

CA  Module. We  conduct  ablation  studies  about

the CA module to demonstrate its effectiveness. Two

groups of contrast experiments ( , ) and ( , )

in Table 3 show that using the CA module increases

the  PSNR value  by  dB to  dB and the  SSIM

values  by  0.01  approximately.  During  the  training,

the tendencies of  and  are shown with blue and

green  lines  in Fig.3(b).  Obviously,  the  network  with

the CA module obtains higher quantitative results. In

addition,  we  provide  feature  visualizations  in Fig.5,

Table   3.   Ablation  Analysis  of  the  Proposed  Method  on  the
DID-MDN Dataset

Method FRM-1 FRM-3 CA Lp PSNR SSIM

Ba ✓ 32.14 0.917 3

Bb ✓ ✓ 33.78 0.925 5

Bc ✓ ✓ ✓ 33.93 0.926 9

Bd ✓ 32.19 0.920 6

Be ✓ ✓ 34.11 0.929 6

Bf ✓ ✓ ✓ 34.24 0.930 6

Note: The best results are displayed in bold.

(b)(a) (c) (d) (e)
 

L1 Ladv L1 Ladv Lp L1 Lp

Fig.4.  Visualizations of removing rain streaks by the models constrained by different loss functions on the heavy rain images. (a) In-
put. (b) + . (c) + + . (d) + . (e) Ground truth.
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which  are  generated  by  the  models  with  or  without

the CA module. We train the network with only one

FRM and visualize feature maps generated by the last

CARM  or  residual  block  at  the  same  epoch  during

training. Fig.5(b)  shows  blurry  edges  and  textures

and contains  a  great  quantity of  useless  information.

In  contrast, Fig.5(c)  shows  clear  edges  and  textures,

which  are  beneficial  to  reconstruct  high-quality  im-

ages.  These  comparisons  prove  that  using  the  CA

module  contributes  to  an  improvement  of  the  pro-

posed method.

Downscaling  and  Upscaling  in  the  CA  Module.
The utilities of the downscaling and upscaling opera-

tions  are  motivated  by  SENet[35].  These  two  opera-

tions  are  used  to  generate  channel-wise  scaling  fac-

tors of the global sequence to extract more useful fea-

tures  that  contribute  to  clear  image  restoration.  To

evaluate  the  effect  of  the  downscaling  and  upscaling

operations,  we  disable  them in  the  proposed  method

and  train  this  baseline  method  using  the  same  set-

tings.  The  quantitative  comparison  results  on  the

DID-MDN  dataset  in Table 5 show  that  using  the

downscaling  and  upscaling  operations  is  able  to  im-

prove  the  performance  of  the  image  deraining.  We

further visualize the feature maps of residuals learned

by the proposed method without the downscaling and

upscaling  operations.  In Fig.6,  the  model  without

downscaling and upscaling pays the same attention to

Table  5.   Effectiveness of Downscaling (Down) and Upscaling
(Up) Operations in the Global Sequence

PSNR SSIM

Without Down & Up 33.22 0.9251

With Down & Up (ours) 34.24 0.9302

Note: The best results are displayed in bold.

(b)(a) (c) (d)
 
Fig.5.  Effectiveness of the CA module. (a) Input. (b) Feature maps generated by the model without the CA module. (c) Feature
maps generated by the model with the CA module. (d) Ground truth.

(b)(a) 
Fig.6.  Feature visualizations of different models on heavy rain
images. (a) Without Down & Up. (b) With Down & Up.
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the  foreground  and  background  content,  while  the

model  with  these  two  operations  adaptively  recali-

brates  channel-wise  feature  response  and  pays  more

attention to the details,  which is beneficial to restor-

ing clean images with more details.

Unsupervised Finetuning. The aim of the unsuper-

vised finetuning is to improve the performance of our

DeRCAN in handling real-world rain images. Fig.7(b)

shows that the proposed method trained on synthetic

datasets through supervised learning cannot effective-

ly  remove  rain  streaks  when  handling  real  rain  im-

ages. In contrast, our method learned on real rain im-

ages  by  unsupervised  finetuning  can  remove  rain

streaks  and  generate  better  results  as  shown  in

Fig.7(c). Note that we adopt the model pretrained on

the  DID-MDN[25] dataset  to  implement  unsupervised

finetuning.

 

(b)(a) (c)
 
Fig.7.  Effectiveness of the unsupervised learning on real-world
image deraining. (a) Input. (b) Supervised model. (c) Unsuper-
vised model.

LDC LTV

LDC

TV Loss. Using  TV loss  is  effective  for  unsuper-

vised image deraining, as shown in Fig.7. We also ex-

amine another commonly-used loss function, i.e., dark

channel (DC) loss[44].  In our experiments,  we use the

DC loss  instead of the TV loss  to implement

the unsupervised deraining task on the real-world rain

images. Fig.8 shows  that  using  can  enhance  the

color contrast, the deraining images still  contain rain

streaks.  In  contrast,  the  proposed  method  with  TV

loss  is  able  to  remove rain  streaks  and generate  bet-

ter images.
 

(b)(a) (c)
 

LDC LTV

Fig.8.  Influence of different unsupervised loss functions. (a) In-
put. (b) Results under . (c) Results under .

 5.4    Evaluations on Synthetic Datasets

In  this  subsection,  we  evaluate  the  proposed

method  quantitatively  and  qualitatively.  To  be  fair,

we  retrain  the  deraining  models  of  state-of-the-art

methods for each dataset.  We evaluate the deraining

results  on  synthetic  datasets  with  PSNR[41] and

SSIM[42] metrics.

Firstly,  we  prove  the  effectiveness  and  advance-

ment of the proposed method quantitatively. Table 6

shows  the  quantitative  results  compared  with  the

Table  6.   Quantitative PSNR and SSIM Values of the Proposed Method and State-of-the-Art Methods on Four Different Datasets

Method Rain100L Rain100H Rain14000 DID-MDN

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 26.71 0.844 13.08 0.373 25.23 0.790 23.63 0.732

DerainNet[12] 29.35 0.932 22.26 0.714 25.52 0.872 23.92 0.849

JORDER-E[18] 37.10 0.980 24.54 0.802 27.08 0.872 32.11 0.912

DDN[19] 34.41 0.958 26.13 0.803 27.61 0.901 30.99 0.886

RGN[32] 33.16 0.963 25.25 0.841 29.51 0.901 30.18 0.901

LPNet[20] 29.11 0.880 14.26 0.423 25.64 0.836 22.75 0.835

NLEDN[16] 36.57 0.975 30.38 0.894 29.79 0.898 33.16 0.919

RESCAN[24] 34.02 0.975 26.45 0.846 28.57 0.891 29.95 0.884

DID-MDN[25] 30.48 0.932 26.35 0.829 27.99 0.869 27.95 0.909

PReNet[23] 37.48 0.979 29.46 0.899 32.56 0.933 33.93 0.933

SPANet[40] 34.27 0.964 25.64 0.843 29.99 0.901 30.05 0.934

Rain O'er Me[34] 33.09 0.955 – – 28.50 0.890 28.72 0.873

Our method 39.63 0.986 29.87 0.906 33.07 0.933 34.24 0.931

Note: The best results are displayed in bold.
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state-of-the-art  methods  on  datasets  including

Rain100L[18],  Rain100H[18],  Rain14000[19],  and  DID-

MDN[25],  respectively.  The  best  results  are  highlight-

ed. Apparently, our method achieves favorable perfor-

mance on all four datasets. Then, we demonstrate the

effectiveness  of  our  method qualitatively.  Due  to  the

layout  limitations,  we  select  seven  relatively  favor-

able  methods  in Table 6 to  compare  visual  results

with the proposed method on the above four datasets.

Fig.9, Fig.10,  and Fig.11 show  the  deraining  results

on images of medium rain, heavy rain, and light rain

from the DID-MDN testing dataset respectively, com-

paring  the  proposed  method  with  DerainNet[12],

DDN[19],  RGN[32],  DID-MDN[25],  and  GCANet[21]

methods. Fig.12 shows  the  visual  comparisons  of  the

proposed  method  with  DDN[19],  SPANet[40],  and

PReNet[23] on  the  Rain100L  and  Rain100H  datasets.

Fig.13 shows  the  visual  comparisons  of  the  proposed

method  with  DDN[19],  SPANet[40],  and  PReNet[23] on

the Rain14000 dataset. As can be seen, the deraining

results  by  DerainNet,  DDN,  and  RGN show obvious

blurry marks,  and the structures  of  images  are  dam-

(b)(a) (c) (d) (e) (f) (g) (h)
 
Fig.9.  Deraining results on the DID-MDN dataset with medium rain density level. (a) Input (PSNR/SSIM: 22.17/0.730). (b) De-
rainNet[12] (PSNR/SSIM:  23.16/0.890).  (c)  DDN[19] (PSNR/SSIM:  31.96/0.910).  (d)  RGN[32] (PSNR/SSIM:  30.46/0.911).  (e)  DID-
MDN[25] (PSNR/SSIM: 25.41/0.909). (f) GCANet[21] (PSNR/SSIM: 34.55/0.938). (g) Ours (PSNR/SSIM: 34.55/0.942). (h) Ground
truth.

(b)(a) (c) (d) (e) (f) (g) (h)
 
Fig.10.  Deraining results on the DID-MDN dataset with heavy rain density level. (a) Input (PSNR/SSIM: 15.79/0.436). (b) Derain-
Net[12] (PSNR/SSIM:  17.17/0.704).  (c)  DDN[19] (PSNR/SSIM:  26.97/0.781).  (d)  RGN[32] (PSNR/SSIM:  27.05/0.861).  (e)  DID-
MDN[25] (PSNR/SSIM: 27.18/0.858). (f) GCANet[21] (PSNR/SSIM: 29.56/0.884). (g) Ours (PSNR/SSIM: 29.93/0.902). (h) Ground
truth.

(b)(a) (c) (d) (e) (f) (g) (h)
 
Fig.11.  Deraining results on the DID-MDN dataset with light rain density level. (a) Input (PSNR/SSIM: 26.12/0.670). (b) Derain-
Net[12] (PSNR/SSIM:  27.57/0.896).  (c)  DDN[19] (PSNR/SSIM:  32.93/0.916).  (d)  RGN[32] (PSNR/SSIM:  34.91/0.944).  (e)  DID-
MDN[25] (PSNR/SSIM: 34.89/0.950). (f) GCANet[21] (PSNR/SSIM: 36.73/0.958). (g) Ours (PSNR/SSIM: 37.58/0.962). (h) Ground
truth.
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aged. The results of  DID-MDN show color distortion

and  some  artifacts.  Our  results  are  most  similar  to

the ground truth. Therefore, it is proved that the pro-

posed method performs favorably against state-of-the-

art methods on synthetic datasets.

 5.5    Evaluations on Real-World Dataset

We  use  some  real-world  rain  images  to  evaluate

the  effectiveness  of  the  proposed  method.  We  com-

pare  the  proposed method with some state-of-the-art

methods  including  NLEDN[16],  DID-MDN[25],

GCANet[21], and PReNet[23]. Fig.14 shows visual com-

parisons  on real-world  rain  images.  Our  method per-

forms more favorably than the state-of-the-art  meth-

ods. These results indicate that the proposed method

is favorable to deal with rain images in the real world.

 5.6    Removing  Haze-Like  Effect  on  Heavy

Rain Images

The  proposed  method  directly  restores  clean  im-

ages from given rain images in an end-to-end manner

and  is  able  to  deal  with  heavy  rain  images  with  a

haze-like  effect.  To  evaluate  our  method  in  such  a

case, we use the Outdoor-Rain dataset[27] with a haze-

like  effect  created  by  the  data  synthesis  method  in

HRIR[45] to directly train the proposed deraining net-

work. This dataset contains 9 000 rainy and clean im-

age  pairs  for  training  and 1 500 rainy  and  clean  im-

age  pairs  for  testing. Table 7 shows  quantitative  re-

sults of our method and HRIR on the heavy rain im-

ages.  The  proposed  method  performs  better  than

HRIR  by  a  large  margin.  In  addition, Fig.13 shows

that the deraining results generated by [37] still have

artifacts  and  the  haze-like  effect  is  not  completely

eliminated, while the results of our method are much

clearer. Fig.15 shows  that  our  method  performs  bet-

ter  than  HRIR  on  the  heavy  rainy  images  with  a

haze-like effect.

 5.7    Applications on Video Deraining Task

Our method can be  directly  applied  to  videos  by

processing image deraining frame by frame. Although

separately  handling  each  frame  alone[46] will  destroy

the  temporal  information  of  the  videos,  our  experi-

mental  results  in Fig.16 show  that  the  proposed

method  is  able  to  handle  video  deraining  tasks  and

generate clear videos.

(b)(a) (c) (d) (e) (f) 
Fig.12.  Deraining results on the Rain100L and Rain100H datasets. (a) Input (PSNR/SSIM: 27.85/0.836 & 12.32/0.199). (b) DDN[19]

(PSNR/SSIM: 37.02/0.962 & 29.22/0.801). (c) SPANet[40] (PSNR/SSIM: 37.10/0.970 & 30.63/0.907). (d) PReNet[23] (PSNR/SSIM:
40.34/0.981 & 33.24/0.949). (e) Ours (PSNR/SSIM: 42.49/0.988 & 34.95/0.956). (f) Ground truth.

(b)(a) (c) (d) (e) (f) 
Fig.13.  Deraining results on the Rain14000 dataset. (a) Input (PSNR/SSIM: 19.67/0.622 & 20.71/0.688). (b) DDN[19] (PSNR/SSIM:
28.34/0.847 & 28.65/0.872). (c) SPANet[40] (PSNR/SSIM: 30.69/0.929 & 29.70/0.904). (d) PReNet[23] (PSNR/SSIM: 31.21/0.932 &
33.24/0.949). (e) Ours (PSNR/SSIM: 31.41/0.931 & 34.95/0.956). (f) Ground truth.
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 5.8    Applications on Object Detection Task

Since  the  rain  streaks  occlude  and  blur  the  con-

tent of images, which severely reduces the accuracy of

object detection[47], it is unavoidable to use image de-

raining  in  the  preprocessing  process.  We  use  a  pre-

Table   7.   Quantitative  Results  of  the  Proposed  Method  and
HRIR on the Heavy Rain Images

PSNR SSIM

Input 13.04 0.540

HRIR[45] 21.78 0.817

Ours 24.90 0.887

(b)(a) (c) (d) (e) (f)
 
Fig.14.   Visual  comparisons  of  real-world  rain  images  for  single  image  deraining  with  several  state-of-the-art  methods.  (a)  Input.
(b) NLEDN[16]. (c) DID-MDN[25]. (d) GCANet[21]. (e) PReNet[23]. (f) Ours.

(b)(a) (c) (d)
 
Fig.15.  Visualizations of removing haze-like effect by the proposed method on the heavy rain images. (a) Heavy rain images with
haze-like effect (PSNR/SSIM: 12.56/0.530 & 9.46/0.525). (b) Results of [45] (PSNR/SSIM: 21.22/0.805 & 16.51/0.743). (c) Results
of our DeRCAN (PSNR/SSIM: 26.73/0.892 & 20.14/0.746). (d) Ground truth.
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trained  Faster-RCNN[48] framework  trained  on  the

COCO[49] and VOC[50] datasets to detect objects in re-

al  rain  images  and  deraining  images,  respectively.

Fig.17 shows an object detection example. We can ob-

serve  that  the  blue  ``horse''  bounding  boxes  in  the

rain  image  and  the  deraining  image  by  GCANet[21]

are  also  misclassified.  These  comparisons  show  that

our deraining method is able to improve the accuracy

of object detection in heavy rain scenarios in the real

world against state-of-the-art methods.

(b)(a)
 
Fig.16.  Deraining results predicted by the proposed method on the RainSynComplex25[40] video. (a) Rain video. (b) Ours. The cor-
responding complete videos are displayed online①.
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Fig.17.  An application example of the proposed method for object detection in real rain weather. (a) Detection results of rainy im-
ages. (b) Detection results of deraining images of GCANet[21]. (c) Detection results of deraining images of NLEDN[16]. (d) Detection
results of deraining images of PReNet[23]. (e) Detection results of deraining images of our method. More examples are displayed on-
line②.
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 5.9    Model Parameters and Running Time

512× 512

We further examine the efficiency of the proposed

method. Table 8 shows  that  the  parameters,  used

tool,  and  running  time  of  the  proposed  method  are

comparable to those of the NLEDN[16] network. In ad-

dition, we make a comparison of average running time

for  images  of  size  with  state-of-the-art

methods.  It  can  be  observed  that  the  average  run-

ning time of the proposed method is less than half the

time of  JORDER[18].  All  experiments  are  implement-

ed  on  a  PC  with  an  Intel® CoreTM i7-7700K  CPU@

4.20  GHz,  64  RAM,  and  an  NVIDIA  GTX  1080Ti

GPU.

  
Table   8.   Comparisons  of  Model  Size  and  Average  Running
Time

Method GPU/CPU Tool Time (s) Parameter (M)

DerainNet[12] GPU Matlab 0.28 0.75

JORDER[18] GPU Matlab 3.34 0.37

DDN[19] GPU Matlab 0.74 0.06

RGN[32] GPU Python 0.11 0.04

NLEDN[16] GPU Python 0.52 1.01

RESCAN[24] GPU Python 0.74 0.20

DID-MDN[25] GPU Python 0.20 0.37

GCANet[21] GPU Python 0.27 0.70

PReNet[23] GPU Python 0.26 0.17

Ours GPU Python 1.51 1.26
 

 6    Conclusions

In  this  paper,  a  method  using  a  residual  channel

attention network for single image deraining was pro-

posed. By using the channel attention mechanism and

the  perceptual  constraint  in  the  feature  space,  the

proposed network can not only capture the most im-

portant structures and details but also generate more

realistic  images.  We  also  proposed  an  unsupervised

finetuning approach to overcome the problem that ex-

isting deep learning based methods cannot generalize

well  on  real  rain  images.  Furthermore,  our  method

can  be  flexibly  extended  to  the  tasks  of  handling

heavy  rain  images  with  a  haze-like  effect  and  rainy

videos.  Extensive  experimental  results  on  synthetic

and  real-world  images  demonstrated  that  the  pro-

posed  algorithm  performs  favorably  against  state-of-

the-art  methods.  Compared  with  the  second  best

method,  our  method  improves  2.15  dB  on  the

Rain100L  dataset  and  0.51  dB  on  the  Rain100H

dataset,  respectively.  In  the  future,  we  will  consider

extending  the  proposed  method  to  adapt  to  down-

stream tasks,  such as  object  detection,  semantic  seg-

mentation, and person re-identification.
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