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Abstract    Cognitive diagnosis is an important issue of intelligent education systems, which aims to estimate students’

proficiency on specific knowledge concepts. Most existing studies rely on the assumption of static student states and ig-

nore the dynamics of proficiency in the learning process, which makes them unsuitable for online learning scenarios. In this

paper, we propose a unified temporal item response theory (UTIRT) framework, incorporating temporality and random-

ness of proficiency evolving to get both accurate and interpretable diagnosis results. Specifically, we hypothesize that stu-

dents’ proficiency varies as a Wiener process and describe a probabilistic graphical model in UTIRT to consider temporali-

ty and randomness factors. Furthermore, based on the relationship between student states and exercising answers, we hy-

pothesize that the answering result at time k contributes most to inferring a student's proficiency at time k, which also re-

flects  the  temporality  aspect  and  enables  us  to  get  analytical  maximization  (M-step)  in  the  expectation  maximization

(EM) algorithm when estimating model parameters. Our UTIRT is a framework containing unified training and inferenc-

ing methods, and is general to cover several typical traditional models such as Item Response Theory (IRT), multidimen-

sional IRT (MIRT), and temporal IRT (TIRT). Extensive experimental results on real-world datasets show the effective-

ness of UTIRT and prove its superiority in leveraging temporality theoretically and practically over TIRT.

Keywords    cognitive diagnosis, probabilistic graphical model, item response theory (IRT), stochastic process, expecta-

tion maximization (EM) algorithm

  

1    Introduction

Cognitive  diagnosis  (CD)  is  a  necessary  and  fun-

damental  task  in  many  real-world  scenarios  such  as

medical  diagnosis[1, 2],  games[3],  and  education[4].

Specifically,  in  intelligent  education  systems,  it  aims
s1

e1, e2, e3, e4

to  discover  students'  states  in  the  learning  process,

such as diagnosing their proficiency on specific knowl-

edge concepts, based on their historical records of an-

swering exercises[4]. Fig.1 shows a toy example of CD.

Student  has  practiced  a  set  of  exercises  (e.g.,

)  and  gets  responses  (e.g.,  right  or
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0.7, 0.2

wrong). Our goal is to diagnose his/her mastery (e.g.,

)  of  the  corresponding  knowledge  concepts

(e.g., “greatest_common_divisor”).  Such diagnosis  re-

sults  are  useful  in  reality  as  they  provide  actionable

information about students' weakness and help devel-

op customized remediation to  improve  students'  per-

formance, such as exercise recommendations and tar-

geted training[5].

In the literature,  a variety of  promising research-

es  on CD have been developed,  such as Determinisic

Input,  Noisy-And  gate  model  (DINA)[6],  Item  Re-

sponse  Theory  (IRT)[7],  Multidimensional  IRT

(MIRT)[8], Temporal IRT (TIRT)[9], Rule Space Mod-

el (RSM)[10], Attribute Hierarchy Methods (AHM)[11],

Probabilistic  Matrix  Factorization  (PMF)[12],  and

Neural  Cognitive  Diagnosis  (NeuralCD)[4].  Among

them,  IRTs  (e.g.,  IRT,  MIRT)  have  been  attached

with  great  importance  and  widely  used  in  industry.

Nevertheless, most of existing methods focus on stat-

ic  scenarios  (e.g.,  standard  test)  with  a  short  dura-

tion  of  finishing  exercises,  thus  assuming  that  each

student's  proficiency  remains  static  and  does  not

change  over  time.  However,  as  considered  in  online

learning scenarios, students take a long time to do ex-

ercises and get (e.g., from online systems) correct an-

swers, instructions and other learning materials to ac-

quire  knowledge.  In  fact,  educational  psychologists

have  long  converged[13] that  the  learning  process  of

students  evolves  over  time,  as  students  acquire  and

forget knowledge they have learned. Theories like the

Learning  Curve  theory[14] and  the  Forgetting  Curve

theory[15, 16] were  proposed  to  capture  the  change  of

students' proficiency. From the perspective of data, it

means  exercising  records  contain  temporal  informa-

tion,  and the  latest  records  contribute  more  to  diag-

nosing a student's present proficiency.

s1
s1 e1 e4

r1, r2, r3, r4

s1
r3 r4

s1

Taking student  shown in Fig.1 as an example,

 has finished exercises  to  with the same knowl-

edge  concept “greatest_common_divisor” in  sequence

and  responds ,  and  we  want  to  evaluate

whether  he/she  masters “greatest_common_divisor”
after  finishing  these  four  exercises.  From  the  record

sequence, we tend to believe that  has mastered this

knowledge concept, since the latest records  and 

are correct, even though he/she made mistakes at the

beginning.  Nevertheless,  the  traditional  CD  models

treat  every  history  as  the  same.  It  will  lead  to  a

wrong  conclusion  that  has  not  mastered

“greatest_common_divisor”, since only half of the ex-

ercises are answered correctly. To solve this problem,

it is necessary to introduce temporality into CD mod-

els,  i.e.,  treating students'  records  as  a  sequence and

modeling the change of students' proficiency.

s1, s2
e4

In addition, the learning process is not determinis-

tic  because the degree of  students'  mastery after fin-

ishing an exercise is uncertain. Different students ac-

quire and forget knowledge to different degrees when

doing the same exercise. As shown in Fig.1, students

 have the same answers on the first  three exer-

cises  but  respond  differently  on ,  indicating  that

they  may  have  different  mastery  degrees  on  knowl-

edge  concept “greatest_common_divisor” even  after

finishing the same exercises and getting the same re-

sults.  Moreover, even if  a student practices the same

exercise  based  on  the  same  knowledge  state,  he/she

may  have  different  answers  and  update  proficiency

differently. Therefore, when modeling temporality, we

also  need  to  incorporate  randomness,  i.e.,  students'

proficiency  is  a  random  variable  and  the  change  of

proficiency is a stochastic process.
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Fig.1.  Example of students' exercising records. (a) Exercises e1 to e4 with the same knowledge concept “greatest_common_divisor”.
(b) Probability density function of s1’s and s2’s proficiency distribution: the y axis is the proficiency value (ranging from 0 to 1) and
the x axis is the corresponding probability density. (c) Diagnosis results: 0.7 and 0.2 for s1 and s2 respectively.
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s1 e1, e2

s1
s1 e3, e4

s1, s2

e4

Combining  these  two  factors,  a  student's  profi-

ciency  at  each  moment  is  represented  as  a  distribu-

tion, which is changing during the exercising process,

as shown in Fig.1. When  answers wrong on ,

the peak of  the probability density function of  profi-

ciency distribution skews towards 0, and the variance

gets  smaller,  meaning  that  we  are  more  confident  to

state  that  fails  on  mastering  the  knowledge  con-

cept.  On the  contrary,  as  answers  right  on ,

the peak of  the probability density function of  profi-

ciency  distribution  moves  towards  1.  By  incorporat-

ing  randomness,  have  the  same  distribution  in

the first  three exercises (because they have the same

records), instead of the same proficiency value, which

explains why they could respond differently on .

There  are  few  previous  researches  considering

these  two  factors.  To  the  best  of  our  knowledge,

TIRT[9] is  a  state-of-the-art  method  incorporating

temporality  into  the  IRT  framework  by  exploiting  a

Wiener  process[17] to  describe  students'  proficiency

evolving.  However,  in  TIRT,  temporality  is  consid-

ered only when inferring students' states, which is in-

consistent with its training (model parameter estima-

tion)  assumption.  Comparatively,  models  like  IRT

and  NeuralCD  make  more  sense  since  they  use  the

same settings for training and inferencing. Intuitively,

these  models  with  unified  training/inferencing  meth-

ods are preferable.

In this paper, we propose a unified temporal item

response theory (UTIRT) framework which is a prob-

abilistic  graphical  model  and  incorporates  temporali-

ty and randomness of students' proficiency. Although

the capability of probabilistic graphical models to rep-

resent  the  joint  probability  distribution  of  multiple

random variables (in our case, a student's proficiency

and  performance  scores  at  different  time  points)  has

been proved and many probabilistic graphical models

have been proposed in various domains[18–20], it is still

nontrivial  to adapt to CD due to the following chal-

lenges.  First,  parameter  estimation  in  probabilistic

graphical  models  is  relatively  difficult,  especially  in

the CD scenario, where a student's knowledge state is

an implicit variable. The classic algorithm for the in-

complete observation problem is the expectation max-

imization (EM) algorithm. However, the setting of dy-

namic  students'  proficiency  increases  computational

complexity,  brings  difficulty  in  deriving  the  maxi-

mization  (M-step)  in  the  EM  algorithm,  and  even

makes  parameter  estimation  intractable.  Second,  to

simplify  computation,  it  is  common  to  use  some  ap-

proximations  (hypotheses)  like  variational  inference.

Nevertheless,  such  hypotheses  should  be  explainable

and reasonable under the CD task and reflect the stu-

dents' real states of doing exercises, which is increas-

ingly important in practical applications. Therefore, it

brings the challenge of utilizing approximations to re-

duce  computational  complexity  while  ensuring  inter-

pretability.

t+ 1 t

k

k

k

k

To  address  these  challenges,  we  propose  two  hy-

potheses  in  the  UTIRT  framework  while  preserving

explainability. We first hypothesize that the change of

students'  proficiency  over  time  can  be  modeled  as  a

Wiener  process.  It  lays  a  basic  foundation  for  our

probabilistic graphical model and involves the tempo-

rality  and  randomness  aspects.  For  interpretability,

the  intuitive  ideas  behind  are  explained  as  follows.

Firstly,  after  finishing an exercise,  a student updates

the knowledge state based on the current state, by re-

alizing  the  weakness  of  present  cognition,  acquiring

new knowledge, and forgetting it. We implement this

idea by setting the mean of proficiency distribution at

time  as the proficiency at time , and the Gaus-

sian  distribution  in  the  Wiener  process  is  an  easy

form  to  achieve  such  guarantee.  Secondly,  there  are

relationships  between  different  knowledge  concepts,

and  we  can  model  such  effects  by  a  covariance  ma-

trix in the Gaussian distribution. After that, we pro-

pose  the  second  hypothesis:  the  response  at  time 

contributes  most  to  inferring  a  student's  proficiency

at time , since he/she answered the question at time

 directly  according  to  corresponding  proficiency  at

time .  Combined  with  this  hypothesis,  the  maxi-

mization (M-step) in the EM algorithm becomes ana-

lytic  and  further  makes  parameter  estimation  of  our

model  tractable.  Based  on  these  two  hypotheses,  we

formulate the probabilistic graphical model in UTIRT

and deduce corresponding training (i.e., the EM algo-

rithm) and inferencing (maximum a posteriori estima-

tion)  methods.  Particularly,  our  UTIRT is  a  general

framework. We prove that it covers many traditional

models such as IRT, MIRT, and TIRT.

The  proposed  method  is  evaluated  on  two

datasets  collected  by  online  tutoring  systems  and

platforms  by  using  different  evaluation  metrics.  The

results  show that  our  method  obtains  the  equivalent

results of the state-of-the-art models, on both knowl-

edge proficiency estimation and next score prediction

tasks. In addition, we conduct hypothesis testing and

compare  prediction  results  of  different “keep  length”
to  demonstrate  that  our  method  better  utilizes  the

Jia-Yu Liu et al.: Probabilistic Temporal Cognitive Diagnosis in Online Learning Systems 1205



temporality  of  students'  proficiency  than  TIRT.  The

main contributions of this work can be summarized as

follows.

● A  UTIRT  framework  is  proposed  for  the  CD

task.  Compared  with  existing  methods,  the  proposed

framework  considers  temporality  and  randomness  of

students'  proficiency,  and  provides  unified  training

and inferencing methods.

● Two hypotheses are adopted to simplify model-

ing and calculation,  and we explain the ideas behind

these  two  hypotheses,  which  makes  our  framework

more interpretable.

● The proposed framework is evaluated on two re-

al-world  datasets,  and  the  results  show  that  it  ob-

tains  similar  results  in  general  CD  tasks  compared

with several baseline methods, and performs better in

tasks  when  the  sequentiality  of  students'  records  is

important. 

2    Related Work
 

2.1    Cognitive Diagnosis

In recent years, CD, as the core of education and

measurement theory, has received extensive attention

in  pedagogy,  psychology,  and  other  fields[21].  Many

CD models  have been proposed,  which can be divid-

ed into two aspects:  unidimensional  and multidimen-

sional.

θ

IRT[7] is a typical unidimensional model that mod-

els  each  student  as  a  proficiency  variable  and  pre-

dicts  the  probability  a  student  will  answer  an  exer-

cise  correctly  based  on  an  item  response  function,

which can be chosen as the logistic function or the cu-

mulative distribution function of the Gaussian distri-

bution[22].  The  Latent  Factor  Model  (LFM)[23] is  a

special  version of  IRT that  only  considers  the  differ-

ence  between  proficiency  and  exercise  difficulty.

TIRT[9] extends  IRT  by  modeling  a  student's  profi-

ciency  as a Wiener process: 

P (θt+τ |θt) ∝ exp [−(θt+τ − θt)2/2γ2τ ] ,

θt θt+τ

t t+ τ γ

where  and  are the student's proficiency at time

 and  respectively,  and  is  a  hyper-parameter

controlling  the “smoothness” with  which  the  knowl-

edge state varies over time.

As for multidimensional approaches, DINA[6] mod-

els  a  student's  proficiency  as  multiple  binary  vari-

ables,  each of  which indicates  whether or  not he/she

has  mastered  the  corresponding  knowledge  concept.

Only when a student masters all  knowledge concepts

θ

α β

required for  the  exercise,  can he/she answer  it  right.

MIRT[8] extends  students'  traits  and  exercises'  fea-

tures  in  IRT to  be  multidimensional.  In  MIRT,  stu-

dents'  proficiency  is  denoted  as  a  multidimensional

variable ,  and  exercise  discrimination  and difficulty

parameters  are  denoted  as  and ,  respectively.

Temporal  structured-knowledge  IRT  (T-SKIRT)[24]

adopts the same stochastic process as TIRT. Howev-

er,  it  considers the prerequisite relationships between

different  knowledge  concepts  and  employs  a  specific

multivariate Gaussian prior of proficiency when infer-

ring a student's state. NeuralCD[4] is a general neural

CD framework, which incorporates neural networks to

learn  the  complex  interactions  between  students  and

exercises,  and  gets  interpretable  diagnosis  results.  In

order  to  ensure  interpretability,  it  proposes  a  mono-

tonicity  assumption  achieved  by  restricting  parame-

ters in neural networks to be positive.

Most  of  these  traditional  models  do  not  consider

the  sequentiality  of  students'  records  and  implicitly

assume  that  a  student's  proficiency  does  not  change

over  time.  It  is  improper  in  some  cases  and  limits

their applications. Though TIRT and T-SKIRT mod-

el students' proficiency evolving as a Wiener process,

there are several improvements in our UTIRT. First,

UTIRT is  a  unified  framework  modeling  temporality

in both training and inferencing methods, while TIRT

and T-SKIRT only utilize temporality in the inferenc-

ing  phase,  which  is  unreasonable  and  results  in  con-

flicts  between  these  two  phases.  Second,  when  de-

scribing students' proficiency evolving by the Wiener

process, UTIRT incorporates the influence among dif-

ferent knowledge concepts, while TIRT and T-SKIRT

ignore such effects. Indeed, T-SKIRT only utilizes the

prerequisite  relationships  as  a  prior  over  students'

knowledge states,  which works as a static regulariza-

tion  in  the  inferencing  phase.  From this  perspective,

UTIRT  also  adopts  unified  use  of  the  relationships

between  knowledge  concepts  compared  with  T-

SKIRT. Last but not least, our UTIRT learns the pa-

rameters  in  the  Wiener  process,  instead  of  setting

them  as  hyper-parameters  adopted  in  TIRT  and  T-

SKIRT, which brings better generalization ability. 

2.2    Dynamic Learning Process Modeling

Several  theories  and  models  have  been  proposed

to describe the dynamics of students' proficiency dur-

ing  the  learning  process.  The  Learning  Curve

Theory[14] and the Forgetting Curve Theory[15, 16] are

1206 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6
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two typical theories.  Specifically, the Learning Curve

Theory  provides  a  mathematical  description  of  stu-

dents  acquiring  knowledge  and  improving  perfor-

mances when constantly doing exercises, and the For-

getting Curve Theory points out a decreasing memo-

ry of students on knowledge they have learned. Based

on  these  two  theories,  varieties  of  studies  have  been

developed  for  diagnosing  students'  states  from  a  dy-

namic  perspective[25].  For  example,  some  IRT-based

models,  such  as  Learning  Factors  Analysis  (LFA)[26]

and  Performance  Factors  Analysis  (PFA)[27],  assume

that  students  share  the  same  parameters  of  learning

rate  during  exercising,  while  PFA  further  tracks  re-

sponse  sequence  by  using  previous  attempts.  Dy-

namic Item Response (DIR)[13],  a  variant of  IRT, fo-

cuses  on  time  series  dichotomous  response  data  and

incorporates  time-dependent  exercise  parameters  and

daily  random  effects.  In  addition,  the  Elo  rating

schema[28] updates students' ability and exercises' pa-

rameters based on the difference between the true an-

swer and the predicted probability when new data are

observed[29–32].  Longitudinal  cognitive  diagnosis[33–37]

evaluates  students'  knowledge  over  time  by  incorpo-

rating  the  transition  probability  of  latent  class  or

high-order latent ability.

Another representative work to model the dynam-

ic  process  of  students'  mastering  skills  is  knowledge

tracing  (KT)[38–51].  One  of  the  classical  models  is

Bayesian  Knowledge  Tracing  (BKT)[38].  BKT  is  a

knowledge-specific  model  which  represents  each  stu-

dent's  knowledge  state  as  a  set  of  binary  variables,

where  each  variable  represents  whether  he/she  has

mastered  a  specific  skill.  It  utilizes  a  hidden Markov

model (HMM) to update the knowledge state of each

student. Current variants of BKT mostly focus on in-

dividual  factors,  such  as  individual  student  prior[45],

learn rate[46],  individual  exercise  guess,  slip[41, 52],  and

resource learn rate[53].  As deep learning methods out-

perform  many  conventional  models  in  various  do-

mains,  Piech et  al.[47] used  the  recurrent  neural  net-

work  (RNN)  and  the  long  short-term  memory

(LSTM) network to model the evolving proficiency on

concepts  and  proposed  Deep  Knowledge  Tracing

(DKT), representing proficiency as a high-dimension-

al and continuous vector. Another popular deep learn-

ing  model  is  Deep  Key-Value  Memory  Network

(DKVMN)[48], which leverages one static key memory

matrix to store knowledge concepts and one dynamic

value  memory  matrix  to  store  and  update  the  mas-

tery levels.  DKVMN is  able  to learn the correlations

between exercises and underlying concepts, which im-

proves the interpretability of the prediction results.

θt

t+ 1

Despite  the importance of  these  efforts,  there  are

still  some  limitations  in  practice.  First,  these  IRT-

based  models  only  estimate  a  specific  variable  for

each student; thus they are unable to model the inter-

actions between different knowledge concepts. Second,

some deep learning based models operate like a black

box,  where  the  evolution  of  a  student's  proficiency

and  the  prediction  process  given  his/her  knowledge

state  are  usually  represented  as  neural  networks.

Thus, the outputs of prediction and state representa-

tion are hard to explain. Last but not least, most ex-

isting models, including BKTs and DKTs, neglect the

randomness of students' proficiency evolving. That is

to  say,  these  models  assume  implicitly  if  a  student's

proficiency  and historical scores are given, his/her

knowledge  state  at  time  is  certain  and  can  be

calculated accurately (e.g., by a curve, update rules or

neural networks), which is unreasonable in reality. Al-

though longitudinal CD models consider the random-

ness  of  attribute  transition,  existing  work[32–36] focus-

es  on  binary  attributes  and  ignores  the  influence

among different knowledge concepts. In contrast, our

method improves traditional approaches by relying on

a  hypothesis  to  describe  students'  high-dimensional

knowledge  states  evolving  in  a  random  and  overall

way, while guaranteeing explanatory power. 

3    Proposed Method: UTIRT

In this  section,  we first  give the necessary defini-

tion of the CD task. Then we introduce the details of

our  UTIRT  framework.  After  that,  we  illustrate  the

training and inferencing methods of  UTIRT. Finally,

we demonstrate the generality of UTIRT by showing

its relationship with other work. 

3.1    Problem Definition

N M

K

i

si = {s1i , s2i , . . . , sTi

i } Ti

t sti = (eti, r
t
i)

eti i

t rti
rti
i eti

Assuming that there are  students,  exercises

and  knowledge  concepts  in  an  education  system,

we  record  the  exercising  process  of  student  as

, where  is the number of his/her

historical  records.  At  each  time , ,  where

 represents the exercise solved by student  at time

, and  denotes the corresponding result. Generally,

 is an observed binary variable equal to 1 if student

 answers exercise  correctly, and 0 otherwise.
iGiven a student 's sequence of answered exercis-

Jia-Yu Liu et al.: Probabilistic Temporal Cognitive Diagnosis in Online Learning Systems 1207



si
T + 1 K

θT+1
i ∈ RK (θT+1

i )j
i j

θT+1
i i

K

T

es and results , our goal is to diagnose his/her profi-

ciency at time , which is represented as a -di-

mensional vector .  reflects the profi-

ciency  of  student  on  knowledge  concept  (e.g.,

“Function  in  Math”).  Therefore,  represents 's

proficiency on all  knowledge concepts  after  finish-

ing  exercises. 

3.2    Model Framework

θt

θt+1

t+ 1 θt

θt+1

θt E[θt+1|θt] = θt

θt θt+k

E[θt+k|θt] = θt

First,  we  specify  how  to  model  the  temporality

and randomness of students' proficiency . Intuitive-

ly, after finishing an exercise, a student acquires new

knowledge,  reinforces  or  forgets  mastered  knowledge,

and  his/her  proficiency  is  updated  based  on  present

proficiency. Therefore, his/her proficiency  at time

 distributes around .  We model  this  idea with

randomness  by  setting  the  expectation  of  equal

to , i.e., , which we call mean guaran-

tee. In general, we expand this idea with temporality

to  model  the  relationship  between  and ,  i.e.,

.  An important factor that needs to be

considered is the relationship between different knowl-

edge  concepts.  For  example,  acquiring  the  concept

“add in Math” may result  in  a  better  understanding

of “multiply in Math” because students must learn to

add before  they can multiply.  Then,  the variation of

proficiency  on “multiply  in  Math” will  further  influ-

ence other concepts. Therefore, there are complex cor-

relations between different knowledge concepts. Based

on these ideas, we propose the first hypothesis.

Assumption  1. The change  of  students’ proficien-
cy over time can be modeled as a Wiener process.

s t

|s− t|

Σ θt+k

θt+k

θt

A Wiener  process[17] is  a  random process,  stating

that the increment of a variable between any two mo-

ments  and  is normally distributed with mean zero

and  variance .  It  models  the  temporality  and

randomness  simultaneously  and  achieves  our  mean

guarantee  by  restricting  the  mean  of  the  Gaussian

distribution to zero. Moreover, it can be extended to

be  multidimensional  and  incorporate  the  relation-

ships  between  different  knowledge  concepts  by  set-

ting  the  covariance  matrix  of  the  Gaussian  distribu-

tion. Such relationships are stable and do not depend

on  time,  and  thus  we  introduce  a  time-independent

parameter  matrix  in 's  distribution.  Under

these settings, the distribution of proficiency  con-

ditional on  is given by 

P (θt+k|θt) = N (θt+k|θt, k ·Σ), (1)

N (·|µ,Σ)

µ

where  is the probability density function of

the  multivariate  Gaussian  distribution  with  mean 

Σ

k ·Σ Σ k

k

t+ k t

θ1

N (θ1|µ,Σ0) µ ∈ RK

Σ,Σ0 ∈ RK×K

and  covariance  matrix .  In  (1),  covariance  matrix

 is  the multiplication of  matrix  and value ,

which indicates that as the time interval  increases,

the  deviation  from proficiency  at  time  to  be-

comes  greater.  Moreover,  we  also  assume  the  initial

proficiency (i.e., no exercises are answered)  follows

. Mean vector  and covariance ma-

trices  are  model  parameters,  which

need to be optimized by maximum likelihood estima-

tion.  For  a  student,  the  joint  probability  of  his/her

responses and proficiency is 

P (r1, r2, . . . , rt,θ1:t)

= P (θ1)
t∏

k=2

P (θk|θk−1)
t∏

k=1

P (rk|θk)

= N (θ1|µ,Σ0)
t∏

k=2

N (θk|θk−1,Σ)×

t∏
k=1

prk

k (1− pk)
1−rk

, (2)

rk ek k

θk

k pk

θk

ek

pk = f(θk; ek)

f

where  is the answer of exercise  at time , which

equals 1 if the student answers correctly, and 0 other-

wise,  is  the  proficiency  vector  of  the  student  at

time , which is unobservable and unknown,  is the

probability  that  a  student  with  proficiency  an-

swers  exercise  correctly  and  the  general  form  is

.  Please  note  that  there  are  several  de-

signs for the expression of , and we implement it as

MIRT[8] because  MIRT  models  the  relationship  be-

tween students' ability and answers in a concise way.

Formally in MIRT, the probability of  answering cor-

rectly is 

f(θ; q) = Φ[αT
q · (θ − βq)], (3)

Φ

αq, βq

q Φ

where  is the item response function which roots in

the psychological measurement theory, and  are

the  discrimination vector  and the  difficulty  vector  of

exercise  respectively.  We  choose  as  the  cumula-

tive distribution function of the Gaussian distribution,

which  is  known  as  the  2PO  model[22].  The  reason  is

that the probability density function of the Gaussian

distribution has some useful integral properties which

help to derive an analytic solution in subsequent com-

putations  as  shown  in  the  training  and  inferencing

methods.

rt

In summary,  we have proposed the framework of
UTIRT by  suggesting  a  Wiener  hypothesis  to  model
the evolution of students' proficiency and using MIRT
to predict  answers.  We summarize the corresponding
probabilistic  graphical  model  of  UTIRT  in Fig.2,
where the shaded  indicates the observed answer re-
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sult, and the other unshaded variables indicate the la-
tent proficiency and parameters. 

3.3    Model Training

Θ = {µ,Σ0,Σ,αq,βq|q = 1, 2, . . . ,

M}

i Θ

Under the UTIRT framework above, our goal is to
learn the parameters 

.  Since  a  student's  proficiency  is  an  unobserved

variable,  we  use  the  EM  algorithm  to  maximize  the
likelihood  of  students'  answer  records,  which  is  suit-
able for the incomplete observation problem. The EM
algorithm is  an  iterative  algorithm containing  expec-
tation  (E-step)  and  maximization  (M-step).  In  each
iteration , it updates parameters  (i.e., M-step) by: 

Θi+1 = argmax
Θ

∫
P (θ|R,Θi) lnP (R,θ|Θ)dθ

= argmax
Θ

∑
Rj

∫
P (θ1

j ,θ
2
j , . . . ,θ

tj
j |Rj, Θ

i)×

lnP (Rj,θ
1
j ,θ

2
j , . . . ,θ

tj
j |Θ)dθ1

jdθ
2
j . . . dθ

tj
j , (4)

Θi

i− 1 Rj = (r1j , r
2
j , . . . , r

tj
j ) j

D

tj θ1
j ,θ

2
j , . . . ,θ

tj
j

where  are  parameters  obtained  after  iteration

,  is the -th record (the whole

answer sequence of a student) in training data  with

length ,  and  are  corresponding  stu-

dents'  proficiency  during  exercising,  which  are  unob-

servable. Combined with (2), (4) is equivalent to the

following: 

Θi+1 = argmax
Θ

∑
Rj

(∫
P (θ1

j |Rj, Θ
i) lnP (θ1

j |Θ)dθ1
j+

tj∑
k=2

∫
P (θk−1

j ,θk
j |Rj, Θ

i)×

lnP (θk
j |θk−1

j , Θ)dθk−1
j dθk

j+
tj∑

k=1

∫
P (θk

j |Rj, Θ
i) lnP (rkj |θk

j , Θ)dθk
j

)
. (5)

P (θk−1
j ,θk

j |Rj, Θ
i)

k − 1 k

Rj P (θk
j |Rj, Θ

i)

k

Rj P (Rj|Θi) P (Rj|Θi) =∫
P (Rj,θ

1
j ,θ

2
j , . . . ,θ

tj
j |Θi)dθ1

jdθ
2
j . . . dθ

tj
j

θ1
j ,θ

2
j , . . . ,θ

tj
j

In (5),  is the posterior probabil-

ity of students' proficiency at time  and  given
the whole answer sequence , and  is the

posterior probability at time . To attain these terms
by  the  Bayesian  law,  we  have  to  calculate  the  prior
distribution of , i.e., . However, 

 contains  the

integral  of  multidimensional  variables ,

and thus does not have accurate expression. As a re-
sult, there is no analytic solution for (5). To solve this
problem, we propose the second hypothesis.

k

k

Assumption 2. The response at time  contributes
most to inferring a student’s proficiency at time .

j ekj
k

rkj θk
j

θk
j

P (θk
j |Rj, Θ

i)

rkj
P (θk−1

j ,θk
j |Rj, Θ

i)

Intuitively,  student  answers  exercise  exactly

based  on  his/her  proficiency  at  time ,  and  thus  re-

sult  directly reflects proficiency .  Therefore,  the

posterior  distribution  of  proficiency  given  the

whole  sequence  (i.e., )  is  approximately

equal  to  the  distribution  given  only  record .  This

idea can also be applied to . Mathe-

matically, the approximation is expressed as follows:  P (θk
j |Rj, Θ

i) ≈ P (θk
j |rkj , Θi),

P (θk−1
j ,θk

j |Rj, Θ
i) ≈ P (θk−1

j ,θk
j |rk−1

j , rkj , Θ
i).

(6)

P (θ1
j |Θ)

θ1
j

µ and Σ0

P (θ1
j |µ,Σ0)

P (θk
j |θk−1

j , Θ) θk
j

θk−1
j

Σ P (θk
j |θk−1

j ,Σ) P (rkj |θk
j , Θ)

θi rkj
{αq,βq|q = 1, 2, . . . ,M}

Besides, term  in (5) is the prior distribu-

tion of proficiency , which is assumed to be a Gaus-

sian distribution with parameters , and thus

it  can  be  simplified  to .  Similarly,  term

 describes  the  relationship  between 

and , which is given by (1) and depends only on

.  Therefore,  it  equals . 

evaluates the probability that students with proficien-

cy  get result ,  which is  an MIRT form function

and only relies on parameters .

Θ {µ,Σ0}
Σ

{αq,
βq|q = 1, 2, . . . ,M}

Θ

Using these simple mathematical transformations,
parameters  are  divided  into  three  parts: 

(occurring only in the first term of (5)),  (occurring
only  in  the  second  term  of  (5)),  and 

 (occurring  only  in  the  third  term

of (5)). Therefore, optimizing  in (5) is equivalent to
optimizing  these  three  parts  separately.  Combined
with  (6),  the  optimization  objective  in  (5)  turns  to
the following equation: 

 



  



  













Fig.2.  Probabilistic graphical model of UTIRT.
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Θi+1≈argmax
Θ

∑
Rj

(∫
P (θ1

j |r1j , Θi) lnP (θ1
j |µ,Σ0)dθ1

j︸ ︷︷ ︸
L1(Rj ;µ,Σ0)

+

tj∑
k=2

∫
P (θk−1

j ,θk
j |rk−1

j , rkj , Θ
i)lnP (θk

j |θk−1
j ,Σ)dθk−1

j dθk
j︸ ︷︷ ︸

L2(Rj ;Σ)

+

tj∑
k=1

∫
P (θk

j |rkj , Θi) lnP (rkj |θk
j , {αq,βq})dθk

j︸ ︷︷ ︸
L3(Rj ;αq, βq)

)

= argmax
µ,Σ0

∑
Rj

L1(Rj;µ,Σ0) + argmax
Σ

∑
Rj

L2(Rj;Σ)+

argmax
{αq, βq}

∑
Rj

L3(Rj; {αq,βq})

≜ argmax
µ, Σ0

L1(µ,Σ0) + argmax
Σ

L2(Σ)+

argmax
{αq,βq}

L3({αq, βq}). (7)

{µ,Σ0}, {Σ}, {αq,βq|q =
1, 2, . . . ,M} L1, L2, L3

Therefore,  we  can  update 

 by maximizing , respectively.

L1, L2To  maximize ,  we  compute  their  gradients

and  calculate  the  extreme  points  by  setting  them as

zero.  We  find  that  both  of  them  have  only  one  ex-

treme  point  which  is  the  maximum  point,  and  the

corresponding solutions are analytic and expressed as

follows: 

µi+1 =
1

|D|
∑
Rj

1

P (r1j |Θi)

∫
P (θ1, r1j |Θi)θ1dθ1, (8)

 

Σi+1
0 =

1

|D|
∑
Rj

1

P (r1j |Θi)

∫
P (θ1, r1j |Θi)(θ1)Tθ1dθ1−

(µi+1)Tµi+1, (9)
 

Σi+1 =
1∑

Rj

(tj − 1)

∑
Rj

tj∑
k=2

1

P (rk−1
j , rkj |Θi)

∫
P (θk−1,

θk, rk−1
j , rkj |Θi)((θk−θk−1)T(θk−θk−1))dθk−1dθk.

(10)

P (r1j |Θi) P (rk−1
j , rkj |Θi)

Now  we  discuss  how  to  evaluate  (8)–(10).  For

 and , it can be proved that 

P (rkj =1|Θi)=Φ

 αT
ekj
· (µ− βekj

)

||{αekj
· (Σi

0+(k − 1)Σi)
1

2 ,−1}||2

 ,

(11)
 

P (rk−1
j , rkj = 1|Θi)

=

∫
P (θk−1|Θi)P (rk−1

j |θk−1, Θi)×

Φ

 αT
ekj
· (θk−1 − βekj

)

||{αekj
·[Σi

0+(k − 1)Σi]
1

2 ,−1}||2

dθk−1,

(12)

ekj k j

αekj
, βekj

Σi
0, Σ

i

i− 1

{αekj
· (Σi

0+(k − 1)Σi)1/2,−1}
αekj

· (Σi
0 + (k − 1)Σi)1/2

−1

P (θk|Θi)

θk N (µi, (k − 1)Σi +Σi
0)

θk

{θk−1,θk}
Rj D

Rj

Rj

where  is  the -th  exercise  in  the -th  record,

 are corresponding discrimination and difficul-

ty  vectors,  respectively,  and  are  parameters

obtained  after  iteration .  Term

 is  a  vector  obtained  by

the  concatenation  of  vector 

and value . For the integral term in (8)–(10), it is

easy  to  prove  that  the  prior  distribution  of

 is .  Based  on  this  property,

we take  samples  from the prior  distribution of  to

evaluate (8) and (9), and samples from the joint dis-

tribution of  to evaluate (10) approximately.

In addition, summing all historical records  in  is

expensive due to the different lengths of , and thus

we sample  different  batches  of  during each train-

ing iteration.

L1, L2

µ, Σ0, Σ {αq,βq}
L3

{αq,βq}
{αq,βq}

q

So far we have illustrated how to maximize 

to update . For , there is no closed-

form  solution  of ,  and  thus  we  perform  stochastic

gradient descent (SGD)[54] to optimize  itera-

tively.  Specifically,  the derivatives of  for ex-

ercise  are: 

∇αq

=
∑
Rj

tj∑
k=1

I{ekj = q}sign(rkj )
P (rkj |αi

q,β
i
q)

∫
P (θk|αi

q,β
i
q)×

P (rkj |θk,αi
q,β

i
q)

P (rkj |θk,αq,βq)
exp

(
−1

2
(αT

q (θ
k − βq))

2

)
×

(θk−βq)dθk, (13)
 

∇βq

=
∑
Rj

tj∑
k=1

I{ekj = q}sign(rkj )
P (rkj |αi

q,β
i
q)

∫
P (θk|αi

q,β
i
q)×

P (rkj |θk,αi
q,β

i
q)

P (rkj |θk,αq,βq)
exp

(
−1

2
[αT

q (θ
k − βq)]

2

)
×

(−αq)dθk, (14)

I{ekj = q} 1

ekj q 0 sign(rkj )

rkj
−1

αi
q,β

i
q

i− 1

where  is an indicator function that equals 

if exercise  is exercise , and  otherwise,  is

a  sign function that equals  1 if  result  is  1  (a stu-

dent  answered  correctly),  and  otherwise,  and

 are parameters obtained after iteration  in
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L3 i

µ, Σ0, Σ

{αq,βq|q = 1, 2, . . . ,M}

the EM algorithm, and are fixed when using SGD to

optimize  during  iteration .  In  summary,  for  the

M-step  in  the  EM  algorithm,  we  combine  (8)–(12)

and adopt  sampling  to  update ,  and utilize

SGD to update  based on (13)

and (14). 

3.4    Model Inference

Θ

T + 1 θT+1

S = {s1, s2, . . . , sT |st = (et, rt)}

θT+1

After  the  training  phrase  and  acquiring  parame-

ters , our goal turns to diagnose (infer) a student's

proficiency  at  time ,  denoted  as ,  given

his/her  records .  Specifi-

cally,  we  formulate  the  maximum posterior  distribu-

tion of  by the Bayesian law as follows: 

P (θT+1|S,Θ) ∝ P (S|θT+1, Θ)P (θT+1|Θ). (15)

P (S|θT+1, Θ)Computing  is expensive, and thus we use

the following approximation proposed in TIRT[24]: 

P (S|θT+1, Θ)

≈
T∏

k=1

P (rk|θT+1, Θ)

=
T∏

k=1

p̃rk

k (1− p̃k)
1−rk , (16)

where 

p̃k = Φ

(
αT

ek · (θT+1 − βek)

||{αek · ((T + 1− k)Σ)1/2,−1}||2

)
,

αek , βek

ek k

||∇θT+1 p̃k||2
θT+1

e3, e4

and  are discrimination and difficulty vectors

of  exercise  answered  at  time  respectively.  Note

that  the  further  back  in  time  the  response  is,  the

smaller  is  and  thus  the  lower  the  influ-

ence it has on maximizing (16), i.e., inferring , by

a gradient-based method like SGD. Therefore, UTIRT

treats records differently, and focuses more on the lat-

est records (e.g.,  in Fig.1). Combining (15) and

(16), we have the log-posterior: 

lnP (θT+1|S,Θ) ∝ lnP (θT+1|Θ)+
T∑

k=1

(rk ln p̃k + (1− rk) ln(1− p̃k)).

lnP (θT+1|Θ)

θT+1

Compared  with  MIRT,  UTIRT  has  an  additional

term in the inferencing phase, i.e., , which

describes the Gaussian prior of  and can be seen

as a regularization. Thus the general form of the loss

function to be minimized in the inferencing phase is: 

Loss =−

(
T∑

k=1

(rk ln p̃k + (1− rk) ln(1− p̃k))+

λ lnP (θT+1|Θ)

)
. (17)

λ

It  is  worth  noting  that  the  loss  in  (17)  keeps  a  bal-

ance between score prediction loss and prior distribu-

tion  loss  with  the  hyper-parameter ,  which  will  be

explored further in Section 4. 

3.5    Relation with Other CD Models

In this subsection, we discuss the relationship be-

tween UTIRT and classic  CD models  and show that

UTIRT is a general framework that covers many tra-

ditional models: IRT[7], MIRT[8], and TIRT[9].

f(θ; q) = Φ[αq·
(θ − βq)] Σ =

θ

Σ0

µ

θ1

IRT.  Take  the  typical  2PO model 

 as an example. In (1), we set  0 and let

 be unidimensional, and then a student's proficiency

is an invariant value, which is the underlying assump-

tion  of  IRT.  Moreover,  assuming  equals  infinite

and  is any value, the Gaussian hypothesis of initial

proficiency  is  deprecated,  the  learning  phase  (5)

becomes classic marginal maximum likelihood estima-

tion  (MMLE) for  IRT and the  inferencing  phase  be-

comes maximum likelihood estimation (MLE).

Σ

Σ0 µ

MIRT. MIRT is a direct extension of IRT by us-

ing  multidimensional  latent  vectors  of  exercises  and

students. The typical 2PO form is described in (3). 

in (1) is set as a zero matrix, and then students' pro-

ficiency is seen unchanged over time. Similar to IRT,

let  be a matrix whose elements are infinite, and 

be  any  vector,  the  learning  method  degrades  into

MMLE for  MIRT proposed  in  [55]  and  the  inferenc-

ing method becomes MLE proposed in [56].

αq, βq

µ, Σ0, Σ

θ

TIRT.  TIRT  can  be  seen  as  a  compromise  be-

tween IRT and UTIRT. It is a unidimensional model

and  trains  exercise  parameters  by  a  standard

IRT.  Only  in  the  inferencing  phase,  temporality  and

randomness are considered,  and the evolution of  stu-

dents'  proficiency  is  modeled  as  a  Wiener  process

whose variance is a hyper-parameter. If  are

fixed in (1) (as hyper-parameters) and  is set to be

unidimensional,  UTIRT  is  equivalent  to  TIRT  be-

cause the training phase in (7) only needs to learn the

exercise parameters of IRT, and the inferencing phase

in  (17)  is  Maximum a  Posterior  Estimation  adopted

similar to TIRT. Therefore, TIRT is a simplified ver-

sion of UTIRT. 
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4    Experiments

In  this  section,  we  conduct  three  experiments  on
two  real-world  datasets  to  evaluate  the  effectiveness
of  our  proposed  framework  and  its  implementations
from various aspects: 1) knowledge proficiency estima-
tion  performance  of  UTIRT  against  the  baselines;
2) the comparison of next score prediction results be-
tween UTIRT and baselines; 3) the analysis of utiliz-
ing temporality in UTIRT and TIRT. 

4.1    Dataset Description

We  use  two  real-world  datasets  in  the  experi-

ments,  i.e.,  ASSIST  and  Junyi.  ASSIST  (ASSIST-

ments  2009–2010 “skill  builder”)  is  an  open  dataset

collected  by  the  ASSISTments  online  tutoring

system[57],  which  contains  student  response  logs  and

knowledge concepts on mathematical exercises.  Junyi

was collected from an E-learning platform called Jun-

yi Academy, which provides the problem logs and ex-

ercise-related information[58].

As  for  ASSIST,  we  choose  the  public  corrected

version  that  eliminates  the  duplicated  data  and  pre-

process as follows. 1) Inspired by [9], we associate ex-

ercises not aligned with a skill with a “dummy” skill.

2) The dataset records the order of students’ exercise

history. Since our model utilizes temporality of profi-

ciency and treats historical records differently accord-

ing  to  their  order,  we  sort  each  student’s  answering

trajectory  with  the  given “order_id” provided  in  the

dataset.

1 000

As for Junyi, we make the following preprocessing.

1)  As  the  tutor  system  of  Junyi  Academy  only

records a student's first response to the same exercise,

and the response will be marked “wrong” if any hint

is  requested[58],  we  just  take  their  first-attempt  re-

sponses as the true records. 2) Similar to [59], we se-

lect  most active learners  from the exercise  logs

to yield the dataset. 3) Exercises in the Junyi dataset

are associated with a “topic”, which is viewed as the

corresponding  knowledge  concept  in  our  experiment.

To have a better comparison with [59], different from

ASSIST,  exercises  without  a “topic” are  discarded.

4)  We  sort  each  student's  records  with  the  given

UNIX timestamp. The statistics of the datasets after

preprocessing are summarized in Table 1, and the dis-

tribution  of  students'  historical  records  is  shown  in

Fig.3. 

4.2    Experimental Setup
 

4.2.1    Parameters Setting

50

256 128

µ αq βq Σ0 Σ

L3

{αq,βq} 0.001

With regard to the EM algorithm in the training

phase, the number of epochs is , and the mini-batch

is  and  in ASSIST and Junyi, respectively. We

initialize , , , ,  with  Xavier

initialization[60]. When optimizing  by (13) and (14)

to  learn ,  we  set  learning  rate  to  and
 

Table  1.    Statistics of the Two Datasets

Dataset #Students #Exercises #Knowledge
Concepts

#Response
Logs

Avg. Exercising
Records per Student

Avg. Knowledge
Concepts per Exercise

Avg. Exercises per
Knowledge Concept

ASSIST[57] 4 217 26 683 124 346 852 82.251 1.131 243.371

Junyi[58] 1 000 712 39 203 945 203.945 1.000 18.256

#Note: “ ” denotes “the number of”, and “Avg.” denotes “the average number of”.
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Fig.3.  Distribution of exercising records. (a) ASSIST. (b) Junyi.
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20 λ 0.1

50

0.001

epoch as . In the inferencing phase,  is set to 

in (17), the epoch number is set to , and the learn-

ing rate is set to . 

4.2.2    Comparison Approaches

To  evaluate  the  performance  of  our  UTIRT,  we

compare  it  with  previous  approaches,  i.e.,  IRT,

MIRT,  TIRT,  LFM,  PFA,  PMF,  NeuralCD,  BKT,

DKT,  and DKT-KC.  The  details  of  them are  as  fol-

lows.

IRT● [7].  IRT  is  a  CD  method  modeling  a  stu-

dent's  proficiency,  exercise  parameters,  and  answers

by a logistic-like function.

MIRT● [8]. MIRT is a direct extension of IRT, us-

ing  multidimensional  latent  trait  vectors  of  exercises

and students, and predicts results by (3).

TIRT● [9].  TIRT  is  also  an  extension  of  IRT,

modeling students' proficiency as a stochastic process

varying  over  time.  However,  it  trains  parameters  by

an  IRT  model,  thus  considering  temporality  only  in

the inferencing phase.

LFM● [23].  LFM can be seen as a special  version

of  IRT that  only  utilizes  the  difference  between  stu-

dents' proficiency and exercise difficulty.

PFA● [27].  PFA  is  a  logistic  regression  method

that  utilizes  the  frequency  of  previous  successes  and

failures associated with each skill.

PMF● [12].  PMF is  a  probabilistic  matrix  factor-

ization method that represents students and exercises

by low-dimensional latent vectors.

NeuralCD● [4].  NeuralCD is  a  neural  CD model,

which uses neural networks to model complex interac-

tions between exercises and students.

BKT● [38].  BKT is  a  hidden  Markov  model  that

represents each student's knowledge states as a set of

binary variables.

DKT● [47]. DKT is a representative deep learning

based model that leverages recurrent neural networks

to  model  a  student's  knowledge  state  with  a  hidden

vector  during  the  learning  process.  However,  to  the

best  of  our  knowledge,  traditional  DKT does  not  in-

corporate the knowledge components of exercises, and

thus  it  is  unsuitable  for  the  scenario  with  multiple

knowledge  concepts.  Therefore,  we  adopt  its  original

RNN architecture and make a little change by adding

one  full-connected  layer  to  the  DKT  output  layer.

With this adjustment, DKT can predict the result of

an  exercise  based  on  the  mastery  probability  of

knowledge components.

● DKT-KC[10].  DKT-KC  is  a  variation  of  DKT,

which  inputs  the  knowledge  components  (KC)  relat-

ed to the exercises identified by Q-matrix[10].

In the following experiments, all models are imple-

mented  by  ourselves  using  Python.  We  conduct  all

experiments on a Linux server with four 2.0 GHz In-

tel Xeon E5-2620 CPUs and a Tesla K80m GPU. For

fairness, all parameters in these baselines are tuned to

have the best performances. 

4.3    Experimental Results
 

4.3.1    Knowledge Proficiency Estimation

The  first  experiment  is  to  evaluate  the  effective-

ness  of  our  model  in  diagnosing  students'  knowledge

states, which is the goal of CD, and to prove the im-

portance of utilizing temporality and randomness. As

there  is  no  ground truth  of  students'  proficiency,  we

adopt  a  score  prediction  task  to  indirectly  evaluate

the performances of  models[4, 12, 24, 25, 61],  because [62]

has  pointed  out  that  differences  between  the  ob-

served scores and the predicted scores can be used to

examine  if  there  is  any  biased  estimation  pattern.

Therefore,  it  is  reasonable  to  assume there  is  a  posi-

tive correlation between students' proficiency and the

probability  of  answering  correctly,  and  accurate  pre-

diction  always  implies  accurate  diagnosis.  Consider-

ing that all exercises are objective ones, we use evalu-

ation  metrics  from both the  classification  aspect  and

the  regression  aspect,  including  RMSE  (root  mean

square error), ACC (accuracy), and AUC (area under

the curve).

15

1 000

2 500 17 671 123

1 000 712

39

50

Since we could hardly capture the change of a stu-

dent's  proficiency  accurately  if  he/she  just  finished

few exercises in the past, for ASSIST, we further dis-

card  the “dummy skill” and  filter  out  students  with

less than  response logs, which was done in [4]. For

Junyi,  since  we  have  selected  the  most  active

students,  there is no need to filter students with few

records.  After  pre-processing,  ASSIST  consists  of

 students,  exercises  and  knowledge

concepts, and Junyi consists of  students,  ex-

ercises  and  knowledge  concepts.  To  better  illus-

trate the data, we calculate for each student the per-

centage  of  exercises  in  the  test  data  containing

enough (more than %) knowledge concepts that oc-

cur  in  training  data,  and  such  exercises  are  named

“Valid”. Fig.4 shows the results of all students. From

Fig.4, we find that in both ASSIST and Junyi, many

students  have  invalid  exercises  which  are  related  to
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the knowledge concepts they have not experienced in

the training data, and it will bring the challenge of di-

agnosing proficiency on these concepts.

70 10 20

70

θT

20 θT

In  this  experiment,  we  perform  a %/ %/ %

training/validation/test  split  of  students'  response

logs, using each student's first % data to train pa-

rameters. Then, we infer each student's proficiency 

after  finishing  his/her  training  records,  and  predict

scores  on  his/her  test  (last %)  data  by  using .

We select all the baselines mentioned above.

Table 2 shows the experimental results of all mod-

els,  and  there  are  several  observations.  Firstly,

UTIRT  performs  the  best  ACC  and  equivalent

RMSE, AUC on all datasets, followed by MIRT, Neu-

ralCD and LFM, which  indicates  the  effectiveness  of

our framework in estimating knowledge proficiency by

incorporating students' dynamic learning process (i.e.,

temporality  and  randomness).  Secondly,  UTIRT and

TIRT,  as  two  dynamic  models,  perform  better  than

their  traditional  static  forms  (MIRT,  IRT)  in  AS-

SIST,  and  UTIRT  is  also  better  in  Junyi,  which

Σ

k

k

k

demonstrates  that  it  is  more  effective  to  track  stu-

dents' proficiency from a temporal perspective. Mean-

while,  they  achieve  better  results  than  PFA,  BKT,

DKT and DKT-KC, further proving the superiority of

considering  randomness.  Thirdly,  we  observe  that

TIRT  performs  worse  than  IRT  in  Junyi.  This  may

result from the greater effect of temporality in Junyi,

which  is  shown  in Table 1,  where  the  average  num-

ber  of  students'  historical  records  in  Junyi  is  larger

than that in ASSIST. With the influence of temporal-

ity increasing, the conflict of utilizing temporality dif-

ferently in the training and inferencing phase is mani-

fest,  and  it  causes  even  worse  predictive  results  of

TIRT. This observation demonstrates the importance

of  unified  training  and  inferencing  methods,  which

will be further illustrated in Subsection 4.3.3. Fourth-

ly,  NeuralCD  does  not  perform  so  well  as  stated  in

[4], especially in Junyi. This is mainly because the da-

ta  partition method we adopt (split  data chronologi-

cally)  is  different  from  the  method  adopted  in  [4]

(shuffle  data  before  splitting),  and  this  causes  much

more “invalid” exercises (see Fig.4). To be more spe-

cific,  as  NeuralCD  diagnoses  a  student's  proficiency

on different knowledge concepts independently due to

incorporating Q-matrix in exercise factors, the predic-

tions of his/her scores are unreliable on exercises con-

taining  knowledge  concepts  that  did  not  appear  in

his/her training data (i.e., invalid exercises). Contrar-

ily,  UTIRT  does  not  suffer  from  this  problem  be-

cause  it  learns  the  correlations  between  different

knowledge concepts by the covariance matrix . As a

result, even if a student has never answered exercises

related to a specific knowledge concept , UTIRT can

still  infer his/her state on  based on states of other

knowledge  concepts  and  their  correlations  with .

Probably for the same reason, PFA, BKT, DKT and
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Fig.4.  Statistics of “Valid” exercises in Subsection 4.3.1. (a) ASSIST. (b) Junyi.

 

Table  2.    Knowledge Proficiency Estimation Performance

Model ASSIST Junyi

RMSE ACC AUC RMSE ACC AUC

IRT[7] 0.493 0.668 0.667 0.417 0.742 0.799

MIRT[8] 0.482 0.694 0.730 0.416 0.747 0.800

TIRT[9] 0.488 0.669 0.672 0.421 0.735 0.798

LFM[23] 0.456 0.682 0.697 0.422 0.733 0.787

PFA[27] 0.460 0.672 0.671 0.465 0.658 0.672

PMF[12] 0.503 0.662 0.717 0.448 0.721 0.767

NeuralCD[4] 0.454 0.686 0.703 0.438 0.707 0.755

BKT[38] 0.488 0.658 0.679 0.466 0.654 0.662

DKT[47] 0.487 0.636 0.619 0.441 0.703 0.743

DKT-KC[10] 0.461 0.671 0.665 0.425 0.734 0.782

UTIRT 0.469 0.704 0.733 0.414 0.755 0.790

Note: The best results are in bold.
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DKT-KC  do  not  perform  well  either,  which  proves

UTIRT's  advantage  of  utilizing  the  relationships  be-

tween different knowledge concepts. Lastly, DKT-KC

performs  better  than  BKT and  DKT,  indicating  the

effectiveness of complex student modeling and the in-

corporation of knowledge components.

λ λ

T + 1

λ = 0, 0.01, 0.05, 0.10, 0.50, 1.00, 5.00

λ

λ = 1.00

Parameter  Sensitivity.  We  now discuss  the  sensi-

tivity of  parameter  in  (17).  is  the regularization

parameter  controlling  the  deviation  from  students'

proficiency  at  time  to  its  prior  distribution.

Fig.5 visualizes the performances with increasing val-

ues  of  in  ASSIST

and  Junyi.  As  we  can  see  from Fig.5,  different

datasets  show  different  results.  As  increases,  the

performance of  UTIRT increases  at  first  and reaches

the peak when  in ASSIST, while it keeps de-

creasing in Junyi. 

4.3.2    Next Score Prediction

To  further  prove  the  effectiveness  of  UTIRT  for

the  knowledge  tracing  task,  we  predict  students'

t

t− 1

θt t

t

scores step by step, which was adopted in [9, 25, 47,

48, 59]. In practice, we can provide personalized exer-

cise  recommendations  for  students  based  on  the  pre-

diction  results,  saving  their  time  on  practicing  too

hard/easy  exercises.  Different  from Subsection 4.3.1,

with  trained  UTIRT,  for  each  time ,  we  minimize

(17) on each student's first  interactions to diag-

nose his/her proficiency  at time  and then predict

whether  or  not  the  student  answers  a  specific  exer-

cise  at  time  correctly.  RMSE,  ACC  and  AUC  are

used to evaluate performance.

Similar to [9], we filter out students with less than

two  response  logs.  As  a  result,  there  are  4  097  stu-

dents, 26 679 exercises and 124 knowledge concepts in

ASSIST, and Junyi is the same as mentioned in Sub-

section 4.3.1.  To  better  understand  each  dataset,  we

calculate the number of  students per knowledge con-

cept as [63] did. Fig.6 shows that in ASSIST, most of

the knowledge concepts  appear  in  the histories  of  no

more  than  500  students,  while  in  Junyi,  about  two

thirds  of  knowledge  concepts  occur  in  the  records  of

more  than  500  students.  It  reflects  different  general-
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ization of  each dataset[63],  and we will  see  in our ex-

periment  that  it  leads  to  different  effects  of  fitting

models and predictive performances.

In  this  experiment,  we  set  the  logs  of  80%  stu-

dents as training data and 20% as test data.  All  the

baselines  mentioned  in Subsection 4.2.2 are  selected

for comparison except LFM, PMF and NeuralCD be-

cause  they  are  unsuitable  for  knowledge  tracing  sce-

narios.

Table 3 shows the overall results of all models for

predicting  student  scores.  From Table 3,  we  can  ob-

serve  that  UTIRT  outperforms  almost  all  the  other

baselines on both datasets, followed by MIRT in AS-

SIST and DKTs (DKT and DKT-KC) in Junyi, indi-

cating  the  effectiveness  of  our  model  in  tracing  stu-

dents'  learning  processes.  Moreover,  UTIRT  and

TIRT  still  perform  better  than  MIRT  and  IRT,  re-

spectively,  which  demonstrates  that  it  is  effective  to

incorporate  temporality  into  modeling.  Besides,

UTIRT outperforms PFA, BKT, DKT and DKT-KC

in ASSIST and Junyi. This observation indicates that

describing  the  knowledge  state  evolving  by  a  proba-

bilistic graph (i.e., utilizing randomness) is more suit-

able  to  trace  students'  proficiency.  An  interesting

finding  is  that  DKTs,  although  leveraging  deep  neu-

ral networks for modeling, perform unsatisfactorily in

ASSIST. This may be because our data volume does

not  support  DKTs.  On  the  one  hand,  deep  models

usually  have  too  many  parameters  to  be  optimized,

especially in our experiments, where we add one dense

layer  and bring more  parameters  proportional  to  the

number of exercises and concepts. On the other hand,

as [63] points out, the number of students per knowl-

edge concept in ASSIST (Fig.6) is too small to attain

the  effective  size,  and  thus  DKTs  may  overfit  and

lack  generalization  ability.  In  summary,  all  evidence

demonstrates  the  effectiveness  and  rationality  of  the

proposed  factors  in  our  framework  (i.e.,  temporality

and randomness). 

4.3.3    Temporality Utilization Analysis

Now  we  aim  to  demonstrate  the  superiority  of

UTIRT  in  leveraging  temporality  theoretically  and

practically  to  TIRT.  As  mentioned  before,  TIRT

trains  a  standard  IRT to  get  difficulty  and discrimi-

nation  parameters  of  exercises,  ignoring  temporality,

while introducing dynamics of students' proficiency in

the inferencing phase. We conduct hypothesis testing

to theoretically prove the existence of a contradiction

between  its  training  and  inferencing  phase.  Besides,

we  investigate  the  degree  to  which  the  temporal

structure in data affects the predictive performance of

TIRT  and  UTIRT,  further  verifying  UTIRT's  effec-

tiveness. The data from Subsection 4.3.2 are also used

in this experiment.

100

We  first  adopt  the  hypothesis  test  of “the  rela-

tionship  between  students  proficiency  diagnosed  by

IRT in consecutive moments obeys the Gaussian dis-

tribution”.  If  the  test  result  rejects  this  assumption,

we  could  conclude  that:  the  training  phase  in  TIRT

implicitly rejects the Gaussian hypothesis of students'

proficiency  evolving.  Nevertheless,  it  still  utilizes  the

Gaussian  hypothesis  in  the  inferencing  phase,  and

thus  TIRT  uses  contradictory  training  and  inferenc-

ing methods. With respect to the process of hypothe-

sis  test,  we  train  an  IRT  model  and  infer  students'

proficiency at each time by IRT. After that, we calcu-

late  the  difference  in  discovered  proficiency  between

two  consecutive  moments.  Then,  we  do  the  Kol-

mogorov-Smirnov  test[64] to  verdict  on  whether  these

values  obey  the  Gaussian  distribution.  To  avoid  the

influence of sample size, we shuffle these values, then

take  samples  as  a  batch  to  repeat  the  test,  and

calculate the average p-value.

4.61× 10−6

6.08× 10−3

0.05

The p-value  for  ASSIST and  Junyi  is 

and ,  respectively,  both  smaller  than  the

significance  level  of ,  thus  rejecting  the  hypothe-

sis.  In  conclusion,  the  IRT  model  implicitly  assumes

that  the  process  of  students'  proficiency change does

not follow the Gaussian distribution. Therefore, if we

model  temporality  only  in  the  inferencing  phase  (as

TIRT does), it will cause a contradiction between the

training hypothesis and the inferencing hypothesis. It

further shows the importance of a unified training and

inferencing  framework  and  proves  UTIRT's  priority

to TIRT.

Second, to better compare UTIRT with TIRT and

illustrate  our  framework's  advantage  in  leveraging

 

Table  3.    Next Score Prediction Performance

Model ASSIST Junyi

RMSE ACC AUC RMSE ACC AUC

IRT 0.415 0.724 0.754 0.410 0.750 0.772

MIRT 0.422 0.730 0.754 0.412 0.747 0.770

TIRT 0.412 0.728 0.762 0.411 0.749 0.771

PFA 0.450 0.704 0.647 0.431 0.729 0.698

BKT 0.443 0.711 0.671 0.432 0.726 0.694

DKT 0.464 0.648 0.670 0.407 0.752 0.773

DKT-KC 0.441 0.697 0.719 0.408 0.753 0.773

UTIRT 0.408 0.747 0.769 0.410 0.758 0.774

Note: The best results are in bold.
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temporality, we conduct an experiment on how “keep

length” influences  the  predictive  accuracy.  To  be

more specific, given a student's answering sequence in

test data, we choose the first “keep length” records to

infer  his/her  knowledge  state  and then use  the  diag-

nosed result to predict scores on the last 20% of exer-

cises.  For  example,  if “keep  length” is  set  to  5  and

there  are  50  records  in  a  student's  logs,  we  use  the

first  five  records  to  diagnose  his/her  proficiency,

based on which we predict answers on the last 10 ex-

ercises. Fig.7 shows  the  performances  with “keep

length” growing from 1 to 40. As “keep length” could

be 40, we need to ensure a student's last 20% records

are not included in the first 40 records, and therefore

only students with more than 50 records are selected

in this experiment.

We can see that the greater the “keep length”, the

higher  the  predictive  accuracy.  That  is  probably  be-

cause  with “keep  length” increasing,  we  have  more

data closer to the test record, which better reflects a

student's  current  knowledge  state.  Therefore,  the  re-

sult  shows  the  necessity  of  considering  the  order  of

the response sequence and proves that the latest his-

tory is  more important than the previous one.  What

is more, UTIRT performs better than TIRT with any

“keep length”, indicating that UTIRT can better cap-

ture and utilize the temporality of students' proficien-

cy. Based on this evidence and the result of hypothe-

sis  test  above,  we can conclude that UTIRT is  more

credible in theory and can better model the temporal-

ity of students' knowledge states than TIRT. 

5    Discussion

In this section, we comprehensively discuss the ad-

vantages  of  our  work  and  some  possible  research  di-

rections in the future. In this paper, we illustrate the

problem  of  modeling  temporality  and  randomness

when diagnosing students' knowledge states. We pro-

pose  a  probabilistic  graphical  model  that  incorpo-

rates  a  Wiener  hypothesis  to  describe  the  evolving

process of students' proficiency. To reduce the compu-

tational complexity in the learning phase, we propose

another hypothesis based on the relationship between

students' ability and answering scores. Both hypothe-

ses  are  interpretable  and  explain  the  change  of  stu-

dents'  knowledge  proficiency.  Although  we  can  ob-

serve  that  UTIRT  provides  accurate  results  for

knowledge  state  diagnosis  and  student  scores  predic-

tion, there are still some directions for future studies.

First,  the  simplicity  of  the  Wiener  hypothesis

which is used to describe the change of students' pro-

ficiency  may  hinder  our  framework  to  model  more

complex  situations.  Besides,  students'  psychological

factors and exercises' characteristics also affect the re-

sponse results. Therefore, it would be valuable to ex-

plore  more  flexible  methods  to  trace  the  students'

proficiency,  such  as  educational  theories,  psychologi-

cal  traits  (e.g.,  slip,  guess,  forget  and  learn[50],  gam-

ing  factor[65],  behavior  patterns[66, 67] and  learning

style[68]),  other  temporal  aspects  (e.g.,  exercise  diffi-

culty  and  discrimination,  resource  properties)  and

neural networks.

Second,  our  work  focuses  more  on  the  dynamic

evolution of students' general proficiency and has not

been explicitly related to specific knowledge concepts.

We may make our efforts to incorporate the interac-

tion between each knowledge concept and mastery de-

gree by using Q-matrix as [4] did, which can provide

diagnosis results on each concept and is useful for fur-

ther applications, such as recommending specific exer-
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Fig.7.  Accuracy with different “keep length” in both datasets. (a) ASSIST. (b) Junyi.
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cises  to help students  improve their  performances  on

targeted knowledge[69].

Third,  we  just  exploit  the  performance  data  of

students. In practice, there are plenty of other impor-

tant data that can help us with modeling. For exam-

ple,  to  model  the  impact  between  different  concepts,

we  can  leverage  their  prerequisite  relationships  de-

scribed  by  knowledge  graph[70, 71] and  utilize  graph

neural networks for their great power in graph repre-

sentation[72].  What  is  more,  students  have  a  number

of attempts when answering an exercise on an online

platform  and  can  seek  help  (“hints”),  which  can  be

used  to  model  their  knowledge  acquisition.  For  in-

stance,  some  previous  work[65, 73, 74] pay  attention  to

multiple attempts, and combine knowledge and gam-

ing  for  student  learning  modeling[65],  while  [75–77]

consider hints into the learning process. Actually, it is

interesting  to  exploit  more  students'  behaviors  (e.g.,

the number of attempts, submission patterns or hints)

for  modeling.  For  instance,  if  the  time  interval  be-

tween two attempts is too short, the student's ability

changes rarely, which can be described by the covari-

ance matrix in the Wiener process. In addition, a hint

parameter  can  be  introduced  as  a  supplement  to  a

student's proficiency, and therefore we are able to fil-

ter its impact on response results, thus correctly diag-

nosing  proficiency.  Moreover,  clock  time  that  repre-

sents the exact timestamp of each response in reality

may  implicitly  reflect  the  student's  proficiency[49].

These data could be potentially helpful for CD.

Last, from a broader perspective, UTIRT aims at

diagnosing  users'  states  (in  our  case,  students'  profi-

ciency) from their historical records, and we are will-

ing  to  extend  it  to  other  fields,  such  as  diagnosing

consumers'  preferences  in  e-commerce  and  players'

ability in computer games. We believe that our mod-

el has the potential to work effectively on such prob-

lems with strong temporality. 

6    Conclusions

k

In this paper, we focused on dynamically diagnos-

ing students' knowledge states and proposed a proba-

bilistic  graphical  model  based  UTIRT  framework.

UTIRT  models  the  temporality  and  randomness  of

students'  proficiency  evolving  by  a  Wiener  hypothe-

sis  and  achieves  tractable  maximization  (M-step)  in

the EM algorithm for training with another hypothe-

sis  describing  the  relationship  between the  exercising

records  and  students'  proficiency  at  time .  UTIRT

contains  unified  training  and  inferencing  phases  and

could be seen as the generalization of some tradition-

al  CD  models.  Three  experiments  on  two  real-world

datasets,  i.e.,  knowledge  proficiency  estimation,  next

score prediction,  and temporality utilization analysis,

confirmed the effectiveness of our framework. Experi-

mental results showed that both temporality and ran-

domness  considered  in  UTIRT  are  important  to  get

better diagnosis accuracy (ACC, AUC) and lower er-

ror  rate  (RMSE).  Moreover,  the unified training and

inferencing  phases  make  UTIRT  more  reasonable

from both theoretical  analyses  and experimental  per-

formances.  For  future  research,  we  would  like  to  ex-

plore  more  possible  factors  in  the  learning  process,

such as multiple attempts, hints and clock time. The

framework of our work and related results should ben-

efit  the  development  of  online  learning  systems.  We

hope this work could inspire further studies. 

Conflict of Interest    The authors declare that

they have no conflict of interest.

References 

 Guo X, Li R, Yu Q, Haake A R. Modeling physicians’ ut-

terances  to  explore  diagnostic  decision-making.  In Proc.

the  26th  International  Joint  Conference  on  Artificial  In-

telligence,  Aug.  2017,  pp.3700–3706.  DOI: 10.24963/ijcai.

2017/517.

[1]

 Yao C L, Qu Y, Jin B, Guo L, Li C, Cui W J, Feng L. A

convolutional  neural  network  model  for  online  medical

guidance. IEEE Access, 2016, 4: 4094–4103. DOI: 10.1109/

ACCESS.2016.2594839.

[2]

 Chen  S,  Joachims  T.  Predicting  matchups  and  prefer-

ences in context. In Proc. the 22nd ACM SIGKDD Inter-

national  Conference  on  Knowledge  Discovery  and  Data

Mining, Aug. 2016, pp.775–784. DOI: 10.1145/2939672.2939

764.

[3]

 Wang F, Liu Q, Chen E H, Huang Z Y, Chen Y Y, Yin

Y, Huang Z, Wang S J. Neural cognitive diagnosis for in-

telligent education systems. In Proc. the 34th AAAI Con-

ference on Artificial Intelligence, Feb. 2020, pp.6153–6161.
DOI: 10.1609/aaai.v34i04.6080.

[4]

 Kuh  G  D,  Kinzie  J,  Buckley  J,  Bridges  B  K,  Hayek  J.

Piecing  together  the  student  success  puzzle:  Research,

propositions, and recommendations. ASHE Higher Educa-

tion Report, 2007, 32(5): 1–182. DOI: 10.1002/aehe.3205.

[5]

 de  la  Torre  J. Dina  model  and  parameter  estimation:  A

didactic. Journal of Educational and Behavioral Statistics,

2009, 34(1): 115–130. DOI: 10.3102/1076998607309474.

[6]

 Embretson  S  E,  Reise  S  P.  Item Response  Theory.  Psy-

chology Press, 2013.

[7]

 Adams R J, Wilson M, Wang W C. The multidimension-

al  random  coefficients  multinomial  logit  model. Applied

[8]

1218 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

https://doi.org/10.24963/ijcai.2017/517
https://doi.org/10.24963/ijcai.2017/517
https://doi.org/10.1109/ACCESS.2016.2594839
https://doi.org/10.1109/ACCESS.2016.2594839
https://doi.org/10.1145/2939672.2939764
https://doi.org/10.1145/2939672.2939764
https://doi.org/10.1609/aaai.v34i04.6080
https://doi.org/10.1002/aehe.3205
https://doi.org/10.3102/1076998607309474


Psychological  Measurement, 1997, 21(1): 1–23. DOI: 10.

1177/0146621697211001.

 Wilson K H, Karklin Y, Han B J, Ekanadham C. Back to

the basics: Bayesian extensions of IRT outperform neural

networks  for  proficiency  estimation.  arXiv:  1604.02336,

2016. https://arxiv.org/abs/1604.02336, Nov. 2023.

[9]

 Tatsuoka  K  K,  Tatsuoka  M  M. Computerized  cognitive

diagnostic  adaptive  testing:  Effect  on  remedial  instruc-

tion as empirical validation. Journal of Educational Mea-

surement, 1997, 34(1): 3–20. DOI: 10.1111/j.1745-3984.1997.

tb00504.x.

[10]

 Leighton J P, Gierl M J, Hunka S M. The attribute hier-

archy  method  for  cognitive  assessment:  A  variation  on

Tatsuoka’s  rule-space  approach. Journal  of  Educational

Measurement, 2004, 41(3): 205–237. DOI: 10.1111/j.1745-

3984.2004.tb01163.x.

[11]

 Thai-Nghe  N,  Horváth  T,  Schmidt-Thieme  L.  Factoriza-

tion models for forecasting student performance. In Proc.

the  3rd  International  Conference  on  Educational  Data

Mining, June 2010, pp.11–20.

[12]

 Wang X J, Berger J O, Burdick D S. Bayesian analysis of

dynamic item response models in educational testing. The

Annals  of  Applied  Statistics, 2013, 7(1): 126–153. DOI:

10.1214/12-AOAS608.

[13]

 Anzanello M J, Fogliatto F S. Learning curve models and

applications: Literature review and research directions. In-

ternational Journal of Industrial Ergonomics, 2011, 41(5):

573–583. DOI: 10.1016/j.ergon.2011.05.001.

[14]

 Averell L, Heathcote A. The form of the forgetting curve

and  the  fate  of  memories. Journal  of  Mathematical  Psy-

chology, 2011, 55(1): 25–35. DOI: 10.1016/j.jmp.2010.08.

009.

[15]

 Ebbinghaus  H. Memory:  A  contribution  to  experimental

psychology. Annals  of  Neurosciences, 2013, 20(4): 155–
156. DOI: 10.5214/ans.0972.7531.200408.

[16]

 Malliaris A G. Wiener process. In Time Series and Statis-

tics,  Eatwell  J,  Milgate  M,  Newman  P  (eds.),  Springer,

1990, pp.316–318. DOI: 10.1007/978-1-349-20865-4_43.

[17]

 Liu  B  B,  Dong  W,  Liu  J  X,  Zhang  Y  T,  Wang  D  Y.

ProSy:  API-based  synthesis  with  probabilistic  model.

Journal  of  Computer  Science  and  Technology, 2020,

35(6): 1234–1257. DOI: 10.1007/s11390-020-0520-4.

[18]

 Qiang Y T, Fu Y W, Yu X, Guo Y W, Zhou Z H, Sigal

L. Learning  to  generate  posters  of  scientific  papers  by

probabilistic  graphical  models. Journal  of  Computer  Sci-

ence and Technology, 2019, 34(1): 155–169. DOI: 10.1007/

s11390-019-1904-1.

[19]

 Zhang  Q. Dynamic  uncertain  causality  graph  for  knowl-

edge  representation  and  reasoning:  Discrete  dag  cases.

Journal  of  Computer  Science  and  Technology, 2012,

27(1): 1–23. DOI: 10.1007/s11390-012-1202-7.

[20]

 Leighton  J  P,  Gierl  M  J.  Cognitive  Diagnostic  Assess-

ment  for  Education:  Theory  and  Applications.  Cam-

bridge University Press, 2007.

[21]

 Rasch  G.  Probabilistic  Models  for  Some  Intelligence  and

Attainment Tests. MESA Press, 1993.

[22]

 Khajah  M,  Wing  R M,  Lindsey  R V,  Mozer  M C.  Inte-[23]

grating  latent-factor  and  knowledge-tracing  models  to

predict individual differences in learning. In Proc. the 7th

International  Conference  on  Educational  Data  Mining,

Jul. 2014, pp.99–106.
 Ekanadham C, Karklin Y. T-SKIRT: Online estimation of

student proficiency in an adaptive learning system. arXiv:

1702.04282,  2017. https://arxiv.org/abs/1702.04282,  Nov.

2023.

[24]

 Huang Z Y,  Liu Q,  Chen Y Y et  al. Learning or  forget-

ting?  A  dynamic  approach  for  tracking  the  knowledge

proficiency  of  students. ACM  Trans.  Information  Sys-

tems, 2020, 38(2): 1–33. DOI: 10.1145/3379507.

[25]

 Cen  H,  Koedinger  K,  Junker  B.  Learning  factors  analy-

sis—A general method for cognitive model evaluation and

improvement.  In Proc.  the  8th  International  Conference

on  Intelligent  Tutoring  Systems,  Jun.  2006,  pp.164–175.
DOI: 10.1007/11774303_17.

[26]

 Pavlik  P I,  Cen  H,  Koedinger  K R.  Performance  factors

analysis—A  new  alternative  to  knowledge  tracing.  In

Proc.  the  14th  International  Conference  on  Artificial  In-

telligence  in  Education,  Jul.  2009.  DOI: 10.3233/978-1-

60750-028-5-531.

[27]

 Elo A E. The Rating of Chess Players, Past and Present.

Arco Pub, 1978.

[28]

 Pelánek  R.  Application  of  time  decay  functions  and  the

elo system in student modeling. In Proc. the 7th Interna-

tional Conference on Educational Data Mining, Jul. 2014,

pp.21–27.

[29]

 Nižnan  J,  Pelánek  R,  Rihák  J.  Student  models  for  prior

knowledge estimation. In Proc. the 8th International Con-

ference  on  Educational  Data  Mining,  Jun.  2015,  pp.109–
116.

[30]

 Pelánek  R,  Papoušek  J,  Řihák  J,  Stanislav  V,  Nižnan  J.

Elo-based  learner  modeling  for  the  adaptive  practice  of

facts. User Modeling and User-Adapted Interaction, 2017,

27(1): 89–118. DOI: 10.1007/s11257-016-9185-7.

[31]

 Yudelson  M.  Individualization  of  Bayesian  knowledge

tracing  through  Elo-infusion.  In Proc.  the  22nd  Interna-

tional  Conference  on  Artificial  Intelligence  in  Education,

Jun. 2021, pp.412–416. DOI: 10.1007/978-3-030-78270-2_73.

[32]

 Kaya  Y,  Leite  W  L. Assessing  change  in  latent  skills

across  time  with  longitudinal  cognitive  diagnosis  model-

ing:  An  evaluation  of  model  performance. Educational

and  Psychological  Measurement, 2017, 77(3): 369–388.
DOI: 10.1177/0013164416659314.

[33]

 Zhan  P  D,  Jiao  H,  Liao  D  D,  Li  F  M. A  longitudinal

higher-order  diagnostic  classification  model. Journal  of

Educational  and  Behavioral  Statistics, 2019, 44(3): 251–
281. DOI: 10.3102/1076998619827593.

[34]

 Pan Q Q, Qin L, Kingston N. Growth modeling in a diag-

nostic  classification  model  (DCM)  framework—A  multi-

variate longitudinal diagnostic classification model. Fron-

tiers  in  Psychology, 2020, 11: 1714. DOI: 10.3389/fpsyg.

2020.01714.

[35]

 Zhan P D, He K R. A longitudinal diagnostic model with

hierarchical  learning  trajectories. Educational  Measure-

ment:  Issues  and  Practice, 2021, 40(3): 18–30. DOI: 10.

[36]

Jia-Yu Liu et al.: Probabilistic Temporal Cognitive Diagnosis in Online Learning Systems 1219

https://doi.org/10.1177/0146621697211001
https://doi.org/10.1177/0146621697211001
https://arxiv.org/abs/1604.02336
https://doi.org/10.1111/j.1745-3984.1997.tb00504.x
https://doi.org/10.1111/j.1745-3984.1997.tb00504.x
https://doi.org/10.1111/j.1745-3984.1997.tb00504.x
https://doi.org/10.1111/j.1745-3984.1997.tb00504.x
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x
https://doi.org/10.1111/j.1745-3984.2004.tb01163.x
https://doi.org/10.1214/12-AOAS608
https://doi.org/10.1214/12-AOAS608
https://doi.org/10.1214/12-AOAS608
https://doi.org/10.1016/j.ergon.2011.05.001
https://doi.org/10.1016/j.jmp.2010.08.009
https://doi.org/10.1016/j.jmp.2010.08.009
https://doi.org/10.5214/ans.0972.7531.200408
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/978-1-349-20865-4_43
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-020-0520-4
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-019-1904-1
https://doi.org/10.1007/s11390-012-1202-7
https://doi.org/10.1007/s11390-012-1202-7
https://doi.org/10.1007/s11390-012-1202-7
https://doi.org/10.1007/s11390-012-1202-7
https://doi.org/10.1007/s11390-012-1202-7
https://doi.org/10.1007/s11390-012-1202-7
https://doi.org/10.1007/s11390-012-1202-7
https://arxiv.org/abs/1702.04282
https://doi.org/10.1145/3379507
https://doi.org/10.1007/11774303_17
https://doi.org/10.1007/11774303_17
https://doi.org/10.1007/11774303_17
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.3233/978-1-60750-028-5-531
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/s11257-016-9185-7
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1007/978-3-030-78270-2_73
https://doi.org/10.1177/0013164416659314
https://doi.org/10.3102/1076998619827593
https://doi.org/10.3389/fpsyg.2020.01714
https://doi.org/10.3389/fpsyg.2020.01714
https://doi.org/10.1111/emip.12422


1111/emip.12422.

 Zhan  P  D. Longitudinal  learning  diagnosis:  Minireview

and  future  research  directions. Frontiers  in  Psychology,

2020, 11: 1185. DOI: 10.3389/fpsyg.2020.01185.

[37]

 Corbett  A T,  Anderson  J  R. Knowledge  tracing:  Model-

ing the acquisition of procedural knowledge. User Model-

ing  and  User-Adapted  Interaction, 1994, 4(4): 253–278.
DOI: 10.1007/BF01099821.

[38]

 González-Brenes J, Huang Y, Brusilovsky P. General fea-

tures  in  knowledge  tracing  to  model  multiple  subskills,

temporal item response theory, and expert knowledge. In

Proc.  the  7th  International  Conference  on  Educational

Data Mining, Jul. 2014, pp.84–91.

[39]

 Käser  T,  Klingler  S,  Schwing  A  G,  Gross  M. Dynamic

Bayesian  networks  for  student  modeling. IEEE  Trans.

Learning Technologies, 2017, 10(4): 450–462. DOI: 10.1109/

TLT.2017.2689017.

[40]

 Pardos Z A, Heffernan N T. KT-IDEM: Introducing item

difficulty  to  the  knowledge  tracing  model.  In Proc.  the

19th International Conference on User Modeling, Adapta-

tion, and Personalization, Jul. 2011, pp.243–254. DOI: 10.

1007/978-3-642-22362-4_21.

[41]

 Thaker  K,  Huang  Y,  Brusilovsky  P,  He  D  Q.  Dynamic

knowledge  modeling  with  heterogeneous  activities  for

adaptive textbooks.  In Proc.  the 11th International Con-

ference  on  Educational  Data  Mining,  Jul.  2018,  pp.592–
595.

[42]

 Yudelson M V, Koedinger K R, Gordon G J. Individual-

ized  Bayesian  knowledge  tracing  models.  In Proc.  the

16th International Conference on Artificial Intelligence in

Education, Jul. 2013, pp.171–180. DOI: 10.1007/978-3-642-

39112-5_18.

[43]

 Liu Q, Huang Z Y, Yin Y, Chen E H, Xiong H, Su Y, Hu

G P. EKT: Exercise-aware knowledge tracing for student

performance prediction. IEEE Trans. Knowledge and Da-

ta Engineering, 2019, 33(1): 100–115. DOI: 10.1109/TKDE.

2019.2924374.

[44]

 Pardos Z A, Heffernan N T. Modeling individualization in

a  Bayesian  networks  implementation  of  knowledge  trac-

ing.  In Proc.  the  18th  International  conference  on  User

Modeling, Adaptation, and  Personalization,  Jun.  2010,

pp.255–266. DOI: 10.1007/978-3-642-13470-8_24.

[45]

 Pardos Z A, Heffernan N T. Using HMMs and bagged de-

cision trees to leverage rich features of user and skill from

an  intelligent  tutoring  system  dataset. Journal  of  Ma-

chine  Learning  Research  W&CP, 201040. https://people.

csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf,  Nov.

2023.

[46]

 Piech  C,  Spencer  J,  Huang  J,  Ganguli  S,  Sahami  M,

Guibas L, Sohl-Dickstein J. Deep knowledge tracing. arX-

iv:  1506.05908,  2015. https://arxiv.org/abs/1506.05908,

Nov. 2023.

[47]

 Zhang J N,  Shi  X J,  King I,  Yeung D Y.  Dynamic key-

value  memory  networks  for  knowledge  tracing.  In Proc.

the  26th  International  Conference  on  World  Wide  Web,

Apr. 2017, pp.765–774. DOI: 10.1145/3038912.3052580.

[48]

 Shen S H, Liu Q, Chen E H, Huang Z Y, Huang W, Yin[49]

Y,  Su  Y,  Wang  S  J.  Learning  process-consistent  knowl-

edge  tracing.  In Proc.  the  27th  ACM  SIGKDD  Confer-

ence on Knowledge Discovery & Data Mining, Aug. 2021,

pp.1452–1460. DOI: 10.1145/3447548.3467237.

 Huang T, Yang H L, Li Z, Xie H K, Geng J, Zhang H. A

dynamic knowledge diagnosis approach integrating cogni-

tive features. IEEE Access, 2021, 9: 116814–116829. DOI:

10.1109/ACCESS.2021.3105830.

[50]

 Lu Y, Wang D L, Meng Q G, Chen P H. Towards inter-

pretable  deep  learning  models  for  knowledge  tracing.  In

Proc. the 21st International Conference on Artificial Intel-

ligence in Education, Jul. 2020, pp.185–190. DOI: 10.1007/

978-3-030-52240-7_34.

[51]

 Pardos  Z  A,  Bergner  Y,  Seaton  D  T,  Pritchard  D  E.

Adapting  Bayesian  knowledge  tracing  to  a  massive  open

online course in edX. In Proc. the 6th International Con-

ference  on  Educational  Data  Mining,  Jul.  2013,  pp.137–
144.

[52]

 Johnson M J. Scaling cognitive modeling to massive open

environments.  In Proc.  the ICML Workshop on Machine

Learning in Education, Jul. 2015. http://ml4ed.cc/attach-

ments/XuY.pdf, Nov. 2023.

[53]

 Ruder S. An overview of gradient descent optimization al-

gorithms. arXiv: 1609.04747, 2016. https://arxiv.org/abs/

1609.04747, Nov. 2023.

[54]

 Bock R D, Aitkin M. Marginal maximum likelihood esti-

mation  of  item  parameters:  Application  of  an  EM  algo-

rithm. Psychometrika, 1981, 46(4): 443–459. DOI: 10.1007/

BF02293801.

[55]

 Segall D O. Multidimensional adaptive testing. Psychome-

trika, 1996, 61(2): 331–354. DOI: 10.1007/BF02294343.

[56]

 Feng M Y, Heffernan N, Koedinger K. Addressing the as-

sessment challenge with an online system that tutors as it

assesses. User  Modeling  and  User-Adapted  Interaction,

2009, 19(3): 243–266. DOI: 10.1007/s11257-009-9063-7.

[57]

 Chang H S, Hsu H J, Chen K T. Modeling exercise rela-

tionships in E-learning:  A unified approach.  In Proc.  the

8th  International  Conference  on  Educational  Data  Min-

ing, Jun. 2015, pp.532–535.

[58]

 Yang H Q,  Cheung  L P. Implicit  heterogeneous  features

embedding in deep knowledge tracing. Cognitive Compu-

tation, 2018, 10(1): 3–14. DOI: 10.1007/s12559-017-9522-0.

[59]

 Glorot X, Bengio Y. Understanding the difficulty of train-

ing  deep  feedforward  neural  networks.  In Proc.  the  13th

International  Conference  on  Artificial  Intelligence  and

Statistics, May 2010, pp.249–256.

[60]

 Liu Q, Wu R Z, Chen E H, Xu G D, Su Y, Chen Z G, Hu

G  P. Fuzzy  cognitive  diagnosis  for  modelling  examinee

performance. ACM Trans.  Intelligent Systems and Tech-

nology, 2018, 9(4): 1–26. DOI: 10.1145/3168361.

[61]

 Jang E E. A *validity narrative:  Effects  of  reading skills

diagnosis  on teaching and learning in  the  context  of  NG

TOEFL [Ph. D. Thesis]. University of Illinois at Urbana-

Champaign, Champagne, 2005.

[62]

 Gervet T, Koedinger K, Schneider J, Mitchell T. When is

deep  learning  the  best  approach  to  knowledge  tracing?.

Journal  of  Educational  Data  Mining, 2020, 12(3): 31–54.

[63]

1220 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

https://doi.org/10.1111/emip.12422
https://doi.org/10.3389/fpsyg.2020.01185
https://doi.org/10.1007/BF01099821
https://doi.org/10.1109/TLT.2017.2689017
https://doi.org/10.1109/TLT.2017.2689017
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1007/978-3-642-39112-5_18
https://doi.org/10.1109/TKDE.2019.2924374
https://doi.org/10.1109/TKDE.2019.2924374
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1007/978-3-642-13470-8_24
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://people.csail.mit.edu/zp/papers/pardos_JMLR_in_press.pdf
https://arxiv.org/abs/1506.05908
https://doi.org/10.1145/3038912.3052580
https://doi.org/10.1145/3447548.3467237
https://doi.org/10.1109/ACCESS.2021.3105830
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
https://doi.org/10.1007/978-3-030-52240-7_34
http://ml4ed.cc/attachments/XuY.pdf
http://ml4ed.cc/attachments/XuY.pdf
http://ml4ed.cc/attachments/XuY.pdf
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.1007/BF02293801
https://doi.org/10.1007/BF02293801
https://doi.org/10.1007/BF02294343
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s11257-009-9063-7
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1007/s12559-017-9522-0
https://doi.org/10.1145/3168361


DOI: 10.5281/zenodo.4143614.

 Hodges  J  L. The  significance  probability  of  the  Smirnov

two-sample  test. Arkiv  för  Matematik, 1958, 3(5): 469–
486. DOI: 10.1007/BF02589501.

[64]

 Wu R Z, Xu G D, Chen E H, Liu Q, Ng W. Knowledge

or  gaming?:  Cognitive  modelling  based  on  multiple-at-

tempt  response.  In Proc.  the  26th  International  Confer-

ence  on  World  Wide  Web  Companion,  Apr.  2017,

pp.321–329. DOI: 10.1145/3041021.3054156.

[65]

 Zhao X, Zhang J J, Li W S, Kahn K, Lu Y, Winters N.

Learners’ non-cognitive  skills  and  behavioral  patterns  of

programming: A sequential analysis. In Proc. the 21st In-

ternational  Conference  on  Advanced  Learning  Technolo-

gies,  Jul.  2021,  pp.168–172.  DOI: 10.1109/ICALT52272.

2021.00058.

[66]

 Jiang L, Wang P Y, Cheng K, Liu K P, Yin M H, Jin B,

Fu Y J.  EduHawkes:  A neural  Hawkes process  approach

for  online  study  behavior  modeling.  In Proc.  the  2021

SIAM  International  Conference  on  Data  Mining,  Apr.

2021, pp.567–575. DOI: 10.1137/1.9781611976700.64.

[67]

 Zhang H, Huang T, Liu S Y, Yin H, Li J, Yang H L, Xia

Y. A learning style classification approach based on deep

belief network for large-scale online education. Journal of

Cloud Computing, 2020, 9(1): 1–17. DOI: 10.1186/s13677-

020-00165-y.

[68]

 Chen Y X, Li X O, Liu J C, Ying Z L. Recommendation

system for adaptive learning. Applied Psychological Mea-

surement, 2018, 42(1): 24–41. DOI: 10.1177/014662161769

7959.

[69]

 Dang F R, Tang J T, Pang K Y, Wang T, Li S S, Li X.

Constructing  an  educational  knowledge  graph  with  con-

cepts  linked  to  Wikipedia. Journal  of  Computer  Science

and  Technology, 2021, 36(5): 1200–1211. DOI: 10.1007/

s11390-020-0328-2.

[70]

 Zhu J Z, Jia Y T, Xu J, Qiao J Z, Cheng X Q. Modeling

the  correlations  of  relations  for  knowledge  graph  embed-

ding. Journal of Computer Science and Technology, 2018,

33(2): 323–334. DOI: 10.1007/s11390-018-1821-8.

[71]

 Nakagawa H, Iwasawa Y, Matsuo Y. Graph-based knowl-

edge  tracing:  Modeling  student  proficiency  using  graph

neural  network.  In Proc.  the  2019  IEEE/WIC/ACM In-

ternational  Conference  on  Web  Intelligence,  Oct.  2019,

pp.156–163. DOI: 10.1145/3350546.3352513.

[72]

 Chen  C  H,  Liu  G  Z,  Hwang  G  J. Interaction  between

gaming  and  multistage  guiding  strategies  on  students’
field  trip  mobile  learning  performance  and  motivation.

British  Journal  of  Educational  Technology, 2016, 47(6):

1032–1050. DOI: 10.1111/bjet.12270.

[73]

 Hwang G J, Wang S Y. Single loop or double loop learn-

ing:  English vocabulary learning performance and behav-

ior of students in situated computer games with different

guiding  strategies. Computers & Education, 2016, 102:

188–201. DOI: 10.1016/j.compedu.2016.07.005.

[74]

 Chen S Y, Yeh C C. The effects of cognitive styles on the

use of hints in academic English: A learning analytics ap-

proach. Educational  Technology & Society, 2017, 20(2):

251–264.

[75]

 Muir  M,  Conati  C.  Understanding  student  attention  to

adaptive hints with eye-tracking. In Proc. the 19th Inter-

national  Conference  on  Advances  in  User  Modeling,  Jul.

2011, pp.148–160. DOI: 10.1007/978-3-642-28509-7_15.

[76]

 Wang  Y  T,  Heffernan  N  T.  The “assistance” model:

Leveraging  how  many  hints  and  attempts  a  student

needs.  In Proc.  the  24th  International  Florida  Artificial

Intelligence Research Society Conference, May 2011.

[77]

Jia-Yu Liu received his B.S. degree

in applied mathematics from Universi-

ty  of  Science  and  Technology  of  Chi-

na (USTC), Hefei, in 2020. Now, he is

pursuing his Ph.D. degree in School of

Data  Science,  USTC,  Hefei,  majoring

in data science (computer science and

technology). His  research  interests  include  data  mining

and intelligent education systems. He has published pa-

pers in refereed conference proceedings, such as KDD’23,

AAAI’23, and ICDM’22.

Fei  Wang received  his  B.E.  degree

in  computer  science  and  technology

from  the  University  of  Science  and

Technology  of  China  (USTC),  Hefei,

in  2018.  He  is  currently  working  to-

ward his Ph.D. degree majoring in ap-

plied  computer  technology  with  the

School  of  Computer  Science  and  Technology,  USTC,

Hefei. His research interests include data mining and in-

telligent education systems. He has published papers in

refereed  journals  and  conference  proceedings,  such  as

TLT, AAAI, KDD, and ICDM.

Hai-Ping  Ma received  her  B.E.  de-

gree in computer science and technolo-

gy  from  Anhui  University,  Hefei,  in

2008, and her Ph.D. degree in comput-

er  application  technology  from  the

University  of  Science  and  Technology

of  China,  Hefei,  in  2013.  She  is  cur-

rently  an  associate  professor  of  the  Institutes  of  Physi-

cal Science and Information Technology, Anhui Univer-

sity,  Hefei.  Her  current  research  interests  include  data

mining  and  multi-objective  optimization  methods  and

their applications.

Jia-Yu Liu et al.: Probabilistic Temporal Cognitive Diagnosis in Online Learning Systems 1221

https://doi.org/10.5281/zenodo.4143614
https://doi.org/10.1007/BF02589501
https://doi.org/10.1145/3041021.3054156
https://doi.org/10.1109/ICALT52272.2021.00058
https://doi.org/10.1109/ICALT52272.2021.00058
https://doi.org/10.1137/1.9781611976700.64
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1186/s13677-020-00165-y
https://doi.org/10.1177/0146621617697959
https://doi.org/10.1177/0146621617697959
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-020-0328-2
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1007/s11390-018-1821-8
https://doi.org/10.1145/3350546.3352513
https://doi.org/10.1111/bjet.12270
https://doi.org/10.1016/j.compedu.2016.07.005
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15
https://doi.org/10.1007/978-3-642-28509-7_15


Zhen-Ya  Huang received  his  Ph.D.

degree  in  applied  computer  technolo-

gy from the University of Science and

Technology  of  China  (USTC),  Hefei,

in  2020.  He  is  currently  an  associate

professor with USTC, Hefei.  His main

research  interests  include  artificial  in-

telligence, textual intelligence, knowledge reasoning, and

intelligent education. He has published more than 50 pa-

pers in refereed journals and conference proceedings, in-

cluding  TKDE,  TOIS,  TNNLS,  AAAI,  KDD,  SIGIR,

and ICDM. Dr. Huang has served regularly on the pro-

gram committee of a number of conferences and is a re-

viewer for the leading academic journals.

Qi Liu received his Ph.D. degree in

computer  science  from  the  University

of  Science  and  Technology  of  China

(USTC), Hefei, in 2013. He is current-

ly  a  professor  with  USTC,  Hefei.  His

general  areas  of  research  interest  are

data mining and knowledge discovery,

and artificial intelligence. His research is also supported

by  the  National  Science  Fund  for  Excellent  Young

Scholars  and the Youth Innovation Promotion Associa-

tion  of  Chinese  Academy  of  Sciences  (CAS).  He  has

published more than 100 papers in refereed journals and

conference proceedings,  such as  TKDE, TOIS,  TNNLS,

NeurIPS, ICML, ICLR, AAAI, and KDD. He has served

regularly in the program committee of a number of con-

ferences and is a reviewer for the leading academic jour-

nals in his fields. Dr. Liu is the recipient of the KDD’18

Best Student Paper Award (Research) and the ICDM’11

Best  Research  Paper  Award,  and  the  Alibaba  DAMO

Academy Young Fellow.

En-Hong  Chen received  his  Ph.D.

degree  in  computer  science  from  the

University  of  Science  and  Technology

of China (USTC), Hefei, in 1996. He is

currently  a  professor  and  the  execu-

tive  dean  of  the  School  of  Data  Sci-

ence,  USTC,  Hefei.  His  general  areas

of  research  interest  include  data  mining  and  machine

learning, artificial intelligence. His research is supported

by  the  National  Science  Foundation  for  Distinguished

Young  Scholars  of  China.  He  has  published  more  than

200 papers in refereed conferences and journals,  includ-

ing  TPAMI,  TKDE,  TNNLS,  TOIS,  ICML,  NeurIPS,

KDD, ICLR and AAAI. He is an associate editor of the

IEEE TKDE, IEEE TSMCS, ACM TIST, and WWWJ.

He  has  served  regularly  on  the  organization  and  pro-

gram committees  of  numerous conferences,  including as

a program co-chair of ICKG’20, and a program co-chair

for PAKDD’22. Dr. Chen received the Best Application

Paper  Award  on  KDD’08,  the  Best  Student  Paper

Award on KDD’18 (Research), the Best Research Paper

Award on ICDM’11. He is a fellow of CCF and IEEE.

Yu Su received his Ph.D. degree in

computer  application  technology  from

Anhui University, Hefei, in 2020. He is

currently  an  associate  professor  of

School of Computer Science and Arti-

ficial  Intelligence,  Hefei  Normal  Uni-

versity,  Hefei.  His  main  areas  of  re-

search  include  data  mining,  machine  learning,  recom-

mender  systems  and  intelligent  education  systems.  He

has published several papers in referred conference pro-

ceedings and journals, such as KDD’21, KDD’20, ICDM’

20, AAAI’18, IJCAI’15, and ACM TIST.

1222 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6


	1 Introduction
	2 Related Work
	2.1 Cognitive Diagnosis
	2.2 Dynamic Learning Process Modeling

	3 Proposed Method: UTIRT
	3.1 Problem Definition
	3.2 Model Framework
	3.3 Model Training
	3.4 Model Inference
	3.5 Relation with Other CD Models

	4 Experiments
	4.1 Dataset Description
	4.2 Experimental Setup
	4.2.1 Parameters Setting
	4.2.2 Comparison Approaches

	4.3 Experimental Results
	4.3.1 Knowledge Proficiency Estimation
	4.3.2 Next Score Prediction
	4.3.3 Temporality Utilization Analysis


	5 Discussion
	6 Conclusions
	Conflict of Interest
	References

