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Abstract    Hardware prefetching and replacement policies are two techniques to improve the performance of the memo-

ry subsystem. While prefetching hides memory latency and improves performance, interactions take place with the cache

replacement policies, thereby introducing performance variability in the application. To improve the accuracy of reuse of

cache blocks in the presence of hardware prefetching, we propose Prefetch-Adaptive Intelligent Cache Replacement Policy

(PAIC). PAIC is designed with separate predictors for prefetch and demand requests, and uses machine learning to opti-

mize reuse prediction in the presence of prefetching. By distinguishing reuse predictions for prefetch and demand requests,

PAIC can better combine the performance benefits from prefetching and replacement policies. We evaluate PAIC on a set

of 27 memory-intensive programs from the SPEC 2006 and SPEC 2017. Under single-core configuration, PAIC improves

performance over Least Recently Used (LRU) replacement policy by 37.22%, compared with improvements of 32.93% for

Signature-based Hit Predictor (SHiP), 34.56% for Hawkeye, and 34.43% for Glider. Under the four-core configuration, PA-

IC improves performance over LRU by 20.99%, versus 13.23% for SHiP, 17.89% for Hawkeye and 15.50% for Glider.

Keywords    hardware prefetching, machine learning, Prefetch-Adaptive Intelligent Cache Replacement Policy (PAIC),

replacement policy

 

 1    Introduction

The latest research seeks to make use of machine

learning for improving system performance, including

branch prediction in modern microprocessors[1],  cache

replacement[2, 3], and memory scheduling[4]. The intel-

ligent  cache  replacement  policies  based  on  machine

learning  algorithms[2, 3] use  program  counter  (PC),

memory  address,  etc.,  as  features  to  learn  past

caching  behaviors  and  predict  future  caching  priori-

ties,  thus  effectively  improving  the  management  of

the last-level cache (LLC). Relative to the traditional

heuristic-based  cache  replacement  policies[5, 6],  learn-

ing-based  cache  replacement  policies  improve  the  ac-

curacy  of  cache  line  reuse  prediction  under  complex

access modes[7, 8], thereby making more accurate deci-

sions for insertion and eviction.

Prefetching  data  into  the  cache  hierarchy  before

actual  references  hides  memory  latency,  thus  signifi-

cantly  improving the  performance.  However,  harmful

prefetching  can  cause  cache  pollution  and  interfere

with cache management, thus leading to performance

degradation[9, 10].  In  the  presence  of  prefetching,  the

current learning-based cache replacement policies may

provide  minimal  performance  improvements  or  de-

grade  the  performance.  Most  of  replacement  policies

do  not  distinguish  between  prefetch  and  demand  re-

quests. Thus, these replacement policies are unable to

distinguish useful prefetches from useless prefetches in

most cases.

Most  existing  work  on  prefetch-aware  cache  re-

placement  focuses  on  minimizing  the  cache  pollution

due  to  inaccurate  prefetchers.  Several  solutions[9, 11]

involve  fine-tuned  cache  insertion  and  replacement
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priorities  for  prefetches  to  mitigate  the  degree  of

prefetch-induced  LLC  pollution.  In  this  paper,  we

propose Prefetch-Adaptive Intelligent Cache Replace-

ment  Policy  (PAIC).  PAIC  also  deals  with  inaccu-

rate prefetches. It learns to discard inaccurate and re-

dundant prefetches at the PC granularity. By assign-

ing low priority to both demand loads and prefetches

that are likely to be prefetched again, PAIC can make

better  use  of  the  cache,  thus  reducing  prefetch-in-

duced cache pollution.

The main goals of PAIC are 1) to improve the ac-

curacy  of  reuse  prediction  for  both  prefetch  and  de-

mand requests and 2) to avoid cache pollution due to

harmful  prefetching.  PAIC  accomplishes  both  these

goals using different predictors based on Integer Sup-

port  Vector  Machine  (ISVM)[3] for  prefetch  and  de-

mand  requests.  Thus,  PAIC  reduces  cache  pollution

due  to  prefetch  requests  and  combines  the  perfor-

mance benefits from hardware prefetching and intelli-

gent cache replacement.

We  show  that  the  intelligent  cache  replacement

policy that adapts to prefetching improves the re-ref-

erence  predictions  for  prefetch  and  demand requests.

In  general,  this  paper  makes  the  following  contribu-

tions.

• We characterize the state-of-the-art learning-ba-

sed cache replacement policies in the presence and ab-

sence  of  hardware  prefetching.  Learning-based  cache

replacement policies improve application performance,

and prefetching further  improves  performance by ex-

tracting useful  data into the cache in advance.  How-

ever,  we  show  that  without  a  prefetch-adaptive  re-

placement  policy,  prefetching  will  interfere  with  the

management  of  the  LLC,  thereby  causing  perfor-

mance degradation and variability.

• We propose PAIC, whose novelty is two-folded.

First, PAIC applies machine learning to design differ-

ent cache replacement predictors for prefetch and de-

mand  requests.  Second,  it  improves  the  accuracy  of

reuse  predictions  for  both  prefetch  and  demand  re-

quests, which combines the performance benefits from

prefetching and cache replacement.

• Finally, we evaluate PAIC in detail with SPEC

2006 and the latest SPEC 2017 benchmarks. On aver-

age,  PAIC  provides  a  performance  improvement  of

36.61%  and  21.46%  for  single-core  memory-intensive

applications  and  the  four-core  configuration,  respec-

tively.  PAIC can adapt to different data prefetchers,

and  bring  more  effective  performance  improvement

relative to the state-of-the-art replacement policies.

The  remainder  of  this  paper  is  organized  as  fol-

lows.  In Section 2,  we  discuss  three  fundamental  ob-

servations that motivate us to propose PAIC. Section

3 describes implementation details of PAIC. We then

describe  our  solution  and  empirically  evaluate  it  in

Section 4. Section 5 discusses  related  work  and Sec-

tion 6 concludes the paper.

 2    Characterization & Analysis of

Replacement Policies

To explore the impact of hardware prefetching on

the performance of cache management, we model the

signature  path  prefetcher  (SPP)[12] to  evaluate  three

representative  learning-based  cache  replacement  poli-

cies in the presence and absence of prefetching: Signa-

ture-based  Hit  Predictor  (SHiP)[7],  Hawkeye[8],  and

Glider[3],  whose  performance  will  be  evaluated  in  the

presence of hardware prefetching. SHiP is the first to

use signatures (e.g., the miss-causing PC, the instruc-

tion  sequence  leading  to  the  load)  to  predict  the  re-

reference interval of an incoming cache line. Hawkeye

is  the  winner  of  the  2nd  JILP  Cache  Replacement

Championship①.  Glider  is  the  first  to  apply  deep

learning to predict reuse distance.

 2.1    Prefetch and Demand Requests

From  the  cache  management  perspective,  the

cache access  patterns including prefetch and demand

requests  exhibit  different  properties.  A  demand  re-

quest  is  from  the  processor  for  instructions  or  data

that  are  known  to  be  required  by  the  processor.  A

prefetch  request  is  issued  by  the  prefetcher  ahead  of

the processor to hide the entire latency of memory ac-

cesses.  However,  prefetched  blocks  can  potentially

pollute  the  cache  by  evicting  the  blocks  which  are

more  useful.  In  general,  cache  lines  inserted  into  the

LLC by demand requests are more likely to be perfor-

mance-critical than those by prefetch requests. More-

over,  prefetching  does  not  always  improve  perfor-

mance  and  sometimes  may  even  degrade  it.  For  ex-

ample,  useless  prefetch  requests  unnecessarily  con-

sume  valuable  off-chip  bandwidth,  and  useless

prefetched  data  may  evict  a  useful  block  from  the

cache.
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Many replacement  policies  do  not  distinguish  be-

tween  prefetch  and  demand  requests.  Such  policies

are more likely to cause cache pollution and increase

the number of cache misses.

 2.2    Performance  Variability  Under  Various

Replacement Policies with Prefetching

Fig.1 shows the application performance with the

aforementioned cache replacement policies in the pres-

ence  of  prefetching.  The  graph  shows  that  prefetch-

ing can significantly improve application performance

by approximately 32%. However, for the performance

of  individual  applications  in  each  workload  category,

we observe significant variations across different cache

replacement policies. Fig.2 and Fig.3 show the perfor-

mance  variabilities  in  the  absence  and  presence  of

prefetching,  respectively.  In  both  figures,  the x-axis

represents different workloads in the experiment, and

the y-axis  represents  the  performance  relative  to  the

baseline Least Recently Used (LRU) replacement poli-

cy[13] without prefetching.

Fig.2 shows that in the absence of prefetching, the

learning-based cache replacement policies improve the

performance  of  various  applications.  However,  in  the

presence of prefetching, we observe differential perfor-

mance  effects.  For  example,  sphinx3  achieves

19%– 22%  performance  improvement  over  LRU  from

learning-based  cache  replacement  policies  in  the  ab-

sence  of  prefetching.  However,  as  shown  in Fig.3,  in

the  presence  of  prefetching,  the  improvement  of

sphinx3 over LRU reduces to 0.22% on average.

Fig.3 illustrates  that  in  the  presence  of  prefetch-

ing, the performance improvements from learning-ba-

sed  cache  replacement  policies  degrade  significantly.

Designing an intelligent cache replacement policy that

adapts to prefetching will further improve the performa-

nce of such applications in the presence of prefetching.
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Fig.1.   Hardware  prefetching  significantly  improves  application  performance.  (a)  Speedup  for  SPEC 2006.  (b)  Speedup  for  SPEC
2017. (c) Speedup for all benchmarks.
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Fig.2.   Performance  of  individual  applications  under  cache  replacement  policies  without  prefetching.  (a)  Speedup  for  SPEC 2006.
(b) Speedup for SPEC 2017.
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 2.3    Low LLC Reuse of Prefetch Requests

Previous  studies[10, 11, 14] have  shown that  a  large

fraction of prefetches are dead in the LLC. Low reuse

of prefetched cache lines at the LLC can be attribut-

ed  to  either  prefetcher  pollution  or  timely  data

prefetching  by  upper  levels  of  the  cache  hierarchy.

Subsequent demand requests are directly served in L2

and never reach the LLC. As a result, the filtering of

temporal  locality  by  smaller  caches  leads  to  lower

reuse  of  prefetched  lines  in  the  LLC.  Therefore,  we

propose a replacement policy that can predict the re-

reference of prefetch requests, and preferentially evict

useless prefetches, thus improving the performance of

applications under prefetching.

In  summary,  the  appearance  of  cache-averse

prefetched cache lines at the LLC and reduced gains

from learning-based cache replacement policies in the

presence of hardware prefetching necessitate the need

for PAIC. We describe PAIC in detail in Section 3.

 3    PAIC Design and Implementation

Prefetch  requests  have  different  properties  rela-

tive to demand requests. Generally, cache lines insert-

ed into LLC by demand requests are more likely criti-

cal  for  the  performance  relative  to  the  prefetch  re-

quests.  PAIC  distinguishes  the  caching  behaviors  of

demands  and  prefetches  through  different  predictors

for the corresponding requests.

To  mitigate  the  degree  of  prefetch-induced  inter-

ference,  PAIC makes  a  re-reference  prediction at  the

granularity of a request type. Specifically, based on a

rich  dynamic  program  context,  two  hardware-friend-

ly  ISVM  models  are  designed,  each  of  which  uses  a

memory access sequence, thus significantly improving

the  prediction  of  re-reference  for  prefetch  and  de-

mand  requests.  Thus,  PAIC  effectively  caches  the

most useful demand- and prefetch-requested data and

distinguishes useful prefetches from useless prefetches.

Fig.4 shows the overall  structure  of  PAIC.  PAIC

can reduce cache pollution by distinguishing between

demand  loads  and  prefetches.  PAIC  uses  two  PC-

based predictors to determine whether a demand load

or a prefetch is likely to be prefetched again and uses

this information to insert such lines with a low priori-

ty. Such low priority lines will be preferentially evict-

ed and can mitigate prefetch-induced interference.

PAIC’s main components comprise the PAIC pre-

dictor  which  makes  eviction  decisions  and  DMINgen

which  simulates  the  Demand-MIN[15] to  produce  la-

bels  that  train  the  PAIC predictor.  Each component

will be described in more detail.

 3.1    DMINgen

DMINgen determines the prospective cache if De-

mand-MIN[15] has been used. Demand-MIN evicts the

line  that  is  prefetched  furthest  in  the  future,  thus

minimizing  the  number  of  demand  misses. Fig.5

shows an access  sequence,  wherein  demand loads  are

shown  in  blue  and  prefetches  in  yellow.  For  a  cache

that  can  hold  two  cache  lines  and  initially  holds A
and B,  when line C is loaded into the full cache, the

eviction of A or B will  result in different numbers of

demand misses.

t = 1

Belady’ s  MIN  algorithm[8] produces  two  demand

misses.  The  first  demand miss  occurs  at ,  when
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Fig.3.  Performance of individual applications under cache replacement policies in the presence of prefetching. (a) Speedup for SPEC
2006. (b) Speedup for SPEC 2017.
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t = 4

line C is loaded into a full cache. Fig.5(a) shows that

Belady’s MIN algorithm evicts A, which is reused fur-

ther  in  the  future  than B.  The  second  demand  miss

occurs at , when A is loaded.

t = 2

t = 3

t = 1

t = 1

t = 3

t = 4

B will  be  prefetched  at ,  such  that  the  de-

mand reference  to B at  hits  irrespective  of  our

decision  at ,  thus  reducing  the  number  of  de-

mand misses. Fig.5(b) shows at , B gets evicted

instead of A, and the demand reference to B at 

and  that  to A at  both  hit  in  the  cache.  Thus,

the  Demand-MIN  exchanges  a  prefetch  hit  for  a  de-

mand  hit,  resulting  in  a  single  demand  miss  (to C).

Here, to minimize demand misses, Demand-MIN pref-

erentially evicts B, which is prefetched furthest in the

future.

To  reconstruct  the  Demand-MIN  algorithm  for

past  accesses,  we  extend  the  concept  of  usage  inter-

val  defined  in  Hawkeye  (the  interval  between  two

consecutive references to the same cache line). To dis-

tinguish  between  demand  loads  and  prefetches,  we

identify the endpoint of the usage interval as being a

demand  access  (D)  or  a  prefetch  (P).  Four  types  of

usage intervals are obtained: D-D, P-D, P-P, and D-

P. If we include open intervals, representing lines that

are never reused, there would be two more types: P-

open and D-open. The first two types of intervals (D-

D  and  P-D)  are  cached  by  Demand-MIN  if  there  is

space in the cache,  while  the last  two types (D-open

and  P-open)  are  preferentially  evicted  by  Demand-

MIN as they will never be reused.

The benefit of Demand-MIN lies in evicting inter-

vals  that  end with a prefetch.  For the intervals  that

end with a prefetch, including D-P and P-P, demand

hits  are  not  yielded;  therefore  Demand-MIN  evicts

these  intervals  to  make  room  for  other  intervals  to

yield demand hits.
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Fig.4.  Overview of PAIC.
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Fig.5.  (a) Belady’s MIN results in two demand misses. (b) Demand-MIN results in one demand miss.
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 3.2    PAIC Predictor

The  second  major  component  of  PAIC comprises

two different  sub-predictors  (the  prefetch  sub-predic-

tor  and  the  demand  sub-predictor)  based  on  ISVM.

We separate  the  prediction  for  prefetch  and  demand

requests  using  the  two  sub-predictors.  The  caching

behaviors  of  load  instructions  resulting  in  prefetch

and demand accesses may be different and cannot be

treated equally.  For example,  a load instruction that

loads cache-friendly demand accesses but issues inac-

curate prefetches will be classified as cache-friendly by

the  demand  predictor  and  cache-averse  by  the

prefetch predictor.

PAIC  uses  a  PC-based  prefetch  sub-predictor  to

provide  replacement  priorities  for  prefetches.  For  ex-

ample,  the  prefetch  sub-predictor  can  learn  that

prefetches  triggered  by  a  certain  PC are  more  likely

inaccurate  relative  to  those  triggered  by  a  different

PC.  PAIC  mitigates  the  degree  of  prefetch-induced

cache interference by evicting inaccurate prefetches.

PAIC  improves  the  prediction  accuracy  by  ex-

ploiting  richer  dynamic  program  context,  i.e.,  the

most  recent  PCs  of  memory  access  instructions  that

accessed  LLC.  Previous  work[3] has  shown  that  a

longer history of past PCs would benefit predictive re-

placement policies in the LLC, and the prediction ac-

curacy is insensitive to the order of these PCs but de-

pends  on  the  existence  of  important  PCs.  Therefore,

we remove the repeated PCs in the memory access se-

quence, ignore the order between PCs, and feed these

simplified features into ISVM.

k

k = 5

Fig.6 shows  the  hardware  implementation  of  the

PAIC  predictor,  which  is  comprised  of  three  main

components:  1)  a  PC  history  register  (PCHR),  2)  a

prefetch ISVM table (the ISVM_pf table) correspond-

ing  to  the  prefetch  sub-predictor,  and  3)  a  demand

ISVM table (the ISVM_de table) corresponding to the

demand  sub-predictor.  The  PCHR  maintains  an  un-

ordered list of the last  PCs for each core. We mod-

el PCHR as a small LRU cache that tracks the last k
unique PCs (in our experiments, we set ). There

is an ISVM for each PC, and the ISVM table tracks

the weights of each PC’s ISVM. To distinguish re-ref-

erence  predictions  for  prefetch  and  demand requests,

separate ISVM tables for prefetch and demand access-

es are used. We model each table as a direct-mapped

cache, indexed by the hash of the current PC (PCcur-

rent), thus returning its corresponding ISVM weights.

Each PC’s ISVM consists of 16 weights for differ-

ent  possible  PCs  in  the  history  register.  To  identify

the weight corresponding to each PC in the PCHR, a

4-bit  hash is  created for  each element  in  the  PCHR,

and  we  retrieve  these  weights  in  the  prefetch  or  de-

mand ISVM table. For example, as shown in Fig.6, as

the current prefetch access, PCHR contains PC 1, PC

current

&& is_pf

current

&& is_de

 
 PC 1, PC 2, PC 6, PC 10, PC 15

PC History Register (PCHR)

ISVM_pf
Table

ISVM 

ISVM 

...

ISVM_de
Table

...

ISVM 2

ISVM 1

ISVM 1

ISVM 2









...

...

Cache-Friendly or
Cache-Averse

Cache-Friendly or
Cache-Averse

∑  

∑  









 
Fig.6.  PAIC predictor.
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2, PC 6, PC 10, and PC 15, and we retrieve weight1,
weight2, weight6, weight10,  and weight15 in  the

ISVM_pf table for both training and prediction.

Below we discuss the training and prediction oper-

ations of the PAIC predictor in more detail.

 3.2.1    Training

PAIC’s predictors are trained based on the behav-

iors  of  a  few  sampled  sets[8].  Upon  access  to  a  sam-

pled  set,  according  to  the  type  of  requests  (i.e.,  de-

mand or prefetch), PAIC retrieves the weights corre-

sponding to the current PC and the PCHR. If DMIN-

gen determines that the cache line should be cached,

the weights will be increased by 1; otherwise they will

be  decreased  by  1.  The  weights  are  not  updated  if

their sum is above a certain threshold.  To set a rea-

sonable threshold, PAIC dynamically selects a thresh-

old  from  a  set  of  fixed  ones.  PAIC  can  better  learn

the caching behaviors of load instructions that result

in prefetch and demand accesses by distinguishing be-

tween the prefetch and demand requests.

 3.2.2    Prediction

PAIC  improves  the  prediction  accuracy  in  the

presence  of  prefetching  with  two  different  predictors

to separate the prediction of prefetch and demand re-

quests.  To  make  predictions  at  the  granularity  of  a

request  type,  the  weights  corresponding  to  the  cur-

rent  PC and the  PCHR are  summed.  If  the  summa-

tion is greater than or equal to the threshold, we pre-

dict  that  the line  is  cache-friendly and insert  it  with

high  priority  (RRPV =  0).  If  the  summation  is  less

than  0,  we  predict  that  the  line  is  cache-averse  and

insert  it  with  low  priority  (RRPV = 7).  For  the  re-

maining  cases,  we  determine  that  the  line  is  cache-

friendly  with  a  low  confidence  and  insert  it  with

medium  priority  (RRPV =  2).  The  re-reference  pre-

diction  value  (RRPV)[6] indicates  the  relative  impor-

tance of cache lines.

 3.3    Hardware Overhead

For  a  2  MB LLC,  PAIC’ s  budgets  for  replacem-

ent state per line, sampler, and DMINgen are 12 KB,

12.7  KB,  and  4  KB,  respectively.  The  overhead  of

PAIC mainly comes from the ISVM-based PAIC pre-

dictor. For each ISVM, we track 16 weights, and each

weight is 8-bit wide. Therefore, each ISVM consumes

16  bytes.  Since  we  track 2 048 PCs  and  distinguish

between  prefetch  and  demand  requests,  PAIC's  pre-

dictors consume a total of 65.5 KB. The PCHR with

a  history  of  the  last  five  accesses  is  only  0.1  KB.

Therefore, the total hardware budget of PAIC is 94.3

KB. Since the PAIC’s predictors require only two ta-

ble  lookups  for  both  training  and  prediction,  these

predictors’ latency can be easily hidden by the laten-

cy of accessing the LLC.

Designing separate predictors for prefetch and de-

mand requests  makes  a  significant  impact  on  perfor-

mance as shown in Section 4. Given the results of the

ISVM  table  size  tuning,  the  hardware  overhead  of

PAIC  is  saved  by  reducing  the  entries  of  ISVM  ta-

bles as described in Subsection 4.2.

 4    Evaluation

 4.1    Methodology

We  evaluate  PAIC  using  the  simulation  frame-

work  released  by  the  2nd  JILP  Cache  Replacement

Championship  (CRC2).  The  framework  is  based  on

ChampSim and models a three-level cache hierarchy.

Hardware  Prefetcher.  To  prove  that  PAIC  can

adapt  to  different  hardware  prefetchers,  we  model  a

signature path prefetcher (SPP)[12] and a Kill-the-PC

prefetcher  (KPC-P)[16].  SPP and KPC-P are  the  lat-

est examples of forward-looking prefetchers, and both

use prefetch filters  trained using the L2 cache access

(hits and misses) as feedback.

Benchmarks. We evaluate PAIC on the 27 memo-

ry-intensive  applications  of  SPEC  CPU2006[17] and

SPEC  CPU2017[18] benchmark  suites.  We  run  the

benchmarks using the reference input set, and as with

the  CRC2,  SimPoint[19] is  used  to  generate  a  single

sample of one billion instructions per benchmark. We

warm the cache for 200 million instructions and eval-

uate the behavior of the next one billion instructions.

Multi-Core Workloads. Our multi-core results sim-

ulate  four  benchmarks  running  on  four  cores,  choos-

ing  60  mixes  from  all  possible  workload  mixes.  For

each mix,  we simulate  the  simultaneous  execution of

the  SimPoint  samples  of  the  constituent  benchmarks

until at least 250 million instructions are executed per

benchmark.

To evaluate performance,  we report  the weighted

speedup normalized to LRU for each benchmark mix.

The metric is computed as follows: for each program

sharing  cache,  we  compute  its  instructions  per  cycle

(IPC) in a shared environment (IPCshared), and in iso-
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lation on the same cache (IPCsingle). We compute the

weighted IPC of a mix as the sum of IPCshared /IPCsingle

for  all  benchmarks  in  the  mix  and normalize  it  with

the weighted IPC using the LRU replacement policy.

Baseline  Replacement  Policies.  We  compare  PA-

IC  against  five  state-of-the-art  cache  replacement

policies,  namely,  SRRIP,  DRRIP[6],  SHiP[7],

Hawkeye[8],  and  Glider[3].  SRRIP  and  DRRIP  are

variations of the LRU policy, which use the Re-refer-

ence  Interval  Prediction  (RRIP),  aiming  at  prevent-

ing  blocks  with  a  distant  re-reference  interval  from

cache pollution. SHiP extends RRIP by predicting the

re-reference  interval  of  an  incoming  cache  line  based

on its history. Hawkeye has won the 2017 Cache Re-

placement  Championship[8].  Glider  is  the  first  to  ap-

ply deep learning to predict reuse distance[3].

 4.2    Comparison with Other Policies

 4.2.1    Single-Core Performance

We  compare  PAIC  with  five  state-of-the-art  re-

placement  policies:  SRRIP,  DRRIP,  SHiP,  Hawkeye,

and  Glider. Fig.7 shows  that  relative  to  the  five  re-

placement  policies,  PAIC  effectively  integrates  the

benefits  of  hardware  prefetching  and  replacement

policies with SPP. Fig.7(a) and Fig.7(b) show the per-

formance improvement of each replacement policy for
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Fig.7.  Speedup for single-core benchmarks. (a) Speedup for SPEC 2006 single-core benchmarks. (b) Speedup for SPEC 2017 single-
core benchmarks.
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SPEC 2006 and SPEC 2017, respectively. On average,

PAIC  improves  the  performance  over  the  baseline

(LRU  without  prefetching)  by  37.22%.  SRRIP,  DR-

RIP,  SHiP,  Hawkeye,  and  Glider,  in  contrast,  im-

prove  performance  over  LRU  by  32.35%,  31.96%,

32.93%,  34.56%,  and 34.43%,  respectively.  These  im-

provements indicate that PAIC can improve the per-

formance  significantly  by  distinguishing  between

prefetch and demand requests.

We  also  compare  PAIC,  SRRIP,  DRRIP,  SHiP,

Hawkeye, and Glider with the baseline, which is LRU

with  prefetching.  In  the  presence  of  SPP,  PAIC  im-

proves the performance by 3.86% compared with the

baseline,  while  SRRIP, DRRIP, SHiP, Hawkeye,  and

Glider  improve  the  performance  by  0.04%,  – 0.18%,

0.58%, 1.85%, and 1.68%, respectively. On average, in

the  presence  of  prefetching,  learning-based  cache  re-

placement  policies  provide  minimal  performance  im-

provements  or  unexpectedly  degrade  performance.

PAIC can address  some of  the performance degrada-

tion caused by prefetcher pollution.

 4.2.2    Multi-Core Performance

Fig.8 shows  that  in  the  presence  of  hardware

prefetching, PAIC can improve performance of a four-

core system. With SPP, PAIC achieves a speedup of

20.99%,  while  SRRIP,  DRRIP,  SHiP,  Hawkeye,  and

Glider  achieve  speedups  of  13.83%,  12.74%,  13.23%,

17.89%, and 15.50%, respectively. PAIC distinguishes

between  prefetch  and  demand  requests,  and  exploits

the dynamic program context to improve the predic-

tion  accuracy.  Overall,  PAIC  demonstrates  an  effec-

tive  intelligent  replacement  policy  by  differentiating

the predictions for prefetch and demand requests.
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Fig.8.  Weighted speedup for four cores with a shared 8 MB LLC.

 4.2.3    Effect of PAIC with KPC-P

We  also  evaluate  PAIC  with  KPC-P[16] and  find

that  the  results  are  similar  to  those  achieved  with

SPP.  On  average,  with  KPC-P,  PAIC  improves  the

performance over the baseline by 36.61% in a single-

core  setting,  while  SRRIP,  DRRIP,  SHiP,  Hawkeye,

and Glider improve performance over the baseline by

31.08%, 31.52%, 32.25%, 33.64%, and 33.63%, respec-

tively.

Fig.9(a) and Fig.9(b) show the LLC demand miss

reduction  of  each  replacement  policy  for  SPEC 2006

and  SPEC  2017,  respectively.  On  average, Fig.9

shows that in the presence of KPC-P, PAIC achieves

an  average  demand  miss  reduction  of  17.41%,  while

SRRIP,  DRRIP,  SHiP,  Hawkeye  and  Glider  achieve

demand  miss  reductions  of  12.81%,  13.30%,  13.66%,

15.46%,  and  15.48%,  respectively.  These  improve-

ments  indicate  that  PAIC  can  support  different

prefetchers and improve the performance significantly.

 4.3    Performance Overview

 4.3.1    Evaluation of Prefetch Filter

The  above  experimental  results  show  that,  with

different data prefetchers, PAIC performs better than

the  state-of-the-art  cache  replacement  policies.  Per-

ceptron-based  Prefetch  Filtering  (PPF)[20] enables

more  aggressive  tuning  of  the  SPP  underlying

prefetcher,  leading  to  increased  coverage  by  filtering

out  the  inaccurate  prefetches.  We  compare

PAIC+SPP+PPF with PAIC+SPP to further evalu-

ate PAIC’s utility in the presence of a prefetch filter

with  SPP as  the  underlying  prefetcher.  As  shown  in

Fig.10,  PAIC+SPP  improves  performance  over  the

baseline  by 37.22%,  while  PAIC+SPP+PPF yields  a

speedup of 44.31% over the baseline. It is evident that

PAIC  consistently  achieves  high  performance  under

the influence of prefetching with or without a prefetch

filter.

 4.3.2    Effective Sequence Length

k

Fig.11 shows  the  relationship  between  history

length and speedup of  PAIC, wherein the number of

unique PCs (the k value described in Subsection 3.2)

for PAIC ranges from 3 to 7. We make two observa-

tions.  First,  PAIC  is  insensitive  to  finer  changes  in

the  value; for SPP and KPC-P, PAIC achieves the

best  performance  with  four  and  six  unique  PCs,  re-

spectively. Second, ISVM-based sub-predictors of PA-
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Fig.9.  Demand miss rate reduction for single-core benchmarks. (a) Demand miss rate reduction for SPEC 2006 single-core bench-
marks. (b) Demand miss rate reduction for SPEC 2017 single-core benchmarks.
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Fig.10.  Speedup for single-core benchmarks. (a) Speedup for SPEC 2006. (b) Speedup for SPEC 2017.
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IC effectively identify the important memory accesses

with fewer history elements. PAIC makes optimal re-

placement decisions depending on the presence of the

few  important  PCs  and  uses  separate  sub-predictors

for prefetch and demand requests. Thus, PAIC signifi-

cantly improves the prediction of caching behaviors in

the  presence  of  prefetching  through  a  simple  hard-

ware-friendly linear model.

 4.3.3    Reducing the Hardware Overhead

We  take  tests  to  check  the  impact  of  reducing

ISVM table  sizes  on  PAIC’ s  performance.  As  shown

in Fig.12, the performance degradation is marginal by

significantly  reducing  the  perceptron  table  sizes  for

more space-saving. Losing only 0.07% performance by

reducing  the  table  sizes  to  only  16  entries  is  accept-

able in adapting a predictor to a smaller ISVM table.

Each ISVM table is reduced to 16 entries, resulting in

a total consumption of 0.51 KB from PAIC's predic-

tors. Therefore, the total hardware budget of PAIC is

reduced  to  29.31  KB  (reduced  to  about  1/3  of  the

original).

Table 1 shows  the  comparison  of  hardware  over-

head and performance between several prior state-of-

the-art policies and PAIC. PAIC uses little hardware

beyond Hawkeye; however, on average, it offers 2.90%

additional  performance  improvement  for  the  SPEC

2006 applications and 1.85% for the SPEC 2017 appli-

cations.  Overall,  PAIC  offers  a  practical  machine

learning  based  cache  design  for  eliminating  prefetch-

induced interference in the shared LLC.
  
Table   1.   Hardware  Overhead  and  Performance  Comparison
for Different Replacement Policies

Policy Speedup over LRU (%) Hardware

SPEC 2006 SPEC 2017 Overhead (KB)

SRRIP[6] 34.18 27.99 8.00

DRRIP[6] 34.30 26.41 8.00

SHiP[7] 34.87 28.30 14.00

Hawkeye[8] 36.62 29.67 28.00

Glider[3] 36.28 30.04 61.60

PAIC 39.52 31.52 29.31

 5    Related Work

 5.1    Hardware Prefetchers

Prefetching  improves  performance  by  preloading
cache lines into some level of the cache before actual-
ly being used. Typically, prefetchers predict future ac-
cess  patterns  based  on  past  memory  accesses.  Shev-
goor et  al.[21] proposed  a  variable-length  incremental
prefetcher  to  identify  complex  address  patterns  re-
peated in physical pages. SPP[12] learns and prefetch-
es complex data access patterns using compressed his-
torical signatures. It achieves high accuracy by corre-
lating  the  signature  with  future  possible  delta  pat-
terns. KPC-P[16] aims to generate prefetch confidence
values,  which  control  the  aggressiveness  of  prefetch-
ing. A prefetch request with low confidence indicates
its  long  use  distance,  or  it  is  an  inaccurate  prefetch
request.  KPC-P  avoids  L2  cache  pollution  by  no
longer  inserting  of  prefetched  lines  with  low  predic-
tion  confidence  in  L2.  However,  all  prefetched  lines
are  inserted  in  LLC.  PAIC  avoids  prefetch-induced
cache  pollution  in  LLC  by  evicting  cache  lines  that
are  prefetched  furthest  in  the  future,  and  freeing  up
cache space for cache lines of other access types.

 5.2    Prefetch Filters

The prefetch filter is implemented through a stan-
dalone module that examines the addresses generated
from  the  prefetcher.  The  prefetch  filter  enhances  an
underlying  prefetcher  by  filtering  out  predicted  un-
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Fig.11.   Performance  of  PAIC  under  different  numbers  of
unique PCs.
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used  prefetches.  To  further  improve  the  effectiveness

of  hardware  prefetchers,  prefetch  filters  like  PPF[20]

and  Evicted-Prefetch-Filter  (EPF)[22] have  been  pro-

posed.  PPF  is  an  intelligent  prefetch  filter  that  en-

hances  the  SPP  prefetcher.  PPF  filters  out  useless

prefetching  issued  by  aggressive  SPP,  thus  allowing

aggressive  predictions  without  degrading  the  accura-

cy.

 5.3    Learning-Based Cache Replacement

Policies

Cache replacement policies  essentially  predict  the

re-reference  behaviors  of  cache  lines[6].  The  state-of-

the-art replacement policies[2, 3, 7, 8] are based on some

signatures,  including  PCs,  memory  addresses,  or  in-

struction sequences that learn from past cache behav-

iors  to  predict  future  cache  priorities.  The  goal  of

these policies is to predict whether an incoming line is

cache-friendly  or  cache-averse.  For  example,  SHiP[7]

monitors evictions from a sampler to learn the re-ref-

erence interval of a given load instruction. Hawkeye[8]

learns from the Belady-MIN algorithm based on past

cache  accesses  and  maintains  a  table  of  counters  to

learn  whether  memory  accesses  by  a  given  PC  are

cache-friendly or cache-averse.

Only a few previous studies have applied machine

learning  solutions  to  the  cache  replacement  problem,

and these do not distinguish between prefetch and de-

mand  requests.  A  recent  study[2] uses  online  percep-

tron learning to improve the accuracy of  cache reuse

prediction. It uses a short and ordered history of PCs

as  the  input  feature  to  predict  the  reuse  of  cache

blocks.  Shi et  al.[3] applied  an  attention-based  long

short-term memory (LSTM) for training reuse predic-

tors offline and extracted useful insights from histori-

cal PCs. These insights are then used to build an on-

line SVM-based hardware predictor, namely, the Glid-

er  replacement  policy.  However,  in  the  presence  of

prefetching,  Glider  makes  the  same  predictions  for

prefetch and demand requests, degrades prediction ac-

curacy,  and  provides  minimal  performance  improve-

ments, as it cannot avoid prefetch-induced cache pol-

lution.  Herein,  we  propose  that  PAIC  can  improve

the accuracy of cache line reuse prediction in the pres-

ence of prefetching, along with the performance of the

memory subsystem.

 6    Conclusions

In  this  paper,  to  solve  the  problem  of  perfor-

mance degradation and variability under prefetching,

we  proposed  an  intelligent  cache  replacement  policy

(PAIC) in the presence of prefetches. PAIC uses dif-

ferent  sub-predictors  for  prefetch  and  demand  re-

quests  and  inputs  a  compressed  long  history  of  past

PCs  into  ISVM-based  sub-predictors,  which  signifi-

cantly  improves  reuse  prediction  accuracy  for  both

prefetch  and  demand  requests.  By  distinguishing  the

caching behaviors of  prefetches from demands, PAIC

achieves better learning from past memory accesses at

the  granularity  of  a  request  type.  In  the  single-core

configuration,  PAIC  improves  performance  over  the

baseline  (LRU  without  prefetching)  by  37.22%,  out-

performing  the  state-of-the-art  replacement  policy

(Glider) by 2.79%. On a four-core system, PAIC im-

proves  performance  over  the  baseline  by  20.99%,

beating Glider by 5.49%. Overall, PAIC offers a guide

to  applying  machine  learning  to  combine  the  perfor-

mance  benefits  from hardware  prefetching  and  cache

replacement policies.

In the context of a multi-core processor, cache co-

herence  is  a  long-standing  question  that  has  largely

been  unaddressed  concerning  prefetching.  In  our  fu-

ture  work,  we  will  focus  on  the  sharing  issue  and

prefetching.

References

 Zangeneh  S,  Pruett  S,  Lym S,  Patt  Y N.  BranchNet:  A

convolutional  neural  network  to  predict  hard-to-predict

branches. In Proc. the 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Oct. 2020, pp.118–

130. DOI: 10.1109/MICRO50266.2020.00022.

[1]

 Teran E, Wang Z, Jiménez D A. Perceptron learning for

reuse  prediction.  In Proc.  the  49th  Annual  IEEE/ACM

International Symposium on Microarchitecture, Oct. 2016.

DOI: 10.1109/MICRO.2016.7783705.

[2]

 Shi  Z,  Huang X R,  Jain A,  Lin C.  Applying deep learn-

ing to the cache replacement problem. In Proc. the 52nd

Annual  IEEE/ACM  International  Symposium  on  Mi-

croarchitecture,  Oct.  2019,  pp.413–425.  DOI: 10.1145/

3352460.3358319.

[3]

 Ipek E, Mutlu O, Martínez J F, Caruana R. Self-optimiz-

ing  memory  controllers:  A  reinforcement  learning  ap-

proach. ACM  SIGARCH  Computer  Architecture  News,

2008, 36(3): 39–50. DOI: 10.1145/1394608.1382172.

[4]

 Hallnor E G, Reinhardt S K. A fully associative software-

managed cache design. In Proc. the 27th Annual Interna-

tional  Symposium on Computer  Architecture,  Jun.  2000,

pp.107–116. DOI: 10.1145/339647.339660.

[5]

 Jaleel A, Theobald K B, Steely Jr S C, Emer J. High per-

formance  cache  replacement  using  re-reference  interval

prediction (RRIP). ACM SIGARCH Computer  Architec-

ture  News,  2010,  38(3):  60–71.  DOI: 10.1145/1816038.

[6]

402 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1109/MICRO50266.2020.00022
https://doi.org/10.1109/MICRO.2016.7783705
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1145/1394608.1382172
https://doi.org/10.1145/339647.339660
https://doi.org/10.1145/1816038.1815971


1815971.

 Wu C J,  Jaleel  A,  Hasenplaugh W, Martonosi  M. SHiP:

Signature-based hit predictor for high performance caching.

In Proc. the 44th Annual IEEE/ACM International Sym-

posium on Microarchitecture, Dec. 2011, pp.430–441. DOI:

10.1145/2155620.2155671.

[7]

 Jain A, Lin C. Back to the future: Leveraging Belady’s al-

gorithm  for  improved  cache  replacement.  In Proc.  the

43rd  Annual  International  Symposium  on  Computer  Ar-

chitecture, Jun. 2016, pp.78–89. DOI: 10.1109/ISCA.2016.

17.

[8]

 Wu  C  J,  Jaleel  A,  Martonosi  M,  Steely  S  C,  Emer  J.

PACMan:  Prefetch-aware  cache  management  for  high

performance  caching.  In Proc.  the  44th  Annual  IEEE/

ACM  International  Symposium  on  Microarchitecture,

Dec. 2011, pp.442–453. DOI: 10.1145/2155620.2155672.

[9]

 Heirman W, Bois K D, Vandriessche Y, Eyerman S, Hur

I.  Near-side  prefetch  throttling:  Adaptive  prefetching  for

high-performance many-core processors. In Proc. the 27th

International  Conference  on  Parallel  Architectures  and

Compilation Techniques, Nov. 2018, Article No. 28. DOI:

10.1145/3243176.3243181.

[10]

 Ishii  Y,  Inaba  M,  Hiraki  K.  Unified  memory  optimizing

architecture:  Memory  subsystem  control  with  a  unified

predictor.  In Proc.  the  26th  ACM  International  Confer-

ence on Supercomputing, Jun. 2012, pp.267–278. DOI: 10.

1145/2304576.2304614.

[11]

 Kim J,  Pugsley S H, Gratz P V, Reddy A L N, Wilker-

son  C,  Chishti  Z.  Path  confidence  based  lookahead

prefetching. In Proc. the 49th Annual IEEE/ACM Inter-

national  Symposium  on  Microarchitecture,  Oct.  2016.

DOI: 10.1109/MICRO.2016.7783763.

[12]

 O'Neil E J, O'Neil P E, Weikum G. The LRU-K page re-

placement  algorithm  for  database  disk  buffering. ACM

SIGMOD  Record,  1993,  22(2):  297–306.  DOI: 10.1145/

170036.170081.

[13]

 Srinath S, Mutlu O, Kim H, Patt Y N. Feedback direct-

ed  prefetching:  Improving  the  performance  and  band-

width-efficiency of hardware prefetchers. In Proc. the 13th

International  Symposium  on  High  Performance  Comput-

er  Architecture,  Feb.  2007,  pp.63–74.  DOI: 10.1109/HP-

CA.2007.346185.

[14]

 Jain  A,  Lin  C.  Rethinking  Belady's  algorithm to  accom-

modate  prefetching.  In Proc.  the  45th  Annual  Interna-

tional  Symposium on Computer  Architecture,  Jun.  2018,

pp.110–123. DOI: 10.1109/ISCA.2018.00020.

[15]

 Kim J, Teran E, Gratz P V, Jiménez D A, Pugsley S H,

Wilkerson  C.  Kill  the  program  counter:  Reconstructing

program behavior in the processor cache hierarchy. ACM

SIGPLAN  Notices,  2017,  52(4):  737–749.  DOI: 10.1145/

3093336.3037701.

[16]

 Henning  J  L.  SPEC  CPU2006  benchmark  descriptions.

ACM  SIGARCH  Computer  Architecture  News,  2006,

34(4): 1–17. DOI: 10.1145/1186736.1186737.

[17]

 Bucek J,  Lange K D,  von Kistowski  J.  SPEC CPU2017:[18]

Next-generation  compute  benchmark.  In Proc.  the  2018

ACM/SPEC  International  Conference  on  Performance

Engineering, Apr. 2018, pp.41–42. DOI: 10.1145/3185768.

3185771.

 Perelman E, Hamerly G, Van Biesbrouck M, Sherwood T,

Calder B. Using SimPoint for accurate and efficient simu-

lation. ACM SIGMETRICS Performance  Evaluation  Re-

view, 2003, 31(1): 318–319. DOI: 10.1145/885651.781076.

[19]

 Bhatia  E,  Chacon  G,  Pugsley  S,  Teran  E,  Gratz  P  V,

Jiménez D A. Perceptron-based prefetch filtering. In Proc.

the 46th International Symposium on Computer Architec-

ture, Jun. 2019. DOI: 10.1145/3307650.3322207.

[20]

 Shevgoor  M,  Koladiya  S,  Balasubramonian R,  Wilkerson

C,  Pugsley  S  H,  Chishti  Z.  Efficiently  prefetching  com-

plex  address  patterns.  In Proc.  the 48th  International

Symposium on Microarchitecture,  Dec.  2015,  pp.141–152.

DOI: 10.1145/2830772.2830793.

[21]

 Seshadri V, Yedkar S, Xin H Y, Mutlu O, Gibbons P B,

Kozuch  M  A,  Mowry  T  C.  Mitigating  prefetcher-caused

pollution  using  informed  caching  policies  for  prefetched

blocks. ACM Transactions on Architecture and Code Op-

timization,  2015,  11(4):  Article  No.  51.  DOI: 10.1145/

2677956.

[22]

Hui-Jing  Yang received  her  B.S.

degree  in  computer  science  and  tech-

nology  from Zhoukou  Normal  Univer-

sity, Zhoukou, in 2018. She is current-

ly  a  Ph.D.  candidate  at  Beijing  Uni-

versity  of  Technology,  Beijing.  She  is

a  student  member  of  CCF.  Her  main

research direction is computer architecture.

Juan  Fang received  her  M.S.  de-

gree in computer science and technolo-

gy  from  Jilin  University  of  Technolo-

gy,  Changchun,  in  1997,  and  her

Ph.D. degree in computer science and

technology  from  the  College  of  Com-

puter  Science,  Beijing  University  of

Technology,  Beijing,  in  2005.  In  1997,  she  joined  the

College  of  Computer  Science,  Beijing  University  of

Technology, Beijing.  Since 2015, she has been a profes-

sor of Beijing University of Technology, Beijing. Her re-

search  interests  include  high-performance  computing,

edge computing and big data technology.

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 403

https://doi.org/10.1145/1816038.1815971
https://doi.org/10.1145/2155620.2155671
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1145/2155620.2155672
https://doi.org/10.1145/3243176.3243181
https://doi.org/10.1145/2304576.2304614
https://doi.org/10.1145/2304576.2304614
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1145/170036.170081
https://doi.org/10.1145/170036.170081
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1109/ISCA.2018.00020
https://doi.org/10.1145/3093336.3037701
https://doi.org/10.1145/3093336.3037701
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/3307650.3322207
https://doi.org/10.1145/2830772.2830793
https://doi.org/10.1145/2677956
https://doi.org/10.1145/2677956


Min Cai is a lecturer in the Facul-

ty  of  information  technology,  Beijing

University of Technology, Beijing, and

a  postdoctoral  in  computer  architec-

ture.  He  received  his  Ph.D.  degree  in

computer  application  technology  from

Beijing  Institute  of  Technology,  Bei-

jing, in 2014. In recent years, he has hosted and partici-

pated  in  a  dozen  of  research  projects  in  various  fields

such  as  computer  architecture,  artificial  intelligence,

smart  city,  industrial  Internet,  Internet  of  Things,  and

embedded  system  design,  and  published  more  than  10

papers in well-known academic journals.

Zhi Cai is an associate professor in

the  Faculty  of  Information  Technolo-

gy,  Beijing  University  of  Technology,

Beijing.  He  received  his  M.S.  degree

from  the  School  of  Computer  Science

in  the  University  of  Manchester,

Manchester,  in  2007,  and  his  Ph.D.

degree  in  computer  science  and  technology  from  the

Manchester  Metropolitan  University,  Manchester,  in

2011.  His  research  interests  include  information  re-

trieval, ranking in relational databases, keyword search,

and intelligent transportation systems.

404 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2


	1 Introduction
	2 Characterization &amp; Analysis of Replacement Policies
	2.1 Prefetch and Demand Requests
	2.2 Performance Variability Under Various Replacement Policies with Prefetching
	2.3 Low LLC Reuse of Prefetch Requests

	3 PAIC Design and Implementation
	3.1 DMINgen
	3.2 PAIC Predictor
	3.2.1 Training
	3.2.2 Prediction

	3.3 Hardware Overhead

	4 Evaluation
	4.1 Methodology
	4.2 Comparison with Other Policies
	4.2.1 Single-Core Performance
	4.2.2 Multi-Core Performance
	4.2.3 Effect of PAIC with KPC-P

	4.3 Performance Overview
	4.3.1 Evaluation of Prefetch Filter
	4.3.2 Effective Sequence Length
	4.3.3 Reducing the Hardware Overhead


	5 Related Work
	5.1 Hardware Prefetchers
	5.2 Prefetch Filters
	5.3 Learning-Based Cache Replacement Policies

	6 Conclusions
	References

