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Abstract    Agile hardware design is  gaining increasing momentum and bringing new chips in larger quantities to the

market faster. However, it also takes new challenges for compiler developers to retarget existing compilers to these new

chips  in  shorter  time  than  ever  before.  Currently,  retargeting  a  compiler  backend,  e.g.,  an  LLVM  backend  to  a  new

target, requires  compiler  developers  to  write  manually  a  set  of  target  description  files  (totalling 10 300+  lines  of  code

(LOC) for RISC-V in LLVM), which is error-prone and time-consuming. In this paper, we introduce a new approach, Au-

tomatic Target Description File Generation (ATG), which accelerates the generation of a compiler backend for a new tar-

get by generating its target description files automatically. Given a new target, ATG proceeds in two stages. First, ATG

synthesizes a small list of target-specific properties and a list of code-layout templates from the target description files of a

set of existing targets with similar instruction set architectures (ISAs). Second, ATG requests compiler developers to fill in

the information for each instruction in the new target in tabular form according to the list of target-specific properties syn-

thesized and then generates its target description files automatically according to the list of code-layout templates synthe-

sized.  The  first  stage  can  often  be  reused  by  different  new targets  sharing  similar  ISAs.  We evaluate  ATG using  nine

RISC-V instruction sets drawn from a total of 1 029 instructions in LLVM 12.0. ATG enables compiler developers to gen-

erate compiler backends for these ISAs that emit the same assembly code as the existing compiler backends for RISC-V

but with significantly less development effort (by specifying each instruction in terms of up to 61 target-specific properties

only).
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1    Introduction

Agile hardware design promises to bring a variety

of new chips to the market faster[1–3], posing new chal-

lenges for compiler developers who are required to re-

target existing compilers to these new chips in short-

er  time than ever  before.  Existing compilers  leverage

target-independent  code  generation  to  help  construct

a  compiler  backend  for  a  new target  architecture  by

requiring compiler developers to write a set of descrip-

tion files to specify its similar instruction set architec-

ture  (ISA)  among  others,  e.g.,  target  description

(*.td) files in TableGen in LLVM or machine descrip-

tion  (*.md)  files  in  GCC.  However,  writing  such  de-

scription  files  can  be  error-prone  and  time-

consuming[4]. Fig.1 highlights  the  efforts  required  in

developing the compiler backends for 20 different ar-

chitectures in LLVM 12.0.
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For  MIPS  (with 1 700+  instructions),  LLVM  re-

quires 33 *.td files totalling about 23 KLOC. For x86

(with 15 000+  instructions),  LLVM  requires  45  files

totalling about 45 KLOC.

In this paper, we are therefore motivated to devel-

op a new approach, ATG (Automatic Target Descrip-

tion File Generation),  which can generate a compiler

backend  for  a  new  target  more  quickly  by  requiring

compiler developers to fill in the information for each

instruction in tabular form according to a small list of

target-specific  properties  pre-synthesized  and  then

generating the *.td files for the new target automati-

cally according to a list of code layout templates pre-

synthesized.

Our  key  observation  behind  the  development  of

ATG is that while the .td files written for a new tar-

get  can  be  tens  of  KLOC long,  all  the  target-depen-

dent  tokens  (used  for  describing  target-specific  prop-

erties)  can  be  relatively  small.  For  each  of  the  two

TableGen  records  given  in Fig.2,  only  two  tokens

(highlighted in blue) are target-dependent and all the

rest are target-independent. If ATG first asks compil-

er developers to fill in the information for such target-

dependent  tokens  and  then  completes  the  rest  auto-

matically  by  itself,  should  not  we  enhance  compiler

retargetability  quite  substantially?  If  so,  how  do  we

determine the target-specific properties for a new tar-

get and how do we generate its .td files automatically

(based  on  the  information  provided  for  these  target-

specific properties)?

jr16
0x0c

ATG addresses  these  challenges  by  proceeding  in

two stages  for  a  new target.  In  the  first  stage,  ATG

synthesizes  a  small  list  of  target-specific  properties

(referred to as TSP-List), together with a list of code-

layout  templates  (referred  to  as  CLT-List),  from the

existing target description files of a set of targets with

similar ISAs to the new target. TSP-List captures all

aspects of the new target that must be known to the

compiler,  including  instruction  formats,  registers,

pipelines and calling conventions[4], such as “ ” for

an  instruction  name  and “ ” for  an  opcode  for

MIPS  as  shown  in Fig.2.  In  the  second  stage,  ATG

first  asks  compiler  developers  to  fill  in  the  informa-

tion for each instruction in the new target in tabular

form according to TSP-List and then generates auto-

matically  its  target  description  files  according  to

CLT-List.  In  practice,  the  first  stage  can  often  be

reused  by  different  targets  sharing  similar  ISAs,  so

that the time for synthesizing TSP-List and CLT-List

can be amortized.

So far, we have not been aware of any prior work

on  accelerating  building  compiler  backends  for  new

targets by generating their target description files au-

tomatically in this way. In summary, we make the fol-

lowing contributions.

• We  present  a  new  approach,  ATG,  to  signifi-

cantly  accelerate  building  a  compiler  backend  for  a

new  target  by  requiring  compiler  developers  to  de-
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Fig.1.  Heavy research and development (R&D) efforts in writing target description (.td) files for a new target in LLVM 12.0.

 

 def C_BEQZ : 

    Bcz<

    0b110 ,  "c.beqz",  

    GPRC >, Sched <

    [WriteJmp ]>;

RISC -VMIPS

RISCVInstrInfoC.tdMicroMIPSInstrInfo.td

Bit Encoding

Instruction Name

Target-Specific

Properties  def JR 16_MM :  

     JumpRegMM 16<"jr16",    

     GPR32Opnd >,  

     JALR _FM_16<0x0c>,

     ISA_MICROMIPS32

     _NOT _MIPS 32R6;

Fig.2.  Reduced R&D efforts in specifying a few target-specific properties.
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scribe  it  in  terms  of  a  few  dozens  of  target-specific

properties  (in  TSP-List)  and then generating its  tar-

get  description  files  automatically  according  to  a  list

of code layout templates (in CLT-List).

• We introduce a token-based classification appro-

ach  to  synthesize  both  TSP-List  and  CLT-List  for  a

given target from the target description files of a set

of  existing  targets  sharing  similar  ISAs  as  the  new

target.

• We have implemented ATG in LLVM 12.0 and

have  evaluated  it  by  using  nine  RISC-V  ISAs  com-

prising  a  total  of 1 029 instructions  (with  404  scalar

instructions  and  625  vector  instructions  from  the

RISC-V  Vector  extension  (RVV)①).  An  experienced

compiler  developer  in  our  group  usually  spends

months on writing the *.td files in TableGen for each

of these nine ISAs. In contrast, ATG can reduce these

efforts quite substantially. ATG synthesizes TSP-List

and CLT-List (only once) from the target description

files of 10 MIPS ISAs in about four days. For the nine

RISC-V ISAs (with 13–625 instructions), it takes on-

ly  1  day–7  days  for  the  same  compiler  developer  to

specify each target according to TSP-List. Then ATG

generates  automatically  the  *.td  files  for  the  nine

ISAs  in  about  two  minutes  per  target  according  to

CLT-List.  Although  these  ATG-generated  *.td  files

are  larger  than  the  hand-written  ones  in  LLVM  by

2x–3x  per  target  overall,  the  two  compiler  backends

generated by LLVM (in more or less the same amount

of time with nearly the same code size) from both sets

of  *.td  files  emit  the  same  assembly  code  for  the  16

C/C++ benchmarks of SPEC2017 and more than 15 600

LLVM  regression  test  cases  while  incurring  more  or

less the same amount of compilation time.

The rest of this paper is organized as follows. Sec-

tion 2 motivates our ATG approach with a simple ex-

ample. Section 3 describes  our  ATG  approach. Sec-

tion 4 discusses  its  implementation. Section 5 evalu-

ates its effectiveness. Section 6 discusses related work

and Section 7 concludes the paper. 

2    Motivation

Fig.3 shows how ATG is designed to improve pri-

or work on building a compiler backend for a new tar-

get. Traditionally, as illustrated in Fig.3(a), a target-

independent  generator  relies  on  a  set  of  handle-writ-

ten  *.td  files  (totalling  often  tens  of  KLOC)  to  pro-

duce  a  compiler  backend  for  the  new  target.  In  this

work, as illustrated in Fig.3(b), ATG requires compil-

er  developers  to  fill  in  only  the  information  for  each

instruction  requested  in  TSP-List  (a  pre-synthesized

list with dozens of target-specific properties) and then

generates  the  *.td  files  for  the  new  target  automati-

cally according to CLT-List (a pre-synthesized list of

code-layout  templates).  Let  us  consider  the  case  of

writing a compiler backend for MIPS (with more than

1 700 instructions)  using TableGen in  LLVM. Manu-
 

(a)

Manual

Compiler
Target
Backend Compiler

Target 

Backend

Dozens of  

Properties

(b) 

KLOC

Target-Independent 

Generator

Target-Independent
Generator

KLOC

*.td

*.td

Code-Layout
Templates

TSP-List

1
2...

...

...

...

Inst Name
Size

Automatic *.td Generation

ISA

...

ISA
TSP-List

1
2

Instance Name
Size Synthesis

Manual

Fig.3.  Building compiler backends by producing the *.td files for a new target manually as in (a) prior work and automatically as in
(b) this work.
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ally,  one  would  end  up  with  writing  24  *.td  files  in

about 19 KLOC for  instruction support.  With ATG,

one would only need to fill in the information for each

instruction  according  to  19–27  target-specific  proper-

ties, i.e., tokens (Fig.2), where all the target-indepen-

dent tokens will be generated automatically.

Given a new target, ATG proceeds in two stages.

In  the  first  stage  (which  can  be  reused  for  different

new  targets  sharing  similar  ISAs),  ATG  synthesizes

TSP-List and CLT-List from the *.td files of a set of

existing  targets  with  similar  ISAs.  Each  template  in

CLT-List  is  identified  uniquely  by  a  feature  vector

characterized by its target-specific tokens included. In

the second stage, ATG generates the *.td files for the

new target by using the target-specific information re-

quested in TSP-List and provided by compiler devel-

opers for each instruction (so that each instruction is

also identified by a feature vector) to construct a de-

scription  for  the  instruction  in  TableGen  based  on

similarity-based  matching  (between  the  instruction

and one of the code-layout templates in CLT-List).

In Subsection 2.1,  we  motivate  our  ATG  ap-

proach by considering a single instruction example. In

Subsection 2.2, we provide some further justifications

for its practical feasibility. 

2.1    A Motivating Example

c.jr

0b10 0 1 16

Fig.4 illustrates how ATG generates a description

of  from RISC-V in TableGen based on some tar-

get-specific information provided by compiler develop-

ers. Fig.4(a)  depicts  its  bit  encoding,  where  its  op-

code “ ” ranges in bits “ ”–“ ” for a “ ”-bit in-

struction. For simplicity, we focus only on four of its

target-specific properties.

class
def

Fig.4(b)  gives  a  hand-written  description  taken

from LLVM 12.0, coded declaratively as a sequence of

TableGen  records,  where  a  statement  intro-

duces  an  abstract  record  and a  statement  intro-

duces a concrete record. The four target-specific prop-
 

class RVInst16 : Instruction {

  field bits<16> Inst;

}

class RVInst16CR<bits<2> opcode>: RVInst16{

  let Inst{1-0} = opcode;

}

def C_JR : RVInst16CR<0b10>;

(b)

S1:

S2:

S3:

1:
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5:
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def  C_JR : JALR_FM_16<0b10>;

class JALR_FM_16 < bits<2> op>

{

        bits<16> Inst;

        let Inst{1-0} = op;

 } 

(c)

R1:

R2: Automatic Output

1:

2:

3:

4:

5:

6:

Manual Input

TRG for jr16 

let

R1

t4 t4

[16]

R2

[5]

R2

t2 t2

t5

t5

T1

T2

t1
t1

t6 t7 t6 t7 t8

[9]

R2

t3 t3[0x0c]

R1

[op]

R2

[Inst]
R2

Token

Vertex

R-D

1:

2:

3:

4:

5:

R3:

R4:

R5:

lw64 in MIPS64

def LW64  : LW_FM<0x23>;

class LW_FM<bits<6> op>{

      bits<32> Inst;

      let Inst{31-26} = op;

}
     ...
{   let canFoldAsLoad = 1;  }6:

jr16 in MicroMIPS

R1:

R2:

1:

2:

3:

4:

5:

6:

def JR16_MM : JALR_FM_16<0x0c>;

class JALR_FM_16<bits<5> op>

{

     bits<16> Inst;

     let Inst{9-5}   = op;            

}

[1]
R4

[canFold
AsLoad]

R5

TRG for lw64 

[32]

R4

[26]

R4

[31]

R4[0x23]

R3

[op]

R4

[Inst]

R4

def JR16_MM : JALR_FM_16<TS
14 >;

class JALR_FM_16<bits<TS16
-TS15+1> 

op>

{

     bits<TS
2> Inst;

     let Inst{ TS16   
- TS15}   = op;            

}

:

:

1:

2:

3:

4:

5:

6:

(h) 

(i)

CLT-List

TPL_
JR16

TPLRec-List

FV

< , >

<0.032 689 51, ... , 0.052 227 877>

TPL_
LW64

TPLRec-List

FV

< , , >

<0.052 083 95, ..., 0.058 894 236>

 <TS2, TS14, TS15, TS16, TS34, ... >TSP-List

(f)  
Target Modeling   

(g)   

Rec-List
TSP-List

lw64
<R3, R4>

<0x23, 26, 31, 32, 1>
Rec-List
TSP-List

jr16
<R1, R2>

<0x0c, 5, 9, 16>

(k)

15

Idx

TS

2

14

Category Comments for Target Specific Details

 Size of the bit encoded instruction.

 The binary opcode in bit-encoding.

 The start bit of instruction opcode.0

Property 
Value

16

0b10

16  The end bit of instruction opcode.1

..
.

34  Can this be folded as a simple memory operand?
Auxiliary Scheme

Incremental Scheme

Fail

(m) 

(l) 

T1 T2

T3 T4 T5

Fig.4.  Motivating example for illustrating ATG. (a) Bit encoding of c.jr from RISC-V. (b) Hand-written description of c.jr taken
from LLVM. (c) Description of c.jr generated by ATG automatically. (d) The only effort from compiler developers for c.jr. (e) Ex-
ample records (MicroMIPS and MIPS64). (f) TRGs (MicroMIPS and MIPS64). (g) ISA models (MicroMIPS and MIPS64). (h) Tar-
get-specific property list. (i) Synthesized code-layout template list. (j) Synthesized TPLRec-List for c.jr. (k) Target-specific properi-
ty list (TSP-List). (l) Similarity-based matching. (m) Schemes for failed matching. Ri: record i. Idx: index.
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S1�S3 S1 16
S2 0 1

S3 0b10

erties  considered  here  are  specified  by  three  records,

,  where  defines the “ ”-bit mode at line 2,

 defines  the  bit  range “ ”–“ ” for  the  opcode  at

line 5, and  specifies the opcode as “ ”.
c.jr

c.jr

Fig.4(c)  gives  a  description  of  generated  by

ATG  automatically  according  to  the  pre-synthesized

code layout templates in CLT-List. This description is

functionally  equivalent  to  the  hand-written  one  in

Fig.4(b)  but  with  a  different  code  layout.  As  far  as

compilers developers are concerned, they need only to

fill in the information related to the four target-specif-

ic  properties,  i.e.,  tokens  (as  requested  in  TSP-List)

for , as shown in Fig.4(d). 

2.1.1    Stage 1: Synthesizing TSP-List and

CLT-List

jr16
lw64

jr16

lw64

We obtain these two lists automatically for a new

target by considering the *.td files from a set of exist-

ing  targets  with  similar  ISAs.  For  each  existing  tar-

get,  we  construct  one  single  token  reference  graph

(TRG)  to  capture  a  new  kind  of  ref-def  (R-D)  rela-

tionship among the tokens that appear in all its *.td

files.  We distinguish  three  types  of  tokens  (Table 1):

1)  programmer-defined  (PD)  tokens  (such  as  vari-

ables  introduced  by  compiler  developers),  2)  lan-

guage-specific  (LS)  tokens  (such  as  operators  and

punctuation  marks),  and  3)  target-specific  (TS)  to-

kens (such as instruction names and opcodes). We re-

ly  on  the  TRG for  a  target  to  separate  type  3  from

type 1 and type 2 in its *.td files. Fig.4(e) gives two

records  describing  for  MicroMIPS  and  three

records describing  for MIPS64. Fig.4(f) depicts a

small  portion  of  the  TRG for  MicroMIPS by includ-

ing  only  a  few  tokens  from Fig.4(e)  for  and  a

small  portion  of  the  TRG  for  MIPS64  by  including

only a  few tokens  from Fig.4(e)  for .  Given two

t1 t2 t1 → t2

t1 t2

0x0c→ op 5→ inst 9→ inst
op→ inst 16→ inst 16

bits
inst t1 → t2

t1 t2

tokens  and  in a TRG,  represents a ref-def

relation such that  is used in the statement where 

is defined. Let us consider Figs.4(e) and 4(f) by focus-

ing  on  MicroMIPS  only.  From  lines  4 and 5  in

Figs.4(e),  we  have , , ,

,  and  (since  as  part  of  the

type  provided in line 4 is  also considered to be

used in line 5 where  is defined). Given a 

edge in a TRG,  cannot be an LS token and  must

be  a  PD  token.  Based  on  how  the  three  different

types of tokens are used, we can thus identify the four

(five) tokens highlighted in blue as TS tokens for Mi-

croMIPS (MIPS64) in Fig.4(e).

i ∈ I I
(Rec-Listi, TSP -Listi)

Rec-Listi
TSP -Listi

jr16
lw64

As illustrated  in Fig.4(g),  we  now represent  each
instruction ,  where  is  the  set  of  all  instruc-
tions  considered,  as  a  2-tuple ,

where  is a list of its associated records, and
 is  a  list  of  TS  tokens  identified  in  these

records.  This is  illustrated for  from MicroMIPS
and  from MIPS64.

i ∈ I
(Rec-Listi, TSP -Listi)

i ∈ I
(TPLRec-Listi,FV i)

TPLRec-Listi
Rec-Listi
FV i TSP -Listi

Rec-Listj
TPLRec-Listi

Ti

TSP i i

jr16
lw64

T3 T5

Finally, as illustrated in Figs.4(h)–4(j), we obtain
TSP-List  and  CLT-List  by  performing  a  simple  tar-
get normalization process. For each instruction ,
we have already obtained  as il-

lustrated  in Fig.4(g).  To  obtain  TSP-List  (Fig.4(h)),
we simply collect  and combine the  target-specific  to-
kens in TRGs. To obtain CLT-List (Fig.4(i)), we con-
sider  every  instruction  in  turn.  We  include  a

code-layout  template  in  CLT-

List,  where  is  templatized  from
 with normalization only on TS tokens,  and

 is  the  feature  vector  obtained  from 
for representing the instruction, such that  is
templatized  identically  as ,  as  illustrat-
ed in Figs.4(i) and 4(j). In each templatized record 
(Fig.4(j)),  is  the -th  entry  in  TSP-List
(Fig.4(k)).  For  the  two  instructions  considered, 
and , two code layout templates, TPL_JR16 and
TPL_LW64, are obtained (where –  are omitted). 

 

Table  1.    Three Categories of Tokens②

Token Category Abbr. Description

Language-specific LS Language-specific tokens such as reserved key words, operators, and punctuation, which are
target-independent. This type is represented with LS.
For example, 1) keywords: def, class, let; 2) bang operators: !eq, !add; 3) punctuation: “:”, “,”.

Programmer-defined PD Target-independent tokens defined by programmers. This type is represented with PD.
For example, “inst”, “op”, … .

Target-specific TS Property tokens for machine-specific constraints, which are indispensable as to the correct
target support in a compiler. This type is represented with TS.
For example, “16” represents size of the bit encoded instruction. “0” represents the start bit of the
instruction opcode and “1” represents the end bit.
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②https://github.com/agilecompiler/agilecompiler, Jan. 2022.
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2.1.2    Stage 2: Generating *.td Files

c.jr
Given the target-specific information provided for

 from  RISC-V  in Fig.4(d),  ATG  will  first  turn

this  information  into  a  feature  vector.  Afterwards,

ATG will select TPL_JR16, based on similarity-based

matching (Fig.4(l)), to generate a description for this

instruction as shown in Fig.4(c). To completely speci-

fy  this  instruction,  in  practice,  compiler  developers

need  to  fill  in  the  information  for  25  properties.  In

contrast,  the hand-written description in LLVM con-

sists of 46 LOC (with 336 tokens).

As demonstrated in Figs.4(l) and 4(m), in the rare

cases  when  ATG fails  to  find  a  suitable  code  layout

template to generate a description for a given instruc-

tion  (e.g.,  a  customized  instruction),  ATG  provides

two  schemes  to  produce  a  description.  The  auxiliary

scheme  is  proposed  as  a  supplement  for  those  failed

instructions  without  new  properties.  For  those  failed

instructions  due  to  additional  properties  or  due  to

more  complex  reference  patterns  on  target-specific

properties which are never captured in available ISAs,

ATG  should  encourage  developers  to  design  a  short

piece of code manually which is referred to as the in-

cremental  scheme.  These  two  schemes  are  presented

with more details in Subsection 3.2. 

2.2    Discussions

Let us discuss the practical feasibility of our ATG

approach  from four  perspectives.  First,  when  writing

the *.td files manually for a new target, compiler de-

velopers often reuse code from existing targets[5]. This

suggests  that  the  code-layout  templates  in  CLT-List

can be automatically synthesized from the *.td files of

a  set  of  existing  targets  sharing  similar  ISAs  as  the

new target. Second, the TS tokens are used different-

ly from the LS and PD tokens in the *.td files.  This

suggests  that  the  target-specific  properties  in  TSP-

List  can  also  be  automatically  synthesized  from  the

existing .td files in a similar way as CLT-List. Third,

in  the  rare  cases  when  ATG  fails  to  generate  a  de-

scription for  a  certain  instruction (e.g.,  a  customized

instruction in a domain-specific chip) in TableGen au-

tomatically,  ATG provides  means  to  call  upon  com-

piler developers to generate a description together. Fi-

nally, we can now obtain new compiler backends from

ATG-generated *.td files instead of hand-written *.td

files.  In  both  cases,  the  correctness  of  a  compiler

backend can be verified in exactly the same way[6], of-

ten subject to comprehensive regression testing. 

3    Automatic Target Description File

Generation

We  propose  ATG  to  apply  automatic  generation
for  target  description  files. Fig.5 displays  the  two
stages  in  ATG:  1)  synthetic  stage,  analytically  syn-
thesizing  TSP-List  and  CLT-List  from  similar  ISAs,
2) generation stage, generating target description files
for  a  new  ISA with  only  a  tabular  form in  terms  of
TSP-List.

In  this  section,  we  introduce  the  basic  idea  be-
hind ATG. The synthetic stage includes in two steps,
TRG  construction  for  token  analyses  (Subsection
3.1.1)  and  target  synthesizing  (Subsections 3.1.2 and
3.1.3)  for  TSP-List  and  CLT-List.  The  generation
stage for  new targets  with these two lists  is  then in-
troduced (Subsection 3.2). 

3.1    Synthetic Stage

The  synthetic  stage  is  to  construct  two  reusable

lists,  TSP-List  and  CLT-List,  from  a  set  of  existing

targets with similar ISAs. TSP-List is a target-specif-

ic  property  list  for  generating  a  new  instruction  set

which is required with specific values from developers.

CLT-List manages a set of  code-layout templates for

automatic code generation in demand. These lists are

refined  from  token-based  analyses  on  a  set  of  TRG

graphs. 

 

Synthetic Stage 

1. TRG 
Construction

Token 

Reference Graph 

Synthetic Target Model

Sample ISAs

CLT-List

TSP-List

2. Target 
Synthetizing

Generation Stage 

1. Similarity-

Based Matching

New 
Compiler

3. Compiler 
Regeneration2. Generator

Inst_Name

ISA_Name

Reserved

...

TSP-List  From 

DevelopersCommon 

Basic Scheme

Auxiliary Scheme
*.td Files





*.td Files

*.td Files

... ...

Incremental Scheme

Fig.5.  Framework of Automatic Target Description File Generation (ATG).
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3.1.1    TRG Construction

ti tj
ti → tj ti tj

t1
t5 jr16 t1

t1 → t5 t5

t7

A  TRG  is  constructed  on  tokens  from  an  ISA,

which  are  parsed  from  records  in  *.td  files.  As  lines

3–5  of Algorithm 1 show  that  the  target-specific

graph captures a new ref-def (R-D) relationship auto-

matically among tokens. Basically, the graph relies on

traditional  def-use  (D-U)  techniques[7],  but  with  a

broader focus on usage, which is referred to as refer-

ence (ref). According to the definitions in Table 1, LS

tokens  and  TS tokens  are  taken  as  references  in  our

work. For each pair of tokens  and  in TRG, an R-

D  edge  is  set  up  once  is  used  by .  The

rules  based  on  the  R-D  relation  are  summarized  in

lines 8–15 of Algorithm 1, which can make a distinc-

tion among PD, LS and TS tokens according to their

distinct in-degree (IN-D) and out-degree (OUT-D) R-

D  edges.  These  rules  illuminate  the  categories  of 

and  in Fig.4(f) for  where  must be a TS to-

ken  due  to  the  only  outgoing  edge,  and 

must be a PD token due to the in-coming edge. The

token  in the same TRG must be an LS token since

it  does  not  have  any  R-D  chains.  These  three  cate-

gories  of  tokens  make  it  ready  for  later  synthesizing

process.

Algorithm 1. TRG-Construction

∗.tdF iles　Input: 

TRGs　Output: : token reference graphs;

Category　　　　　 : three categories of all tokens;

Records ← ∗.tdF iles1   PreProcess( );

Rk Rt ∈ Records2 for ,    do

ti ∈ Rk tj ∈ Rt3　　for   ,    do

ti tj4　　　　if HasR-DRelation( , ) then

TRGs ti, tj, R→ D5　　　　　　 .Add_Edge( );

Rj ∈ Records6 for    do

ti ∈ Rj7　　for    do

IN D ← ti TRGs8　　　　 -   CalculateINDegree( , );

OUT D ← ti TRGs9　　　　 -   CalculateOUTDegree( , );

IN D OUT D10　　　  if -  == 0 && -  == 0 then

Category<LS> ti LS11　　　　　   .Append( , );

IN D OUT D ̸=12　　　  if -  == 0 && -   0 then

Category<TS> ti TS13　　　　　   .Append( , );

IN D ̸=14　　　  if -   0 then

Category<PD> ti PD15　　　　　   .Append( , );

TRGs Category16 return , ;
 

3.1.2    Synthesizing TSP-List

TSP-List  is  a  list  of  target-specific  properties  re-

quired for a target support. TSP-List is derived from

the R-D relationship on TS tokens as described in Al-

gorithm 2. A TS token in TRG is only a value for a

0x0c
jr16

opcode

ti tj ti → tj

specific  target-specific  property,  e.g.,  for  Mi-

croMIPS  is a value specified for the property of

 in Fig.4(f). The exact semantics for this value

should be worked out via  the R-D relation.  As for  a

TS token  in a TRG,  from the only  edge is

the PD token (a variable introduced by compiler de-

velopers)  using  it  in  the  definition,  and broadcasting

it to the compiler backend as a carrier which is refer-

eed as PR-PD. Thus, we append a new entry for PR-
PD which  corresponds  to  a  target-specific  property

without  repetition.  During  the  R-D  analyses,  differ-

ent PR-PD can contribute to new entries in TSP-List.

In this way, the completed TSP-List should be a su-

per-set on target-specific properties of all ISAs.

Algorithm 2. Synthesizing TSP-List

ISAs　Input: : all selected sample ISAs;

TSP List　Output: -
idx ←1   0;

PR_PDs TSP List ← ∅2 , -   ;
ISA ∈ ISAs3 for    do

∗.tdF iles ← ISA4　　   PrepareInput( );

TRGs Category ← ∗.tdF iles5　　 ,   TRG-Construction( );

TS_Tokens← CollectISATS(TRGs,Category,
ISA.inst_set

6　　
        );

ti ∈ TS_Tokens7　　for    do

PR_PD ← TRG ti8　　　　   GetPDByR-DAnalyse( , );

commentsi ← PR_PD9　　　　   ExtractComment( );

valuei ←10　　　    null;

PR_PD /∈ PR_PDs11　　　  if    then

PR_PDs ← PR_PDs ∪ PR_PD12　　　　　       ;

TSP List idx valuei commentsi13　　　　　   - .Add(( , , ));

idx14　　　　　   ++;
TSP List15 return - ;

0x0c→ op 0x23→ op
op

14

TSP i (i, valuei, commentsi)

i 14

op
commentsi

The binary opcode in bit-encoding

As  the  motivation  example  in Fig.4(f)  shows,  as

for  for MicroMIPS jr16 and  for

MIPS64 lw64, the common PR-PD of  contributes

to  the th  entry  in  TSP-List  as  shown in Figs.4(h)

and 4(k). Each entry in TSP-List is represented with

a  triple ,  which  refers  to  a

target-specific  property indexed by .  As to the th

entry  referring  to ,  this  PR-PD token is  extracted

as the comment in , which can be manually

maintained  with “ ”
for  much  clearer  indication  in  practice.  The  value

field asks for an explicit value for this specific proper-

ty from an instruction. When a new ISA is required,

TSP-List needs to be specified with a list of new val-

ues by compiler developers according to detailed com-

ments  as  the  list  of  new  values  demonstrated  in

Fig.4(d).

Fig.6 demonstrates the TSP-List synthesized from

11  MIPS  ISAs  in  LLVM  12.0.  Due  to  space  limita-
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tion, only partial tokens are shown in the figure. The

X-axis  lists  the  11  MIPS  ISAs  used  in  synthesizing

TSP-List. For clarity, PR-PD tokens corresponding to

TS  tokens  are  demonstrated  in Y-axis.  These  statis-

tics  on  TS  tokens  certify  that  TRG is  competent  to

make a distinction on target-specific properties. As for

each of the ISAs in the X-axis, the properties in real

need range in 17–28. However, there are some person-

alized  or  unique  TS  tokens  for  instructions  of  one

ISA, or between different ISAs at the upper of the Y-

axis.  There  are  significant  amount  of  TS  tokens  in

common among ISAs at the lower end of the Y-axis.

Therefore, a super set on all these properties is neces-

sary to comprehensively cover these differences which

can ensure both the correctness and the wider appli-

cability  of  ATG.  In  our  work,  TSP-List  with  maxi-

mum 61 properties is competent enough for wider us-

age.  Compared with the extensive  code in  target  de-

scriptions, it is trivial. 

3.1.3    Synthesizing CLT-List

i ∈ I I
(Rec-Listi, TSP -Listi)

Rec-Listi
i TSP -Listi

(TPLRec-Listi,FV i)

TPLRec-Listi

Rec-Listi i FV i

i TSP -Listi

CLT-List  manages  a  list  of  instruction  models

which are used for automatic code generation when a

new  instruction  is  required.  As  for  each  instruction

 , where  is the set of all instructions in an ISA,

a  2-tuple  is  used  to  represent

the  instruction,  while  collects  associate

records  of ,  and  gathers  those  values  for

target-specific properties from associate records. CLT-

List then uses a 2-tuple  to repre-

sent  the  templatized  instruction.  col-

lects  code-layout  templates  for  associated  records  in

 of  and  is a unique real-vector repre-

senting  which can be synthesized from .

Rec-Listi TSP -Listi

Algorithm 3 demonstrates  the  collection  on

 and ,  which  considers  each  in-

struction  in  turn.  The  2-tuple  representation  for  an

i

Rec-Listi

Rec-Listi
Rec-Listi TSP -Listi

Rec-Listi TSP -Listi

instruction  is  acquired  via  TRG  traversal.  For  in-

struction , the algorithm starts from the property to-

ken which refers to the instruction name. The record

using  it  is  kept  as  the  first  associate  record  in

.  As  to  each  token  of  the  record,  tokens

paired  with  it  via  R-D  edges  are  figured  out  and

records hosting these paired tokens can be added re-

cursively  to .  Then,  all  TS  tokens  in

 are  collected  into .  By  repeating

the  above  steps,  the  list  of  and 

can be perfected gradually.

Algorithm 3. Synthesizing CLT-List

TRGs　Input: : token reference graphs;

Category　　　　 : three categories of all tokens;

I　　　　 : inst_set of the sample ISA;

ideal_pw pw　　　　 : the result of tuning on ;

CLT List　Output: -
i ∈ I1 for    do

Rec Listi ← i TRGs2　　 -   GetRootRecord( , );

Rec Listi TRGs3　　RecursiveAddByR-DEdge( - , );

TSP Listi ← Rec Listi Category4　　 -   CollectTS( - , );

Rj ∈ Rec Listi5　　for   -  do

TPL Rj ← Rj Category<TS>6　　　　 -   Synthesizing( , );

TPLRec Listi ← TPLRec Listi ∪ TPL Rj7　　　　 -   -   - ;

FVi ← TSP Listi ideal_pw8　　   Synthesize_FV( - , );

i(TPLRec Listi,FVi ) CLT List9　　add -  into - ;
CLT List10 return - ;

(Rec-Listi, TSP -Listi) TPLRec-

Listi
ti k k

ti

i

After  obtaining , 

 is templatized by substituting each of TS token

 with TSP , while TSP  is the corresponding entry

to the PR-PD of . As the example shown in Fig.4(i),

the  template  can produce  code  for  a  new instruction

which  is  similar  to  in  the  later  target  generation

stage. 

FV z
i =

L∑
t=1

(tpvt
i⟨tpz⟩ × pwt). (1)

As the unique real-vector for representing instruc-
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Fig.6.  Target-specific properties distribution among different ISAs.
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i FV i

TSP -Listi TSP -Listi L

TSP -Listti t i

TSP -Listti
tpvt

i = (tp1, tp2, . . . , tpZ)

tpz z 1 ⩽ z ⩽ Z

tpvt
i⟨tpz⟩ FV z

i

1 ⩽ z ⩽ Z z FV i

tpz tpvt
i

tpv1
i tpvL

i

pw tpvt
i

FV

pw

tion ,  is designed as a Z-dimensional vector that

is  synthesized  from  all  properties  in  the  list  of

.  Supposing  has  properties,

 is the -th property value for instruction .

 can  be  quantified  into  a Z-dimension  (Z-

dim)  (Z=10)  real  vector  by

word2vec[8], while  is the -th ( ) real ele-

ment  in  the  vector,  i.e., .  As  for 

( ) which is the -th real element of , it

is  synthesized  by  integrating  each  of  (from

 to )  with  a  corresponding  personalized

weight  for  according  to  (1)[9].  Therefore,  it

can be seen that  for instructions still relies on a

group of ideal personalized weight  for TSP-List to

complete.

pw

pwx TSP x

pw

Tuning  for  TSP-List.  Each  personalized

weight  for  in TSP-List is a significant fac-

tor  to indicate its  significance instruction representa-

tion.  A tuning  process  is  designed to  obtain  a  group

of ideal  from all selected sample ISAs. The tuning

is based on similarity evaluation with feature vectors

for instructions by the Euclidean distance③. 

SD(i, j) =

√√√√ Z∑
z=1

(FV z
i − FV z

j )2. (2)

i j

SD(i, j) FV i FV j

FV z
i FV z

j

SD(i, j) i j

SD(i, j) ⩽

pw

As  for  instructions  and ,  the  similarity  dis-

tance  is calculated with  and  with

(2),  while  and  are  the z-dimension  real

number  of  these  two  vectors  respectively.  We  use

qualified  for pair of similar instruction ( , )

(once  QUALIFIED_SD), while the thresh-

old  QUALIFIED_SD  is  set  to  0.2  in  our  work.  The

tuning process aims for a group of ideal  for TSP-

List which can result in maximum qualified SD pairs.

pw

)

jr16 jr32 add add.d )

TSP -List

Rec-List

As  the  tuning  process  in Algorithm 4 shows,  it

takes  three  steps  to  obtain  a  group  of  ideal  for

TSP-List.  First,  it  groups  peer  instructions  from  all

sample ISAs as shown in line 5 under two conditions:

1  the  instructions  have  similar  instruction  names,

such as  and ,  and ; 2  the instruc-

tions have  which maps to exactly the same

entries  in  TSP-List.  These  peer  instructions  are  ob-

served  to  have  highly  similar ,  i.e.,  similar

code-layout.  Then,  under  these  two  conditions,  peer

instructions  are  clustered  into  strong  connected  sub-

graphs  (SCSG).  All  SCSGs  are  connected  to  form  a

global strong connected graph (SCG). A basic princi-

ple underlined is that peer instructions should be sim-

ilar enough, or should have qualified SD between each

other.  After  the SCG is  constructed,  the tuning pro-

cess  undergoes  approximately 50 000 iterations  with

different sets of parameters (pw) and makes statistics

on  instruction  pairs  with  qualified  SD.  It  keeps  the

one  as  an  ideal  group  which  can  obtain  maximum

qualified SD for TSP-List.

pwAlgorithm 4. Tuning on 

ISAs　Input: : all selected sample ISAs

ideal_pw　Output: : a group of pw
SD1 # QUALIFIED_SD 0.2; (threshold for )

pw_set ← pw2   generate a number of  combinations in preset
　range;

isai isaj ∈ ISAs3 for ,    do

i ∈ isai j ∈ isaj4 　  for inst   ,    do

inst_group SCSG ← i, j5 　　　  ,   GroupPeerInsts( );

(inst_group SCSG) PeerInsts6 　　　 add ,  into 

(inst_groups SCG) ← PeerInsts7 ,   ConstructSCG( );

pw ∈ pw_set8 for  do

∈ inst_groups9 　  for group   do

i j ∈ group10 　　　for inst ,    do

FVi ← i pw11 　　　　    Synthesize_FV(GetTSP-List( ), );

FVj ← j pw12 　　　　    Synthesize_FV(GetTSP-List( ), );

SD ← FVi FVj13 　　　　     Eucilidean_Distance( , );

SD14 　　　　  if  < QUALIFIED_SD then

qualified_pairs15 　　　　　　   ++;

qualified_pairs ideal_pairs16 　 if  >  then

ideal_pairs ← qualified_pairs17 　　　   ;

ideal_pw ← pw18 　　　   ;

ideal_pw19 return ;

pw

pw

pw

Initially, the group of  in tuning is set with em-

pirical value total up to 1.0. According to our studies

on MIPS ISAs,  by experience,  for the instruction

name, the instruction size and their function (branch

or  memory)  are  initialized  relatively  higher  (=  0.3)

due to their significance in highlighting the difference

in instructions, and are tuned in [0.2, 0.3]. The more

frequently used properties in the middle end of the Y-

axis  of Fig.6 are  initialized  with  0.2  and  tuned  in

[0.05,  0.2],  and  the  rest  properties  are  relatively

unique and are initialized with 0.05, and tuned in [0,

0.05].  Then,  more  than 50 000 groups of  are  ran-

domly generated under these constraints.  The tuning

process  now  takes  four  days  which  could  be  opti-

mized in the future[10, 11].

pwAfter the tuning process on ,  the collection on

an  instruction  representation  is  completed.  After  ac-

quiring  all  instruction  information,  the  construction

on CLT-List is completed, and ATG is ready for code

generation. 
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3.2    Generation Stage

t

FV t

m

t

TSP -Listm
i

def

def

When  a  new  ISA  is  required,  the  developers  are

required to fill in TSP-List with proper property val-

ues for every instruction. A new instruction  is first

quantified  with  a  feature  vector  with  (1).  And

then it tries to match with available instruction mod-

els  in  CLT-List  via  SD  evaluation  with  (2)  and  re-

turns an instruction  which has the minimum quali-

fied  SD  as  a  success  match.  New  code  for  can  be

generated  automatically  from  by  substi-

tuting  each TSP  with  corresponding  values  offered

by users. This is the basic scheme in ATG. However,

ATG still  may  fail  to  match  a  new instruction.  The

auxiliary  scheme  is  thus  proposed  as  a  supplement.

For  those  failed  instructions  without  new  properties,

we provide with an auxiliary template (referred to as

AUX-TPL) shown in Fig.7, and it contains a group of

 statements which can be defined with all proper-

ty values in TSP-List offered by developers. The PD

variables in  statements are original PD tokens de-

rived from existing targets. Therefore, the AUX-TPL

record  can  be  interpreted  by  TableGen  successfully,

and PD variables can carry these values to the com-

piler  backend  correctly.  This  solution  can  work  out

this kind of failure successfully and it is evaluated in

Section 5.

For  those  failed  instructions  due  to  additional

properties or due to more complex reference patterns

on  target-specific  properties  which  are  never  cap-

tured  in  available  ISAs,  ATG  still  cannot  handle

properly due to the lack of semantics. ATG needs to

know  more  about  the  new  instructions  such  as  the

pw

property  type,  the  reasonable  reference  pattern  on

properties. In this case, ATG should encourage devel-

opers to design a short piece of code manually which

is  refereed  as  the  incremental  scheme.  Afterwards,

ATG  can  make  an  incremental  update  on  TSP-List

and  CLT-List,  including  adding  new  properties  and

re-tuning ,  and  finally  supplement  CLT-List  with

new  code-layout  templates.  Although  this  incremen-

tal  update  may  take  some  time,  it  can  benefit  more

similar  instructions.  In  this  way,  the  incremental

scheme makes ATG competent for more practical sce-

narios. 

3.3    Discussion on ATG's Generality

LLVM  is  a  popular  compiler  framework  among

mainstream  general-purpose  compiler  architectures.

The  prominent  modularity  and  robustness  make

LLVM  a  preferred  platform  in  the  latest  researches

for  both  isomorphic  and  heterogeneous  architectur-

es[12, 13].  This work is  a preliminary outcome towards

a new efficient method for the automatic compiler de-

sign, which targets at a compiler developed via auto-

matic  code  generation.  This  automatic  mechanism

asks  for  better  modularity  and  regularity.  From this

perspective,  LLVM  is  an  ideal  option  as  the  base

compiler  framework.  ATG  can  eventually  lower  the

hardness in compiler development for both fast retar-

getability and optimization of compilers, and catch up

with  the  fast  speed  of  agile  chip  development  in  the

future.

ATG is a general mechanism that can be applied
 

(c) 

(d) 

16

0b10

0

Property Value

1

Manual Input

1

(e) 

Idx

TS

Category Comments for Target Specific Details

 Size of the bit encoded instruction.

 The binary opcode in bit-encoding.

 The start bit of instruction opcode.

Property 
Value

 The end bit of instruction opcode.

...
...

 Is it possible for this inst to read memory?

(f)  

 TS2

TS
14

TS15

TS16

TS24

16

0b10

0

1

1

def Inst_Name : Instruction{

     bits< TS
2
 > Inst;

     bits<  TS
16
-TS

15
+1> opcode =   TS

14;

     let Inst{ TS
16 -TS

15
 }  = opcode; 

     let mayLoad = TS24;  

     

...       

}

1:

2:

3:

4:

5:

6:

Automatic Output

...
def C_FLDSP : Instruction{

     bits< 16 > Inst;

     bits<  2 >  opcode =  0b10 ;

     let Inst{ 1 - 0 }  = opcode; 

     let mayLoad = 1;  

     

...      }

1:

2:

3:

4:

5:

6:1 0

15 13

funct4

1 0

opcode

(a)

class RVInst16 : Instruction {

  field bits<16> Inst;

}

class RVInst16CR<bits<2> opcode>: RVInst16{

  let Inst{1-0} = opcode;

}

let mayLoad = 1 in

class CStackLoad: RVInst16CI<0b10>;

def C_FLDSP  : CStackLoad;

(b) 

S1:

S2:

S3:

S4:

1:

2:

3:

4:

5:

6:

7:

8:

9:

...

R1:

Fig.7.  Code-layout template for failed match instructions. (a) Bit encoding of c.fldsp from RISC-V. (b) Hand-written description of
c.fldsp  taken  from  LLVM.  (c)  Automatically  generated  description  of  c.fldsp  by  ATG.  (d)  Only  effort  by  developers  for  c.fldsp.
(e) Target-specific properity list (TSP-List). (f) Auxiliary template (AUX-TPL) for failed match instructions.
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to compiler architectures similar to LLVM. As intro-

duced  in Fig.3,  general-purpose  compilers  such  as

GCC and LLVM are leveraged by using a certain lan-

guage  to  manually  describe  hardware  information

(e.g.,  Tablegen Language for  LLVM, Register  Trans-

fer Language[14] for GCC). ATG takes effect for these

mainstream compilers by substituting the heavy man-

ual  efforts  with  a  small  TSP-List  table.  The  frame-

work  in Fig.5 demonstrates  the  working  stages  of

ATG.  As  to  the  above  general-purpose  compilers,

ATG works with the same steps except the input files

on  which  it  is  based.  During  the  synthetic  stage,  it

takes  different  types  of  files  as  input  from  various

compilers before TRG-Construction, e.g.,  *.td files in

LLVM,  or  *.md  files  in  GCC.  After  that,  ATG  can

turn  out  TSP-List  and  CLT-List  in  the  same  way.

During  the  generation  stage,  with  required  input  for

TSP-List,  ATG can produce  corresponding  hardware

description files automatically. 

4    Implementation

ATG is implemented as a standalone approach in

about 8 000 lines  of  code  in  Python  presently.  It  in-

cludes  two  separate  stages,  the  synthetic  stage  for

reusable TSP-List and CLT-List which takes relative-

ly longer time, and a fast generating stage for a new

ISA in minutes.

pw

pw

The  synthetic  stage  is  based  on  11  MIPS  ISAs

from  LLVM  12.0,  which  amount  to  about 1 700 in-

struction models. It takes *.td files from these ISAs as

input.  Then,  TRG-Construction  in Algorithm 1 sets

up  target-specific  TRG  for  each  of  them  and  main-

tains the R-D relation for tokens. Next, TSP-List can

be  synthesized  from  TS  tokens  via  token  classifica-

tion  as  shown  in Algorithm 2.  CLT-List  is  synthe-

sized  from  instruction  models.  As  shown  in Algo-

rithm 3, during this step, instructions are represented

from three aspects including associate records, target-

specific  properties,  and  unique  feature  vectors  which

rely  on  a  group  of  ideal  on  TSP-List  with Algo-

rithm 4. In our work, the tuning on  is a time-con-

suming process. However, ATG is still an efficient ap-

proach compared with manual efforts.

The generation process is applied to nine RISC-V

ISAs  which  amount  to 1 029 instructions  including

404 scalar instructions and 625 vector ones. We have

taken  one  week  to  fill  in  TSP-List  for  these  ISAs,

which is the common overhead in the manual design.

Then ATG can work for  code generation on instruc-

tion  combinations  in  minutes.  ATG is  evaluated  via

comparison with available RISC-V support in LLVM

12.0. The details for the ATG application is present-

ed in Section 5. 

5    Evaluations

In this section, we certify ATG as a qualified ap-

proach for an automatic target generator, significant-

ly reducing efforts required. 

5.1    Methodology

ATG

ATG  is  designed  with  a  re-usable  TSP-List  and

CLT-List, and then it can be reused by similar ISAs.

We evaluate ATG from two aspects: 1) whether it is

able to create *.td files for the selected ISA (reusabili-

ty),  and  2)  whether  the  newly  generated  backend

(LLVM ) can create correct cases with the selected

ISA  (compilation  ability).  We  select  nine  types  of

RISC-V  ISA  in  RV32-mode  and  RV64-mode  in  the

evaluation.  As  shown  in Table 2,  the  standard  ISA

types include I, M, F, and D. The custom ISA types

include A,  C,  B,  FH,  and RISC-V Vector  extensions

in  V.  Each  ISA  has  various  instructions  in  RV32-

mode and RV64-mode, which amount to 906 and 1 029

instructions respectively.

ATG

Our compiler developer manually fills in TSP-List

with  properties  for  all  the  above  instructions.  While

we  provide  TSP-List  with  61  entries  and  most  of

these instructions only need 20 properties on average.

The  reusability  of  ATG  is  then  evaluated  with  nine

groups of ISA combinations in two modes as shown in

Table 2 which  provides  flexible  and  comprehensive

type coverage on the standard type (G1–G3), the cus-

tom type (G4–G8) and G9 for the complete ISA sets.

These combinations can lead to 18 LLVM  with dif-

ferent backends which are qualified to validate ATG's

reusability (Subsection 5.2).

ATG

The  compilation  ability  of  ATG  is  evaluated  via

comparison  between  LLVM  and LLVM with  con-

siderable  test  suites  in Table 3.  The  LLVM  regres-

sion  test  suite④ includes  IR  files  (.ll  files),  assembly

codes  (.asm files)  and general  functional  tests,  which

amount  to  about 15 632 and 15 616 cases  in  RV32-

mode  and  RV64-mode  respectively.  Moreover,  16
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−O0 −triple =

riscv32 −O0 −triple = riscv64

C/C++ benchmarks in SPEC2017 are utilized (FOR-

TRAN cases are not included due to unavailable tool-

chains on RISC-V). These test cases are compiled by

LLVMATG and LLVM at options of “  

” for  RV32  and “  ”
for RV64. LLVMATG and LLVM are contrasted on as-

sembly  files,  and  also  on  the  correct  cases  that  can

pass the built-in verification (Subsection 5.3).

Experiment Platform. ATG has no special require-

ments  on  the  working  environment.  It  now is  imple-

mented and evaluated on a server with Intel® Xeon®

CPU E7-4809  v3  2.00  GHz  and  256  GB of  memory.

The  built-in  verification  for  reliability,  i.e.,  the  cor-

rectness  of  test  cases,  is  conducted  on  RISC-V  QE-

MU Simulator. 

5.2    Evaluation on Reusability
 

5.2.1    Time Overhead in ATG

pw

The  re-usablity  of  ATG  relies  on  two  re-usable

lists of TSP-List and CLT-List which takes relatively

higher  time  overhead.  During  the  synthesizing  pro-

cess,  tuning  on  ideal  is  the  longest  step  which

takes  about  four  days  based  on 50 000 groups  of  at-

tempts.  This  step  could  be  sped  up  with  recent  re-

searches  on  the  training  algorithm[10, 11].  The  rest

steps in the synthetic stage can be completed in min-

utes.  When  a  new  ISA  is  required,  it  takes  1  day–7
days  for  our  developers  to  fill  in  TSP-List  for  these

ISAs. This is a common overhead even in the manual

design. After that, ATG can facilitate a fast code gen-

erating  for  a  new  ISA  in  minutes.  In  all,  compared

with  traditional  manual  research  and  development,

generating *.td files by ATG is still more efficient. 

5.2.2    Reusability of ATG

The reusability of TSP-List and CLT-List is eval-

uated with combinations in Table 2. ATG can gener-

ate 18 sets of *.td files. In most of the combinations,

the  generated  *.td  files  can  fully  cover  the  selected

ISA  by  the  basic  scheme  after  being  successfully

matched  in  the  standard  ISA  model.  Only  a  few  in-

structions  fail  to  be  generated  due  to  mismatching.

However,  these  failures  can  be  solved  by  the  auxil-

iary scheme which can supplement all the missing in-

structions in corresponding *.td files.

As summarized in Table 4, in the RV32-mode, the

failed  list  by  the  basic  scheme  includes  three  C-type

instructions in G5 and one B-type instruction in G6.

 

Table  2.    Combinations on RISC-V ISA in RV32-Mode and RV64-Mode

ISA Type Description Inst. Mode Combination on ISA

RV32 RV64 G1 G2 G3 G4 G5 G6 G7 G8 G9

Standard I Base integer instructions 47 59 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
M Standard extension for integer multiplication and division instructions 8 13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
F Standard extension for single-precision floating-point instructions 26 30 ✓ ✓ ✓ ✓ ✓ ✓ ✓
D Standard extension for double-precision floating-point instructions 26 32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Custom A Standard extension for atomic instructions 44 88 ✓ ✓
C Standard extension for compressed instructions 37 48 ✓ ✓
B Standard extension for bit manipulation 63 100 ✓ ✓
FH Standard extension for half-precision floating-point instructions 30 34 ✓ ✓
V Standard extension for vector operations 625 625 ✓ ✓

Sum 906 1 029

 

Table  3.    Test Cases in the Evaluation

Test Suite BenchMark Type BenchMark Detail Number of Validated Cases

RV32-Mode RV64-Mode

SPEC 2017 CPU C/C++ 600.perlbench, 638.imagick, 605.mcf, 657.xz 16 16

623.xalancbmk, 511.povray, 619.lbm, 641.leela

526.blender, 508.namd, 510.parest, 602.gcc

631.deepsjeng, 620.omnetpp, 625.x264, 644.nab

LLVM regression test LLVM IR ./llvm/test/CodeGen/RISCV/*.ll 452 408

./llvm/test/DebugInfo/RISCV/*.ll 4 4

Assembly ./llvm/test/MC/RISCV/*.s 137 165

./llvm/test/DebugInfo/RISCV/*.s 1 1

Others General tests for LLVM backend 15 038 15 038

Sum 15 632 15 616
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They constitute the four failures in G9. Analogous re-

sults  can  be  observed  from  experiments  in  RV64-

mode. Despite of full instruction generation in most of

the  combinations,  the  mismatch  for  custom  instruc-

tions  leads  to  slight  failures.  There  are  eight  A-type

instructions,  10  C-type  instructions,  and  five  B-type

instructions failing to be matched in G4, G5, and G6

respectively, which constitute 23 failures in G9.

FV

The failures in similarity-based matching current-

ly  result  from some unique combination of  the input

target-specific  properties.  These  properties  accompa-

nied with available pw will turn out an  with (1),

which  correspondingly  results  in  a  relatively  signifi-

cant  distance  in  SD  with  (2)  when  matching  with

available instructions in CLT-List.  This SD makes it

hard to find a suitable code template for the new in-

struction in  current  reusable  TSP-List.  However,  the

auxiliary  scheme  is  competent  to  solve  these  failures

completely by generating corresponding code with our

AUX-TPL in our work.

As  the  contrast  shown  in Table 5,  the  generated

*.td files by both the basic scheme and the auxiliary

scheme  are  larger  than  the  hand-written  ones  in

LLVM by 2x–3x per target. Among them, TS tokens

account  for  about  6%–12%  of  all  the  tokens.  Table-

Gen  interprets  them  into  *.inc  files  which  have  the

equivalent  size  but  different  code  layout  compared

ATG

with the hand-written ones in LLVM. The differences

mainly  lie  in  different  variables  on  the  instruction

name and the order of instructions in the code. After

that, ATG can produce 18 backends which are exact-

ly the same as those in LLVM. ATG does not result

in  noticeable  time  overhead  on  the  compilation  for

LLVM . 

5.3    Evaluation on the Compilation Ability
 

5.3.1    Evaluation on Compiling

ATG

ATG

ATG

LLVM  does not show noticeable impact on the

compiling  process  for  all  the  cases  in  the  evaluation.

As for  SPEC2017,  only  five  instruction types  includ-

ing I, M, F, D and A are utilized by the benchmarks

so that we only apply G1–G4 with SPEC2017. As we

explained  in Subsection 5.2,  in  these  combinations,

LLVM  by both the basic scheme and the auxiliary

scheme  has  the  same  backends  with  that  in  LLVM.

Therefore,  LLVM  can produce  the  same assemble

files  and  binaries  as  LLVM  in  the  RV32-mode  and

RV64-mode.

As  for  the 15 600 cases  in  LLVM regression  test-

suite, G1–G9 combinations are conducted as shown in

Fig.8.  With the basic  scheme,  there  are  6,  4,  and 10

cases that fail to be generated in G5, G6, and G9 re-

spectively  in  the  RV32-mode  due  to  failures  in  in-

struction  support  summarized  in Table 4.  Similarly,

for RV64, despite of the full instruction generations in

most of the combinations,  the mismatch for previous

mentioned custom instructions results in 3, 7, 8, and

18 failures in G4, G5, G6 and G9 respectively. Com-

pared with the quantity of success cases, the failed ra-

tio  (< 0.1%)  is  acceptable.  All  the  failures  can  be

completely  corrected  by  the  auxiliary  scheme,  which

can  produce  the  same  assemble  files  and  binaries  as

LLVM in all combinations. 

 

Table  4.    Failed List in Instruction Matching

Combination RV32-Mode RV64-Mode

G4 - amoxor.d/.d.aq/.d.rl/.d.aqrl

amoand.d/.d.aq/.d.rl/.d.aqrl

G5 c.fldsp, c.fsd, c.fld c.sd, c.sdsp, c.ldsp

c.subw, c.fld, c.ld

c.fldsp, c.addw, c.addiw, c.fsd

G6 sext.b gorciw, crc32.d

sext.b, gorcw, xperm.w

G9 All the above All the above

 

Table  5.    Successfully Generated Instructions in RV32-Mode and RV64-Mode

Comb. RV32-Mode RV64-Mode

LLVM Basic
Scheme

Auxiliary
Scheme

Failed File Size
Ratio (x)

TS Proportion
(%)

LLVM Basic
Scheme

Auxiliary
Scheme

Failed File Size
Ratio (x)

TS Proportion
(%)

G1     47 47 0 0 3.0 6 59 59 0 0 2.7 7

G2     55 55 0 0 3.0 6 72 72 0 0 2.7 7

G3     107 107 0 0 2.8 6 134 134 0 0 2.5 7

G4     151 151 0 0 2.7 6 222 214 8 0 2.6 8

G5     144 141 3 0 2.5 6 181 171 10 0 2.3 7

G6     170 169 1 0 3.1 6 234 229 5 0 2.9 7

G7     137 137 0 0 2.7 6 168 168 0 0 2.4 7

G8     732 732 0 0 2.5 12 759 759 0 0 2.4 12

G9     906 902 4 0 2.5 10 1 029 1 006 23 0 2.5 11

Note: Comb.: combination.
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5.3.2    Validation on Running

ATG

ATG

ATG

As we explained in Subsection 5.2, the backend in

LLVM  is the same with that in LLVM. Therefore,

the  cases  generated  by  LLVM  are  the  same  with

those by LLVM, and they can pass the built-in vali-

dation  of  both  the  LLVM  regression  test  and

SPEC2017.  LLVM  does  not  show  any  perfor-

mance side-effects on these cases. 

5.4    Summary

Experiential  results  in Subsection 5.2,  especially

with custom instruction types including the hot RVV

set, certify ATG as a feasible mechanism for a much

improved efficiency in manual development. 

5.5    Discussion on Limitations

Despite the reusability, ATG is still incomplete to

generate  files  in  languages  other  than  TableGen.  Ef-

forts  aiming  at  C  or  C++ code  are  now  undergoing

for  a  more  comprehensive  target  support.  Moreover,

further efforts about extending ATG to a wider scope

such as the instruction scheduling in the compiler are

undergoing.  Currently,  the  evaluation  of  ATG  still

depends on the available LLVM infrastructure such as

instruction  selection  and  instruction  emission  with

some manual assistance. Therefore, as we explained in

Subection 3.2,  ATG does  not  support  customized  in-

structions  with  complex  mode  or  properties  (such  as

pattern,  immediate  operand  definition)  due  to  the

lack  of  relevant  knowledge  from existing  ISAs.  How-

ever, this more intellectual auto-designing approach is

hopeful to further lower the threshold for compiler de-

velopment fundamentally. 

6    Related Work

The  new  trend  brought  forth  by  Agile  chip

design[1–3] is  beckoning  innovations  on  efficient  com-

piler research and development. Latest researches[1, 15–18]

foresee a vision of enhanced quality and improved effi-

ciency in both hardware and software.

Modularity/Template  is  an  efficient  solution  due

to easier upstanding, easier reuse and scaling, but still

with redundancy hard to overlook[4, 19–24].  Modularity

is  extensively  used  in  domains  including  compilers

such  as  LLVM,  GCC,  and  KEQ[25].  It  is  also  an  at-

tractive topic in agile design[26–28], such as TABLA[26],

Chipkit[27] and  OpenFPGA[28],  which  are  applied  in

FPGA  design  or  reusable  SoC  subsystems  for  tape-

outs.

Generators  are  becoming  more  pervasive  in  the

domain of compilers and specialized hardware acceler-

ators  for  reduction  on  uncaught  bugs,  and  lowering

the demands in background knowledge[25, 29–31]. VEG-

EN[29] can generate  a group of  vectorization patterns

automatically. CLGen[30] suggests an OpenCL genera-

tor  for  better  runtime  performance.  KEQ[25] gener-

ates  an  equivalence  checker  automatically  which

proves equivalence for transformation from LLVM IR

to  X86_64.  There  are  many  outstanding  studies  on

accelerators  for  hardware[26, 28, 32–34],  which  overcome

bottlenecks  of  specific  applications.  ATG  is  a  black

box generator. With the only input on the TSP-List,

it can generate *.td files.

Intermediate  language/representation  has  been

tackled for decades for both hardware generation and

compilers. There are IRs for HLS[35], HDL[36] or com-

pilers such as LLVM IR[37], GCC’s internal IR[38], and

earlier WHIRL[39]. They work as links between major

components in a compiler which makes optimizations

easier to re-configure. Calyx[40] implements a high lev-
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Fig.8.  Experiments on instruction generation with LLVM regression tests. (a) RV32-mode. (b) RV64-mode.
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el intermediate language for facilitating the design for

custom  hardware  accelerators.  MLIR[16] improves

compilation  performances  for  domain-specific  hard-

ware. ValueGraph[41, 42] is for validating the optimiza-

tions of  the LLVM pipeline and thus improving run-

time  performance.  BoogieIR[43, 44] is  for  taming  the

complexity  of  the  program  verification.  Halide  IR[45]

can  accelerate  image  processing  process.  These  sim-

pler techniques can speed up the efficiency in develop-

ment.  However,  developers  still  need  accumulated

knowledge to better master new skills. ATG hides im-

plementation details  from users  and thus requires  no

penetration. 

7    Conclusions

We proposed ATG which can generate target de-

scription files  from a simple  TSP-List  for  a  new tar-

get support in a compiler.  ATG models  sample ISAs

(instruction  set  architectures)  based  on  analyses  on

tokens,  and  normalize  them  into  a  standard  target

model including TSP-List for full specification on ma-

chine-specific  constraints,  and  a  standard  ISA model

for  normalized record format.  ATG can automatical-

ly generate target description files and greatly acceler-

ate  the  generation  of  compiler  backends  over  nine

RISC-V ISAs, which can produce accurate code for 16

C/C++  SPEC2017  benchmarks  and  about 15 600

LLVM  regression  tests.  ATG  works  in  a  black-box

way. Except a small amount of indispensable proper-

ties,  it  does  not  ask  for  manual  intervention  on  the

whole process. Further exploration on available modu-

larity  and  regularity  inside  compilers  is  still  under

work. ATG focuses on making radical changes in the

retargetability  of  custom  chips,  greatly  reducing  the

need for manual effort. 
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