

A Prefetch-Adaptive Intelligent Cache Replacement Policy Based on
Machine Learning

Hui-Jing Yang (杨会静), Student Member, CCF, Juan Fang* (方　娟), Senior Member, CCF, ACM, IEEE
Min Cai (蔡　旻), Member, CCF, and Zhi Cai (才　智), Member, ACM

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

E-mail: yangkx@emails.bjut.edu.cn; fangjuan@bjut.edu.cn; min.cai.china@bjut.edu.cn; caiz@bjut.edu.cn

Received May 10, 2021; accepted August 17, 2022.

Abstract Hardware prefetching and replacement policies are two techniques to improve the performance of the memo-

ry subsystem. While prefetching hides memory latency and improves performance, interactions take place with the cache

replacement policies, thereby introducing performance variability in the application. To improve the accuracy of reuse of

cache blocks in the presence of hardware prefetching, we propose Prefetch-Adaptive Intelligent Cache Replacement Policy

(PAIC). PAIC is designed with separate predictors for prefetch and demand requests, and uses machine learning to opti-

mize reuse prediction in the presence of prefetching. By distinguishing reuse predictions for prefetch and demand requests,

PAIC can better combine the performance benefits from prefetching and replacement policies. We evaluate PAIC on a set

of 27 memory-intensive programs from the SPEC 2006 and SPEC 2017. Under single-core configuration, PAIC improves

performance over Least Recently Used (LRU) replacement policy by 37.22%, compared with improvements of 32.93% for

Signature-based Hit Predictor (SHiP), 34.56% for Hawkeye, and 34.43% for Glider. Under the four-core configuration, PA-

IC improves performance over LRU by 20.99%, versus 13.23% for SHiP, 17.89% for Hawkeye and 15.50% for Glider.

Keywords hardware prefetching, machine learning, Prefetch-Adaptive Intelligent Cache Replacement Policy (PAIC),

replacement policy

 1 Introduction

The latest research seeks to make use of machine

learning for improving system performance, including

branch prediction in modern microprocessors[1], cache

replacement[2, 3], and memory scheduling[4]. The intel-

ligent cache replacement policies based on machine

learning algorithms[2, 3] use program counter (PC),

memory address, etc., as features to learn past

caching behaviors and predict future caching priori-

ties, thus effectively improving the management of

the last-level cache (LLC). Relative to the traditional

heuristic-based cache replacement policies[5, 6], learn-

ing-based cache replacement policies improve the ac-

curacy of cache line reuse prediction under complex

access modes[7, 8], thereby making more accurate deci-

sions for insertion and eviction.

Prefetching data into the cache hierarchy before

actual references hides memory latency, thus signifi-

cantly improving the performance. However, harmful

prefetching can cause cache pollution and interfere

with cache management, thus leading to performance

degradation[9, 10]. In the presence of prefetching, the

current learning-based cache replacement policies may

provide minimal performance improvements or de-

grade the performance. Most of replacement policies

do not distinguish between prefetch and demand re-

quests. Thus, these replacement policies are unable to

distinguish useful prefetches from useless prefetches in

most cases.

Most existing work on prefetch-aware cache re-

placement focuses on minimizing the cache pollution

due to inaccurate prefetchers. Several solutions[9, 11]

involve fine-tuned cache insertion and replacement

Regular Paper

The work was supported by the Natural Science Foundation of Beijing under Grant No. 4192007 and the National Natural Sci-
ence Foundation of China under Grant No. 61202076.

*Corresponding Author

Yang HJ, Fang J, Cai M et al. A prefetch-adaptive intelligent cache replacement policy based on machine learning.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(2): 391−404 Mar. 2023. DOI: 10.1007/s11390-022-1573-3

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-022-1573-3

priorities for prefetches to mitigate the degree of

prefetch-induced LLC pollution. In this paper, we

propose Prefetch-Adaptive Intelligent Cache Replace-

ment Policy (PAIC). PAIC also deals with inaccu-

rate prefetches. It learns to discard inaccurate and re-

dundant prefetches at the PC granularity. By assign-

ing low priority to both demand loads and prefetches

that are likely to be prefetched again, PAIC can make

better use of the cache, thus reducing prefetch-in-

duced cache pollution.

The main goals of PAIC are 1) to improve the ac-

curacy of reuse prediction for both prefetch and de-

mand requests and 2) to avoid cache pollution due to

harmful prefetching. PAIC accomplishes both these

goals using different predictors based on Integer Sup-

port Vector Machine (ISVM)[3] for prefetch and de-

mand requests. Thus, PAIC reduces cache pollution

due to prefetch requests and combines the perfor-

mance benefits from hardware prefetching and intelli-

gent cache replacement.

We show that the intelligent cache replacement

policy that adapts to prefetching improves the re-ref-

erence predictions for prefetch and demand requests.

In general, this paper makes the following contribu-

tions.

• We characterize the state-of-the-art learning-ba-

sed cache replacement policies in the presence and ab-

sence of hardware prefetching. Learning-based cache

replacement policies improve application performance,

and prefetching further improves performance by ex-

tracting useful data into the cache in advance. How-

ever, we show that without a prefetch-adaptive re-

placement policy, prefetching will interfere with the

management of the LLC, thereby causing perfor-

mance degradation and variability.

• We propose PAIC, whose novelty is two-folded.

First, PAIC applies machine learning to design differ-

ent cache replacement predictors for prefetch and de-

mand requests. Second, it improves the accuracy of

reuse predictions for both prefetch and demand re-

quests, which combines the performance benefits from

prefetching and cache replacement.

• Finally, we evaluate PAIC in detail with SPEC

2006 and the latest SPEC 2017 benchmarks. On aver-

age, PAIC provides a performance improvement of

36.61% and 21.46% for single-core memory-intensive

applications and the four-core configuration, respec-

tively. PAIC can adapt to different data prefetchers,

and bring more effective performance improvement

relative to the state-of-the-art replacement policies.

The remainder of this paper is organized as fol-

lows. In Section 2, we discuss three fundamental ob-

servations that motivate us to propose PAIC. Section

3 describes implementation details of PAIC. We then

describe our solution and empirically evaluate it in

Section 4. Section 5 discusses related work and Sec-

tion 6 concludes the paper.

 2 Characterization & Analysis of

Replacement Policies

To explore the impact of hardware prefetching on

the performance of cache management, we model the

signature path prefetcher (SPP)[12] to evaluate three

representative learning-based cache replacement poli-

cies in the presence and absence of prefetching: Signa-

ture-based Hit Predictor (SHiP)[7], Hawkeye[8], and

Glider[3], whose performance will be evaluated in the

presence of hardware prefetching. SHiP is the first to

use signatures (e.g., the miss-causing PC, the instruc-

tion sequence leading to the load) to predict the re-

reference interval of an incoming cache line. Hawkeye

is the winner of the 2nd JILP Cache Replacement

Championship①. Glider is the first to apply deep

learning to predict reuse distance.

 2.1 Prefetch and Demand Requests

From the cache management perspective, the

cache access patterns including prefetch and demand

requests exhibit different properties. A demand re-

quest is from the processor for instructions or data

that are known to be required by the processor. A

prefetch request is issued by the prefetcher ahead of

the processor to hide the entire latency of memory ac-

cesses. However, prefetched blocks can potentially

pollute the cache by evicting the blocks which are

more useful. In general, cache lines inserted into the

LLC by demand requests are more likely to be perfor-

mance-critical than those by prefetch requests. More-

over, prefetching does not always improve perfor-

mance and sometimes may even degrade it. For ex-

ample, useless prefetch requests unnecessarily con-

sume valuable off-chip bandwidth, and useless

prefetched data may evict a useful block from the

cache.

392 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

①The 2nd cache replacement championship. http://crc2.ece.tamu.edu/, May 2021.

http://crc2.ece.tamu.edu/

Many replacement policies do not distinguish be-

tween prefetch and demand requests. Such policies

are more likely to cause cache pollution and increase

the number of cache misses.

 2.2 Performance Variability Under Various

Replacement Policies with Prefetching

Fig.1 shows the application performance with the

aforementioned cache replacement policies in the pres-

ence of prefetching. The graph shows that prefetch-

ing can significantly improve application performance

by approximately 32%. However, for the performance

of individual applications in each workload category,

we observe significant variations across different cache

replacement policies. Fig.2 and Fig.3 show the perfor-

mance variabilities in the absence and presence of

prefetching, respectively. In both figures, the x-axis

represents different workloads in the experiment, and

the y-axis represents the performance relative to the

baseline Least Recently Used (LRU) replacement poli-

cy[13] without prefetching.

Fig.2 shows that in the absence of prefetching, the

learning-based cache replacement policies improve the

performance of various applications. However, in the

presence of prefetching, we observe differential perfor-

mance effects. For example, sphinx3 achieves

19%– 22% performance improvement over LRU from

learning-based cache replacement policies in the ab-

sence of prefetching. However, as shown in Fig.3, in

the presence of prefetching, the improvement of

sphinx3 over LRU reduces to 0.22% on average.

Fig.3 illustrates that in the presence of prefetch-

ing, the performance improvements from learning-ba-

sed cache replacement policies degrade significantly.

Designing an intelligent cache replacement policy that

adapts to prefetching will further improve the performa-

nce of such applications in the presence of prefetching.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

No Prefetching Prefetching

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

LRU
SHiP
Hawkeye
Glider

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

No Prefetching Prefetching
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

No Prefetching Prefetching

LRU
SHiP
Hawkeye
Glider

LRU
SHiP
Hawkeye
Glider

(b)(a) (c)
Fig.1. Hardware prefetching significantly improves application performance. (a) Speedup for SPEC 2006. (b) Speedup for SPEC
2017. (c) Speedup for all benchmarks.

0.95

1.00

1.05

1.10

1.15

1.20

1.25

b
w

a
v
e
s

m
c
f

m
il
c

z
e
u
sm

p

c
a
c
tu

sA
D

M

li
b
q
u
a
n
tu

m

to
n
to

sp
h
in

x
3

0.95

1.00

1.05

1.10

1.15

1.20

1.25

m
c
f_

s

lb
m
_
s

o
m

n
e
tp

p
_
s

fo
to

n
ik

3
d
_
s

ro
m

s_
s

LRU
SHiP
Hawkeye
Glider

LRU
SHiP
Hawkeye
Glider

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

(b)(a)

Fig.2. Performance of individual applications under cache replacement policies without prefetching. (a) Speedup for SPEC 2006.
(b) Speedup for SPEC 2017.

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 393

 2.3 Low LLC Reuse of Prefetch Requests

Previous studies[10, 11, 14] have shown that a large

fraction of prefetches are dead in the LLC. Low reuse

of prefetched cache lines at the LLC can be attribut-

ed to either prefetcher pollution or timely data

prefetching by upper levels of the cache hierarchy.

Subsequent demand requests are directly served in L2

and never reach the LLC. As a result, the filtering of

temporal locality by smaller caches leads to lower

reuse of prefetched lines in the LLC. Therefore, we

propose a replacement policy that can predict the re-

reference of prefetch requests, and preferentially evict

useless prefetches, thus improving the performance of

applications under prefetching.

In summary, the appearance of cache-averse

prefetched cache lines at the LLC and reduced gains

from learning-based cache replacement policies in the

presence of hardware prefetching necessitate the need

for PAIC. We describe PAIC in detail in Section 3.

 3 PAIC Design and Implementation

Prefetch requests have different properties rela-

tive to demand requests. Generally, cache lines insert-

ed into LLC by demand requests are more likely criti-

cal for the performance relative to the prefetch re-

quests. PAIC distinguishes the caching behaviors of

demands and prefetches through different predictors

for the corresponding requests.

To mitigate the degree of prefetch-induced inter-

ference, PAIC makes a re-reference prediction at the

granularity of a request type. Specifically, based on a

rich dynamic program context, two hardware-friend-

ly ISVM models are designed, each of which uses a

memory access sequence, thus significantly improving

the prediction of re-reference for prefetch and de-

mand requests. Thus, PAIC effectively caches the

most useful demand- and prefetch-requested data and

distinguishes useful prefetches from useless prefetches.

Fig.4 shows the overall structure of PAIC. PAIC

can reduce cache pollution by distinguishing between

demand loads and prefetches. PAIC uses two PC-

based predictors to determine whether a demand load

or a prefetch is likely to be prefetched again and uses

this information to insert such lines with a low priori-

ty. Such low priority lines will be preferentially evict-

ed and can mitigate prefetch-induced interference.

PAIC’s main components comprise the PAIC pre-

dictor which makes eviction decisions and DMINgen

which simulates the Demand-MIN[15] to produce la-

bels that train the PAIC predictor. Each component

will be described in more detail.

 3.1 DMINgen

DMINgen determines the prospective cache if De-

mand-MIN[15] has been used. Demand-MIN evicts the

line that is prefetched furthest in the future, thus

minimizing the number of demand misses. Fig.5

shows an access sequence, wherein demand loads are

shown in blue and prefetches in yellow. For a cache

that can hold two cache lines and initially holds A
and B, when line C is loaded into the full cache, the

eviction of A or B will result in different numbers of

demand misses.

t = 1

Belady’ s MIN algorithm[8] produces two demand

misses. The first demand miss occurs at , when

0.90

1.10

1.30

1.50

1.70

1.90

2.10

b
w

a
v
e
s

m
c
f

m
il
c

z
e
u
sm

p

c
a
c
tu

sA
D

M

li
b
q
u
a
n
tu

m

to
n
to

sp
h
in

x
3

0.90

1.10

1.30

1.50

1.70

1.90

2.10

m
c
f_

s

lb
m
_
s

o
m

n
e
tp

p
_
s

fo
to

n
ik

3
d
_
s

ro
m

s _
s

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g

LRU
SHiP
Hawkeye
Glider

LRU
SHiP
Hawkeye
Glider

(b)(a)

Fig.3. Performance of individual applications under cache replacement policies in the presence of prefetching. (a) Speedup for SPEC
2006. (b) Speedup for SPEC 2017.

394 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

t = 4

line C is loaded into a full cache. Fig.5(a) shows that

Belady’s MIN algorithm evicts A, which is reused fur-

ther in the future than B. The second demand miss

occurs at , when A is loaded.

t = 2

t = 3

t = 1

t = 1

t = 3

t = 4

B will be prefetched at , such that the de-

mand reference to B at hits irrespective of our

decision at , thus reducing the number of de-

mand misses. Fig.5(b) shows at , B gets evicted

instead of A, and the demand reference to B at

and that to A at both hit in the cache. Thus,

the Demand-MIN exchanges a prefetch hit for a de-

mand hit, resulting in a single demand miss (to C).

Here, to minimize demand misses, Demand-MIN pref-

erentially evicts B, which is prefetched furthest in the

future.

To reconstruct the Demand-MIN algorithm for

past accesses, we extend the concept of usage inter-

val defined in Hawkeye (the interval between two

consecutive references to the same cache line). To dis-

tinguish between demand loads and prefetches, we

identify the endpoint of the usage interval as being a

demand access (D) or a prefetch (P). Four types of

usage intervals are obtained: D-D, P-D, P-P, and D-

P. If we include open intervals, representing lines that

are never reused, there would be two more types: P-

open and D-open. The first two types of intervals (D-

D and P-D) are cached by Demand-MIN if there is

space in the cache, while the last two types (D-open

and P-open) are preferentially evicted by Demand-

MIN as they will never be reused.

The benefit of Demand-MIN lies in evicting inter-

vals that end with a prefetch. For the intervals that

end with a prefetch, including D-P and P-P, demand

hits are not yielded; therefore Demand-MIN evicts

these intervals to make room for other intervals to

yield demand hits.

Last Level
Cache

PC_demand

Insertion
Priority

DMINgen

Cache
Access
Stream

PAIC
Predictor

Compute Demand-MIN's
Decisions for the Past

Learn from Demand-MIN to Make
Future Predictions

DMINgen
Hit/Miss

ISVM_prefetch

ISVM_demand

PC_prefetch

Fig.4. Overview of PAIC.

Prefetch

 Cache
Contents

Prefetch
Hit

Cache Capacity=2

Evict Misses

Cache
Contents

Prefetch
Miss

Cache Capacity=2

Evict Bits

Prefetch

(b)(a)

Load Load Load

Demand
Miss

Demand
Hit

Demand
Miss

Demand
Hit

Demand
Hit

Load Load Load

Demand
Miss

Fig.5. (a) Belady’s MIN results in two demand misses. (b) Demand-MIN results in one demand miss.

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 395

 3.2 PAIC Predictor

The second major component of PAIC comprises

two different sub-predictors (the prefetch sub-predic-

tor and the demand sub-predictor) based on ISVM.

We separate the prediction for prefetch and demand

requests using the two sub-predictors. The caching

behaviors of load instructions resulting in prefetch

and demand accesses may be different and cannot be

treated equally. For example, a load instruction that

loads cache-friendly demand accesses but issues inac-

curate prefetches will be classified as cache-friendly by

the demand predictor and cache-averse by the

prefetch predictor.

PAIC uses a PC-based prefetch sub-predictor to

provide replacement priorities for prefetches. For ex-

ample, the prefetch sub-predictor can learn that

prefetches triggered by a certain PC are more likely

inaccurate relative to those triggered by a different

PC. PAIC mitigates the degree of prefetch-induced

cache interference by evicting inaccurate prefetches.

PAIC improves the prediction accuracy by ex-

ploiting richer dynamic program context, i.e., the

most recent PCs of memory access instructions that

accessed LLC. Previous work[3] has shown that a

longer history of past PCs would benefit predictive re-

placement policies in the LLC, and the prediction ac-

curacy is insensitive to the order of these PCs but de-

pends on the existence of important PCs. Therefore,

we remove the repeated PCs in the memory access se-

quence, ignore the order between PCs, and feed these

simplified features into ISVM.

k

k = 5

Fig.6 shows the hardware implementation of the

PAIC predictor, which is comprised of three main

components: 1) a PC history register (PCHR), 2) a

prefetch ISVM table (the ISVM_pf table) correspond-

ing to the prefetch sub-predictor, and 3) a demand

ISVM table (the ISVM_de table) corresponding to the

demand sub-predictor. The PCHR maintains an un-

ordered list of the last PCs for each core. We mod-

el PCHR as a small LRU cache that tracks the last k
unique PCs (in our experiments, we set). There

is an ISVM for each PC, and the ISVM table tracks

the weights of each PC’s ISVM. To distinguish re-ref-

erence predictions for prefetch and demand requests,

separate ISVM tables for prefetch and demand access-

es are used. We model each table as a direct-mapped

cache, indexed by the hash of the current PC (PCcur-

rent), thus returning its corresponding ISVM weights.

Each PC’s ISVM consists of 16 weights for differ-

ent possible PCs in the history register. To identify

the weight corresponding to each PC in the PCHR, a

4-bit hash is created for each element in the PCHR,

and we retrieve these weights in the prefetch or de-

mand ISVM table. For example, as shown in Fig.6, as

the current prefetch access, PCHR contains PC 1, PC

current

&& is_pf

current

&& is_de

 PC 1, PC 2, PC 6, PC 10, PC 15

PC History Register (PCHR)

ISVM_pf
Table

ISVM

ISVM

...

ISVM_de
Table

...

ISVM 2

ISVM 1

ISVM 1

ISVM 2

...

...

Cache-Friendly or
Cache-Averse

Cache-Friendly or
Cache-Averse

∑

∑

Fig.6. PAIC predictor.

396 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

2, PC 6, PC 10, and PC 15, and we retrieve weight1,
weight2, weight6, weight10, and weight15 in the

ISVM_pf table for both training and prediction.

Below we discuss the training and prediction oper-

ations of the PAIC predictor in more detail.

 3.2.1 Training

PAIC’s predictors are trained based on the behav-

iors of a few sampled sets[8]. Upon access to a sam-

pled set, according to the type of requests (i.e., de-

mand or prefetch), PAIC retrieves the weights corre-

sponding to the current PC and the PCHR. If DMIN-

gen determines that the cache line should be cached,

the weights will be increased by 1; otherwise they will

be decreased by 1. The weights are not updated if

their sum is above a certain threshold. To set a rea-

sonable threshold, PAIC dynamically selects a thresh-

old from a set of fixed ones. PAIC can better learn

the caching behaviors of load instructions that result

in prefetch and demand accesses by distinguishing be-

tween the prefetch and demand requests.

 3.2.2 Prediction

PAIC improves the prediction accuracy in the

presence of prefetching with two different predictors

to separate the prediction of prefetch and demand re-

quests. To make predictions at the granularity of a

request type, the weights corresponding to the cur-

rent PC and the PCHR are summed. If the summa-

tion is greater than or equal to the threshold, we pre-

dict that the line is cache-friendly and insert it with

high priority (RRPV = 0). If the summation is less

than 0, we predict that the line is cache-averse and

insert it with low priority (RRPV = 7). For the re-

maining cases, we determine that the line is cache-

friendly with a low confidence and insert it with

medium priority (RRPV = 2). The re-reference pre-

diction value (RRPV)[6] indicates the relative impor-

tance of cache lines.

 3.3 Hardware Overhead

For a 2 MB LLC, PAIC’ s budgets for replacem-

ent state per line, sampler, and DMINgen are 12 KB,

12.7 KB, and 4 KB, respectively. The overhead of

PAIC mainly comes from the ISVM-based PAIC pre-

dictor. For each ISVM, we track 16 weights, and each

weight is 8-bit wide. Therefore, each ISVM consumes

16 bytes. Since we track 2 048 PCs and distinguish

between prefetch and demand requests, PAIC's pre-

dictors consume a total of 65.5 KB. The PCHR with

a history of the last five accesses is only 0.1 KB.

Therefore, the total hardware budget of PAIC is 94.3

KB. Since the PAIC’s predictors require only two ta-

ble lookups for both training and prediction, these

predictors’ latency can be easily hidden by the laten-

cy of accessing the LLC.

Designing separate predictors for prefetch and de-

mand requests makes a significant impact on perfor-

mance as shown in Section 4. Given the results of the

ISVM table size tuning, the hardware overhead of

PAIC is saved by reducing the entries of ISVM ta-

bles as described in Subsection 4.2.

 4 Evaluation

 4.1 Methodology

We evaluate PAIC using the simulation frame-

work released by the 2nd JILP Cache Replacement

Championship (CRC2). The framework is based on

ChampSim and models a three-level cache hierarchy.

Hardware Prefetcher. To prove that PAIC can

adapt to different hardware prefetchers, we model a

signature path prefetcher (SPP)[12] and a Kill-the-PC

prefetcher (KPC-P)[16]. SPP and KPC-P are the lat-

est examples of forward-looking prefetchers, and both

use prefetch filters trained using the L2 cache access

(hits and misses) as feedback.

Benchmarks. We evaluate PAIC on the 27 memo-

ry-intensive applications of SPEC CPU2006[17] and

SPEC CPU2017[18] benchmark suites. We run the

benchmarks using the reference input set, and as with

the CRC2, SimPoint[19] is used to generate a single

sample of one billion instructions per benchmark. We

warm the cache for 200 million instructions and eval-

uate the behavior of the next one billion instructions.

Multi-Core Workloads. Our multi-core results sim-

ulate four benchmarks running on four cores, choos-

ing 60 mixes from all possible workload mixes. For

each mix, we simulate the simultaneous execution of

the SimPoint samples of the constituent benchmarks

until at least 250 million instructions are executed per

benchmark.

To evaluate performance, we report the weighted

speedup normalized to LRU for each benchmark mix.

The metric is computed as follows: for each program

sharing cache, we compute its instructions per cycle

(IPC) in a shared environment (IPCshared), and in iso-

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 397

lation on the same cache (IPCsingle). We compute the

weighted IPC of a mix as the sum of IPCshared /IPCsingle

for all benchmarks in the mix and normalize it with

the weighted IPC using the LRU replacement policy.

Baseline Replacement Policies. We compare PA-

IC against five state-of-the-art cache replacement

policies, namely, SRRIP, DRRIP[6], SHiP[7],

Hawkeye[8], and Glider[3]. SRRIP and DRRIP are

variations of the LRU policy, which use the Re-refer-

ence Interval Prediction (RRIP), aiming at prevent-

ing blocks with a distant re-reference interval from

cache pollution. SHiP extends RRIP by predicting the

re-reference interval of an incoming cache line based

on its history. Hawkeye has won the 2017 Cache Re-

placement Championship[8]. Glider is the first to ap-

ply deep learning to predict reuse distance[3].

 4.2 Comparison with Other Policies

 4.2.1 Single-Core Performance

We compare PAIC with five state-of-the-art re-

placement policies: SRRIP, DRRIP, SHiP, Hawkeye,

and Glider. Fig.7 shows that relative to the five re-

placement policies, PAIC effectively integrates the

benefits of hardware prefetching and replacement

policies with SPP. Fig.7(a) and Fig.7(b) show the per-

formance improvement of each replacement policy for

-10

10

30

50

70

90

110

b
z
ip

2

g
c
c

b
w

a
v
e
s

m
c
f

m
il
c

z
e
u
sm

p

c
a
c
tu

sA
D

M

le
sl

ie
3
d

so
p
le

x

c
a
lc

u
li
x

G
e
m

sF
D

T
D

li
b
q
u
a
n
tu

m

to
n
to

lb
m

o
m

n
e
tp

p

a
st

a
r

w
rf

sp
h
in

x
3

x
a
la

n
c
b
m

k

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

SRRIP DRRIP SHiP Hawkeye Glider PAIC

-10

0

10

20

30

40

50

60

70

80

bw
av

es
_ s

m
cf
_ s

lb
m
_ s

om
ne

tp
p
_ s

w
rf
_ s

ca
m
4
_ s

fo
to

ni
k3

d
_ s

ro
m
s_
s

SRRIP DRRIP SHiP Hawkeye Glider PAIC

(b)

(a)

Fig.7. Speedup for single-core benchmarks. (a) Speedup for SPEC 2006 single-core benchmarks. (b) Speedup for SPEC 2017 single-
core benchmarks.

398 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

SPEC 2006 and SPEC 2017, respectively. On average,

PAIC improves the performance over the baseline

(LRU without prefetching) by 37.22%. SRRIP, DR-

RIP, SHiP, Hawkeye, and Glider, in contrast, im-

prove performance over LRU by 32.35%, 31.96%,

32.93%, 34.56%, and 34.43%, respectively. These im-

provements indicate that PAIC can improve the per-

formance significantly by distinguishing between

prefetch and demand requests.

We also compare PAIC, SRRIP, DRRIP, SHiP,

Hawkeye, and Glider with the baseline, which is LRU

with prefetching. In the presence of SPP, PAIC im-

proves the performance by 3.86% compared with the

baseline, while SRRIP, DRRIP, SHiP, Hawkeye, and

Glider improve the performance by 0.04%, – 0.18%,

0.58%, 1.85%, and 1.68%, respectively. On average, in

the presence of prefetching, learning-based cache re-

placement policies provide minimal performance im-

provements or unexpectedly degrade performance.

PAIC can address some of the performance degrada-

tion caused by prefetcher pollution.

 4.2.2 Multi-Core Performance

Fig.8 shows that in the presence of hardware

prefetching, PAIC can improve performance of a four-

core system. With SPP, PAIC achieves a speedup of

20.99%, while SRRIP, DRRIP, SHiP, Hawkeye, and

Glider achieve speedups of 13.83%, 12.74%, 13.23%,

17.89%, and 15.50%, respectively. PAIC distinguishes

between prefetch and demand requests, and exploits

the dynamic program context to improve the predic-

tion accuracy. Overall, PAIC demonstrates an effec-

tive intelligent replacement policy by differentiating

the predictions for prefetch and demand requests.

0

10

20

30

40

50

60

0 10 20 30 40 50 60W
e
ig

h
te

d
 S

p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

Four-Core Mixes

SRRIP DRRIP SHiP

Hawkeye Glider PAIC

Fig.8. Weighted speedup for four cores with a shared 8 MB LLC.

 4.2.3 Effect of PAIC with KPC-P

We also evaluate PAIC with KPC-P[16] and find

that the results are similar to those achieved with

SPP. On average, with KPC-P, PAIC improves the

performance over the baseline by 36.61% in a single-

core setting, while SRRIP, DRRIP, SHiP, Hawkeye,

and Glider improve performance over the baseline by

31.08%, 31.52%, 32.25%, 33.64%, and 33.63%, respec-

tively.

Fig.9(a) and Fig.9(b) show the LLC demand miss

reduction of each replacement policy for SPEC 2006

and SPEC 2017, respectively. On average, Fig.9

shows that in the presence of KPC-P, PAIC achieves

an average demand miss reduction of 17.41%, while

SRRIP, DRRIP, SHiP, Hawkeye and Glider achieve

demand miss reductions of 12.81%, 13.30%, 13.66%,

15.46%, and 15.48%, respectively. These improve-

ments indicate that PAIC can support different

prefetchers and improve the performance significantly.

 4.3 Performance Overview

 4.3.1 Evaluation of Prefetch Filter

The above experimental results show that, with

different data prefetchers, PAIC performs better than

the state-of-the-art cache replacement policies. Per-

ceptron-based Prefetch Filtering (PPF)[20] enables

more aggressive tuning of the SPP underlying

prefetcher, leading to increased coverage by filtering

out the inaccurate prefetches. We compare

PAIC+SPP+PPF with PAIC+SPP to further evalu-

ate PAIC’s utility in the presence of a prefetch filter

with SPP as the underlying prefetcher. As shown in

Fig.10, PAIC+SPP improves performance over the

baseline by 37.22%, while PAIC+SPP+PPF yields a

speedup of 44.31% over the baseline. It is evident that

PAIC consistently achieves high performance under

the influence of prefetching with or without a prefetch

filter.

 4.3.2 Effective Sequence Length

k

Fig.11 shows the relationship between history

length and speedup of PAIC, wherein the number of

unique PCs (the k value described in Subsection 3.2)

for PAIC ranges from 3 to 7. We make two observa-

tions. First, PAIC is insensitive to finer changes in

the value; for SPP and KPC-P, PAIC achieves the

best performance with four and six unique PCs, re-

spectively. Second, ISVM-based sub-predictors of PA-

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 399

-1

4

9

14

19

24

29

34

39

44

49

b
z
ip

2

g
c
c

b
w

a
v
e
s

m
c
f

m
il
c

z
e
u
sm

p

c
a
c
tu

sA
D

M

le
sl

ie
3
d

so
p
le

x

c
a
lc

u
li
x

G
e
m

sF
D

T
D

li
b
q
u
a
n
tu

m

to
n
to

lb
m

o
m

n
e
tp

p

a
st

a
r

w
rf

sp
h
in

x
3

x
a
la

n
c
b
m

k

SRRIP DRRIP SHiP Hawkeye Glider PAIC

-1

4

9

14

19

24

29

34

39

bw
av

es
_ s

m
cf
_ s

lb
m
_ s

om
ne

tp
p
_ s

w
rf
_ s

ca
m
4
_ s

fo
to

ni
k3

d
_ s

ro
m
s_
s

SRRIP DRRIP SHiP Hawkeye Glider PAIC

D
e
m

a
n
d
 M

is
s

R
a
te

 R
e
d
u
c
ti
o
n

o
v
e
r

B
a
se

li
n
e
 L

R
U

 W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

D
e
m

a
n
d
 M

is
s

R
a
te

 R
e
d
u
c
ti
o
n

o
v
e
r

B
a
se

li
n
e
 L

R
U

 W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

(b)

(a)

Fig.9. Demand miss rate reduction for single-core benchmarks. (a) Demand miss rate reduction for SPEC 2006 single-core bench-
marks. (b) Demand miss rate reduction for SPEC 2017 single-core benchmarks.

-10

10

30

50

70

90

110

130

b
z
ip

2
g
c
c

b
w

a
v
e
s

m
c
f

m
il
c

z
e
u
sm

p
c
a
c
tu

sA
D

M
le

sl
ie

3
d

so
p
le

x
c
a
lc

u
li
x

G
e
m

sF
D

T
D

li
b
q
u
a
n
tu

m
to

n
to

lb
m

o
m

n
e
tp

p
a
st

a
r

w
rf

sp
h
in

x
3

x
a
la

n
c
b
m

k

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

PAIC+SPP PAIC+SPP+PPF

-10

0

10

20

30

40

50

60

70

80

b
w

a
v
e
s_

s

m
c
f_

s

lb
m
_
s

o
m

n
e
tp

p
_
s

w
rf
_
s

c
a
m

4
_
s

fo
to

n
ik

3
d
_
s

ro
m

s_
s

PAIC+SPP PAIC+SPP+PPF

(b)(a)

Fig.10. Speedup for single-core benchmarks. (a) Speedup for SPEC 2006. (b) Speedup for SPEC 2017.

400 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

IC effectively identify the important memory accesses

with fewer history elements. PAIC makes optimal re-

placement decisions depending on the presence of the

few important PCs and uses separate sub-predictors

for prefetch and demand requests. Thus, PAIC signifi-

cantly improves the prediction of caching behaviors in

the presence of prefetching through a simple hard-

ware-friendly linear model.

 4.3.3 Reducing the Hardware Overhead

We take tests to check the impact of reducing

ISVM table sizes on PAIC’ s performance. As shown

in Fig.12, the performance degradation is marginal by

significantly reducing the perceptron table sizes for

more space-saving. Losing only 0.07% performance by

reducing the table sizes to only 16 entries is accept-

able in adapting a predictor to a smaller ISVM table.

Each ISVM table is reduced to 16 entries, resulting in

a total consumption of 0.51 KB from PAIC's predic-

tors. Therefore, the total hardware budget of PAIC is

reduced to 29.31 KB (reduced to about 1/3 of the

original).

Table 1 shows the comparison of hardware over-

head and performance between several prior state-of-

the-art policies and PAIC. PAIC uses little hardware

beyond Hawkeye; however, on average, it offers 2.90%

additional performance improvement for the SPEC

2006 applications and 1.85% for the SPEC 2017 appli-

cations. Overall, PAIC offers a practical machine

learning based cache design for eliminating prefetch-

induced interference in the shared LLC.

Table 1. Hardware Overhead and Performance Comparison
for Different Replacement Policies

Policy Speedup over LRU (%) Hardware

SPEC 2006 SPEC 2017 Overhead (KB)

SRRIP[6] 34.18 27.99 8.00

DRRIP[6] 34.30 26.41 8.00

SHiP[7] 34.87 28.30 14.00

Hawkeye[8] 36.62 29.67 28.00

Glider[3] 36.28 30.04 61.60

PAIC 39.52 31.52 29.31

 5 Related Work

 5.1 Hardware Prefetchers

Prefetching improves performance by preloading
cache lines into some level of the cache before actual-
ly being used. Typically, prefetchers predict future ac-
cess patterns based on past memory accesses. Shev-
goor et al.[21] proposed a variable-length incremental
prefetcher to identify complex address patterns re-
peated in physical pages. SPP[12] learns and prefetch-
es complex data access patterns using compressed his-
torical signatures. It achieves high accuracy by corre-
lating the signature with future possible delta pat-
terns. KPC-P[16] aims to generate prefetch confidence
values, which control the aggressiveness of prefetch-
ing. A prefetch request with low confidence indicates
its long use distance, or it is an inaccurate prefetch
request. KPC-P avoids L2 cache pollution by no
longer inserting of prefetched lines with low predic-
tion confidence in L2. However, all prefetched lines
are inserted in LLC. PAIC avoids prefetch-induced
cache pollution in LLC by evicting cache lines that
are prefetched furthest in the future, and freeing up
cache space for cache lines of other access types.

 5.2 Prefetch Filters

The prefetch filter is implemented through a stan-
dalone module that examines the addresses generated
from the prefetcher. The prefetch filter enhances an
underlying prefetcher by filtering out predicted un-

36.00

36.20

36.40

36.60

36.80

37.00

37.20

37.40

3 4 5 6 7

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

Number of Unique PCs

SPP KPC-P

Fig.11. Performance of PAIC under different numbers of
unique PCs.

37.00

37.05

37.10

37.15

37.20

37.25

37.30

37.35

2 048 1 024 512 256 128 64 32 16

S
p
e
e
d
u
p
 o

v
e
r

B
a
se

li
n
e
 L

R
U

W
it
h
o
u
t

P
re

fe
tc

h
in

g
 (

%
)

Number of ISVM Table Entries
Fig.12. Performance of PAIC under different numbers of ISVM
table entries.

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 401

used prefetches. To further improve the effectiveness

of hardware prefetchers, prefetch filters like PPF[20]

and Evicted-Prefetch-Filter (EPF)[22] have been pro-

posed. PPF is an intelligent prefetch filter that en-

hances the SPP prefetcher. PPF filters out useless

prefetching issued by aggressive SPP, thus allowing

aggressive predictions without degrading the accura-

cy.

 5.3 Learning-Based Cache Replacement

Policies

Cache replacement policies essentially predict the

re-reference behaviors of cache lines[6]. The state-of-

the-art replacement policies[2, 3, 7, 8] are based on some

signatures, including PCs, memory addresses, or in-

struction sequences that learn from past cache behav-

iors to predict future cache priorities. The goal of

these policies is to predict whether an incoming line is

cache-friendly or cache-averse. For example, SHiP[7]

monitors evictions from a sampler to learn the re-ref-

erence interval of a given load instruction. Hawkeye[8]

learns from the Belady-MIN algorithm based on past

cache accesses and maintains a table of counters to

learn whether memory accesses by a given PC are

cache-friendly or cache-averse.

Only a few previous studies have applied machine

learning solutions to the cache replacement problem,

and these do not distinguish between prefetch and de-

mand requests. A recent study[2] uses online percep-

tron learning to improve the accuracy of cache reuse

prediction. It uses a short and ordered history of PCs

as the input feature to predict the reuse of cache

blocks. Shi et al.[3] applied an attention-based long

short-term memory (LSTM) for training reuse predic-

tors offline and extracted useful insights from histori-

cal PCs. These insights are then used to build an on-

line SVM-based hardware predictor, namely, the Glid-

er replacement policy. However, in the presence of

prefetching, Glider makes the same predictions for

prefetch and demand requests, degrades prediction ac-

curacy, and provides minimal performance improve-

ments, as it cannot avoid prefetch-induced cache pol-

lution. Herein, we propose that PAIC can improve

the accuracy of cache line reuse prediction in the pres-

ence of prefetching, along with the performance of the

memory subsystem.

 6 Conclusions

In this paper, to solve the problem of perfor-

mance degradation and variability under prefetching,

we proposed an intelligent cache replacement policy

(PAIC) in the presence of prefetches. PAIC uses dif-

ferent sub-predictors for prefetch and demand re-

quests and inputs a compressed long history of past

PCs into ISVM-based sub-predictors, which signifi-

cantly improves reuse prediction accuracy for both

prefetch and demand requests. By distinguishing the

caching behaviors of prefetches from demands, PAIC

achieves better learning from past memory accesses at

the granularity of a request type. In the single-core

configuration, PAIC improves performance over the

baseline (LRU without prefetching) by 37.22%, out-

performing the state-of-the-art replacement policy

(Glider) by 2.79%. On a four-core system, PAIC im-

proves performance over the baseline by 20.99%,

beating Glider by 5.49%. Overall, PAIC offers a guide

to applying machine learning to combine the perfor-

mance benefits from hardware prefetching and cache

replacement policies.

In the context of a multi-core processor, cache co-

herence is a long-standing question that has largely

been unaddressed concerning prefetching. In our fu-

ture work, we will focus on the sharing issue and

prefetching.

References

 Zangeneh S, Pruett S, Lym S, Patt Y N. BranchNet: A

convolutional neural network to predict hard-to-predict

branches. In Proc. the 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Oct. 2020, pp.118–

130. DOI: 10.1109/MICRO50266.2020.00022.

[1]

 Teran E, Wang Z, Jiménez D A. Perceptron learning for

reuse prediction. In Proc. the 49th Annual IEEE/ACM

International Symposium on Microarchitecture, Oct. 2016.

DOI: 10.1109/MICRO.2016.7783705.

[2]

 Shi Z, Huang X R, Jain A, Lin C. Applying deep learn-

ing to the cache replacement problem. In Proc. the 52nd

Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2019, pp.413–425. DOI: 10.1145/

3352460.3358319.

[3]

 Ipek E, Mutlu O, Martínez J F, Caruana R. Self-optimiz-

ing memory controllers: A reinforcement learning ap-

proach. ACM SIGARCH Computer Architecture News,

2008, 36(3): 39–50. DOI: 10.1145/1394608.1382172.

[4]

 Hallnor E G, Reinhardt S K. A fully associative software-

managed cache design. In Proc. the 27th Annual Interna-

tional Symposium on Computer Architecture, Jun. 2000,

pp.107–116. DOI: 10.1145/339647.339660.

[5]

 Jaleel A, Theobald K B, Steely Jr S C, Emer J. High per-

formance cache replacement using re-reference interval

prediction (RRIP). ACM SIGARCH Computer Architec-

ture News, 2010, 38(3): 60–71. DOI: 10.1145/1816038.

[6]

402 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1109/MICRO50266.2020.00022
https://doi.org/10.1109/MICRO.2016.7783705
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1145/1394608.1382172
https://doi.org/10.1145/339647.339660
https://doi.org/10.1145/1816038.1815971

1815971.

 Wu C J, Jaleel A, Hasenplaugh W, Martonosi M. SHiP:

Signature-based hit predictor for high performance caching.

In Proc. the 44th Annual IEEE/ACM International Sym-

posium on Microarchitecture, Dec. 2011, pp.430–441. DOI:

10.1145/2155620.2155671.

[7]

 Jain A, Lin C. Back to the future: Leveraging Belady’s al-

gorithm for improved cache replacement. In Proc. the

43rd Annual International Symposium on Computer Ar-

chitecture, Jun. 2016, pp.78–89. DOI: 10.1109/ISCA.2016.

17.

[8]

 Wu C J, Jaleel A, Martonosi M, Steely S C, Emer J.

PACMan: Prefetch-aware cache management for high

performance caching. In Proc. the 44th Annual IEEE/

ACM International Symposium on Microarchitecture,

Dec. 2011, pp.442–453. DOI: 10.1145/2155620.2155672.

[9]

 Heirman W, Bois K D, Vandriessche Y, Eyerman S, Hur

I. Near-side prefetch throttling: Adaptive prefetching for

high-performance many-core processors. In Proc. the 27th

International Conference on Parallel Architectures and

Compilation Techniques, Nov. 2018, Article No. 28. DOI:

10.1145/3243176.3243181.

[10]

 Ishii Y, Inaba M, Hiraki K. Unified memory optimizing

architecture: Memory subsystem control with a unified

predictor. In Proc. the 26th ACM International Confer-

ence on Supercomputing, Jun. 2012, pp.267–278. DOI: 10.

1145/2304576.2304614.

[11]

 Kim J, Pugsley S H, Gratz P V, Reddy A L N, Wilker-

son C, Chishti Z. Path confidence based lookahead

prefetching. In Proc. the 49th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, Oct. 2016.

DOI: 10.1109/MICRO.2016.7783763.

[12]

 O'Neil E J, O'Neil P E, Weikum G. The LRU-K page re-

placement algorithm for database disk buffering. ACM

SIGMOD Record, 1993, 22(2): 297–306. DOI: 10.1145/

170036.170081.

[13]

 Srinath S, Mutlu O, Kim H, Patt Y N. Feedback direct-

ed prefetching: Improving the performance and band-

width-efficiency of hardware prefetchers. In Proc. the 13th

International Symposium on High Performance Comput-

er Architecture, Feb. 2007, pp.63–74. DOI: 10.1109/HP-

CA.2007.346185.

[14]

 Jain A, Lin C. Rethinking Belady's algorithm to accom-

modate prefetching. In Proc. the 45th Annual Interna-

tional Symposium on Computer Architecture, Jun. 2018,

pp.110–123. DOI: 10.1109/ISCA.2018.00020.

[15]

 Kim J, Teran E, Gratz P V, Jiménez D A, Pugsley S H,

Wilkerson C. Kill the program counter: Reconstructing

program behavior in the processor cache hierarchy. ACM

SIGPLAN Notices, 2017, 52(4): 737–749. DOI: 10.1145/

3093336.3037701.

[16]

 Henning J L. SPEC CPU2006 benchmark descriptions.

ACM SIGARCH Computer Architecture News, 2006,

34(4): 1–17. DOI: 10.1145/1186736.1186737.

[17]

 Bucek J, Lange K D, von Kistowski J. SPEC CPU2017:[18]

Next-generation compute benchmark. In Proc. the 2018

ACM/SPEC International Conference on Performance

Engineering, Apr. 2018, pp.41–42. DOI: 10.1145/3185768.

3185771.

 Perelman E, Hamerly G, Van Biesbrouck M, Sherwood T,

Calder B. Using SimPoint for accurate and efficient simu-

lation. ACM SIGMETRICS Performance Evaluation Re-

view, 2003, 31(1): 318–319. DOI: 10.1145/885651.781076.

[19]

 Bhatia E, Chacon G, Pugsley S, Teran E, Gratz P V,

Jiménez D A. Perceptron-based prefetch filtering. In Proc.

the 46th International Symposium on Computer Architec-

ture, Jun. 2019. DOI: 10.1145/3307650.3322207.

[20]

 Shevgoor M, Koladiya S, Balasubramonian R, Wilkerson

C, Pugsley S H, Chishti Z. Efficiently prefetching com-

plex address patterns. In Proc. the 48th International

Symposium on Microarchitecture, Dec. 2015, pp.141–152.

DOI: 10.1145/2830772.2830793.

[21]

 Seshadri V, Yedkar S, Xin H Y, Mutlu O, Gibbons P B,

Kozuch M A, Mowry T C. Mitigating prefetcher-caused

pollution using informed caching policies for prefetched

blocks. ACM Transactions on Architecture and Code Op-

timization, 2015, 11(4): Article No. 51. DOI: 10.1145/

2677956.

[22]

Hui-Jing Yang received her B.S.

degree in computer science and tech-

nology from Zhoukou Normal Univer-

sity, Zhoukou, in 2018. She is current-

ly a Ph.D. candidate at Beijing Uni-

versity of Technology, Beijing. She is

a student member of CCF. Her main

research direction is computer architecture.

Juan Fang received her M.S. de-

gree in computer science and technolo-

gy from Jilin University of Technolo-

gy, Changchun, in 1997, and her

Ph.D. degree in computer science and

technology from the College of Com-

puter Science, Beijing University of

Technology, Beijing, in 2005. In 1997, she joined the

College of Computer Science, Beijing University of

Technology, Beijing. Since 2015, she has been a profes-

sor of Beijing University of Technology, Beijing. Her re-

search interests include high-performance computing,

edge computing and big data technology.

Hui-Jing Yang et al.: Prefetch-Adaptive Intelligent Cache Replacement Policy Based on Machine Learning 403

https://doi.org/10.1145/1816038.1815971
https://doi.org/10.1145/2155620.2155671
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1145/2155620.2155672
https://doi.org/10.1145/3243176.3243181
https://doi.org/10.1145/2304576.2304614
https://doi.org/10.1145/2304576.2304614
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1145/170036.170081
https://doi.org/10.1145/170036.170081
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1109/HPCA.2007.346185
https://doi.org/10.1109/ISCA.2018.00020
https://doi.org/10.1145/3093336.3037701
https://doi.org/10.1145/3093336.3037701
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/885651.781076
https://doi.org/10.1145/3307650.3322207
https://doi.org/10.1145/2830772.2830793
https://doi.org/10.1145/2677956
https://doi.org/10.1145/2677956

Min Cai is a lecturer in the Facul-

ty of information technology, Beijing

University of Technology, Beijing, and

a postdoctoral in computer architec-

ture. He received his Ph.D. degree in

computer application technology from

Beijing Institute of Technology, Bei-

jing, in 2014. In recent years, he has hosted and partici-

pated in a dozen of research projects in various fields

such as computer architecture, artificial intelligence,

smart city, industrial Internet, Internet of Things, and

embedded system design, and published more than 10

papers in well-known academic journals.

Zhi Cai is an associate professor in

the Faculty of Information Technolo-

gy, Beijing University of Technology,

Beijing. He received his M.S. degree

from the School of Computer Science

in the University of Manchester,

Manchester, in 2007, and his Ph.D.

degree in computer science and technology from the

Manchester Metropolitan University, Manchester, in

2011. His research interests include information re-

trieval, ranking in relational databases, keyword search,

and intelligent transportation systems.

404 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

	1 Introduction
	2 Characterization & Analysis of Replacement Policies
	2.1 Prefetch and Demand Requests
	2.2 Performance Variability Under Various Replacement Policies with Prefetching
	2.3 Low LLC Reuse of Prefetch Requests

	3 PAIC Design and Implementation
	3.1 DMINgen
	3.2 PAIC Predictor
	3.2.1 Training
	3.2.2 Prediction

	3.3 Hardware Overhead

	4 Evaluation
	4.1 Methodology
	4.2 Comparison with Other Policies
	4.2.1 Single-Core Performance
	4.2.2 Multi-Core Performance
	4.2.3 Effect of PAIC with KPC-P

	4.3 Performance Overview
	4.3.1 Evaluation of Prefetch Filter
	4.3.2 Effective Sequence Length
	4.3.3 Reducing the Hardware Overhead

	5 Related Work
	5.1 Hardware Prefetchers
	5.2 Prefetch Filters
	5.3 Learning-Based Cache Replacement Policies

	6 Conclusions
	References

