
Automatic Target Description File Generation

Geng Hong-Na, Lyu Fang, Zhong Ming, Cui Hui-Min, Xue Jingling, Feng Xiao-Bing

View online: http://doi.org/10.1007/s11390-022-1919-x

Articles you may be interested in

Understanding and Generating Ultrasound Image Description

Xian-Hua Zeng, Bang-Gui Liu, Meng Zhou

Journal of Computer Science and Technology. 2018, 33(5): 1086-1100 http://doi.org/10.1007/s11390-018-1874-8

Yet Another Intelligent Code-Generating System: A Flexible and Low-Cost Solution

João Fabrício Filho, Luis Gustavo Araujo Rodriguez, Anderson Faustino da Silva

Journal of Computer Science and Technology. 2018, 33(5): 940-965 http://doi.org/10.1007/s11390-018-1867-7

A Survey on the Moving Target Defense Strategies: An Architectural Perspective

Jianjun Zheng, Akbar Siami Namin

Journal of Computer Science and Technology. 2019, 34(1): 207-233 http://doi.org/10.1007/s11390-019-1906-z

Deploy Efficiency Driven k-Barrier Construction Scheme Based on Target Circle in Directional Sensor Network

Xing-Gang Fan, Zhi-Cong Che, Feng-Dan Hu, Tao Liu, Jin-Shan Xu, Xiao-Long Zhou

Journal of Computer Science and Technology. 2020, 35(3): 647-664 http://doi.org/10.1007/s11390-020-9210-5

Automatic Fall Detection Using Membership Based Histogram Descriptors

Mohamed Maher Ben Ismail, Ouiem Bchir

Journal of Computer Science and Technology. 2017, 32(2): 356-367 http://doi.org/10.1007/s11390-017-1725-z

Facial Image Attributes Transformation via Conditional Recycle Generative Adversarial Networks

Huai-Yu Li, Wei-Ming Dong, Bao-Gang Hu

Journal of Computer Science and Technology. 2018, 33(3): 511-521 http://doi.org/10.1007/s11390-018-1835-2

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-022-1919-x
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1874-8
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1867-7
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1906-z
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9210-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9210-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9210-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1725-z
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1835-2
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

Automatic Target Description File Generation

Hong-Na Geng1, 2 (耿洪娜), Student Member, CCF, Fang Lyu1, * (吕　方), Member, CCF
Ming Zhong1, 2 (钟　茗), Student Member, CCF, Hui-Min Cui1, 2 (崔慧敏), Member, CCF
Jingling Xue3, Senior Member, IEEE, and Xiao-Bing Feng1, 2 (冯晓兵), Senior Member, CCF

1 State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190
China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

E-mail: genghongna@ict.ac.cn; flv@ict.ac.cn; zhongming21s@ict.ac.cn; cuihm@ict.ac.cn; jingling@cse.unsw.edu.au
fxb@ict.ac.cn

Received September 17, 2021; accepted March 6, 2022.

Abstract Agile hardware design is gaining increasing momentum and bringing new chips in larger quantities to the

market faster. However, it also takes new challenges for compiler developers to retarget existing compilers to these new

chips in shorter time than ever before. Currently, retargeting a compiler backend, e.g., an LLVM backend to a new

target, requires compiler developers to write manually a set of target description files (totalling 10 300+ lines of code

(LOC) for RISC-V in LLVM), which is error-prone and time-consuming. In this paper, we introduce a new approach, Au-

tomatic Target Description File Generation (ATG), which accelerates the generation of a compiler backend for a new tar-

get by generating its target description files automatically. Given a new target, ATG proceeds in two stages. First, ATG

synthesizes a small list of target-specific properties and a list of code-layout templates from the target description files of a

set of existing targets with similar instruction set architectures (ISAs). Second, ATG requests compiler developers to fill in

the information for each instruction in the new target in tabular form according to the list of target-specific properties syn-

thesized and then generates its target description files automatically according to the list of code-layout templates synthe-

sized. The first stage can often be reused by different new targets sharing similar ISAs. We evaluate ATG using nine

RISC-V instruction sets drawn from a total of 1 029 instructions in LLVM 12.0. ATG enables compiler developers to gen-

erate compiler backends for these ISAs that emit the same assembly code as the existing compiler backends for RISC-V

but with significantly less development effort (by specifying each instruction in terms of up to 61 target-specific properties

only).

Keywords retargetability, compiler, target description, target backend, automatic generator

1 Introduction

Agile hardware design promises to bring a variety

of new chips to the market faster[1–3], posing new chal-

lenges for compiler developers who are required to re-

target existing compilers to these new chips in short-

er time than ever before. Existing compilers leverage

target-independent code generation to help construct

a compiler backend for a new target architecture by

requiring compiler developers to write a set of descrip-

tion files to specify its similar instruction set architec-

ture (ISA) among others, e.g., target description

(*.td) files in TableGen in LLVM or machine descrip-

tion (*.md) files in GCC. However, writing such de-

scription files can be error-prone and time-

consuming[4]. Fig.1 highlights the efforts required in

developing the compiler backends for 20 different ar-

chitectures in LLVM 12.0.

Regular Paper

The work was supported by the Strategic Pilot Science and Technology Project of Chinese Academy of Sciences (Category C)
under Grant No. XDC05000000, and the Youth Program of National Natural Science Foundation of China under Grant No.
61802368.

*Corresponding Author

Geng HN, Lyu F, Zhong M et al. Automatic target description file generation. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 38(6): 1339−1355 Nov. 2023. DOI: 10.1007/s11390-022-1919-x

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-022-1919-x
https://doi.org/10.1007/s11390-022-1919-x
https://doi.org/10.1007/s11390-022-1919-x
https://doi.org/10.1007/s11390-022-1919-x
https://doi.org/10.1007/s11390-022-1919-x
https://doi.org/10.1007/s11390-022-1919-x
https://doi.org/10.1007/s11390-022-1919-x

For MIPS (with 1 700+ instructions), LLVM re-

quires 33 *.td files totalling about 23 KLOC. For x86

(with 15 000+ instructions), LLVM requires 45 files

totalling about 45 KLOC.

In this paper, we are therefore motivated to devel-

op a new approach, ATG (Automatic Target Descrip-

tion File Generation), which can generate a compiler

backend for a new target more quickly by requiring

compiler developers to fill in the information for each

instruction in tabular form according to a small list of

target-specific properties pre-synthesized and then

generating the *.td files for the new target automati-

cally according to a list of code layout templates pre-

synthesized.

Our key observation behind the development of

ATG is that while the .td files written for a new tar-

get can be tens of KLOC long, all the target-depen-

dent tokens (used for describing target-specific prop-

erties) can be relatively small. For each of the two

TableGen records given in Fig.2, only two tokens

(highlighted in blue) are target-dependent and all the

rest are target-independent. If ATG first asks compil-

er developers to fill in the information for such target-

dependent tokens and then completes the rest auto-

matically by itself, should not we enhance compiler

retargetability quite substantially? If so, how do we

determine the target-specific properties for a new tar-

get and how do we generate its .td files automatically

(based on the information provided for these target-

specific properties)?

jr16
0x0c

ATG addresses these challenges by proceeding in

two stages for a new target. In the first stage, ATG

synthesizes a small list of target-specific properties

(referred to as TSP-List), together with a list of code-

layout templates (referred to as CLT-List), from the

existing target description files of a set of targets with

similar ISAs to the new target. TSP-List captures all

aspects of the new target that must be known to the

compiler, including instruction formats, registers,

pipelines and calling conventions[4], such as “ ” for

an instruction name and “ ” for an opcode for

MIPS as shown in Fig.2. In the second stage, ATG

first asks compiler developers to fill in the informa-

tion for each instruction in the new target in tabular

form according to TSP-List and then generates auto-

matically its target description files according to

CLT-List. In practice, the first stage can often be

reused by different targets sharing similar ISAs, so

that the time for synthesizing TSP-List and CLT-List

can be amortized.

So far, we have not been aware of any prior work

on accelerating building compiler backends for new

targets by generating their target description files au-

tomatically in this way. In summary, we make the fol-

lowing contributions.

• We present a new approach, ATG, to signifi-

cantly accelerate building a compiler backend for a

new target by requiring compiler developers to de-

N
u
m

b
e
r

o
f
F
il
e
s

60

40

20

0

60

40

20

0

A
M

D
G

P
U

M
ip

s

X
8
6

H
e
x
a
g
o
n

A
A

rc
h
6
4

A
R

M

P
o
w

e
rP

C
S
y
st

e
m

Z

R
IS

C
-
V

S
p
a
rc

A
V

R
L
a
n
a
i

N
V

P
T

X
B

P
F

M
S
P
4
3
0

X
C

o
re

W
e
b
A

ss
e
m

b
ly

A
R

C

A
M

D
G

P
U

M
ip

s

X
8
6

H
e
x
a
g
o
n

23

45
45

33

K
L
O

C

Target Target

V
E

C
S
K

Y

A
A

rc
h
6
4

A
R

M

P
o
w

e
rP

C
S
y
st

e
m

Z
R

IS
C
-
V

S
p
a
rc

A
V

R
L
a
n
a
i

N
V

P
T

X
B

P
F

M
S
P
4
3
0

X
C

o
re

W
e
b
A

ss
e
m

b
ly

A
R

C
V

E
C

S
K

Y

N
u
m

b
e
r

o
f
F
il
e
s

60

40

20

0

60

40

20

0

K
L
O

C

(b)(a)

Fig.1. Heavy research and development (R&D) efforts in writing target description (.td) files for a new target in LLVM 12.0.

 def C_BEQZ :

 Bcz<

 0b110 , "c.beqz",

 GPRC >, Sched <

 [WriteJmp]>;

RISC -VMIPS

RISCVInstrInfoC.tdMicroMIPSInstrInfo.td

Bit Encoding

Instruction Name

Target-Specific

Properties def JR 16_MM :

 JumpRegMM 16<"jr16",

 GPR32Opnd >,

 JALR _FM_16<0x0c>,

 ISA_MICROMIPS32

 _NOT _MIPS 32R6;

Fig.2. Reduced R&D efforts in specifying a few target-specific properties.

1340 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

scribe it in terms of a few dozens of target-specific

properties (in TSP-List) and then generating its tar-

get description files automatically according to a list

of code layout templates (in CLT-List).

• We introduce a token-based classification appro-

ach to synthesize both TSP-List and CLT-List for a

given target from the target description files of a set

of existing targets sharing similar ISAs as the new

target.

• We have implemented ATG in LLVM 12.0 and

have evaluated it by using nine RISC-V ISAs com-

prising a total of 1 029 instructions (with 404 scalar

instructions and 625 vector instructions from the

RISC-V Vector extension (RVV)①). An experienced

compiler developer in our group usually spends

months on writing the *.td files in TableGen for each

of these nine ISAs. In contrast, ATG can reduce these

efforts quite substantially. ATG synthesizes TSP-List

and CLT-List (only once) from the target description

files of 10 MIPS ISAs in about four days. For the nine

RISC-V ISAs (with 13–625 instructions), it takes on-

ly 1 day–7 days for the same compiler developer to

specify each target according to TSP-List. Then ATG

generates automatically the *.td files for the nine

ISAs in about two minutes per target according to

CLT-List. Although these ATG-generated *.td files

are larger than the hand-written ones in LLVM by

2x–3x per target overall, the two compiler backends

generated by LLVM (in more or less the same amount

of time with nearly the same code size) from both sets

of *.td files emit the same assembly code for the 16

C/C++ benchmarks of SPEC2017 and more than 15 600

LLVM regression test cases while incurring more or

less the same amount of compilation time.

The rest of this paper is organized as follows. Sec-

tion 2 motivates our ATG approach with a simple ex-

ample. Section 3 describes our ATG approach. Sec-

tion 4 discusses its implementation. Section 5 evalu-

ates its effectiveness. Section 6 discusses related work

and Section 7 concludes the paper.

2 Motivation

Fig.3 shows how ATG is designed to improve pri-

or work on building a compiler backend for a new tar-

get. Traditionally, as illustrated in Fig.3(a), a target-

independent generator relies on a set of handle-writ-

ten *.td files (totalling often tens of KLOC) to pro-

duce a compiler backend for the new target. In this

work, as illustrated in Fig.3(b), ATG requires compil-

er developers to fill in only the information for each

instruction requested in TSP-List (a pre-synthesized

list with dozens of target-specific properties) and then

generates the *.td files for the new target automati-

cally according to CLT-List (a pre-synthesized list of

code-layout templates). Let us consider the case of

writing a compiler backend for MIPS (with more than

1 700 instructions) using TableGen in LLVM. Manu-

(a)

Manual

Compiler
Target
Backend Compiler

Target

Backend

Dozens of

Properties

(b)

KLOC

Target-Independent

Generator

Target-Independent
Generator

KLOC

*.td

*.td

Code-Layout
Templates

TSP-List

1
2...

...

...

...

Inst Name
Size

Automatic *.td Generation

ISA

...

ISA
TSP-List

1
2

Instance Name
Size Synthesis

Manual

Fig.3. Building compiler backends by producing the *.td files for a new target manually as in (a) prior work and automatically as in
(b) this work.

Hong-Na Geng et al.: Automatic Target Description File Generation 1341

①https://github.com/riscv/riscv-v-spec, Sept. 2021.

https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec

ally, one would end up with writing 24 *.td files in

about 19 KLOC for instruction support. With ATG,

one would only need to fill in the information for each

instruction according to 19–27 target-specific proper-

ties, i.e., tokens (Fig.2), where all the target-indepen-

dent tokens will be generated automatically.

Given a new target, ATG proceeds in two stages.

In the first stage (which can be reused for different

new targets sharing similar ISAs), ATG synthesizes

TSP-List and CLT-List from the *.td files of a set of

existing targets with similar ISAs. Each template in

CLT-List is identified uniquely by a feature vector

characterized by its target-specific tokens included. In

the second stage, ATG generates the *.td files for the

new target by using the target-specific information re-

quested in TSP-List and provided by compiler devel-

opers for each instruction (so that each instruction is

also identified by a feature vector) to construct a de-

scription for the instruction in TableGen based on

similarity-based matching (between the instruction

and one of the code-layout templates in CLT-List).

In Subsection 2.1, we motivate our ATG ap-

proach by considering a single instruction example. In

Subsection 2.2, we provide some further justifications

for its practical feasibility.

2.1 A Motivating Example

c.jr

0b10 0 1 16

Fig.4 illustrates how ATG generates a description

of from RISC-V in TableGen based on some tar-

get-specific information provided by compiler develop-

ers. Fig.4(a) depicts its bit encoding, where its op-

code “ ” ranges in bits “ ”–“ ” for a “ ”-bit in-

struction. For simplicity, we focus only on four of its

target-specific properties.

class
def

Fig.4(b) gives a hand-written description taken

from LLVM 12.0, coded declaratively as a sequence of

TableGen records, where a statement intro-

duces an abstract record and a statement intro-

duces a concrete record. The four target-specific prop-

class RVInst16 : Instruction {

 field bits<16> Inst;

}

class RVInst16CR<bits<2> opcode>: RVInst16{

 let Inst{1-0} = opcode;

}

def C_JR : RVInst16CR<0b10>;

(b)

S1:

S2:

S3:

1:

2:

3:

4:

5:

6:

7:

(j)

Graph Construction

Target Normalization

(d)

16

0b10

0

Property Value

1

(e)

1 0

15 13

funct4 rd

12 11 7

rs1

1 0

opcoders2

6 2

(a)

Similarity-Based

Matching

Success

G
e
n
e
ra

ti
n
g

S
y
n

th
e
si

zi
n
g

def C_JR : JALR_FM_16<0b10>;

class JALR_FM_16 < bits<2> op>

{

 bits<16> Inst;

 let Inst{1-0} = op;

 }

(c)

R1:

R2: Automatic Output

1:

2:

3:

4:

5:

6:

Manual Input

TRG for jr16

let

R1

t4 t4

[16]

R2

[5]

R2

t2 t2

t5

t5

T1

T2

t1
t1

t6 t7 t6 t7 t8

[9]

R2

t3 t3[0x0c]

R1

[op]

R2

[Inst]
R2

Token

Vertex

R-D

1:

2:

3:

4:

5:

R3:

R4:

R5:

lw64 in MIPS64

def LW64 : LW_FM<0x23>;

class LW_FM<bits<6> op>{

 bits<32> Inst;

 let Inst{31-26} = op;

}
 ...
{ let canFoldAsLoad = 1; }6:

jr16 in MicroMIPS

R1:

R2:

1:

2:

3:

4:

5:

6:

def JR16_MM : JALR_FM_16<0x0c>;

class JALR_FM_16<bits<5> op>

{

 bits<16> Inst;

 let Inst{9-5} = op;

}

[1]
R4

[canFold
AsLoad]

R5

TRG for lw64

[32]

R4

[26]

R4

[31]

R4[0x23]

R3

[op]

R4

[Inst]

R4

def JR16_MM : JALR_FM_16<TS
14 >;

class JALR_FM_16<bits<TS16
-TS15+1>

op>

{

 bits<TS
2> Inst;

 let Inst{ TS16
- TS15} = op;

}

:

:

1:

2:

3:

4:

5:

6:

(h)

(i)

CLT-List

TPL_
JR16

TPLRec-List

FV

< , >

<0.032 689 51, ... , 0.052 227 877>

TPL_
LW64

TPLRec-List

FV

< , , >

<0.052 083 95, ..., 0.058 894 236>

 <TS2, TS14, TS15, TS16, TS34, ... >TSP-List

(f)
Target Modeling

(g)

Rec-List
TSP-List

lw64
<R3, R4>

<0x23, 26, 31, 32, 1>
Rec-List
TSP-List

jr16
<R1, R2>

<0x0c, 5, 9, 16>

(k)

15

Idx

TS

2

14

Category Comments for Target Specific Details

 Size of the bit encoded instruction.

 The binary opcode in bit-encoding.

 The start bit of instruction opcode.0

Property
Value

16

0b10

16 The end bit of instruction opcode.1

..
.

34 Can this be folded as a simple memory operand?
Auxiliary Scheme

Incremental Scheme

Fail

(m)

(l)

T1 T2

T3 T4 T5

Fig.4. Motivating example for illustrating ATG. (a) Bit encoding of c.jr from RISC-V. (b) Hand-written description of c.jr taken
from LLVM. (c) Description of c.jr generated by ATG automatically. (d) The only effort from compiler developers for c.jr. (e) Ex-
ample records (MicroMIPS and MIPS64). (f) TRGs (MicroMIPS and MIPS64). (g) ISA models (MicroMIPS and MIPS64). (h) Tar-
get-specific property list. (i) Synthesized code-layout template list. (j) Synthesized TPLRec-List for c.jr. (k) Target-specific properi-
ty list (TSP-List). (l) Similarity-based matching. (m) Schemes for failed matching. Ri: record i. Idx: index.

1342 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

S1�S3 S1 16
S2 0 1

S3 0b10

erties considered here are specified by three records,

, where defines the “ ”-bit mode at line 2,

 defines the bit range “ ”–“ ” for the opcode at

line 5, and specifies the opcode as “ ”.
c.jr

c.jr

Fig.4(c) gives a description of generated by

ATG automatically according to the pre-synthesized

code layout templates in CLT-List. This description is

functionally equivalent to the hand-written one in

Fig.4(b) but with a different code layout. As far as

compilers developers are concerned, they need only to

fill in the information related to the four target-specif-

ic properties, i.e., tokens (as requested in TSP-List)

for , as shown in Fig.4(d).

2.1.1 Stage 1: Synthesizing TSP-List and

CLT-List

jr16
lw64

jr16

lw64

We obtain these two lists automatically for a new

target by considering the *.td files from a set of exist-

ing targets with similar ISAs. For each existing tar-

get, we construct one single token reference graph

(TRG) to capture a new kind of ref-def (R-D) rela-

tionship among the tokens that appear in all its *.td

files. We distinguish three types of tokens (Table 1):

1) programmer-defined (PD) tokens (such as vari-

ables introduced by compiler developers), 2) lan-

guage-specific (LS) tokens (such as operators and

punctuation marks), and 3) target-specific (TS) to-

kens (such as instruction names and opcodes). We re-

ly on the TRG for a target to separate type 3 from

type 1 and type 2 in its *.td files. Fig.4(e) gives two

records describing for MicroMIPS and three

records describing for MIPS64. Fig.4(f) depicts a

small portion of the TRG for MicroMIPS by includ-

ing only a few tokens from Fig.4(e) for and a

small portion of the TRG for MIPS64 by including

only a few tokens from Fig.4(e) for . Given two

t1 t2 t1 → t2

t1 t2

0x0c→ op 5→ inst 9→ inst
op→ inst 16→ inst 16

bits
inst t1 → t2

t1 t2

tokens and in a TRG, represents a ref-def

relation such that is used in the statement where

is defined. Let us consider Figs.4(e) and 4(f) by focus-

ing on MicroMIPS only. From lines 4 and 5 in

Figs.4(e), we have , , ,

, and (since as part of the

type provided in line 4 is also considered to be

used in line 5 where is defined). Given a

edge in a TRG, cannot be an LS token and must

be a PD token. Based on how the three different

types of tokens are used, we can thus identify the four

(five) tokens highlighted in blue as TS tokens for Mi-

croMIPS (MIPS64) in Fig.4(e).

i ∈ I I
(Rec-Listi, TSP -Listi)

Rec-Listi
TSP -Listi

jr16
lw64

As illustrated in Fig.4(g), we now represent each
instruction , where is the set of all instruc-
tions considered, as a 2-tuple ,

where is a list of its associated records, and
 is a list of TS tokens identified in these

records. This is illustrated for from MicroMIPS
and from MIPS64.

i ∈ I
(Rec-Listi, TSP -Listi)

i ∈ I
(TPLRec-Listi,FV i)

TPLRec-Listi
Rec-Listi
FV i TSP -Listi

Rec-Listj
TPLRec-Listi

Ti

TSP i i

jr16
lw64

T3 T5

Finally, as illustrated in Figs.4(h)–4(j), we obtain
TSP-List and CLT-List by performing a simple tar-
get normalization process. For each instruction ,
we have already obtained as il-

lustrated in Fig.4(g). To obtain TSP-List (Fig.4(h)),
we simply collect and combine the target-specific to-
kens in TRGs. To obtain CLT-List (Fig.4(i)), we con-
sider every instruction in turn. We include a

code-layout template in CLT-

List, where is templatized from
 with normalization only on TS tokens, and

 is the feature vector obtained from
for representing the instruction, such that is
templatized identically as , as illustrat-
ed in Figs.4(i) and 4(j). In each templatized record
(Fig.4(j)), is the -th entry in TSP-List
(Fig.4(k)). For the two instructions considered,
and , two code layout templates, TPL_JR16 and
TPL_LW64, are obtained (where – are omitted).

Table 1. Three Categories of Tokens②

Token Category Abbr. Description

Language-specific LS Language-specific tokens such as reserved key words, operators, and punctuation, which are
target-independent. This type is represented with LS.
For example, 1) keywords: def, class, let; 2) bang operators: !eq, !add; 3) punctuation: “:”, “,”.

Programmer-defined PD Target-independent tokens defined by programmers. This type is represented with PD.
For example, “inst”, “op”, … .

Target-specific TS Property tokens for machine-specific constraints, which are indispensable as to the correct
target support in a compiler. This type is represented with TS.
For example, “16” represents size of the bit encoded instruction. “0” represents the start bit of the
instruction opcode and “1” represents the end bit.

Hong-Na Geng et al.: Automatic Target Description File Generation 1343

②https://github.com/agilecompiler/agilecompiler, Jan. 2022.

https://github.com/agilecompiler/agilecompiler

2.1.2 Stage 2: Generating *.td Files

c.jr
Given the target-specific information provided for

 from RISC-V in Fig.4(d), ATG will first turn

this information into a feature vector. Afterwards,

ATG will select TPL_JR16, based on similarity-based

matching (Fig.4(l)), to generate a description for this

instruction as shown in Fig.4(c). To completely speci-

fy this instruction, in practice, compiler developers

need to fill in the information for 25 properties. In

contrast, the hand-written description in LLVM con-

sists of 46 LOC (with 336 tokens).

As demonstrated in Figs.4(l) and 4(m), in the rare

cases when ATG fails to find a suitable code layout

template to generate a description for a given instruc-

tion (e.g., a customized instruction), ATG provides

two schemes to produce a description. The auxiliary

scheme is proposed as a supplement for those failed

instructions without new properties. For those failed

instructions due to additional properties or due to

more complex reference patterns on target-specific

properties which are never captured in available ISAs,

ATG should encourage developers to design a short

piece of code manually which is referred to as the in-

cremental scheme. These two schemes are presented

with more details in Subsection 3.2.

2.2 Discussions

Let us discuss the practical feasibility of our ATG

approach from four perspectives. First, when writing

the *.td files manually for a new target, compiler de-

velopers often reuse code from existing targets[5]. This

suggests that the code-layout templates in CLT-List

can be automatically synthesized from the *.td files of

a set of existing targets sharing similar ISAs as the

new target. Second, the TS tokens are used different-

ly from the LS and PD tokens in the *.td files. This

suggests that the target-specific properties in TSP-

List can also be automatically synthesized from the

existing .td files in a similar way as CLT-List. Third,

in the rare cases when ATG fails to generate a de-

scription for a certain instruction (e.g., a customized

instruction in a domain-specific chip) in TableGen au-

tomatically, ATG provides means to call upon com-

piler developers to generate a description together. Fi-

nally, we can now obtain new compiler backends from

ATG-generated *.td files instead of hand-written *.td

files. In both cases, the correctness of a compiler

backend can be verified in exactly the same way[6], of-

ten subject to comprehensive regression testing.

3 Automatic Target Description File

Generation

We propose ATG to apply automatic generation
for target description files. Fig.5 displays the two
stages in ATG: 1) synthetic stage, analytically syn-
thesizing TSP-List and CLT-List from similar ISAs,
2) generation stage, generating target description files
for a new ISA with only a tabular form in terms of
TSP-List.

In this section, we introduce the basic idea be-
hind ATG. The synthetic stage includes in two steps,
TRG construction for token analyses (Subsection
3.1.1) and target synthesizing (Subsections 3.1.2 and
3.1.3) for TSP-List and CLT-List. The generation
stage for new targets with these two lists is then in-
troduced (Subsection 3.2).

3.1 Synthetic Stage

The synthetic stage is to construct two reusable

lists, TSP-List and CLT-List, from a set of existing

targets with similar ISAs. TSP-List is a target-specif-

ic property list for generating a new instruction set

which is required with specific values from developers.

CLT-List manages a set of code-layout templates for

automatic code generation in demand. These lists are

refined from token-based analyses on a set of TRG

graphs.

Synthetic Stage

1. TRG
Construction

Token

Reference Graph

Synthetic Target Model

Sample ISAs

CLT-List

TSP-List

2. Target
Synthetizing

Generation Stage

1. Similarity-

Based Matching

New
Compiler

3. Compiler
Regeneration2. Generator

Inst_Name

ISA_Name

Reserved

...

TSP-List From

DevelopersCommon

Basic Scheme

Auxiliary Scheme
*.td Files





*.td Files

*.td Files

... ...

Incremental Scheme

Fig.5. Framework of Automatic Target Description File Generation (ATG).

1344 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

3.1.1 TRG Construction

ti tj
ti → tj ti tj

t1
t5 jr16 t1

t1 → t5 t5

t7

A TRG is constructed on tokens from an ISA,

which are parsed from records in *.td files. As lines

3–5 of Algorithm 1 show that the target-specific

graph captures a new ref-def (R-D) relationship auto-

matically among tokens. Basically, the graph relies on

traditional def-use (D-U) techniques[7], but with a

broader focus on usage, which is referred to as refer-

ence (ref). According to the definitions in Table 1, LS

tokens and TS tokens are taken as references in our

work. For each pair of tokens and in TRG, an R-

D edge is set up once is used by . The

rules based on the R-D relation are summarized in

lines 8–15 of Algorithm 1, which can make a distinc-

tion among PD, LS and TS tokens according to their

distinct in-degree (IN-D) and out-degree (OUT-D) R-

D edges. These rules illuminate the categories of

and in Fig.4(f) for where must be a TS to-

ken due to the only outgoing edge, and

must be a PD token due to the in-coming edge. The

token in the same TRG must be an LS token since

it does not have any R-D chains. These three cate-

gories of tokens make it ready for later synthesizing

process.

Algorithm 1. TRG-Construction

∗.tdF iles　Input:

TRGs　Output: : token reference graphs;

Category　　　　　 : three categories of all tokens;

Records ← ∗.tdF iles1 PreProcess();

Rk Rt ∈ Records2 for , do

ti ∈ Rk tj ∈ Rt3　　for , do

ti tj4　　　　if HasR-DRelation(,) then

TRGs ti, tj, R→ D5　　　　　　 .Add_Edge();

Rj ∈ Records6 for do

ti ∈ Rj7　　for do

IN D ← ti TRGs8　　　　 - CalculateINDegree(,);

OUT D ← ti TRGs9　　　　 - CalculateOUTDegree(,);

IN D OUT D10　　　 if - == 0 && - == 0 then

Category<LS> ti LS11　　　　　 .Append(,);

IN D OUT D ̸=12　　　 if - == 0 && - 0 then

Category<TS> ti TS13　　　　　 .Append(,);

IN D ̸=14　　　 if - 0 then

Category<PD> ti PD15　　　　　 .Append(,);

TRGs Category16 return , ;

3.1.2 Synthesizing TSP-List

TSP-List is a list of target-specific properties re-

quired for a target support. TSP-List is derived from

the R-D relationship on TS tokens as described in Al-

gorithm 2. A TS token in TRG is only a value for a

0x0c
jr16

opcode

ti tj ti → tj

specific target-specific property, e.g., for Mi-

croMIPS is a value specified for the property of

 in Fig.4(f). The exact semantics for this value

should be worked out via the R-D relation. As for a

TS token in a TRG, from the only edge is

the PD token (a variable introduced by compiler de-

velopers) using it in the definition, and broadcasting

it to the compiler backend as a carrier which is refer-

eed as PR-PD. Thus, we append a new entry for PR-
PD which corresponds to a target-specific property

without repetition. During the R-D analyses, differ-

ent PR-PD can contribute to new entries in TSP-List.

In this way, the completed TSP-List should be a su-

per-set on target-specific properties of all ISAs.

Algorithm 2. Synthesizing TSP-List

ISAs　Input: : all selected sample ISAs;

TSP List　Output: -
idx ←1 0;

PR_PDs TSP List ← ∅2 , - ;
ISA ∈ ISAs3 for do

∗.tdF iles ← ISA4　　 PrepareInput();

TRGs Category ← ∗.tdF iles5　　 , TRG-Construction();

TS_Tokens← CollectISATS(TRGs,Category,
ISA.inst_set

6　　
);

ti ∈ TS_Tokens7　　for do

PR_PD ← TRG ti8　　　　 GetPDByR-DAnalyse(,);

commentsi ← PR_PD9　　　　 ExtractComment();

valuei ←10　　　 null;

PR_PD /∈ PR_PDs11　　　 if then

PR_PDs ← PR_PDs ∪ PR_PD12　　　　　 ;

TSP List idx valuei commentsi13　　　　　 - .Add((, ,));

idx14　　　　　 ++;
TSP List15 return - ;

0x0c→ op 0x23→ op
op

14

TSP i (i, valuei, commentsi)

i 14

op
commentsi

The binary opcode in bit-encoding

As the motivation example in Fig.4(f) shows, as

for for MicroMIPS jr16 and for

MIPS64 lw64, the common PR-PD of contributes

to the th entry in TSP-List as shown in Figs.4(h)

and 4(k). Each entry in TSP-List is represented with

a triple , which refers to a

target-specific property indexed by . As to the th

entry referring to , this PR-PD token is extracted

as the comment in , which can be manually

maintained with “ ”
for much clearer indication in practice. The value

field asks for an explicit value for this specific proper-

ty from an instruction. When a new ISA is required,

TSP-List needs to be specified with a list of new val-

ues by compiler developers according to detailed com-

ments as the list of new values demonstrated in

Fig.4(d).

Fig.6 demonstrates the TSP-List synthesized from

11 MIPS ISAs in LLVM 12.0. Due to space limita-

Hong-Na Geng et al.: Automatic Target Description File Generation 1345

tion, only partial tokens are shown in the figure. The

X-axis lists the 11 MIPS ISAs used in synthesizing

TSP-List. For clarity, PR-PD tokens corresponding to

TS tokens are demonstrated in Y-axis. These statis-

tics on TS tokens certify that TRG is competent to

make a distinction on target-specific properties. As for

each of the ISAs in the X-axis, the properties in real

need range in 17–28. However, there are some person-

alized or unique TS tokens for instructions of one

ISA, or between different ISAs at the upper of the Y-

axis. There are significant amount of TS tokens in

common among ISAs at the lower end of the Y-axis.

Therefore, a super set on all these properties is neces-

sary to comprehensively cover these differences which

can ensure both the correctness and the wider appli-

cability of ATG. In our work, TSP-List with maxi-

mum 61 properties is competent enough for wider us-

age. Compared with the extensive code in target de-

scriptions, it is trivial.

3.1.3 Synthesizing CLT-List

i ∈ I I
(Rec-Listi, TSP -Listi)

Rec-Listi
i TSP -Listi

(TPLRec-Listi,FV i)

TPLRec-Listi

Rec-Listi i FV i

i TSP -Listi

CLT-List manages a list of instruction models

which are used for automatic code generation when a

new instruction is required. As for each instruction

 , where is the set of all instructions in an ISA,

a 2-tuple is used to represent

the instruction, while collects associate

records of , and gathers those values for

target-specific properties from associate records. CLT-

List then uses a 2-tuple to repre-

sent the templatized instruction. col-

lects code-layout templates for associated records in

 of and is a unique real-vector repre-

senting which can be synthesized from .

Rec-Listi TSP -Listi

Algorithm 3 demonstrates the collection on

 and , which considers each in-

struction in turn. The 2-tuple representation for an

i

Rec-Listi

Rec-Listi
Rec-Listi TSP -Listi

Rec-Listi TSP -Listi

instruction is acquired via TRG traversal. For in-

struction , the algorithm starts from the property to-

ken which refers to the instruction name. The record

using it is kept as the first associate record in

. As to each token of the record, tokens

paired with it via R-D edges are figured out and

records hosting these paired tokens can be added re-

cursively to . Then, all TS tokens in

 are collected into . By repeating

the above steps, the list of and

can be perfected gradually.

Algorithm 3. Synthesizing CLT-List

TRGs　Input: : token reference graphs;

Category　　　　 : three categories of all tokens;

I　　　　 : inst_set of the sample ISA;

ideal_pw pw　　　　 : the result of tuning on ;

CLT List　Output: -
i ∈ I1 for do

Rec Listi ← i TRGs2　　 - GetRootRecord(,);

Rec Listi TRGs3　　RecursiveAddByR-DEdge(- ,);

TSP Listi ← Rec Listi Category4　　 - CollectTS(- ,);

Rj ∈ Rec Listi5　　for - do

TPL Rj ← Rj Category<TS>6　　　　 - Synthesizing(,);

TPLRec Listi ← TPLRec Listi ∪ TPL Rj7　　　　 - - - ;

FVi ← TSP Listi ideal_pw8　　 Synthesize_FV(- ,);

i(TPLRec Listi,FVi) CLT List9　　add - into - ;
CLT List10 return - ;

(Rec-Listi, TSP -Listi) TPLRec-

Listi
ti k k

ti

i

After obtaining ,

 is templatized by substituting each of TS token

 with TSP , while TSP is the corresponding entry

to the PR-PD of . As the example shown in Fig.4(i),

the template can produce code for a new instruction

which is similar to in the later target generation

stage.

FV z
i =

L∑
t=1

(tpvt
i⟨tpz⟩ × pwt). (1)

As the unique real-vector for representing instruc-

Mips
32

Micr
oM

ips

Micr
oM

ips
DSP

Sample Instructions from ISAs

TS (61)

Mips
DSP

Mips
64

Mips
32

R6

Mips
MSA

Mips
FPU

Instr_Name
Size

Operand[Precision]

Bit_Encode[Value]

Bit_Encode[Range]

isBranch
mayload

isAsCheapAsAMove

isCall
28 27 25 2828 25 22 21

(216)

Maximal Target-Specific Property Number

Mips
64

R6

Mips
EVA

Mips
MT

25 23 19

Fig.6. Target-specific properties distribution among different ISAs.

1346 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

i FV i

TSP -Listi TSP -Listi L

TSP -Listti t i

TSP -Listti
tpvt

i = (tp1, tp2, . . . , tpZ)

tpz z 1 ⩽ z ⩽ Z

tpvt
i⟨tpz⟩ FV z

i

1 ⩽ z ⩽ Z z FV i

tpz tpvt
i

tpv1
i tpvL

i

pw tpvt
i

FV

pw

tion , is designed as a Z-dimensional vector that

is synthesized from all properties in the list of

. Supposing has properties,

 is the -th property value for instruction .

 can be quantified into a Z-dimension (Z-

dim) (Z=10) real vector by

word2vec[8], while is the -th () real ele-

ment in the vector, i.e., . As for

() which is the -th real element of , it

is synthesized by integrating each of (from

 to) with a corresponding personalized

weight for according to (1)[9]. Therefore, it

can be seen that for instructions still relies on a

group of ideal personalized weight for TSP-List to

complete.

pw

pwx TSP x

pw

Tuning for TSP-List. Each personalized

weight for in TSP-List is a significant fac-

tor to indicate its significance instruction representa-

tion. A tuning process is designed to obtain a group

of ideal from all selected sample ISAs. The tuning

is based on similarity evaluation with feature vectors

for instructions by the Euclidean distance③.

SD(i, j) =

√√√√ Z∑
z=1

(FV z
i − FV z

j)2. (2)

i j

SD(i, j) FV i FV j

FV z
i FV z

j

SD(i, j) i j

SD(i, j) ⩽

pw

As for instructions and , the similarity dis-

tance is calculated with and with

(2), while and are the z-dimension real

number of these two vectors respectively. We use

qualified for pair of similar instruction (,)

(once QUALIFIED_SD), while the thresh-

old QUALIFIED_SD is set to 0.2 in our work. The

tuning process aims for a group of ideal for TSP-

List which can result in maximum qualified SD pairs.

pw

)

jr16 jr32 add add.d)

TSP -List

Rec-List

As the tuning process in Algorithm 4 shows, it

takes three steps to obtain a group of ideal for

TSP-List. First, it groups peer instructions from all

sample ISAs as shown in line 5 under two conditions:

1 the instructions have similar instruction names,

such as and , and ; 2 the instruc-

tions have which maps to exactly the same

entries in TSP-List. These peer instructions are ob-

served to have highly similar , i.e., similar

code-layout. Then, under these two conditions, peer

instructions are clustered into strong connected sub-

graphs (SCSG). All SCSGs are connected to form a

global strong connected graph (SCG). A basic princi-

ple underlined is that peer instructions should be sim-

ilar enough, or should have qualified SD between each

other. After the SCG is constructed, the tuning pro-

cess undergoes approximately 50 000 iterations with

different sets of parameters (pw) and makes statistics

on instruction pairs with qualified SD. It keeps the

one as an ideal group which can obtain maximum

qualified SD for TSP-List.

pwAlgorithm 4. Tuning on

ISAs　Input: : all selected sample ISAs

ideal_pw　Output: : a group of pw
SD1 # QUALIFIED_SD 0.2; (threshold for)

pw_set ← pw2 generate a number of combinations in preset
　range;

isai isaj ∈ ISAs3 for , do

i ∈ isai j ∈ isaj4 　 for inst , do

inst_group SCSG ← i, j5 　　　 , GroupPeerInsts();

(inst_group SCSG) PeerInsts6 　　　 add , into

(inst_groups SCG) ← PeerInsts7 , ConstructSCG();

pw ∈ pw_set8 for do

∈ inst_groups9 　 for group do

i j ∈ group10 　　　for inst , do

FVi ← i pw11 　　　　 Synthesize_FV(GetTSP-List(),);

FVj ← j pw12 　　　　 Synthesize_FV(GetTSP-List(),);

SD ← FVi FVj13 　　　　 Eucilidean_Distance(,);

SD14 　　　　 if < QUALIFIED_SD then

qualified_pairs15 　　　　　　 ++;

qualified_pairs ideal_pairs16 　 if > then

ideal_pairs ← qualified_pairs17 　　　 ;

ideal_pw ← pw18 　　　 ;

ideal_pw19 return ;

pw

pw

pw

Initially, the group of in tuning is set with em-

pirical value total up to 1.0. According to our studies

on MIPS ISAs, by experience, for the instruction

name, the instruction size and their function (branch

or memory) are initialized relatively higher (= 0.3)

due to their significance in highlighting the difference

in instructions, and are tuned in [0.2, 0.3]. The more

frequently used properties in the middle end of the Y-

axis of Fig.6 are initialized with 0.2 and tuned in

[0.05, 0.2], and the rest properties are relatively

unique and are initialized with 0.05, and tuned in [0,

0.05]. Then, more than 50 000 groups of are ran-

domly generated under these constraints. The tuning

process now takes four days which could be opti-

mized in the future[10, 11].

pwAfter the tuning process on , the collection on

an instruction representation is completed. After ac-

quiring all instruction information, the construction

on CLT-List is completed, and ATG is ready for code

generation.

Hong-Na Geng et al.: Automatic Target Description File Generation 1347

③https://en.wikipedia.org/wiki/Euclidean_distance, Sept. 2021.

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance

3.2 Generation Stage

t

FV t

m

t

TSP -Listm
i

def

def

When a new ISA is required, the developers are

required to fill in TSP-List with proper property val-

ues for every instruction. A new instruction is first

quantified with a feature vector with (1). And

then it tries to match with available instruction mod-

els in CLT-List via SD evaluation with (2) and re-

turns an instruction which has the minimum quali-

fied SD as a success match. New code for can be

generated automatically from by substi-

tuting each TSP with corresponding values offered

by users. This is the basic scheme in ATG. However,

ATG still may fail to match a new instruction. The

auxiliary scheme is thus proposed as a supplement.

For those failed instructions without new properties,

we provide with an auxiliary template (referred to as

AUX-TPL) shown in Fig.7, and it contains a group of

 statements which can be defined with all proper-

ty values in TSP-List offered by developers. The PD

variables in statements are original PD tokens de-

rived from existing targets. Therefore, the AUX-TPL

record can be interpreted by TableGen successfully,

and PD variables can carry these values to the com-

piler backend correctly. This solution can work out

this kind of failure successfully and it is evaluated in

Section 5.

For those failed instructions due to additional

properties or due to more complex reference patterns

on target-specific properties which are never cap-

tured in available ISAs, ATG still cannot handle

properly due to the lack of semantics. ATG needs to

know more about the new instructions such as the

pw

property type, the reasonable reference pattern on

properties. In this case, ATG should encourage devel-

opers to design a short piece of code manually which

is refereed as the incremental scheme. Afterwards,

ATG can make an incremental update on TSP-List

and CLT-List, including adding new properties and

re-tuning , and finally supplement CLT-List with

new code-layout templates. Although this incremen-

tal update may take some time, it can benefit more

similar instructions. In this way, the incremental

scheme makes ATG competent for more practical sce-

narios.

3.3 Discussion on ATG's Generality

LLVM is a popular compiler framework among

mainstream general-purpose compiler architectures.

The prominent modularity and robustness make

LLVM a preferred platform in the latest researches

for both isomorphic and heterogeneous architectur-

es[12, 13]. This work is a preliminary outcome towards

a new efficient method for the automatic compiler de-

sign, which targets at a compiler developed via auto-

matic code generation. This automatic mechanism

asks for better modularity and regularity. From this

perspective, LLVM is an ideal option as the base

compiler framework. ATG can eventually lower the

hardness in compiler development for both fast retar-

getability and optimization of compilers, and catch up

with the fast speed of agile chip development in the

future.

ATG is a general mechanism that can be applied

(c)

(d)

16

0b10

0

Property Value

1

Manual Input

1

(e)

Idx

TS

Category Comments for Target Specific Details

 Size of the bit encoded instruction.

 The binary opcode in bit-encoding.

 The start bit of instruction opcode.

Property
Value

 The end bit of instruction opcode.

...
...

 Is it possible for this inst to read memory?

(f)

 TS2

TS
14

TS15

TS16

TS24

16

0b10

0

1

1

def Inst_Name : Instruction{

 bits< TS
2
 > Inst;

 bits< TS
16
-TS

15
+1> opcode = TS

14;

 let Inst{ TS
16 -TS

15
 } = opcode;

 let mayLoad = TS24;

...

}

1:

2:

3:

4:

5:

6:

Automatic Output

...
def C_FLDSP : Instruction{

 bits< 16 > Inst;

 bits< 2 > opcode = 0b10 ;

 let Inst{ 1 - 0 } = opcode;

 let mayLoad = 1;

... }

1:

2:

3:

4:

5:

6:1 0

15 13

funct4

1 0

opcode

(a)

class RVInst16 : Instruction {

 field bits<16> Inst;

}

class RVInst16CR<bits<2> opcode>: RVInst16{

 let Inst{1-0} = opcode;

}

let mayLoad = 1 in

class CStackLoad: RVInst16CI<0b10>;

def C_FLDSP : CStackLoad;

(b)

S1:

S2:

S3:

S4:

1:

2:

3:

4:

5:

6:

7:

8:

9:

...

R1:

Fig.7. Code-layout template for failed match instructions. (a) Bit encoding of c.fldsp from RISC-V. (b) Hand-written description of
c.fldsp taken from LLVM. (c) Automatically generated description of c.fldsp by ATG. (d) Only effort by developers for c.fldsp.
(e) Target-specific properity list (TSP-List). (f) Auxiliary template (AUX-TPL) for failed match instructions.

1348 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

to compiler architectures similar to LLVM. As intro-

duced in Fig.3, general-purpose compilers such as

GCC and LLVM are leveraged by using a certain lan-

guage to manually describe hardware information

(e.g., Tablegen Language for LLVM, Register Trans-

fer Language[14] for GCC). ATG takes effect for these

mainstream compilers by substituting the heavy man-

ual efforts with a small TSP-List table. The frame-

work in Fig.5 demonstrates the working stages of

ATG. As to the above general-purpose compilers,

ATG works with the same steps except the input files

on which it is based. During the synthetic stage, it

takes different types of files as input from various

compilers before TRG-Construction, e.g., *.td files in

LLVM, or *.md files in GCC. After that, ATG can

turn out TSP-List and CLT-List in the same way.

During the generation stage, with required input for

TSP-List, ATG can produce corresponding hardware

description files automatically.

4 Implementation

ATG is implemented as a standalone approach in

about 8 000 lines of code in Python presently. It in-

cludes two separate stages, the synthetic stage for

reusable TSP-List and CLT-List which takes relative-

ly longer time, and a fast generating stage for a new

ISA in minutes.

pw

pw

The synthetic stage is based on 11 MIPS ISAs

from LLVM 12.0, which amount to about 1 700 in-

struction models. It takes *.td files from these ISAs as

input. Then, TRG-Construction in Algorithm 1 sets

up target-specific TRG for each of them and main-

tains the R-D relation for tokens. Next, TSP-List can

be synthesized from TS tokens via token classifica-

tion as shown in Algorithm 2. CLT-List is synthe-

sized from instruction models. As shown in Algo-

rithm 3, during this step, instructions are represented

from three aspects including associate records, target-

specific properties, and unique feature vectors which

rely on a group of ideal on TSP-List with Algo-

rithm 4. In our work, the tuning on is a time-con-

suming process. However, ATG is still an efficient ap-

proach compared with manual efforts.

The generation process is applied to nine RISC-V

ISAs which amount to 1 029 instructions including

404 scalar instructions and 625 vector ones. We have

taken one week to fill in TSP-List for these ISAs,

which is the common overhead in the manual design.

Then ATG can work for code generation on instruc-

tion combinations in minutes. ATG is evaluated via

comparison with available RISC-V support in LLVM

12.0. The details for the ATG application is present-

ed in Section 5.

5 Evaluations

In this section, we certify ATG as a qualified ap-

proach for an automatic target generator, significant-

ly reducing efforts required.

5.1 Methodology

ATG

ATG is designed with a re-usable TSP-List and

CLT-List, and then it can be reused by similar ISAs.

We evaluate ATG from two aspects: 1) whether it is

able to create *.td files for the selected ISA (reusabili-

ty), and 2) whether the newly generated backend

(LLVM) can create correct cases with the selected

ISA (compilation ability). We select nine types of

RISC-V ISA in RV32-mode and RV64-mode in the

evaluation. As shown in Table 2, the standard ISA

types include I, M, F, and D. The custom ISA types

include A, C, B, FH, and RISC-V Vector extensions

in V. Each ISA has various instructions in RV32-

mode and RV64-mode, which amount to 906 and 1 029

instructions respectively.

ATG

Our compiler developer manually fills in TSP-List

with properties for all the above instructions. While

we provide TSP-List with 61 entries and most of

these instructions only need 20 properties on average.

The reusability of ATG is then evaluated with nine

groups of ISA combinations in two modes as shown in

Table 2 which provides flexible and comprehensive

type coverage on the standard type (G1–G3), the cus-

tom type (G4–G8) and G9 for the complete ISA sets.

These combinations can lead to 18 LLVM with dif-

ferent backends which are qualified to validate ATG's

reusability (Subsection 5.2).

ATG

The compilation ability of ATG is evaluated via

comparison between LLVM and LLVM with con-

siderable test suites in Table 3. The LLVM regres-

sion test suite④ includes IR files (.ll files), assembly

codes (.asm files) and general functional tests, which

amount to about 15 632 and 15 616 cases in RV32-

mode and RV64-mode respectively. Moreover, 16

Hong-Na Geng et al.: Automatic Target Description File Generation 1349

④https://llvm.org/docs/TestingGuide.html#regression-tests, Sept. 2021.

https://llvm.org/docs/TestingGuide.html#regression-tests
https://llvm.org/docs/TestingGuide.html#regression-tests
https://llvm.org/docs/TestingGuide.html#regression-tests

−O0 −triple =

riscv32 −O0 −triple = riscv64

C/C++ benchmarks in SPEC2017 are utilized (FOR-

TRAN cases are not included due to unavailable tool-

chains on RISC-V). These test cases are compiled by

LLVMATG and LLVM at options of “

” for RV32 and “ ”
for RV64. LLVMATG and LLVM are contrasted on as-

sembly files, and also on the correct cases that can

pass the built-in verification (Subsection 5.3).

Experiment Platform. ATG has no special require-

ments on the working environment. It now is imple-

mented and evaluated on a server with Intel® Xeon®

CPU E7-4809 v3 2.00 GHz and 256 GB of memory.

The built-in verification for reliability, i.e., the cor-

rectness of test cases, is conducted on RISC-V QE-

MU Simulator.

5.2 Evaluation on Reusability

5.2.1 Time Overhead in ATG

pw

The re-usablity of ATG relies on two re-usable

lists of TSP-List and CLT-List which takes relatively

higher time overhead. During the synthesizing pro-

cess, tuning on ideal is the longest step which

takes about four days based on 50 000 groups of at-

tempts. This step could be sped up with recent re-

searches on the training algorithm[10, 11]. The rest

steps in the synthetic stage can be completed in min-

utes. When a new ISA is required, it takes 1 day–7
days for our developers to fill in TSP-List for these

ISAs. This is a common overhead even in the manual

design. After that, ATG can facilitate a fast code gen-

erating for a new ISA in minutes. In all, compared

with traditional manual research and development,

generating *.td files by ATG is still more efficient.

5.2.2 Reusability of ATG

The reusability of TSP-List and CLT-List is eval-

uated with combinations in Table 2. ATG can gener-

ate 18 sets of *.td files. In most of the combinations,

the generated *.td files can fully cover the selected

ISA by the basic scheme after being successfully

matched in the standard ISA model. Only a few in-

structions fail to be generated due to mismatching.

However, these failures can be solved by the auxil-

iary scheme which can supplement all the missing in-

structions in corresponding *.td files.

As summarized in Table 4, in the RV32-mode, the

failed list by the basic scheme includes three C-type

instructions in G5 and one B-type instruction in G6.

Table 2. Combinations on RISC-V ISA in RV32-Mode and RV64-Mode

ISA Type Description Inst. Mode Combination on ISA

RV32 RV64 G1 G2 G3 G4 G5 G6 G7 G8 G9

Standard I Base integer instructions 47 59 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
M Standard extension for integer multiplication and division instructions 8 13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
F Standard extension for single-precision floating-point instructions 26 30 ✓ ✓ ✓ ✓ ✓ ✓ ✓
D Standard extension for double-precision floating-point instructions 26 32 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Custom A Standard extension for atomic instructions 44 88 ✓ ✓
C Standard extension for compressed instructions 37 48 ✓ ✓
B Standard extension for bit manipulation 63 100 ✓ ✓
FH Standard extension for half-precision floating-point instructions 30 34 ✓ ✓
V Standard extension for vector operations 625 625 ✓ ✓

Sum 906 1 029

Table 3. Test Cases in the Evaluation

Test Suite BenchMark Type BenchMark Detail Number of Validated Cases

RV32-Mode RV64-Mode

SPEC 2017 CPU C/C++ 600.perlbench, 638.imagick, 605.mcf, 657.xz 16 16

623.xalancbmk, 511.povray, 619.lbm, 641.leela

526.blender, 508.namd, 510.parest, 602.gcc

631.deepsjeng, 620.omnetpp, 625.x264, 644.nab

LLVM regression test LLVM IR ./llvm/test/CodeGen/RISCV/*.ll 452 408

./llvm/test/DebugInfo/RISCV/*.ll 4 4

Assembly ./llvm/test/MC/RISCV/*.s 137 165

./llvm/test/DebugInfo/RISCV/*.s 1 1

Others General tests for LLVM backend 15 038 15 038

Sum 15 632 15 616

1350 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

They constitute the four failures in G9. Analogous re-

sults can be observed from experiments in RV64-

mode. Despite of full instruction generation in most of

the combinations, the mismatch for custom instruc-

tions leads to slight failures. There are eight A-type

instructions, 10 C-type instructions, and five B-type

instructions failing to be matched in G4, G5, and G6

respectively, which constitute 23 failures in G9.

FV

The failures in similarity-based matching current-

ly result from some unique combination of the input

target-specific properties. These properties accompa-

nied with available pw will turn out an with (1),

which correspondingly results in a relatively signifi-

cant distance in SD with (2) when matching with

available instructions in CLT-List. This SD makes it

hard to find a suitable code template for the new in-

struction in current reusable TSP-List. However, the

auxiliary scheme is competent to solve these failures

completely by generating corresponding code with our

AUX-TPL in our work.

As the contrast shown in Table 5, the generated

*.td files by both the basic scheme and the auxiliary

scheme are larger than the hand-written ones in

LLVM by 2x–3x per target. Among them, TS tokens

account for about 6%–12% of all the tokens. Table-

Gen interprets them into *.inc files which have the

equivalent size but different code layout compared

ATG

with the hand-written ones in LLVM. The differences

mainly lie in different variables on the instruction

name and the order of instructions in the code. After

that, ATG can produce 18 backends which are exact-

ly the same as those in LLVM. ATG does not result

in noticeable time overhead on the compilation for

LLVM .

5.3 Evaluation on the Compilation Ability

5.3.1 Evaluation on Compiling

ATG

ATG

ATG

LLVM does not show noticeable impact on the

compiling process for all the cases in the evaluation.

As for SPEC2017, only five instruction types includ-

ing I, M, F, D and A are utilized by the benchmarks

so that we only apply G1–G4 with SPEC2017. As we

explained in Subsection 5.2, in these combinations,

LLVM by both the basic scheme and the auxiliary

scheme has the same backends with that in LLVM.

Therefore, LLVM can produce the same assemble

files and binaries as LLVM in the RV32-mode and

RV64-mode.

As for the 15 600 cases in LLVM regression test-

suite, G1–G9 combinations are conducted as shown in

Fig.8. With the basic scheme, there are 6, 4, and 10

cases that fail to be generated in G5, G6, and G9 re-

spectively in the RV32-mode due to failures in in-

struction support summarized in Table 4. Similarly,

for RV64, despite of the full instruction generations in

most of the combinations, the mismatch for previous

mentioned custom instructions results in 3, 7, 8, and

18 failures in G4, G5, G6 and G9 respectively. Com-

pared with the quantity of success cases, the failed ra-

tio (< 0.1%) is acceptable. All the failures can be

completely corrected by the auxiliary scheme, which

can produce the same assemble files and binaries as

LLVM in all combinations.

Table 4. Failed List in Instruction Matching

Combination RV32-Mode RV64-Mode

G4 - amoxor.d/.d.aq/.d.rl/.d.aqrl

amoand.d/.d.aq/.d.rl/.d.aqrl

G5 c.fldsp, c.fsd, c.fld c.sd, c.sdsp, c.ldsp

c.subw, c.fld, c.ld

c.fldsp, c.addw, c.addiw, c.fsd

G6 sext.b gorciw, crc32.d

sext.b, gorcw, xperm.w

G9 All the above All the above

Table 5. Successfully Generated Instructions in RV32-Mode and RV64-Mode

Comb. RV32-Mode RV64-Mode

LLVM Basic
Scheme

Auxiliary
Scheme

Failed File Size
Ratio (x)

TS Proportion
(%)

LLVM Basic
Scheme

Auxiliary
Scheme

Failed File Size
Ratio (x)

TS Proportion
(%)

G1 47 47 0 0 3.0 6 59 59 0 0 2.7 7

G2 55 55 0 0 3.0 6 72 72 0 0 2.7 7

G3 107 107 0 0 2.8 6 134 134 0 0 2.5 7

G4 151 151 0 0 2.7 6 222 214 8 0 2.6 8

G5 144 141 3 0 2.5 6 181 171 10 0 2.3 7

G6 170 169 1 0 3.1 6 234 229 5 0 2.9 7

G7 137 137 0 0 2.7 6 168 168 0 0 2.4 7

G8 732 732 0 0 2.5 12 759 759 0 0 2.4 12

G9 906 902 4 0 2.5 10 1 029 1 006 23 0 2.5 11

Note: Comb.: combination.

Hong-Na Geng et al.: Automatic Target Description File Generation 1351

5.3.2 Validation on Running

ATG

ATG

ATG

As we explained in Subsection 5.2, the backend in

LLVM is the same with that in LLVM. Therefore,

the cases generated by LLVM are the same with

those by LLVM, and they can pass the built-in vali-

dation of both the LLVM regression test and

SPEC2017. LLVM does not show any perfor-

mance side-effects on these cases.

5.4 Summary

Experiential results in Subsection 5.2, especially

with custom instruction types including the hot RVV

set, certify ATG as a feasible mechanism for a much

improved efficiency in manual development.

5.5 Discussion on Limitations

Despite the reusability, ATG is still incomplete to

generate files in languages other than TableGen. Ef-

forts aiming at C or C++ code are now undergoing

for a more comprehensive target support. Moreover,

further efforts about extending ATG to a wider scope

such as the instruction scheduling in the compiler are

undergoing. Currently, the evaluation of ATG still

depends on the available LLVM infrastructure such as

instruction selection and instruction emission with

some manual assistance. Therefore, as we explained in

Subection 3.2, ATG does not support customized in-

structions with complex mode or properties (such as

pattern, immediate operand definition) due to the

lack of relevant knowledge from existing ISAs. How-

ever, this more intellectual auto-designing approach is

hopeful to further lower the threshold for compiler de-

velopment fundamentally.

6 Related Work

The new trend brought forth by Agile chip

design[1–3] is beckoning innovations on efficient com-

piler research and development. Latest researches[1, 15–18]

foresee a vision of enhanced quality and improved effi-

ciency in both hardware and software.

Modularity/Template is an efficient solution due

to easier upstanding, easier reuse and scaling, but still

with redundancy hard to overlook[4, 19–24]. Modularity

is extensively used in domains including compilers

such as LLVM, GCC, and KEQ[25]. It is also an at-

tractive topic in agile design[26–28], such as TABLA[26],

Chipkit[27] and OpenFPGA[28], which are applied in

FPGA design or reusable SoC subsystems for tape-

outs.

Generators are becoming more pervasive in the

domain of compilers and specialized hardware acceler-

ators for reduction on uncaught bugs, and lowering

the demands in background knowledge[25, 29–31]. VEG-

EN[29] can generate a group of vectorization patterns

automatically. CLGen[30] suggests an OpenCL genera-

tor for better runtime performance. KEQ[25] gener-

ates an equivalence checker automatically which

proves equivalence for transformation from LLVM IR

to X86_64. There are many outstanding studies on

accelerators for hardware[26, 28, 32–34], which overcome

bottlenecks of specific applications. ATG is a black

box generator. With the only input on the TSP-List,

it can generate *.td files.

Intermediate language/representation has been

tackled for decades for both hardware generation and

compilers. There are IRs for HLS[35], HDL[36] or com-

pilers such as LLVM IR[37], GCC’s internal IR[38], and

earlier WHIRL[39]. They work as links between major

components in a compiler which makes optimizations

easier to re-configure. Calyx[40] implements a high lev-

G1 G2 G3 G4 G5 G6 G7 G8 G9

Basic Scheme

Auxiliary Scheme

N
u
m

b
e
r

o
f
S
u
c
c
e
ss

fu
l
C

a
se

s
in

 I
n
st

ru
c
ti
o
n
 G

e
n
e
ra

ti
o
n 15 650

15 550

15 450

15 350

15 250

15 150

Combination with LLVM Regression Test

6 4

10

G1 G2 G3 G4 G5 G6 G7 G8 G9

Combination with LLVM Regression Test

Basic Scheme

Auxiliary Scheme

15 650

15 550

15 450

15 350

15 250

15 150N
u
m

b
e
r

o
f
S
u
c
c
e
ss

fu
l
C

a
se

s
in

 I
n
st

ru
c
ti
o
n
 G

e
n
e
ra

ti
o
n

3 7 8

18

(b)(a)

Fig.8. Experiments on instruction generation with LLVM regression tests. (a) RV32-mode. (b) RV64-mode.

1352 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

el intermediate language for facilitating the design for

custom hardware accelerators. MLIR[16] improves

compilation performances for domain-specific hard-

ware. ValueGraph[41, 42] is for validating the optimiza-

tions of the LLVM pipeline and thus improving run-

time performance. BoogieIR[43, 44] is for taming the

complexity of the program verification. Halide IR[45]

can accelerate image processing process. These sim-

pler techniques can speed up the efficiency in develop-

ment. However, developers still need accumulated

knowledge to better master new skills. ATG hides im-

plementation details from users and thus requires no

penetration.

7 Conclusions

We proposed ATG which can generate target de-

scription files from a simple TSP-List for a new tar-

get support in a compiler. ATG models sample ISAs

(instruction set architectures) based on analyses on

tokens, and normalize them into a standard target

model including TSP-List for full specification on ma-

chine-specific constraints, and a standard ISA model

for normalized record format. ATG can automatical-

ly generate target description files and greatly acceler-

ate the generation of compiler backends over nine

RISC-V ISAs, which can produce accurate code for 16

C/C++ SPEC2017 benchmarks and about 15 600

LLVM regression tests. ATG works in a black-box

way. Except a small amount of indispensable proper-

ties, it does not ask for manual intervention on the

whole process. Further exploration on available modu-

larity and regularity inside compilers is still under

work. ATG focuses on making radical changes in the

retargetability of custom chips, greatly reducing the

need for manual effort.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Bao Y G, Carlson T E. Agile and open-source hardware.

IEEE Micro, 2020, 40(4): 6–9. DOI: 10.1109/MM.2020.3002

606.

[1]

 Bahr R, Barrett C, Bhagdikar N, Carsello A, Daly R,

Donovick C, Durst D, Fatahalian K, Feng K, Hanrahan

P, Hofstee T, Horowitz M, Huff D, Kjolstad F, Kong T,

Liu Q Y, Mann M, Melchert J, Nayak A, Niemetz A,

Nyengele G, Raina P, Richardson S, Setaluri R, Setter J,

Sreedhar K, Strange M, Thomas J, Torng C, Truong L,

Tsiskaridze N, Zhang K Y. Creating an agile hardware

[2]

design flow. In Proc. the 57th ACM/IEEE Design Au-

tomation Conference, July 2020, Article No. 142. DOI: 10.

1109/DAC18072.2020.9218553.

 Fuchs A, Wentzlaff D. The accelerator wall: Limits of

chip specialization. In Proc. the 2019 IEEE International

Symposium on High Performance Computer Architecture

(HPCA), Feb. 2019. DOI: 10.1109/HPCA.2019.00023.

[3]

 Collberg C S. Automatic derivation of compiler machine

descriptions. ACM Trans. Programming Languages and

Systems, 2002, 24(4): 369–408. DOI: 10.1145/567097.5671

00.

[4]

 Lopes B C, Auler R. Getting Started with LLVM Core

Libraries. Packt Publishing Ltd, 2014.

[5]

 Leroy X. Formally verifying a compiler: Why? How? How

far? In Proc. the 9th International Symposium on Code

Generation and Optimization, Apr. 2011. DOI: 10.1109/

CGO.2011.5764668.

[6]

 Aho A V, Sethi R, Ullman J D. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Pub-

lishing Co., Inc., 1986.

[7]

 Goldberg Y, Levy O. word2vec Explained: Deriving

Mikolov et al.’s negative-sampling word-embedding me-

thod. arXiv: 1402.3722, 2014. https://arxiv.org/abs/1402.

3722, Nov. 2023.

[8]

 Arora S, Liang Y Y, Ma T Y. A simple but tough-to-beat

baseline for sentence embeddings. In Proc. the 5th Inter-

national Conference on Learning Representations, Apr.

2017.

[9]

 Simos T E, Famelis I T. A neural network training algo-

rithm for singular perturbation boundary value problems.

Neural Computing and Applications, 2022, 34(1): 607–

615. DOI: 10.1007/s00521-021-06364-1.

[10]

 Vural N M, Ergüt S, Kozat S S. An efficient and effec-

tive second-order training algorithm for LSTM-based

adaptive learning. IEEE Trans. Signal Processing, 2021,

69: 2541–2554. DOI: 10.1109/TSP.2021.3071566.

[11]

 Haidl M, Moll S, Klein L, Sun H H, Hack S, Gorlatch S.

PACXXv2 + RV: An LLVM-based portable high-perfor-

mance programming model. In Proc. the 4th Workshop

on the LLVM Compiler Infrastructure in HPC, Nov.

2017, Article No. 7. DOI: 10.1145/3148173.3148185.

[12]

 Barchi F, Urgese G, Macii E, Acquaviva A. Code map-

ping in heterogeneous platforms using deep learning and

LLVM-IR. In Proc. the 56th ACM/IEEE Design Automa-

tion Conference (DAC), Jun. 2019, Article No. 170. DOI:

10.1145/3316781.3317789.

[13]

 Davidson J W, Fraser C W. The design and application

of a retargetable peephole optimizer. ACM Trans. Pro-

gramming Languages and Systems, 1980, 2(2): 191–202.

DOI: 10.1145/357094.357098.

[14]

 Lattner C. The golden age of compiler design in an era of

HW/SW co-design. Technical Report, 2021. https://asp-

los-conference.org/asplos2021/index.html%3Fp=2355.

html, November 2023.

[15]

 Lattner C, Tatiana S. MLIR: Multi-level intermediate[16]

Hong-Na Geng et al.: Automatic Target Description File Generation 1353

https://doi.org/10.1109/MM.2020.3002606
https://doi.org/10.1109/MM.2020.3002606
https://doi.org/10.1109/DAC18072.2020.9218553
https://doi.org/10.1109/DAC18072.2020.9218553
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1145/567097.567100
https://doi.org/10.1145/567097.567100
https://doi.org/10.1109/CGO.2011.5764668
https://doi.org/10.1109/CGO.2011.5764668
https://arxiv.org/abs/1402.3722
https://arxiv.org/abs/1402.3722
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1007/s00521-021-06364-1
https://doi.org/10.1109/TSP.2021.3071566
https://doi.org/10.1145/3148173.3148185
https://doi.org/10.1145/3316781.3317789
https://doi.org/10.1145/357094.357098
https://asplos-conference.org/asplos2021/index.html%3Fp=2355.html
https://asplos-conference.org/asplos2021/index.html%3Fp=2355.html
https://asplos-conference.org/asplos2021/index.html%3Fp=2355.html
https://asplos-conference.org/asplos2021/index.html%3Fp=2355.html
https://asplos-conference.org/asplos2021/index.html%3Fp=2355.html
https://asplos-conference.org/asplos2021/index.html%3Fp=2355.html

representation compiler infrastructure. Technical Report,

2020. https://cgo-conference.github.io/cgo2020/keynotes,

November 2023.

 Cai B M, Ashwathnarayan S, Shafiq F, Eltantawy A, Azi-

mi R, Gao Y Q. Exploring agile hardware/software co-de-

sign methodology. Technical Report, 2020. https://jnama-

ral.github.io/SSHAW/program.html, November 2023.

[17]

 Graf A. Compiler backend generation using the VADL

processor description language [Ph.D. Thesis]. Technische

Universität Wien, Wien, 2021.

[18]

 Sullivan K J, Griswold W G, Cai Y F, Hallen B. The

structure and value of modularity in software design.

ACM SIGSOFT Software Engineering Notes, 2001, 26(5):

99–108. DOI: 10.1145/503271.503224.

[19]

 Baldwin C Y, Clark K B. Design Rules: The Power of

Modularity. MIT Press, 2000. DOI: 10.7551/mitpress/2366.

001.0001.

[20]

 Tsantalis N, Mazinanian D, Krishnan G P. Assessing the

refactorability of software clones. IEEE Trans. Software

Engineering, 2015, 41(11): 1055–1090. DOI: 10.1109/TSE.

2015.2448531.

[21]

 Ganzinger H. Increasing modularity and language-inde-

pendency in automatically generated compilers. Science of

Computer Programming, 1983, 3(3): 223–278. DOI: 10.

1016/0167-6423(83)90021-7.

[22]

 Kastens U, Waite W M. Modularity and reusability in at-

tribute grammars. Acta Informatica, 1994, 31(7): 601–627.

DOI: 10.1007/BF01177548.

[23]

 Harper R, Lillibridge M. A type-theoretic approach to

higher-order modules with sharing. In Proc. the 21st

ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Feb. 1994, pp.123–137. DOI: 10.

1145/174675.176927.

[24]

 Kasampalis T, Park D, Lin Z Y, Adve V S, Roşu G. Lan-

guage-parametric compiler validation with application to

LLVM. In Proc. the 26th ACM International Conference

on Architectural Support for Programming Languages

and Operating Systems, Apr. 2021, pp.1004–1019. DOI:

10.1145/3445814.3446751.

[25]

 Mahajan D, Park J, Amaro E, Sharma H, Yazdanbakhsh

A, Kim J K, Esmaeilzadeh H. TABLA: A unified tem-

plate-based framework for accelerating statistical ma-

chine learning. In Proc. the 2016 IEEE International Sym-

posium on High Performance Computer Architecture

(HPCA), Mar. 2016, pp.14–26. DOI: 10.1109/HPCA.2016.

7446050.

[26]

 Whatmough P N, Donato M, Ko G G, Lee S K, Brooks

D, Wei G Y. CHIPKIT: An agile, reusable open-source

framework for rapid test chip development. IEEE Micro,

2020, 40(4): 32–40. DOI: 10.1109/MM.2020.2995809.

[27]

 Tang X F, Giacomin E, Chauviere B, Alacchi A, Gaillar-

don P E. OpenFPGA: An open-source framework for ag-

ile prototyping customizable FPGAs. IEEE Micro, 2020,

40(4): 41–48. DOI: 10.1109/MM.2020.2995854.

[28]

 Chen Y S, Mendis C, Carbin M, Amarasinghe S. VeGen:[29]

A vectorizer generator for SIMD and beyond. In Proc. the

26th ACM International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, Apr. 2021, pp.902–914. DOI: 10.1145/3445814.3446

692.

 Cummins C, Petoumenos P, Wang Z, Leather H. Synthe-

sizing benchmarks for predictive modeling. In Proc. the

2017 IEEE/ACM International Symposium on Code Gen-

eration and Optimization (CGO), Feb. 2017, pp.86–99.

DOI: 10.1109/CGO.2017.7863731.

[30]

 Lim J P, Nagarakatte S. Automatic equivalence checking

for assembly implementations of cryptography libraries.

In Proc. the 2019 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO), Feb. 2019,

pp.37–49. DOI: 10.1109/CGO.2019.8661180.

[31]

 Liu D F, Chen T S, Liu S L, Zhou J H, Zhou S Y, Te-

man O, Feng X B, Zhou X H, Chen Y J. PuDianNao: A

polyvalent machine learning accelerator. ACM SIGPLAN

Notices, 2015, 50(4): 369–381. DOI: 10.1145/2775054.2694

358.

[32]

 Chen T Q, Moreau T, Jiang Z H, Zheng L M, Yan E,

Cowan M, Shen H C, Wang L Y, Hu Y W, Ceze L,

Guestrin C, Krishnamurthy A. TVM: An automated end-

to-end optimizing compiler for deep learning. In Proc. the

13th USENIX Conference on Operating Systems Design

and Implementation (OSDI 18), Oct. 2018, pp.579–594.

[33]

 Ham T J, Wu L S, Sundaram N, Satish N, Martonosi M.

Graphicionado: A high-performance and energy-efficient

accelerator for graph analytics. In Proc. the 49th Annual

IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), Oct. 2016, Article No. 56. DOI: 10.1109/

MICRO.2016.7783759.

[34]

 Coussy P, Morawiec A. High-Level Synthesis. Springer,

2008.

[35]

 Thomas D, Moorby P. The Verilog® Hardware Descrip-

tion Language. Springer, 2008.

[36]

 Lattner C, Adve V. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proc. the

2004 International Symposium on Code Generation and

Optimization, Mar. 2004, pp.75–86. DOI: 10.1109/CGO.

2004.1281665.

[37]

 Pilato C, Ferrandi F. Bambu: A modular framework for

the high level synthesis of memory-intensive applications.

In Proc. the 23rd International Conference on Field Pro-

grammable Logic and Applications, Sept. 2013. DOI: 10.

1109/FPL.2013.6645550.

[38]

 Cohen W W. A demonstration of WHIRL (demonstra-

tion abstract). In Proc. the 22nd Annual International

ACM SIGIR Conference on Research and Development in

Information Retrieval, Aug. 1999, p.327. DOI: 10.1145/

312624.312763.

[39]

 Tate R, Stepp M, Tatlock Z, Lerner S. Equality satura-

tion: A new approach to optimization. In Proc. the 36th

Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, Jan. 2009, pp.264–276.

[40]

1354 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6

https://cgo-conference.github.io/cgo2020/keynotes
https://cgo-conference.github.io/cgo2020/keynotes
https://cgo-conference.github.io/cgo2020/keynotes
https://jnamaral.github.io/SSHAW/program.html
https://jnamaral.github.io/SSHAW/program.html
https://jnamaral.github.io/SSHAW/program.html
https://doi.org/10.1145/503271.503224
https://doi.org/10.7551/mitpress/2366.001.0001
https://doi.org/10.7551/mitpress/2366.001.0001
https://doi.org/10.1109/TSE.2015.2448531
https://doi.org/10.1109/TSE.2015.2448531
https://doi.org/10.1016/0167-6423(83)90021-7
https://doi.org/10.1016/0167-6423(83)90021-7
https://doi.org/10.1016/0167-6423(83)90021-7
https://doi.org/10.1016/0167-6423(83)90021-7
https://doi.org/10.1016/0167-6423(83)90021-7
https://doi.org/10.1016/0167-6423(83)90021-7
https://doi.org/10.1007/BF01177548
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/3445814.3446751
https://doi.org/10.1109/HPCA.2016.7446050
https://doi.org/10.1109/HPCA.2016.7446050
https://doi.org/10.1109/MM.2020.2995809
https://doi.org/10.1109/MM.2020.2995854
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1109/CGO.2017.7863731
https://doi.org/10.1109/CGO.2019.8661180
https://doi.org/10.1145/2775054.2694358
https://doi.org/10.1145/2775054.2694358
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1145/312624.312763
https://doi.org/10.1145/312624.312763

DOI: 10.1145/1480881.1480915.

 Tristan J B, Govereau P, Morrisett G. Evaluating value-

graph translation validation for LLVM. In Proc. the 32nd

ACM SIGPLAN Conference on Programming Language

Design and Implementation, Jun. 2011, pp.295–305. DOI:

10.1145/1993498.1993533.

[41]

 Hawblitzel C, Lahiri S K, Pawar K, Hashmi H, Gokbulut

S, Fernando L, Detlefs D, Wadsworth S. Will you still

compile me tomorrow? Static cross-version compiler vali-

dation. In Proc. the 9th Joint Meeting on Foundations of

Software Engineering, Aug. 2013, pp.191–201. DOI: 10.

1145/2491411.2491442.

[42]

 Barnett M, Chang B Y E, DeLine R, Jacobs B, Leino K

R M. Boogie: A modular reusable verifier for object-ori-

ented programs. In Proc. the 4th International Confer-

ence on Formal Methods for Components and Objects,

Nov. 2005, pp.364–387. DOI: 10.1007/11804192_1.

[43]

 Ragan-Kelley J, Barnes C, Adams A, Paris S, Durand F,

Amarasinghe S. Halide: A language and compiler for opti-

mizing parallelism, locality, and recomputation in image

processing pipelines. ACM SIGPLAN Notices, 2013,

48(6): 519–530. DOI: 10.1145/2499370.2462176.

[44]

 Nigam R, Thomas S, Li Z J, Sampson A. A compiler in-

frastructure for accelerator generators. In Proc. the 26th

ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Apr.

2021, pp.804–817. DOI: 10.1145/3445814.3446712.

[45]

Hong-Na Geng received her B.S.

degree in computer science and tech-

nology from Wuhan University of Sci-

ence and Technology, Wuhan, in 2017.

She is currently a Ph.D. candidate in

the State Key Laboratory of Proces-

sors, Institute of Computing Technolo-

gy, Chinese Academy of Sciences, Beijing. Her research

interests are compiler optimization and agile compila-

tion technology. She is a student member of CCF.

Fang Lyu is a senior engineer at

the Institute of Computing Technolo-

gy, Chinese Academy of Sciences, Bei-

jing. She received her Ph.D. degree in

computer architecture from the State

Key Laboratory of Computer Archi-

tecture, Institute of Computing Tech-

nology, Chinese Academy of Sciences, Beijing, in 2014.

Her main research interests include architecture-orient-

ed performance analysis and optimization, compiler opti-

mizations, etc. She is a member of CCF.

Ming Zhong received his B.S. de-

gree in computer science and technolo-

gy from Beijing University of Posts

and Telecommunications, Beijing, in

2021. He is currently a Master stu-

dent in the State Key Laboratory of

Processors, Institute of Computing

Technology, Chinese Academy of Sci-

ences, Beijing. His research interest is agile compilation

technology. He is a student member of CCF.

Hui-Min Cui is a professor and

Ph.D. supervisor at Institute of Com-

puting Technology, Chinese Academy

of Sciences, Beijing. She received her

Ph.D. degree in computer architec-

ture from the State Key Laboratory of

Computer Architecture, Institute of

Computing Technology, Chinese

Academy of Sciences, Beijing, in 2011. Her main re-

search interests include programming framework for het-

erogeneous, parallel compilation, etc. She is a member of

CCF.

Jingling Xue is a Scientia Profes-

sor in the School of Computer Science

and Engineering at the University of

New South Wales, Sydney, where he

leads the Programming Languages and

Compilers group. He received his

Ph.D. degree in computer science and

engineering from Edinburgh University, Edinburgh, in

1992. His research spans programming languages, com-

piler technology, and program analysis. He is a senior

member of IEEE.

Xiao-Bing Feng is a professor and

Ph.D. supervisor at Institute of Com-

puting Technology, Chinese Academy

of Sciences, Beijing. He received his

Ph.D. degree in computer architec-

ture from the State Key Laboratory of

Computer Architecture, Institute of

Computing Technology, Chinese Academy of Sciences,

Beijing, in 1999. His main research interests include

compiler optimization and binary translation. He is a se-

nior member of CCF.

Hong-Na Geng et al.: Automatic Target Description File Generation 1355

https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1145/2491411.2491442
https://doi.org/10.1007/11804192_1
https://doi.org/10.1007/11804192_1
https://doi.org/10.1007/11804192_1
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3445814.3446712

	1 Introduction
	2 Motivation
	2.1 A Motivating Example
	2.1.1 Stage 1: Synthesizing TSP-List and CLT-List
	2.1.2 Stage 2: Generating *.td Files

	2.2 Discussions

	3 Automatic Target Description File Generation
	3.1 Synthetic Stage
	3.1.1 TRG Construction
	3.1.2 Synthesizing TSP-List
	3.1.3 Synthesizing CLT-List

	3.2 Generation Stage
	3.3 Discussion on ATG's Generality

	4 Implementation
	5 Evaluations
	5.1 Methodology
	5.2 Evaluation on Reusability
	5.2.1 Time Overhead in ATG
	5.2.2 Reusability of ATG

	5.3 Evaluation on the Compilation Ability
	5.3.1 Evaluation on Compiling
	5.3.2 Validation on Running

	5.4 Summary
	5.5 Discussion on Limitations

	6 Related Work
	7 Conclusions
	Conflict of Interest
	References

