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Abstract    In  industrial  control  systems,  the  utilization  of  deep  learning based  methods  achieves  improvements  for

anomaly detection. However, most current methods ignore the association of inner components in industrial control sys-

tems. In industrial control systems, an anomaly component may affect the neighboring components; therefore, the connec-

tive relationship can help us to detect anomalies effectively. In this paper, we propose a centrality-aware graph convolu-

tion network (CAGCN) for anomaly detection in industrial control systems. Unlike the traditional graph convolution net-

work (GCN) model, we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with

the inner relationship in industrial control systems. Our experiments show that compared with GCN, our CAGCN has a

better ability to utilize this relationship between components in industrial control systems. The performances of the model

are evaluated on the Secure Water Treatment (SWaT) dataset and the Water Distribution (WADI) dataset, the two most

common industrial  control systems datasets in the field of industrial  anomaly detection. The experimental results show

that our CAGCN achieves better results on precision, recall, and F1 score than the state-of-the-art methods.

Keywords    graph convolution network (GCN), data mining, network centrality, anomaly detection, industrial control

system

  

1    Introduction

Industrial  control  systems  (ICS)  are  the  general

designation  of  several  different  control  systems  and

associated  instrumentations  to  automate  industrial

processes.  A  typical  industrial  control  system  archi-

tecture (as shown in Fig.1) normally includes supervi-

sory  control  and  data  acquisition  (SCADA) systems,

distributed  control  systems  (DCSs),  and  other  con-

trol system configurations such as programmable log-

ic  controllers  (PLCs)[1].  SCADA  is  a  control  system

that  processes  dispersed  plants  by  the  communica-

tions network and high-level process supervisory man-

agement. A DCS is a computerized control system to

process  a  plant  with  many  distributed  control  sys-

tems. A PLC is an industrial digital computer to con-

trol dispersed assets by ruggedized and adapted man-

ufacturing  processes,  such  as  robotic  devices  and  as-

sembly lines.

To monitor and control the machining process re-

motely, engineering stations are granted permission to

manage servers in ICS. This leads to potential securi-

ty risks that the whole system are in danger if  these

engineering  stations  are  hacked[2].  However,  current

ICS communication protocol focuses on real-time and

stable  control  but  ignores  the  potential  security

risks[3],  which  leads  to  the  ICS  being  hacked  if  the

hacker finds a way to invade the corporate network.
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Nowadays, ICS are widely used in automated pro-

duction, energy, transportation, and water conservan-

cy project and wastewater treatment. More and more

frequently cyber security incidents in ICS lead to in-

creasing  attention  to  network  security[4].  In  2007,  a

SCADA system in  Canada  was  intruded  by  hackers,

and  the  water  control  system  was  paralyzed[5].  In

2008,  the  train  system in  Poland  was  hacked,  which

led  to  four  vehicles  being  derailed[6].  In  2010,  Iran's

nuclear plant was invaded by the Stuxnet virus,  and

the  centrifuge  was  broken  due  to  the  abnormal  ac-

tion in the uranium enrichment process[7]. In 2011, the

control system of China's oil refinery plant was infect-

ed  by  the  Conficker  virus,  causing  the  communica-

tion  between  the  control  system server  and  the  con-

troller  to  be  interrupted[8].  In  2012,  the  Flame  virus

attacked energy ICS in multiple Middle Eastern coun-

tries,  collecting  sensitive  data  on  the  energy

industry[9]. In 2015, a power failure happened in 700 000

Ukrainian families, because the electrical power indus-

trial system was hacked[10]. The WannaCry virus that

broke out in 2017 threatened a large number of corpo-

rate office  networks and industrial  facilities[11].  These

cases prove that the potential cybersecurity hazard in

ICS has become a huge threat to social stability and

national security.

Anomaly detection is a way to identify rare suspi-

cious  events  or  observations  that  deviate  from  nor-
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Fig.1.  Typical ICS architecture.
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mal  behaviors.  It  is  widely  used  in  many  fields  and

has recently been used in the field of ICS. The appli-

cation of anomaly detection technology can find suspi-

cious  events,  help  managers  or  engineers  find  poten-

tial  threats,  and  ensure  safe  and  steady  operation  in

ICS. There are a lot of studies about anomaly detec-

tion in ICS. These years, the development of machine

learning  (ML) leads  to  a  new boost  in  research.  Das

et  al.[12] used  a  Boolean  function  based  supervised

classification method to detect anomalies in ICS. Liu

et al.[13] used the method of growing random trees for

unsupervised anomaly detection in ICS. Hao et  al.[14]

proposed  a  recurrent  neural  network  based  anomaly

detection method.  Perales et  al.[15] used feature  engi-

neering and LSTM (long short-term memory) in ICS

anomaly detection. Mantere et al.[16] studied network

traffic features for anomaly detection in ICS. Feng et
al.[17] proposed  a  multi-level  anomaly  detection

method in ICS by using an LSTM network. Kiass et
al.[18] proposed a data clustering based anomaly detec-

tion method for  ICS.  Inoue et  al.[19] used SVM (sup-

port vector machine) and DNN (deep neural network)

to  research  unsupervised  anomaly  detection  methods

for ICS. Kim et al.[20] used sequence-to-sequence neu-

ral networks for anomaly detection in ICS.

However, most of the researches failed to consider

the inner link between different components. The pre-

vious researches based on ML only used the input da-

ta collected by sensors as features and ignored the im-

portance of relationships between different devices or

nodes. In ICS, the device nodes are connected by the

communication links, and the managers use the termi-

nals  to  remotely  control  the  devices  or  collect  infor-

mation.  These  individual  devices  (including  sensors,

controllers,  servers,  and  terminals)  connected  by  the

network constitute the industrial  control system. Ac-

cording to  the industrial  control  production,  process-

ing,  manufacturing  process,  and  connection  between

devices,  there  is  a  topology  relationship  between  dif-

ferent  devices.  Nowadays,  the  majority  of  researches

about  industrial  control  abnormal  detection  focus  on

the abnormal action in a single node and do not use

the topology relationship in ICS. In order to measure

the security of ICS more comprehensively and detect

the  abnormal  more  accurately,  the  topological  infor-

mation  in  ICS  cannot  be  ignored.  Lots  of  researches

in the field of industrial control showed that the key

node in an industrial control network can play an im-

portant  role  in  the  field  of  ICS  security.  Wang et
al.[21] showed  that  the  critical  nodes  are  easier  to  be

influenced under attack. Ur-Rehman et al.[22] pointed

out  that  the  critical  nodes  are  more  vulnerable  than

the normal nodes. Based on this research, we believe

that  the  different  importance  of  nodes  may  help  us

detect anomalies. In this paper, we use a GCN (graph

convolution  network)  to  extract  the  information  of

connection between different devices, and use the cen-

trality  to  measure  the  importance  of  nodes  to  im-

prove the ability of anomaly detection.

The  main  contributions  of  this  paper  are  as  fol-

lows.  To  utilize  the  topological  connection  relation-

ship  of  nodes  in  ICS,  this  paper  uses  a  GCN to  ex-

tract the topological information for detecting anoma-

lies  in  a  more  holistic  perspective.  The  centrality  is

used  to  grant  the  weight  of  nodes  to  distinguish  the

importance  and  influence  of  different  nodes  in  ICS.

We  evaluate  our  method  with  different  centralities

and compare it with state-of-the-art methods. Experi-

mental results on two datasets show that the perfor-

mance  of  the  proposed  method  is  much  better  than

that of the state-of-the-art methods.

The  remainder  of  this  paper  is  organized  as  fol-

lows.  In Section 2,  we review the related work about

anomaly detection and the application of deep learn-

ing  in  ICS. Section 3 presents  the  method  we  use  in

this  paper.  In Section 4,  we  introduce  the  compara-

tive  experiments  and  discuss  the  results  of  experi-

ments on the proposed method and other state-of-the-

art methods. Section 5 concludes this paper. 

2    Related Work

Recently,  researchers  use  many  ML-based  meth-

ods  in  anomaly  detection  in  ICS.  In  addition  to  the

methods mentioned above, there are many new meth-

ods  based  on  ML  that  have  achieved  great  results.

Lin et  al.[23] proposed  a  method  named  TABOR,

which  is  a  graphical  model  based  method  to  detect

anomalies  in  ICS.  Li et  al.[24] proposed  a  generative

adversarial  network  to  do  anomaly  detection  in  ICS.

Zhang et al.[25] proposed a fuzzy probability Bayesian

network approach for ICS security. Yoon and Ciocar-

lie[26] proposed  a  method  to  analyze  the  content  of

ICS  traffic.  Kravchik  and  Shabtai[27] used  autoen-

coder to research anomaly detection in ICS. Elnour et
al.[28] proposed a dual-isolation-forests-based model to

detect attacks in ICS. In previous studies, researchers

use  the  convolution  neural  network  (CNN) to  utilize

the  information  of  adjacent  nodes  and  obtain  some

progress.  CNN  is  one  of  the  most  successful  models

Jun Yang et al.: CAGCN: Centrality-Aware GCN for Anomaly Detection in Industrial Control Systems 969



that  use  the  discrete  convolution  to  aggregate  the

neighbor  information  of  the  pixels  and  achieve  good

performance in image processing[29–31] and audio anal-

ysis[32–33]. There are tons of relative studies about the

application of CNN in the field of anomaly detection

in  ICS.  Kravchik  and  Shabtai[34] used  a  one-dimen-

sional CNN to detect cyber-attacks. Liu et al.[35] pro-

posed a novel algorithm using CNN and process state

transition to detect intrusion in ICS. Hu et al.[36] also

used CNN in network data analysis and anomaly de-

tection.  Abdelaty et  al.[37] proposed a method named

DAICS, which is a deep learning solution for anoma-

ly  detection  in  ICS,  using  the  deep  convolution

branch.  Kusakina et  al.[38] used  VGG16  (one  famous

CNN model) to detect anomalies. However, they only

use the CNN as a method to extract features and ig-

nore the inner non-Euclidean relationship of adjacent

nodes in ICS. According to the research on vulnerabil-

ity  mentioned  earlier,  when  a  key  node  is  under  at-

tack,  it  may  lead  greater  threats  to  the  network[22].

However, current methods only consider the input da-

ta  and  ignore  the  influence  of  network  structure.  In

this case, the key node is hard to be detected. There-

fore, a new method which considers the importance of

key nodes is very necessary.

Some  studies  have  proved  that  the  usage  of  cen-

trality has huge potential in the study of ICS securi-

ty.  Salama et al. used centrality to calculate the im-

portance  of  nodes  and  evaluated  the  robustness  of

power  grid  resilience  enhancement  under

cyberattack[39].  Milanović and  Zhu  used  a  complex

network  theory  modeling  interconnected  critical  in-

frastructure systems and used the centrality to analy-

sis  the  vulnerability  of  network[40].  These  researches

show  that  the  information  of  adjacent  nodes  in  ICS

can  help  us  detect  the  potential  attacks.  Although

CNN  shows  a  strong  ability  to  deal  with  Euclidean

structure  data,  it  still  has  a  theoretical  drawback on

non-Euclidean  structure  data,  because  non-Euclidean

structure data does not meet the translational equiv-

ariance[41].  As  shown  in Fig.2(a),  in  the  Euclidean

graph, each pixel has eight neighboring pixels,  there-

fore a CNN can use a square convolution kernel to ex-

tract  spatial  information.  However,  as  shown  in

Fig.2(b),  the  topographic  graph  belongs  to  the  non-

Euclidean  structure  and  the  number  of  neighboring

nodes is unfixed, therefore the traditional operation of

convolution  and  pooling  in  CNN  cannot  be  used  to

process  directly[42].  The  inner  connection  in  ICS  is  a

typical  non-Euclidean  topographical  graph.  In  real

world,  the  topographic  graph  also  widely  exists  in

computer networks, biology, and chemistry.

Due  to  the  increasing  demand  for  non-Euclidean

structure  data  processing,  in  2005,  Gori et  al.[43] put

forward  the  conception  of  graph  neural  network

(GNN) and Scarelli et al.[44] offered a detailed defini-

tion  of  GNN.  However,  GNN  focuses  on  the  recur-

rent  graph  neural  network  which  has  high  computa-

tional complexity. In 2013, based on the theory of the

spectral domain, Bruna et al.[41] defined graph convo-

lution based on the Fourier  transform. In 2017,  Kipf

and  Welling[45] officially  put  forward  GCN  and  used

GCN to do a semi-supervised classification. The core

purpose  of  GCN  is  to  extract  spatial  information  in

non-Euclidean structure data. In order to achieve this

purpose, there are two main methods: vertex domain

and  spectral  domain.  GCN  uses  the  theory  of  the

spectral  domain.  By  defining  a  graph  Fourier  trans-

form  as  well  as  graph  convolution,  Bruna et  al.[41]

proved  the  theory  of  GCN.  In  2017,  Kipf  and

Welling[45] formally  put  forward  and  created  GCN

structure. Compared with the traditional CNN, GCN

has  the  ability  to  extract  the  spatial  feature  of  the

topology relationship. After the theory of GCN came

out,  a series of  studies (such as localized spectral  fil-

tering[46], graph long short-term memory[47], graph at-

tention network[48], temporal graph convolutional net-

work[49],  and  spatial-temporal  graph  convolutional

networks[50])  have  been  carried  out  and  facilitate  a

wide  range  of  GCN  applications.  GCN  can  use  the

topological relationship in ICS to aggregate the infor-

mation  between  neighboring  nodes  and  achieve  bet-

ter  performance  in  ICS'  abnormal  detection.  The  in-

vention of GCN enhances the development of anoma-

ly  detection  in  ICS  greatly.  However,  the  traditional

GCN  does  not  consider  the  importance  of  different

nodes. In ICS, several key nodes have a greater influ-

ence on connectivity or stability[51]. To distinguish the

importance  of  different  nodes,  centrality  is  a  very

 

(b)(a)

Fig.2.   Example  of  (a)  Euclidean  structure  data  and  (b)  non-
Euclidean structure data.
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popular  measure.  We  believe  the  application  of  cen-

trality can improve the performance of GCN in ICS. 

3    Methodology

Based on the research of GCN and centrality, we

propose  a  centrality-aware  graph  convolution  net-

work (CAGCN), which is aware of centrality of nodes

by using centrality to weight the key nodes,  and use

convolution to aggregate information. In this way, our

method can utilize  both topological  connection infor-

mation and node centrality information in ICS. 

3.1    Graph Convolution Network

Compared  with  the  traditional  CNN,  GCN  can

better  explain  the  potential  influence  of  the  network

structure.  In  the  theory  of  GCN,  the  nodes  in  GCN

will be influenced by the contiguous nodes. The clos-

er a node is to other nodes, the greater its influence.

If a node is under attack, it will influence the contigu-

ous  nodes  until  the  whole  system  reaches  a  balance.

In  other  words,  the  essence  of  GCN  is  the  message

passing of features in the graph network, and the ef-

fect of Laplace transformation is to aggregate the in-

fluence of features in the graph space. 

3.1.1    Laplacian Operator

∇ G = (V, E) V

G E G

Laplacian  is  a  matrix  representation  of  a  graph.

Actually, the Laplacian operator can be used to eval-

uate  the  total  gain  under  minor  disturbance.  The

Laplacian  operator  is  usually  denoted  by  the  symbol

. We assume we have a graph ,  is the

node set  of  graph  and  is  the  edge set  of .  In

the discrete space, we have
 

∇f =
∑
j∈Ni

(fi − fj) ,

fi i Ni

i Eij

wij

where  is  the  value  of  node  and  is  the  set  of

adjacent nodes of node . Assuming the value of  is

, we have
 

∇f =
∑
j∈Ni

wij (fi − fj) . (1)

i j

wij = 0

Because node  and node  are not connected, i.e.,

, we can rewrite (1) as
 

∇f =
∑
j∈N

wij (fi − fj) .

di i di =
∑

j∈N
wijLet  be  the  degree  of  node , ,

then we have
 

∇f =
∑
j∈N

wijfi −
∑
j∈N

wijfj

= difi −Wif

= diag(di)f −Af

= (D −A)f
= Lf .

L = D −A

D A

Then  we  get  a  discrete  Laplace  matrix .

Here  is the degree matrix and  is the adjacency

matrix. We can call it combinatorial Laplacian.

LBecause  is  a  positive  semi-definite  matrix,  we

can get a normalized graph Laplacian:
 

L = IN −D− 1

2AD− 1

2 = UΛUT,

U Lwhere  is  the eigenvalue of .  we can call  it  sym-

metric  normalized  Laplacian.  Because  the  Laplace

matrix is symmetric, it can achieve spectral decompo-

sition  which  is  the  core  of  the  spectral  domain  of

GCN. 

3.1.2    Graph Fourier Transform

Mathematically,  the graph Fourier transform is  a

mathematical  transform  which  eigendecomposes  the

Laplacian  matrix  of  a  graph  into  eigenvalues  and

eigenvectors[52]. Analogously to classical Fourier trans-

form,  the  eigenvalue  of  Laplacian matrix  after  graph

Fourier transform represents frequencies and an eigen-

vectors form what is known as a graph Fourier basis.

The definition of traditional Fourier transform is:
 

F (ω) = F [f (t)] =

∫
f (t) e−iωtdt.

f

∇
Here  is  the  signal  function.  Note  that  the  Lapla-

cian operator is , we have
 

∇e−iωt =
∂2

∂t2
e−iωt = −ω2e−iωt.

e−iωt ∇Here  is the eigenfunction of .

L V

N E

f : V → R

G

f {vi}i=1, ..., N

f (i)

λl ul l

f̂ f

G G

We assume  is a Laplace matrix,  is the set of

nodes  (  being  the  number  of  the  nodes),  and  is

the set of edges. A graph signal  is a func-

tion defined on the vertices of the graph . The sig-

nal  maps  every  vertex  to  a  real  num-

ber .  Any  graph  signal  can  be  projected  on  the

eigenvectors of the Laplacian matrix, respectively. Let

 and  be  the -th  eigenvalue  and  eigenvector  of

the Laplacian matrix, respectively, the graph Fourier

transform of  is the graph signal  on the vertices of

,  and  is  the expansion of  the term of  the eigen-

Jun Yang et al.: CAGCN: Centrality-Aware GCN for Anomaly Detection in Industrial Control Systems 971



Lfunction of . It is defined as:
 

F (λl) = f̂ (λl) =
N∑
i=0

f (i)u∗
l (i) ,

u∗
l = uT

l .where 

LSince  is  a  real  symmetric  matrix,  its  eigenvec-

tors  form  is  an  orthogonal  basis.  Hence  an  inverse

graph Fourier transform (IGFT) exists, and it is writ-

ten as:
 

IF
[
f̂
]
(i) = f (i) =

N∑
i=0

f̂ (λl)ul (i) .

Analogously to the classical Fourier transform, the

graph Fourier  transform provides a way to represent

a signal  in two different domains:  the vertex domain

and  the  graph  spectral  domain.  The  eigenvectors  of

the  normalized  Laplacian  matrix  are  also  a  possible

base to define the forward and inverse graph Fourier

transform.

e−iωt

U L

Just  as  we  mention  in  the  traditional  Fourier

transform,  is the eigenfunction of Laplace opera-

tor,  is the eigenvalue matrix of , we can rewrite

the GFT and IGFT as:
 

GFT : f̂ = UTf ,
 

IGFT : f = UTf̂ .

Now we can define the graph convolution as:
 

f ∗ h = U
((
UTh

)
⊙
(
UTf

))
.

hWe can rewrite  as:
  

ĥ (λ1)
. . .

ĥ (λn)

 ,

 

ĥ (λl) =
N∑
i=1

h (i)u∗
l (i) .

diag (θ) diag(ĥ(λl))Using  replace , we can get
 

y = σ
(
UgθΛUTx

)
.

gθ (Λ)Here,  is the convolution kernel,
 

gθ (Λ) =

θ1
. . .

θn

 .

σ Θ = (θ1, θ2, ..., θn) is  the  active  function  and  is

the learnable variable.

U

diag (θ) UT n

O (n2)

However,  we  need  compute  the  product  of ,

, and  with  factors; therefore it leads to

the computational complexity of .

gθ (Λ) K

TK (x)

In  order  to  deal  with  this  problem,  Hammond

et al.[53] proved that  can be approached by -

order Chebyshev polynomials , in other words,
 

gθ (Λ) =
K∑

k=0

(
θkTk

(
Λ̂
))

,

 

Λ̂ =
2

λmax
− I,

λmax

L

where  is the max eigenvalue of the Laplace ma-

trix .

Using Chebyshev polynomials:
 

Tk (x) = 2xTk−1 (x)− Tk−2 (x) ,
 

T0 (x) = 1,
 

T1 (x) = x.

We have
 

y ≈
K∑

k=0

(
θkTk

(
L̂
))

,

 

L̂ =
2

λmax
− I.

λmax = 2If we let , then
 

y = θ
(
I +D−1/2AD1/2

)
x.

I +D−1/2AD1/2

D̃−1/2ÃD̃1/2

Because the range of  is  between

the  0  and  2,  we  can  renormalization  it  as

, where
 

D̃ = diag

(∑
J

Ãij

)
,

 

Ã = A+ I.

Gi i

W i i

Assuming  is the -th layer of a GCN network

structure,  and  is  the  weight  matrix  of  the -th

layer network, then we can get the final GCN form:
 

Gi+1 = σ
(
D̃−1/2ÃD̃1/2GiW i

)
.

 

3.2    Interpretability of GCN

Based on the importance of nodes,  the process of

GCN aggregating information can be explained by the

message passing theory.
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A

Ã = A+ I.

In  an  industrial  control  network,  a  more  impor-

tant node, compared with a less important node, con-

tains  more  information.  In  the  theory  of  message

passing,  the  adjacency  matrix  is  used  to  describe

the  connection  relationship  between  different  nodes,

and  the  essence  of  the  adjacency  matrix  is  to  pass

messages between adjacent nodes. We assume the in-

fluence  of  a  node  to  itself  as  1,  and  we  can  get

AFor the graph in Fig.3, the adjacency matrix  is
 

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 . (2)

Aij = 1 i

j

In (2),  means that node  is connected to

node . Therefore, it can be used to explain the con-

nection relationship of nodes in the graph.

ÃAfter  adding  self-connection,  of  the  graph  in

Fig.3 is
 

Ã =


1 0 1 0 0
0 1 1 0 0
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 . (3)

In  (3),  the  connection  of  a  node  to  itself  is  also

taken into account.

D̃On  the  other  hand,  degree  matrix  is  used  to

describe the influence of a node to its adjacent nodes:
 

D̃ = diag(
∑
J

Ãij).

D̃For the graph in Fig.3,  is
 

D̃ =


2 0 0 0 0
0 2 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 2

 . (4)

D̃ijIn (4), the larger  is, the greater the influence

of the messages it passes to other nodes is.

D̃−1/2ÃD̃1/2Considering the final GCN form ( ) we

mentioned before, if we use the message passing theo-

ry  to  explain  the  adjacency  matrix  and  the  degree

matrix, the operation of spatial domain in GCN is the

process of message passing. 

3.3    Network Centrality

Centrality is an essential index in network analy-

sis,  which  is  used  to  estimate  the  importance  of  a

node in a network. Centrality is widely used in differ-

ent network analysis[54], including social network[55–58],

Citation Network[59–62], biological network[63–65], trans-

fer  network[66–68],  etc.  As  mentioned  before,  the  cen-

trality  shows  a  huge  potential  in  the  study  of

ICS[39–40].

Different centralities can reflect the importance of

nodes  in  the  network  from  different  angles,  and  the

most  common  centralities  are  degree  centrality[69],

closeness centrality[70], and betweenness centrality[71].

In degree centrality[69], the node with more neigh-

boring nodes has more importance and influence. For

a node, its degree centrality is:
 

DC (i) =
ki

n− 1
.

ki =
∑n

i=1
aij ki

vi aij

i j
A n

Here ,  is  the amount of  neighbor-

ing nodes of  which can be called degree,  is the

element  in  the -th  row  and  the -th  column  of  the

adjacency matrix , and  is the number of nodes.

The metric of degree centrality has a low compu-

tational complexity.

However, degree centrality only focuses on the lo-

cal  information  but  ignores  the  global  information;

therefore  in  many  cases,  it  cannot  measure  the  real

importance of the node.

vi

Closeness  centrality[70] uses  the  average  distance

to  measure  the  centrality  of  a  node  in  the  network.

The node with the shortest average distance with oth-

er nodes has the largest closeness centrality. The defi-

nition of distance for node  is:
 

di =
1

n− 1

∑
i ̸=j

dij.

di

Because  the  closeness  centrality  uses  the  average

distance  to  justify  the  importance  of  nodes,  we  can

define closeness centrality as the reciprocal of :

 

CC (i) =
1

di

=
n− 1∑
i̸=j

dij

.

 

2

3

1

4

5

Fig.3.  Simple graph for interpretability of GCN.
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Closeness  centrality  is  widely  used,  but  its  time

complexity  is  very  high  because  it  needs  to  traverse

all  the  nodes  to  count  the  shortest  distance  of  every

node.

Betweenness centrality[71] counts the shortest path

of all the nodes and quantifies the number of times a

node  acts  as  a  bridge  along  the  shortest  path  be-

tween two other nodes. The definition of betweenness

centrality is:
 

BC (i) =
2

(n− 1) (n− 2)

∑ gi
st

gst
,

gst
vs vt gi

st

vi
vs vt n

where  is the total number of all the shortest paths

from node  to node ,  is the number of times of

node  as  a  bridge  along  the  shortest  path  between

 and , and  is the total number of nodes.

Betweenness  centrality  is  very  important  in  the

computer networking field because a computer will al-

ways select the shortest path in the Internet commu-

nication. Similar to closeness centrality, the time com-

plexity of betweenness centrality is quite high; there-

fore there are many studies about the optimization of

fast calculation of betweenness centrality[72].

Besides  these  common centralities,  there  are  oth-

er  centralities  that  attract  the  attention  of  resear-

chers,  such  as  eccentricity[73],  semi-local  centrality[74],

eigenvector  centrality[75],  and  information  indices[76].

These  centralities  can  measure  the  importance  of

nodes at different angles. 

3.4    Proposed Centrality-Aware Graph

Convolution Network

We propose  a  centrality-aware  graph convolution

network  (CAGCN)  based  on  the  previous  researches

on GCN and centrality.

In the traditional GCN:

 

Gi+1 = σ
(
D̃−1/2ÃD̃1/2GiW i

)
,

 

D̃ = diag(
∑
J

Ãij),

 

Ã = A+ I,

A D

A

D

where  is  the  adjacency  matrix  and  is  the  de-

gree matrix. Normally,  is used to describe the val-

ue  of  edge,  and  is  used  to  describe  the  value  of

mode.

However, just as we mentioned before, the impor-

tance  of  a  different  node  in  ICS  is  uncertain  and  a

more  important  key  node  may  have  more  influence

than a less important node.

A′

A A′

A

C

A

In order to solve this problem, we use a centrality-

aware adjacency matrix  to replace the traditional

adjacency .  Our adjacency matrix  includes  two

pieces  of  different  information:  the  adjacent  node  in-

formation from original  adjacency matrix  and the

node centrality information from centrality matrix .

In GCN, an adjacency matrix  is a 0-1 matrix:
 

Aij =

{
1, if i and j are connected,
0, otherwise.

C

A′
We  define  as  the  centrality  matrix,  then  we

can get a new centrality-aware adjacency matrix :
 

A′
ij = CiiAij =

{
Cii, if Aij = 1,

0, if Aij = 0.

D′
Just like the normal GCN, we get the new degree

matrix . Now we have the new GCN structure:
 

Gi+1 = σ
(
D̃′

−1/2
Ã′D̃′

1/2
GiW i

)
,

 

D̃′ = diag(
∑
J

Ã′
ij),

 

Ã′ = A′ + I,

σ W i

i Gi i

where  is the active function,  is the weight ma-

trix of the -th layer of the network, and  is the -

th layer of CAGCN network structure.

Because the proposed CAGCN is also a variant of

GCN,  the  interpretability  mentioned  earlier  still  ap-

plies.

Just as we mentioned before, the definition of net-

work centrality is not unique. For exploring the suit-

able centrality in ICS, we choose several different cen-

tralities  and  create  a  mixed  centrality.  This  mixed

centralities can be defined as follows:
 

MC(i) = KDCDC(i) +KCCCC(i) +KBCBC(i),

KDC KCC KBCwhere , , and  are the coefficients used to

adjust the ratio of degree centrality, closeness central-

ity, and betweenness centrality, respectively. This ra-

tio  can  be  set  manually  or  learned  by  our  CAGCN

network during training.

C i = j Cij

After we choose the centrality to use, we can de-

fine a new centrality matrix . For ,  is the

value  of  the  chosen  centrality.  By  introducing  a

mixed centrality, our CAGCN can have better versa-

tility in different network environments. 
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4    Evaluation

In  this  section,  we  conduct  experiments  by  an-

swering the following research questions.

• RQ1. Compared with the state-of-the-art meth-

ods,  whether  the  proposed  method  can  have  better

precision when detecting anomalies in ICS?

• RQ2.  Whether  the  proportion  of  underreport-

ing of  some attacks in the process of  anomaly detec-

tion by the proposed model is acceptable?

• RQ3.  How  well  does  the  proposed  model  per-

form  comprehensively  in  terms  of  the  trade-off  be-

tween precision and sensitivity?

• RQ4.  How  to  understand  changes  in  features

during  centrality-based  message  passing  and use  this

to understand the proposed model? 

4.1    Datasets

To  evaluate  the  performance  of  the  proposed

CAGCN,  we  test  our  model  in  the  Secure  Water

Treatment  (SWaT)  dataset[77] and  the  Water  Distri-

bution  (WADI)  dataset[78].  The  SWaT  dataset  and

the WADI dataset are the most common ICS anoma-

ly  detection  datasets.  The  abbreviations  for  sensors

and actuators appearing in the SWaT dataset and the

WADI  dataset  are  summarized  in Table 1.  The  de-

tails of the datasets are as follows.
 
 

Table   1.      Abbreviations  of  Sensors  and  Actuators  in  the
Datasets

Abbreviation Definition

AIT Analyzer indicator transmitter

DPIT Inferential pressure indicator transmitter

FIT Flow indicator transmitter

FS Flow switch

LIT Level indicator transmitter

LT Level transmitter

MCV Motorized consumer valve

MV Motorized valve

P Pump

PIT Pressure indicator transmitter
  

4.1.1    The SWaT Dataset

The  SWaT  dataset  is  an  industrial  control  sys-

tems anomaly detection dataset provided by the Sin-

gapore  University  of  Technology  and  Design[77].

SWaT is a water treatment site launched in 2015 for

cybersecurity  research.  The  data  collection  process

was  implemented  on  a  six-stage  SWaT  testbed,  as

shown in Fig.4.  Nowadays,  the SWaT dataset  is  one

of  the  most  popular  real-world  public  cybersecurity

datasets. Lots of researchers use the SWaT dataset to

test their models' performances in complex real-world

environments[30].
  

Fig.4.  Secure Water Treatment (SWaT) testbed.
 

As shown in Fig.5,  SWaT has six main processes

according  to  the  physical  and  control  components  of

the  water  treatment  facility.  The  details  of  the  sen-

sors and actuators in every processing stage are sum-

marized in Table 1A in the supplementary file①.

This system can produce five gallons of clean wa-

ter  per  minute.  It  has  a  layered  communication  net-

work, programmable logic controllers (PLCs), human

machine interfaces (HMIs), a supervisory control and

data acquisition (SCADA) workstation, and a histori-

an server used to record data. Authors of the SWaT

dataset  collected  network  traffic  and all  the  physical

properties  obtained  from  all  the  sensors  and  actua-

tors  in  their  experiment  environment.  The  details  of

attacks  to  the  system are  shown in  Table  2A in  the

supplementary file①.

The SWaT project  team has  built  a  scaled down

version of a real-world industrial water treatment sys-

tem and collected data for 11 days. The system oper-

ated 24 hours per day during the entire 11-day peri-

od.  The  system  ran  without  any  attacks  during  the

first seven days, then the system was under attack in

the remaining four days.

In  the  SWaT  dataset, 496 800 samples  were  col-

lected  in  the  first  seven  days  and 449 919 samples

were collected when attacks were inserted to the sys-

tem in the last four days. Among the samples collect-
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ed in the last  four days, 396 019 of  them are normal

and the other 53 900 samples are attack samples. All

features in the network traffic were obtained from 51

sensors  and  actuators.  In  this  dataset,  data  was  la-

beled  as  normal  or  anomaly  by  the  authors  of  the

dataset.

The SWaT dataset includes the 51 features which

can  be  used  to  build  the  feature  matrix.  The  SWaT

dataset  also  provides  the  connection  relationship  be-

tween  different  devices,  which  can  be  used  to  build

the  adjacency  matrix  in  GCN.  The  feature  matrix

and  adjacency  matrix  are  used  as  the  input  in  our

model. 

4.1.2    The WADI Dataset

The WADI dataset[78] is another high-quality real-

world ICS anomaly detection dataset provided by the

authors of the SWaT dataset. WADI is a natural ex-

tension of  SWaT. The authors  of  the  WADI dataset

also  collected  normal  and  attack  data  on  their

testbed, as shown in Fig.6.

Similar to SWaT, WADI also has a layered com-

munication network,  PLCs,  HMIs,  an SCADA work-

station,  and  a  historian  server  used  to  record  data.

The data was collected from all the sensors and actu-

ators in their experimental environment. As shown in

Fig.7, WADI has four main processes, and the details

of the sensors and actuators in every processing stage

are summarized in Table 3A, and attack details of the

WADI dataset are shown in Table 4A in the supple-

mentary file②.

Compared  with  the  SWaT  dataset,  the  WADI

dataset  includes  more  features  and  samples.  In  the

WADI  dataset, 789 371 samples  with  123  features

were  collected  in  the  first  fourteen  days  without  at-

tacks. In the last two days, 172 801 samples with cy-

berattacks were collected. We can also build the fea-

ture  matrix  and  adjacency  matrix  from  the  WADI

dataset. 

4.2    Metrics

We use precision, recall, and F1 score to evaluate

the model performance[28].

TP FP FN

To explain precision, recall,  and F1 score, we use

, , and  in the following ways:

TP●  (true positive): anomaly in actual is classi-

fied as anomaly in prediction.

FP●  (false  positive):  normal  in  actual  is  classi-

fied as an anomaly in prediction.
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Fig.5.  Processes of the SWaT testbed.

 

Fig.6.  The water distribution (WADI) testbed.
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FN●  (false negative): anomaly in actual is classi-

fied as normal in prediction.

Precision  is  the  ratio  of  the  correctly  predicted

positive  anomaly data to the total  predicted positive

anomaly data.
 

precision =
TP

TP + FP
.

Recall is the ratio of the correctly predicted posi-

tive  anomaly  data  to  all  the  data  in  actual  anomaly

class.
 

recall =
TP

TP + FN
.

F1 score can be thought as a weighted average of

the model precision and recall, with a maximum of 1

and a minimum of 0.
 

F1 score =
2× recall × precision

recall + precision
.

 

4.3    Experimental Setup

Our  experiment  was  conducted  on  a  workstation

with  Intel  Core  i9-7900X  CPU  @3.30  GHz,  128  G

RAM,  1  TB  SSD,  4  TB  HDD,  NVIDIA  Titan  XP

GPU. The details are shown in Table 2.

In order to analyze the value of the centralities in

different  network  structures,  we  used  five  kinds  of

centralities in our experiment: degree centrality, close-

ness centrality, betweenness centrality, mixed central-

ity (the ratio of degree centrality, closeness centrality,

and  betweenness  centrality  is  1:1:1),  and  the  self-

learning  centrality  (the  ratio  of  degree  centrality,

closeness centrality, and betweenness centrality is the

self-learning  variable  in  our  network  which  could  be

updated in the training process). We used a random-

ly 3:1:1 split of training set, validation set and test set

on the  both datasets.  We also  used cross  validations

to test  the robustness of  our result.  This  3:1:1 parti-

taioning ratio of the both datasets is also used in the

comparison methods below. We uploaded the code to

a GitHub code repository③. 

4.4    Comparison Methods

We  compared  our  method  with  several  state-of-

the-art  methods  using  the  SWaT  dataset  and  the

WADI dataset.

In  the  selection of  comparative  methods,  we cov-

ered as many types of models as possible: traditional

neural network models, generative adversarial models,

auto-encoders-based models, tree-based models, etc.

We compared our proposed CAGCN method with

nine  existing  methods:  DIF[28],  MAD-GAN[24],  AE[27],

1D-CNN[27], SVM[19], DNN[19], PCA-Reconstruction[27],

Windowed-PCA[27], and DAICS[37].

DIF is a dual-isolation-forests-based attack detec-
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Fig.7.  Processes of the WADI testbed.

 

Table  2.    Experimental Environment

Type Value

CPU Intel Core i9-7900X @3.30 GHz

Memory 128 GB

Storage 1 TB SSD and 4 TB HDD

GPU NVIDIA Titan XP

GPU memory 12 GB

Operating System Ubuntu 18.04 LTS

Python version Python 3.6

CUDA version CUDA 10

cuDNN version cuDNN 7.4

TensorFlow version TensorFlow 1.13.1
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tion framework. MAD-GAN is a multivariate anoma-

ly detection method based on a generative adversari-

al  network.  AE is  a  method based on auto-encoders.

1D-CNN is  a  method using  one-dimensional  CNN to

detect anomalies. SVM is a method based on support

vector machine. DNN is a method using a deep neu-

ral  network.  PCA-Reconstruction  and  Windowed-

PCA are two methods based on principal component

analysis (PCA). DAICS is a deep learning solution for

anomaly  detection  in  ICS  using  deep  convolutional

branch. 

4.5    RQ1: Precision of Proposed Method

The results of the experiment based on the SWaT

dataset and the WADI dataset are shown in Fig.8.

As for the precision results on the SWaT dataset,

CAGCN  with  self-learning  centrality  (CAGAN-SLC)

achieves the highest precision result (0.991). CAGCN

with  degree  centrality  (CAGCN-DC),  CAGCN  with

closeness  centrality  (CAGCN-CC),  CAGCN with be-

tweenness  centrality  (CAGCN-BC),  and  CAGCN

with 1:1:1 mixed centrality (CAGCN-MC) achieve at

least 0.989 in precision. As for the compared methods,

MAD-GAN achieves 0.990 and DNN gets 0.983 in our

experiment.  The  other  methods  show  a  significantly

low predictive  ability.  AE gets  the  lowest  score  with

0.726.

As for the precision results on the WADI dataset,

CAGCN-SLC  gets  the  highest  result  in  precision

(0.942). CAGCN-DC, CAGCN-CC, CAGCN-BC, and

CAGCN-MC  achieve  at  least  0.916  in  precision.  As

for  the  compared  methods,  DAICS  achieves  0.908,

DNN gets 0.880, MAD-GAN gets 0.869, and the oth-

er  compared  methods  get  low  results  between  0.510

and 0.869.

Based on the results mentioned above, we believe

that our model can have better precision when detect-

ing anomalies in ICS. 

4.6    RQ2:  Sensitivity  of  Proposed  Method

We used  the  evaluation  metric  recall,  introduced

earlier,  to  evaluate  the  sensitivity  of  the  proposed

method and the compared methods, because this eval-

uation  metric  directly  calculates  the  proportion  of

true positive attacks in all attacks.

The  recall  results  on  the  SWaT  dataset  and  the

WADI dataset are shown in Fig.9.

As  for  the  recall  results  on  the  SWaT  dataset,

CAGCN-SLC also achieves the highest score (0.872).

The  following  is  CAGCN-DC  (0.861).  CAGCN-CC,

CAGCN-BC, and CAGCN-MC get  a  similar  level  at

0.85.  On  the  other  hand,  DAICS  gets  a  good  recall

score  at  0.861.  1D-CNN,  Windowed-PCA,  and  DIF

get the recall score of 0.854, 0.841, and 0.835, respec-
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Fig.8.   Precision  of  the  proposed  method  and  the  compared
methods on datasets SWaT and WADI.
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Fig.9.  Recall of the proposed method and the compared meth-
ods on datasets SWaT and WADI.
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tively. The recall scores of the other compared meth-

ods are below 0.8.

As  for  the  recall  results  on  the  WADI  dataset,

CAGCN-SLC also achieves the highest score (0.952).

The  following  is  CAGCN-CC  (0.940).  CAGCN-DC,

CAGCN-BC, and CAGCN-MC obtain similar  results

of 0.76. The recall score of MAD-GAN is 0.948. This

score is  very close  to the best  CAGCN method.  The

recall  scores of 1D-CNN and DAICS are about 0.721

and 0.731, respectively. The other compared methods

only get recall scores between 0.510 and 0.681.

Based on the results above, the proportion of un-

derreporting attacks in the process of anomaly detec-

tion  of  the  proposed  model  is  acceptable  and  better

than that of most of the compared methods. 

4.7    RQ3: F1 Score of Proposed Method

F1 score can find the best trade off between preci-

sion and recall of the proposed method.

The F1  score  results  on  the  SWaT  dataset  and

the WADI dataset are shown in Fig.10.
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Fig.10.   F1  score  of  the  proposed  method  and  the  compared
methods on datasets SWaT and WADI.
 

As for the F1 score results on the SWaT dataset,

all  the F1  scores  of  our  CAGCN  method  are  over

0.915  and  the  highest  one  is  CAGCN-SLC  (0.928).

DIF  achieves  the  best  performance  among  all  the

compared  methods  (0.882).  According  to  our  results,

the F1 scores  of  our  CAGCN method are  much bet-

ter than those of the compared methods.

As  for F1  score  results  on  the  WADI  dataset,

CAGCN-SLC  also  gets  the  best  score  (0.947).

CAGCN-CC  gets  a  similarly  good  result  of  0.945.

CAGCN-DC,  CAGCN-BC,  and  CAGCN-MC  gain

similar  results  around  0.83.  MAD-GAN  has  a F1

score  of  0.907.  The  other  compared  methods  get F1

scores between 0.510 (SVM) and 0.804 (DAICS).

Based on the results above, in terms of the trade-

off between precision and sensitivity, the overall  per-

formance  of  the  proposed  model  is  better  than  the

overall performance of the compared methods. 

4.8    RQ4:  Interpretability  of  Proposed

Method

According  to  our  result,  LIT401  is  a  key  node

with  high  centrality.  We  compared  the  value  of

LIT401  and  the  adjacent  node  before  and  after  at-

tack  26.  As  shown in Table 3,  when  the  system was

under  attack,  the original  feature  of  LIT401 decreas-

es  dramatically  (1.720  to  0.700)  whereas  the  original

features of LIT301 and LIT501 do not change at all.

As for the features after message passing, because the

LIT401 passes the message to its adjacent nodes, the

features  of  LIT301  and  LIT501  both  decrease  (2.302

to 2.251, 1.80 to 1.785). These results prove that the

change of key node could lead to a wide change in the

whole  network,  therefore  the  model  can  identify  this

fluctuation  easily.  Then  our  model  is  able  to  detect

the anomaly of LIT401.

Just as mentioned before, the application of GCN

can  be  deemed  as  the  process  of  message  passing.

GCN can catch the process of message passing in at-

tacks and pay more attention to the key nodes in in-

dustrial control networks. On the other hand, the in-

troduction  of  centrality  also  improves  the  ability  to

detect attacks in key nodes. Due to the application of

GCN and  centrality,  the  performance  of  our  method

is better than that of the compared methods. 

 

Table  3.    Changes to Values Before and After Message Pass-
ing in an Attack Case

Value LIT301 LIT401 LIT501

Original values
(before attack)

2.216 1.720 1.733

Original values
(after attack)

2.216 0.700 1.733

Values after message
passing (before attack)

2.302 1.782 1.800

Values after message
passing (after attack)

2.251 0.762 1.785
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5    Conclusions

In this paper, we created a centrality-aware graph

convolution network to detect anomalies in industrial

control systems (ICS). Our method combines the mer-

its  of  GCN and  centrality  by  using  the  centrality  of

nodes  to  improve  the  detective  ability  of  GCN.  The

topological information is extracted by a graph convo-

lution  operation  and  a  node's  importance  is  granted

by its  centrality.  According to  the  results,  it  is  clear

that  compared  with  state-of-the-art  methods,  our

CAGCN  method,  especially  CAGCN-SLC,  achieves

better  performance  on two ICS datasets.  Our  results

imply that the topological relationship in ICS should

not be ignored in anomaly detection.

We  used  three  common  centralities  (degree  cen-

trality, closeness centrality, and betweenness centrali-

ty)  and  the  combination  of  these  centralities  to  en-

hance  the  performance  of  GCN.  Our  results  proved

that the application of centrality can improve the per-

formance  of  anomaly  detection  in  ICS.  Our  CAGCN

method  with  self-learning  combination  centrality

achieved  the  best  performance  among  all  the  com-

pared methods.

In future, we will try more different centralities to

test  the  learning  ability  of  our  model  as  well  as  de-

sign  a  more  effective  centrality  for  mining  the  inner

information in ICS. We also plan to test our method

in more  kinds  of  datasets  to  verify  the  robustness  of

our  method.  We  have  updated  our  code  in  GitHub

and provided some cases about how to use our model

to improve the performance of other GCN models. 
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