

Parallel Software-Based Self-Testing with Bounded Model Checking
for Kilo-Core Networks-on-Chip

Ying Zhang1 (张　颖), Member, CCF, IEEE, Peng-Fei Ji1 (季鹏飞), Pan-Wei Zhu1 (朱潘玮)
Zebo Peng2, Senior Member, IEEE, Hua-Wei Li3 (李华伟), Fellow, CCF, and
Jian-Hui Jiang1, * (江建慧), Senior Member, CCF

1 School of Software Engineering, Tongji University, Shanghai 200092, China
2 Department of Computer and Information Science, Linkoping University, Linkoping 58183, Sweden
3 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

E-mail: yingzhang@tongji.edu.cn; 1831603@tongji.edu.cn; 1950061@tongji.edu.cn; zebo.peng@liu.se
lihuawei@ict.ac.cn; jhjiang@tongji.edu.cn

Received June 1, 2022; accepted December 15, 2022.

Abstract Online testing is critical to ensuring reliable operations of the next generation of supercomputers based on a

kilo-core network-on-chip (NoC) interconnection fabric. We present a parallel software-based self-testing (SBST) solution

that makes use of the bounded model checking (BMC) technique to generate test sequences and parallel packets. In this

method, the parallel SBST with BMC derives the leading sequence for each router’s internal function and detects all func-

tionally-testable faults related to the function. A Monte-Carlo simulation algorithm is then used to search for the approxi-

mately optimum configuration of the parallel packets, which guarantees the test quality and minimizes the test cost. Final-

ly, a multi-threading technology is used to ensure that the Monte-Carlo simulation can reach the approximately optimum

configuration in a large random space and reduce the generating time of the parallel test. Experimental results show that

the proposed method achieves a high fault coverage with a reduced test overhead. Moreover, by performing online testing

in the functional mode with SBST, it effectively avoids the over-testing problem caused by functionally untestable turns in

kilo-core NoCs.

Keywords software-based self-testing (SBST), parallel test, kilo-core networks-on-chip (NoCs), online testing

 1 Introduction

Large-scale networks-on-chip[1] (NoCs) have

emerged as a promising architecture for supercomput-

ers due to their outstanding parallel communication

capability[2]. This architecture integrates many pro-

cessor cores into a single chip and turns the chip into

a small supercomputer. This architecture effectively

alleviates the bottleneck faced by the next generation

of supercomputers, as most of the communications

among chips are moved inside a chip to reduce trans-

mission delays[1]. For example, the Taihu-light super-

computer uses such a large-scale NoC (i.e., the

SW26010 processor), which integrates 260 processor

cores[1]. According to a report from Oak Ridge Na-

tional Laboratory[3], the excellent performance of the

architecture helped the Taihu-light Supercomputer

hold its status as the fastest supercomputer in the

world for three years (2016– 2018). Currently, many

research institutes are trying to design kilo-core NoCs

for the next generation of supercomputers.

A kilo-core NoC requires to be robust and fault-

tolerant[4, 5] as it is not only used in low-fault situa-

tions[1]. Since a chip’s fault probability is proportion-

Regular Paper

This paper was supported in part by the National Key Research and Development Program of China under Grant No. 2020YFB
1600201, the National Natural Science Foundation of China (NSFC) under Grant Nos. 61974105, 62090024, and U20A20202, and the
Zhejiang Lab under Grant No. 2021KC0AB01.

*Corresponding Author

Zhang Y, Ji PF, Zhu PW et al. Parallel software-based self-testing with bounded model checking for kilo-core networks-

on-chip. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(2): 405−421 Mar. 2023. DOI: 10.1007/s11390-

022-2553-3

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-022-2553-3
https://doi.org/10.1007/s11390-022-2553-3

al to its size, and the size of a kilo-core NoC reaches

the scale of the entire wafer[6], ensuring the NoC is

fault-free during the manufacturing stage becomes

very difficult. If a foundry simply discards a kilo-core

NoC that is faulty somewhere in the chip, the chip

yield will be very low, and its cost will be impractical-

ly high[1]. A faulty NoC should, therefore, be treated

as a good chip after its faults have been dealt with.

During the operating stage, a kilo-core NoC continu-

ously works in a thermal-intensive environment[7– 9],

and severe thermal-intensive conditions will exacer-

bate the aging problem[10] and increase its faulty

probability. Long downtimes in replacing the faulty

chip would result in unacceptable operating costs for

supercomputers. Therefore, a kilo-core NoC must sup-

port dynamic reconfiguration to handle its faults on-

line. A feasible solution to this problem is to imple-

ment more processor cores on a single chip, discard

the faulty cores and links, and treat the faulty chip as

a good one as long as the number of its available

cores meets the design requirement[1]. To implement

this solution, we first need an online test method to

discover faults in an NoC.

Although online testing is required to guarantee a

kilo-core NoC’ s reliability, testing such a large NoC

remains a great challenge. First, this system contains

about 1 000 switchers and nearly 5 000 buffers. Its test

packets have to cover all the buffers and all the feasi-

ble turns and conflicting scenarios on each switch. In

addition, not all turn channels in an NoC can be acti-

vated by the routing algorithm in the function mode.

If all NoCs with faults on the functionally untestable

turns will be discarded, it will lead to yield loss and

cause the over-testing problem[11]. Furthermore, the

packets for online testing will occupy the high-speed

L1 cache (i.e., critical resources) in a kilo-core NoC.

In order to avoid the interference of functional pack-

ets on the test process, the test packets have to be

transmitted in the NoC’s idle periods. Hence, a paral-

lel test technique has to minimize its required storage

space and executing time. Manually configuring paral-

lel packets to achieve the above two goals will be an

arduous task. Therefore, a novel technology is re-

quired to automatically configure test packets.

In this paper, we develop a parallel software-based

self-testing (SBST) method to form a sequence of op-

timized packet configurations to test a kilo-core NoC

in parallel with the minimal test overhead. We ap-

plied SBST with bounded model checking (BMC)[12, 13]

in our previous work[2] aiming at generating test pack-

ets for a single buffer or switch. In this work, we gen-

erate the optimal configuration of such test packets

for the kilo-core NoCs using a Monte-Carlo simula-

tion algorithm. Furthermore, we employ a multi-

threading technology to evaluate the performance of

the configurations of these packets in parallel. The

key contributions are as follows.

1) The developed SBST with BMC[12, 13] can de-

rive the leading sequence for each internal function

and detect all functionally testable faults related to

the different functions of the NoC.

2) A Monte-Carlo simulation algorithm is devel-

oped to search for the approximately optimum config-

uration of the test packets, which not only guaran-

tees the test quality but also minimizes the test over-

head.

3) The multi-threading technology is used to facil-

itate the Monte-Carlo simulation to search for the ap-

proximately optimum configuration in a large ran-

dom space and reduce the generating time of the par-

allel tests.

The rest of the paper is organized as follows. Sec-

tion 2 describes the background of implementing SB-

ST on an NoC. In Section 3, we describe the SBST

with BMC for testing the NoC buffer or switch pre-

sented in our previous work[2]. The parallel SBST

technique is then presented in detail in Section 4. Sec-

tion 5 describes and explains the experimental results.

Finally, we conclude the paper in Section 6.

 2 Background

Many NoC testing techniques have been pub-

lished in the literature. In early work, Cota et al. used

an NoC as a test access mechanism for manufactur-

ing tests[14, 15], while Richter and Chakrabarty[16] fur-

ther optimized the number of test pins and mini-

mized the test application time. Although these meth-

ods can be used for manufacturing tests, they require

external automatic test equipment (ATE) and are

therefore not suitable for online tests. The built-in

self-test (BIST) was also used to test an NoC[17, 18].

Although BIST reduces the need for external ATE, it

cannot be used for online testing when the system is

in operation, because it requires the system to be

switched to an extra test mode. Besides, its area over-

head is reported to be as high as 21% of the original

design area[17]. Researchers also proposed boundary

scans for NoC testing, by inserting design-for-test

hardware into an NoC router’s ports[19, 20]. This meth-

406 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

od can effectively test the router’s data path but on-

ly achieves limited coverage on its control logic. The

effective functional test for the sequential circuit cor-

responding to the control logic remains an open prob-

lem.

Software-based self-testing (SBST) is a promising

online testing method[21] as it executes native instruc-

tions in the functional mode and can potentially lead

to high fault coverage[2]. The method is also capable

of online testing an NoC by transmitting packets

through its on-chip network[2]. Specifically, when the

SBST program loads or stores data (i.e., packets)

from/to the remote core, the NoC transmits these

packets from the source core to the target core

through the on-chip network, and the transmitted

packets can be used to test the functional and struc-

tural faults in the on-chip network. Besides, the SB-

ST program can also generate ``stalls" between flits

by inserting NOP instructions (or interrupts); these

stalls can activate the router’s internal functions.

Collet et al. proposed an SBST method for NoC-

based multi-core arrays[22], where the SBST program

tests the processors but requires auxiliary circuits to

test the on-chip network. Although this method re-

quires low area overhead, it has to switch the system

from the functional mode to the test mode; therefore,

it is not suitable for the online testing scenarios.

Dalirsani et al. developed a structural SBST method

for NoCs[23]. The method applies a timeframe exten-

sion to the router and generates test patterns using

the SAT solver. However, automatically extracting in-

put sequences is still an open issue. The method giv-

en in [23] manually generates test sequences within a

small sequence depth but has its limitations for cir-

cuits with a large sequence depth. Therefore, a novel

SBST method is required to automatically generate

test packets and test the hard-to-access faults under a

large sequence depth.

 3 SBST with BMC for Sequential Circuits

In this work, we develop an SBST method based

on BMC (i.e., BSBST)[2] to online test the sequential

control logic and target hard-to-detect faults. The

method uses an extended finite-state machine (EF-

SM)[24] to model the sequential control logic. The EF-

SM can be automatically extracted from an RTL

(register-transfer level) description[24].

We define an EFSM as an eight-tuple (I, O, S, R,
T, E, F, W), where I(O) denotes the set of input

(output) symbols, corresponding to, e.g., input (out-

put) packets. S represents the state set, e.g., the

states of the handshake FSM, and R denotes the vari-

able set, e.g., data registers in buffers. T is the transi-

tion set, and W is the set of internal wires. A given

transition ta is controlled by an enable function ea and

an update function fa. The sets of enable functions

and update functions are denoted by E and F, respec-

tively. Finally, we denote the property set to test the

faults on the wires corresponding to E and the set

corresponding to F as PE and PF, respectively.

Definition 1. A functional test on a sequential cir-
cuit is a test that detects structural faults that are ex-
cited during every internal state transition.

As some structural faults never lead to errors in a

sequential circuit during normal operation[25], a func-

tional test is used to target the testable faults in the

functional mode. In this work, we consider the stuck-

at fault model. We assume that a sequential circuit is

effectively tested if every transition ta is activated,

and all wires in the subset of W corresponding to ta
are controllable and observable.

 3.1 Implementation of BMC for Testing

In this subsection, we apply BMC to excite the

target function, denoted by a given property p. Let us

assume that the model takes b timeframes from the

initial state to arrive at the state where the target

function is activated. Let B refer to an upper bound

on b. BMC efficiently searches all the paths from the

initial state within B timeframes to check the proper-

ty !p (the complement of p). Once a counterexample

that violates !p emerges, it activates the target func-

tion p.

I1 I2

Ib R1 R2 Rb

I1 R1 I2 R2 Ib

Rb

The BMC tool can also output the input signal se-

quence and the internal variable sequence associated

with the counterexample. We combine these se-

quences to form the leading sequence. Let , , ...,

 be the input signals, and , , ..., be the in-

ternal variables at these b timeframes; then the lead-

ing sequence is defined as ((,), (,), ..., (,

)).

Definition 2. A leading sequence that excites the
property p, referred to as LS(p), is the combination of
the input signal sequence and the internal variable se-
quence from the initial state in the counterexample.

A leading sequence is used to facilitate the test of

structural faults in a sequential circuit. For example,

if a stuck-at 0 fault on a wire w in the NoC is under

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 407

test, we can set “w is equal to 1 and w is observable

on output signals” as the target function p and load

this function into the BMC tool. Once the BMC tool

derives the leading sequence, the input signal se-

quence in LS(p) will then be transformed into the test

sequence.

 3.2 Flowchart of SBST with BMC

We present a flowchart for the SBST algorithm

with BMC (i.e., BSBST) in Fig.1[2] for sequential cir-

cuits. First, the algorithm automatically extracts the

EFSM from the design[24] and stores the sets of prop-

erties PE and PF in a property database. Second, it

checks if an unchecked property exists in the

database. If so, the algorithm takes one property from

the database and goes to the next step; otherwise, the

algorithm terminates. Third, the algorithm makes use

of a slicing technique to reduce the model size in or-

der to alleviate the state-space explosion problem.

Fourth, it uses a BMC tool to check the property. If

the tool fails to derive the leading sequence, the prop-

erty is not testable in the functional mode, and the al-

gorithm returns to the second step; otherwise, the al-

gorithm goes to the next step. Fifth, if the property is

in PE, the input signal sequence in the leading se-

quence is assumed as the test sequence; otherwise, the

algorithm goes to the next step. Sixth, the leading se-

quence guides the design to the timeframe when the

given update function happens, and then a con-

strained automatic test pattern generation (con-

strained ATPG) procedure will be used to generate

test patterns for the faults that are excited by the up-

date function. Finally, the algorithm translates the

test patterns into test sequences and returns to the

second step for the next property.

In the BMC process, the state-space explosion

problem can become serious if the BMC tool directly

loads the complete design, which is usually very large.

We use two methods to reduce the size of the model.

First, we exploit the slicing method[26] to reduce the

size of the model by removing non-contributive tran-

sitions and variables. The non-contributive transi-

tions/variables are those that do not affect the vari-

ables in the target property. Second, we remove the

data variables that simply store data information in-

stead of activating any transitions, and thereby signif-

icantly reduce the size of the design.

 3.3 Sets of Properties in BMC

In this subsection, we describe the sets of proper-

ties PE and PF used in BMC.

First, let Iea, Rea, and Wea be the subsets of I, R,

and W corresponding to a given enable function ea,

respectively. Let v(Rea) refer to one possible assign-

ment of the variables in Rea. As Rea contains only a

few registers, a small group of v(Rea) exists. We enu-

merate all possible assignments of the variables in Rea

to test faults on the wires in Wea. The property re-

quires four conditions: 1) the current state is cs(ta), 2)

the enable function ea is true, 3) the variables in Rea

are equal to the values of the given assignment v(Rea),

and 4) the elements of Rea are observable. Finally, we

collect the group corresponding to every enable func-

tion and build the property set PE.

Second, let Rfa and Wfa be the subsets of R and W
corresponding to a given update function fa respec-

tively. We develop one property to activate the up-

date function fa in BMC. This property requires three

conditions: 1) the current state is cs(ta), 2) the en-

able function ea is true, and 3) the elements of Rfa are

observable. Finally, we collect the property corre-

Extract EFSM

Start

Unchecked

Property?

BMC with SAT

?

Property

in ?

SBST for the

Wires for 

Constrained ATPG

Generate SBST

End

No

No

No

Yes

Yes

Reduce Model

Size Using Slicing

Yes

Properties

 and 

SBST for the

Wires for 

Fig.1. Flowchart of SBST with BMC[2].

408 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

sponding to every update function and build the

property set PF.

 3.4 Generation of Test Patterns Using

Constrained ATPG

We utilize constrained ATPG[27] to generate test

patterns for the faults on the wires in Wfa. The key

idea is to fix the variables in Rea and the input sig-

nals Iea in the leading sequence and to detect the

testable faults on the wires in Wfa by assigning the re-

maining variables and input signals.

Fig.2 presents the steps needed to implement con-

strained ATPG for the faults on the wires in Wfa.

First, the method transforms the synthesized design

into a combinational circuit by removing all internal

registers and setting these registers’ outputs as pseu-

do-primary inputs (PPIs) of the combinational cir-

cuit and their inputs as pseudo-primary outputs

(PPOs). Second, the values of Rea in Rb of the lead-

ing sequence are mapped to PPIs corresponding to

Rea, while the values of Iea in Ib are mapped to inputs

corresponding to Iea. If the update function fa does

not update some variables, such as the register r2, the

method makes the PPO corresponding to r2 non-ob-

servable. Third, ATPG is used to target faults on the

wires in Wfa by assigning values to unspecified inputs

and PPIs and thereby generating compact and effec-

tive test patterns. Finally, the method uses the map-

ping technique from [28] to translate test patterns in-

to SBST programs.

 3.5 Implementation of SBST with BMC on

an NoC Router

In this subsection, we implement the SBST with

the BMC method on the critical components, such as

a buffer or a switch. The buffer is often used for

handshaking with an adjacent node. Fig.3 presents

the handshake state machine of a buffer in the well-

D Q

Q

D Q

Q

D Q

Q

PPI(ea) PPI(1) PPI(2)

PPO(1)

PPO(ea)

PPO(2)

Transform Circuit

Impose 

Run ATPG

Generate SBST

  ea

ea

1

2

1

2

Fig.2. Constrained ATPG on a sequential circuit.

  










R
e
s
e
t





 _

_

_

_

_    

_    
_ ≤ 

_ < 

_

_ <

 < 

_

_ < 

 < 

_

 < 
 <    

_ < 

_ < 

 < 

_ < 
 < 

Fig.3. Handshake state machine in a buffer.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 409

known Herms routers①, where the bold text on the

transition arc refers to an enable function, and the

normal text corresponds to an update function. Note

that the SBST with BMC is a general test generation

technique that can be applied to NoCs with other

routing algorithms. We first prepare the sets of prop-

erties PE and PF according to the EFSM correspond-

ing to the buffer respectively. Each property p in PE

should activate a transition ta and assign a given

v(Rea) to the variables corresponding to the enable

function ea. If the BMC tool derives a leading se-

quence LS(p) for property p, the input sequence of

LS(p) is considered as the test sequence. Each proper-

ty p in PF activates the update function fa. If the

BMC tool derives a leading sequence LP(p), this se-

quence can trigger the update function. Subsequently,

the method runs a constrained ATPG algorithm on

the transformed buffer for faults that are sensitized

by the update function. Finally, the method trans-

lates these sequences into test packets for the buffer.

In our model-checking flow, the BMC tool NuS-

MV② is used by us. At first, it loads in a 16-bit

buffer’ s model whose sequential depth is set to 31.

Next, it loads the sets of properties PE and PF and

derives the leading sequences for these properties. It

loads in 25 properties in total and takes only 1.19 s of

CPU time to derive the leading sequences for all the

properties on the sliced EFSM.

The switch is responsible for forwarding the pack-

ets in the input buffer to the correct output port and

arbitrating input requests if multiple requests exist.

Fig.4 presents its arbitrating state machine. The

method sets the condition of activating each transmis-

sion turn as a property for the following step. In the

model checking, the slicing method[26] greatly reduces

the size of the original design, which, in this case, is a

16-bit router with five buffers and one switch. In Ta-

ble 1, the number of variables and wires is reduced to

3.8% and 7.4%, respectively, of the original design.

The BMC tool takes only 1.29 s to verify 32 proper-

ties and generate all the leading sequences. Finally,

the method translates these sequences into test pack-

ets for the switch.

 4 Parallel SBST for Kilo-Core NoCs

 4.1 Framework of Parallel SBST

In this work, we develop a parallel SBST (i.e., PS-

BST) based on the Monte-Carlo simulation

technique[29] to automatically generate configurations

of test packets that concurrently emerge on different

NoC nodes and test the NoC in parallel with the min-

imal test overhead. Since the NoC mapping problem

is an NP-complete problem, and the scale of a kilo-

core NoC is huge, it is infeasible to find the optimum

configuration of test packets. Instead, we apply the

Monte-Carlo simulation to find an approximately op-

timum solution. Fig.5 presents the framework of the

PSBST algorithm. First, the algorithm generates a set

of random configurations of test packets at the cur-

rent time Ts. Then, it simulates each configuration till

its termination time Te when all packets arrive at

their destination cores. It also counts the packet num-

ber and the contribution to the fault coverage. Later,

the algorithm comprehensively evaluates these config-

urations and obtains an optimized configuration. The

algorithm then generates another set of configura-






_<





 









<

    

    

<

<

  

 < _ <

else

 <

_ <

Fig.4. Arbitrating state machine in a switch.

410 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

①de Mello A V, Möller L H. Hermes NoC. https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html, Mar.
2023.

②Cimatti A, Roveri M, Cavada R. NuSMV. http://nusmv.fbk.eu/, Mar. 2023.

https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html,
https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html,
http://nusmv.fbk.eu/,
http://nusmv.fbk.eu/,
http://nusmv.fbk.eu/,

tions, derives another optimized configuration, and

checks whether the new configuration improves the

previous one. If so, the algorithm updates the select-

ed configuration, and the Monte-Carlo simulation

continues. Otherwise, the configuration is finally se-

lected. With this approach, the final configuration is

derived from a huge amount of random configura-

tions, and the optimum one is not guaranteed. Hence

the final selected configuration is only an approxi-

mately optimum solution based on the principle of the

Monte-Carlo simulation[29].

 4.2 Network-on-Chip Modeling

Modeling a kilo-core NoC at the high level is re-

quired to speed up packet simulation, as simulating a

kilo-core NoC at the gate level faces many problems.

First, the gate-level netlist contains too many details,

and a kilo-core NoC is huge in size, and thus the

gate-level simulation is very time-consuming. Second,

the simulation of massive configurations cannot be ac-

celerated by parallel computing as the number of par-

allel simulators is strictly limited by commercial tools.

Hence a high-level and cycle-accurate simulator is re-

quired for the parallel SBST solution.

We have developed a high-level simulator using C

language for kilo-core NoCs. The simulator preserves

the necessary variables of the NoC using the Herms

routers③, omits many low-level details, and thereby

ensures its efficiency. Also, we can design high-level

simulators for NoCs with other routing algorithms.

The simulator also completes the functions of the

buffers and the switches③, and its results maintain

cycle accuracy with that of the gate-level simulator.

Fig.6 presents the simulator’s workflow. First, the si-

mulator puts the given packets onto the NoC’s input

ports. Then, it updates the state of each switch (i.e.,

state(xi, yi)) according to the arbitrating state ma-

chine in Fig.4. If the state is s1, the simulator checks

if each input buffer has a packet request and sends

these requests to the switch. If the state is s2, the

simulator selects a packet request according to the

round strategy③. If the state is s3, the simulator

checks whether the next buffer in an adjacent router

for the selected request is not full. If it is full, the

state returns to s1. Otherwise, the simulator deter-

mines the transmission direction. If the state is s4, s5,

or s6, the simulator sends the head flit in the select-

ed packet to the next buffer and reduces the buffer’s
flit number by 1.

Then, the simulator checks the tail flit in each

buffer according to the handshake state machine③ in

Fig.3. If the head flit from the same packet exists in

the buffer, the tail flit has to wait. Otherwise, the

simulator checks if the next buffer for the tail flit is

full. If it is full, the tail flit also has to wait. Other-

wise, the flit number in the packet state (i.e., pnum)

is reduced by 1. Once the flit number in the packet

state is reduced to 0, the tail flit enters its next

buffer. This simulation preserves the critical func-

tions of the NoC and eliminates many control signals.

Therefore, this high-level simulator can quickly simu-

late the NoC and keep cycle accuracy with the gate-

level simulator.

 4.3 Test Objectives and Problem Modeling

Simulating faults directly on the netlist is not ap-

plicable to the Monte-Carlo simulation either. A kilo-

core NoC contains tens of millions of faults, and fault

simulation is extremely time-consuming (e.g., hun-

dreds of hours per configuration). Moreover, our

Monte-Carlo simulation involves thousands of config-

urations. Hence, it requires a novel method to evalu-

Table 1. BMC Results for the Buffer and the Arbitrator

Number
of

Variables

Number
of

Wires

Max
Timeframes

Number
of

Properties

CPU
Time
(s)

Normal buffer 275 490 23 25 1.19

Sliced buffer 19 114 23 25 1.19

Normal
arbitrator

1 429 2 961 9 32 1.29

Sliced arbitrator 54 218 9 32 1.29

Generate Random Configuration

Evaluate Each Configuration

Choose an Optimal One

Better Than the
Previously Selected One?

Obtain the Optimum Configuration

 Update the

Selected

Configuration

N

Y

Fig.5. Framework of the parallel SBST.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 411

③de Mello A V, Möller L H. Hermes NoC. https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html, Mar.
2023.

https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html,
https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html,

ate the test quality of a given configuration of test

packets efficiently.

The proposed parallel test method abstracts the

test packets generated in Section 4 as test scenarios.

First, since the BSBST method generates four test

packets for a buffer, the parallel test has to consider

four test scenarios corresponding to these packets for

each buffer. Second, properties in the BMC cover all

transmission turns from an input port to each output

port in a switch. However, some turns are not

testable due to the XY algorithm used for routing

packets through the network[2]. The method will

therefore consider only the packets corresponding to

these testable turns as test scenarios. Third, the

method also abstracts the test packets for the arbitra-

tor as test scenarios. The parallel test evaluates the

test coverage of a configuration by counting these test

scenarios on every router. (1) presents the test cover-

age (i.e., cov), where Nscen and sumscen denote the

amount of the newly detected scenarios and the total

scenarios, respectively. Once a test scenario men-

tioned above firstly appears on a buffer or a switch,

this method increases Nscen by 1.

cov =
Nscen

sumscen
, (1)

objective =
cov

√
numflit ×

timecur

timepre

. (2)

(numflit)

Furthermore, (2) presents the objective formula to

evaluate the current configuration. The numerator

part is the test coverage, indicating the number of

scenarios newly detected by the configuration. The

denominator contains two parts. The first is the

square root of the flit number in the configu-

ration. The square root operation can avoid a small

packet covering a few test scenarios to obtain a large

objective value. The second is the ratio of the com-

pleting time after adding the configuration (i.e., timecur)

Put Packets on Input Ports

Check (, )

Select an

Input Packet
Send a

Head Flit

If Next

Buffer Is Full?

 

 

 

   or 

Set Requests Set 

Update the State

Check the Tail Flit in Each Buffer

A Head

Flit Exists?

Is the Next Buffer Full?

 0?



Send the Tail Flit Send a Flit

N
Y

N

Y

N

Y

N

Y

Check Each

Buffer

Fig.6. Workflow of the high-level NoC simulator.

412 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

to the originally completing time (i.e., timepre). Initial-

ly, we assume that the original completing time is the

longest transmission time of a single packet. This ob-

jective formula, therefore, not only evaluates the test

coverage without applying the time-consuming fault

simulation but also considers the flit number and the

test time.

 4.4 Multi-Threading Test Generation

Generating the packet configurations using the

Monte-Carlo simulation remains time-consuming,

even with the high-level simulator and quick evaluat-

ing method. On the other hand, the simulation of dif-

ferent configurations is independent of each other,

and the current computing platform often supports

running multi-threading programs. Therefore, the pro-

posed PSBST technique uses the multi-threading

technology to generate parallel packets for testing ki-

lo-core NoCs more efficiently.

Fig.7 presents the multi-threading algorithm to

generate a sequence of packet configurations. This al-

gorithm in Fig.7(a) contains four types of threads:

main threads, configuration threads, simulation

threads, and statistics threads. Fig.7(b) presents the

process of a configuration thread. First, the thread

Generate Config.

Thread 2

Simulator 1

Simulator 2

Simulator 3

Simulator ()

Select Optimized

Config.

Thread 3

Main Thread (Thread 1)



 

Results





 

C1 0

C2 0

C(conf.) 0



Send out Config.

Are All Flags
2?

Update NoC State

Clear Config. Set

N

Y

Y

N

Y

N

Y

N

Y

N

Y

N

Get NoC State and
Send a 

Get Config.

Simulator 1

 > ?  > ?

Object=0 Object=0

Simulator ()

Synchronization

Send Results

Y Y

Y

N

N N

Get Results

Obtain a New 

Larger Than
Temp. ?

Update Temp. 

Update 

Send an


Select the
Config.

Send an


N

Y

N

Y

N

Y

Send NoC State

Wait for 

or ?

Y

N

Send Out Config.

Wait for
Syn.?

Y

N

Start Statistics
Thread

Wait for an
?

Wait for an
?

N

e Is Close to
?

Select the Config.

Restart Next
Period

Set State at
first

Covers All
Scen.?

End

Restart
an

Iteration

Y

N

Y

Y

N

Y

N

Simulation
in Parallel

Monto-Cano

Simulation



Thread 4

Generate a Config.
Set

Copy conf Config. for
Current Iteration

thread
Config. Are Ready?

Send a 

Wait for a


conf Config.?

Wait for an
 or

?

Get an
?

(b) (a)

(c) (d)

(e)

Wait till Being
?

conf. Config.?

Larger Than
Previous ?





Config.










Fig.7. Multi-threading algorithm for generation parallel packets. (a), (b), (c), (d), and (e) are for the algorithm mainframe, configu-
ration thread flowchart (thread 2), simulation thread flowchart (thread 3), statistics thread flowchart (thread 4), and main thread
flowchart (thread 1), respectively. Config. means configuration; Temp. means temporary; Scen. means scenarios.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 413

has generated a large number of different configura-

tions of test packets in the temporary storage. Specifi-

cally, the thread counts free input ports under the

current NoC state and selects Nport ports from these

free ports. Then it randomly chooses the test packets

as discussed in Subsection 3.5, whose source and des-

tination addresses are also random, for these selected

ports, i.e., a configuration of packets. Later, the

thread copies Nconf configurations into a table for one

Monte-Carlo iteration and individually sets the flag of

a ready configuration as 1. When the number of ready

configurations reaches the number of available

threads supported by the computing platform (i.e.,

availthread), the thread sends a ready message to the

main thread. Once a request message arrives, the

thread sends availthread configurations to the simula-

tion threads and sets their flags to 2. Once the thread

generates Nconf configurations whose flags become 2, it

empties the table. If the thread receives an iteration
message, it copies other Nconf configurations from the

temporary storage. If the thread receives an update
message, it updates these free input ports according

to the updated NoC state and returns to the first

step.

Te

Fig.7(c) presents the process of simulation

threads, which are no more than the available threads

supported by the computing platform. These threads

first obtain the current NoC state from the main

thread and send a request message to the main

thread. Once a ready message arrives, the simulation

threads can obtain availthread configurations. Then

each simulation thread simulates a configuration on

the high-level simulator. If the completing time (i.e.,

) is within the idle period of the kilo-core NoC, the

thread derives the objective value of the configura-

tion. Otherwise, the thread abandons the configura-

tion. The thread also adds a synchronization opera-

tion after itself. When all simulation threads are com-

pleted, they send their results to the statistics thread.

Fig.7(d) presents the process of the statistical

thread. First, this thread receives the results submit-

ted by the simulation threads and selects the maxi-

mum objective value and its corresponding configura-

tion from these results. Then, the thread compares

this value with the previous maximum value in the

temporary storage. If the new value is greater than

the previous one, the thread saves this new value in

the temporary storage. Next, the thread checks

whether the number of simulated configurations

reaches Nconf. If so, the thread compares the current

maximum values with the one achieved in the previ-

ous Monte-Carlo iteration (if it exists). If the current

one is larger, the thread selects the current configura-

tion and sends an iteration message to the main

thread. Then the algorithm starts another Monte-Car-

lo iteration. Otherwise, it obtains the optimum config-

uration and sends an update message to the main

thread.

Fig.7(e) presents the process of the main thread.

The thread first starts the configuration thread and

transmits the NoC state to the simulation threads. If

the main thread receives a ready message and a re-
quest message, it imposes the generated configura-

tions on the simulation threads. If all synchronization

operations in the simulation threads are triggered, the

main thread activates the statistics thread. If an iter-
ation message emerges, the main thread starts anoth-

er Monte-Carlo iteration. If an update message ar-

rives, the main thread selects the optimum configura-

tion and applies it to the NoC. If the configuration’s
completing time is very close to the idle period, the

thread stores the NoC’s state at the completing time

and clears all temporary variables. The thread then

restarts from the stored NoC state to generate packet

configurations for the next idle period. Otherwise, the

main thread simulates this configuration until a pack-

et arrives at its destination core for the first time (i.e.,

Tfirst). It updates the NoC’ s state with that at Tfirst

and continues to test the undetected scenarios. The

thread is terminated when it covers all test scenarios.

This multi-threading technology ensures that the

Monte-Carlo simulation can derive the approximately

optimum configuration in a large random space and

reduce the generating time.

 5 Experimental Results

In this section, we use the parallel SBST to test

kilo-core NoCs and evaluate the fault coverage and

the test cost of this approach, where the NoC used in

all experiments is made up of Hermes routers④. First,

we develop the SBST with BMC to test the Hermes

router④. Since the fault simulation of a kilo-core NoC

is very time-consuming, we set the flit width to 16.

Hence the fault simulation can be completed within

reasonable time (e.g., a month). Besides, we will use

414 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

④de Mello A V, Möller L H. Hermes NoC.https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html, Mar.
2023.

https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html,
https://www.inf.pucrs.br/~calazans/research/Projects/Hermes/Hermes.html,

the existing full-scan method (i.e., FScan[14]), a func-

tional testing method (i.e., FTest)[20], and the struc-

tural SBST (i.e., SSBST) on the router for compar-

isons[23].

Second, we perform experiments with the pro-

posed parallel algorithm to generate a sequence of

packet configurations by Monte-Carlo simulation,

where the test packets generated in the previous step

are transformed into test scenarios. In the test genera-

tion, Nconf is a critical parameter. If this parameter is

set to be too large, since it is a high-order factor in

the time complexity of this algorithm, the algorithm

will be difficult to terminate due to the long execut-

ing time; if this parameter is too small, too few con-

figurations in each iteration will be generated and it

may affect the quality of the generated solution. In

this work, we have gotten a good trade-off between

the quality of the Monte-Carlo simulation and our

platform's computing power, and set Nconf to 1 000,

based on several experiments.

Third, we test the kilo-core NoC with the Hermes

router using the configurations of parallel packets and

evaluate their test performance and cost, and we also

use the full-scan test and the random test as refer-

ences. Since the fault simulation on this kilo-core

NoC’ s netlist is extremely time-consuming, we have

to reduce the buffer size from 16 to 4, and the maxi-

mum flit number per packet from 31 to 15. Next, we

synthesize the kilo-core NoC into the netlist using the

45 nm technology node, where this netlist occupies

5.31 million µm2 area and has about 17.5 million

stuck-at faults. Then, we simulate the sequence of

packet configurations on the netlist to derive the

VCDE file, and finally evaluate the fault coverage of

the kilo-core NoC. Furthermore, the proposed multi-

threading program runs on a workstation with AMD

R5 5600x CPU and 64 G memory, which supports 12

threads, and the EDA platform for fault simulation

runs on a server with Intel Xeon 6148 and 256 G

memory (supporting 160 threads).

 5.1 Multi-Threading Test Generation

The Monte-Carlo simulation can find an approxi-

mately optimum packet configuration. The configura-

tion not only covers test scenarios as many as possi-

ble but also minimizes the test cost. Fig.8 presents

the objective values achieved by each Monte-Carlo it-

eration starting from the NoC’ s initial state. Al-

though the Monte-Carlo simulation algorithm selects

an optimized configuration from 1 000 different con-

figurations, in each iteration, the proportion of these

configurations in the entire configuration set is still

very low, and another configuration may get a better

objective value. Hence the parallel test starts another

Monte-Carlo iteration to check if a better configura-

tion exists. The algorithm will continue the Monte-

Carlo iterations until no more optimized configura-

tion emerges. In Fig.8, the maximum objective value

increases from 66 to 76 after eight Monte-Carlo itera-

tions and no longer grows. In this way, the algorithm

obtains an approximately optimum configuration.

This configuration is not necessarily the optimum

one, but most configurations cannot achieve the ob-

jective value comparable to that of this configuration.

The high-level simulator and the multi-threading

technology effectively support the Monte-Carlo simu-

lation. The histogram in Fig.9 presents the Monte-

Interation Number

65

66

67

68

69

70

71

72

73

74

75

76

77

78

O
b
je

c
ti
v
e
 V

a
lu

e

1 2 3 4 5 6 7 8

Fig.8. Objective values of Monte-Carlo iterations.

Configuration

0

10

20

30

40

50

60

70

80

90

100

C
o
v
e
ra

g
e
 (

%
)

0

1

2

3

4

5

6

7

8

9

10
It

e
ra

ti
o
n
 C

o
u
n
t

1 5 9 13 17 21 25 29 33 37

Sum of 
Iteration Number

Fig.9. Iteration number and the sum of cov for the configura-
tion sequence. cov means the coverage rate.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 415

Carlo iteration number that the parallel test per-

forms each time when the algorithm generates the

new configuration of packets to be injected into the

NoC. The iteration number ranges from 2 and 8.

Since the parallel test evaluates 1 000 configurations

per iteration, it has to simulate at least 2 000 configu-

rations to derive an optimum one. The gate-level sim-

ulator runs slowly, and its commercial license strictly

limits its running in parallel. As a comparison, the

proposed high-level simulator significantly reduces the

simulation time for each packet configuration and

maintains cycle accuracy with the gate-level simula-

tor. It thus underpins the Monte-Carlo simulation as

an appropriate evaluation technique. Furthermore, al-

though a large number of configurations have to be

evaluated, these configurations are independent of

each other. In this case, the multi-threading technolo-

gy can take advantage of the many-core hardware

platforms used to run the simulation program and re-

duce the overall simulation time significantly. The

technology thus supports the Monte-Carlo simulation

to search for the optimum configurations of test pack-

ets efficiently.

Finally, the high-level evaluation assists the paral-

lel algorithm in covering all test scenarios. In the ob-

jective formula, the number of newly activated sce-

narios is the numerator. If a configuration does not

activate any new scenario and its value becomes 0, it

will be eliminated. This evaluation that keeps purg-

ing out configurations with value 0 will guide the

Monte-Carlo simulation in covering new scenarios and

eventually activate all test scenarios. The curve in

Fig.9 shows that the cumulative coverage ratio of

tested scenarios increases until it reaches 100%. Be-

sides, the high-level evaluation greatly reduces the

evaluating time of each configuration. As a compari-

son, the gate-level fault simulation on this kilo-core

NoC requires hundreds of hours for one configuration.

Finally, the evaluation counts the newly-activated

scenarios on the entire NoC. Once a new scenario is

activated, the evaluation removes it from the untest-

ed scenario set. In this way, the parallel test would

not select the configuration that repeatedly activates

tested scenarios and thereby reduces the overhead of

online testing.

 5.2 Multi-Threading Test Generation

The SBST with BMC effectively tests the routers

in the functional mode. This method leads to ex-

tremely high fault coverage (i.e., 98%), which is very

close to that obtained with the full-scan method. In

particular, the proposed method is highly effective for

testing the data registers in the buffers. In Table 2,

the fault coverage for the buffers equals that ob-

tained using the full-scan test. Although the full-scan

test leads to the highest fault coverage, it cannot test

the NoC in the functional mode. Compared with func-

tional testing[20], the BSBST is more effective for test-

ing the sequential unit. Although the insertion of

testability logic at the ports[20] can increase the fault

coverage for the datapath of an NoC, a major prob-

lem still lies in the testing of the sequential units. Ta-

ble 2 shows that the fault coverage provided by func-

tional testing[20] for the buffer and the arbitrator is far

less than that provided by the proposed method.

Compared with structural SBST[23] (i.e., SSBST), the

SBST with BMC is more attractive for circuits with

large sequential depth. For example, although the ac-

tivation of the counter in the buffer requires more

than 10 timeframes, the BSBST still leads to 100%

fault coverage on that unit regardless of its large se-

quential depth. In the literature, structural SBST

considers usually only a small number of timeframes

(3 or 5), and thus it may not be able to test such a

control unit with large sequential depth. Finally, we

conclude that the proposed SBST method with BMC

outperforms competing methods for the NoC router.

Table 2. Fault Coverage (%) on the Router Using Different
Methods

Buffer Arbitrator Router

FScan (16 bits) -- -- 100.0

FTest[20] (32 bits) 88.9 76.5 85.0

SSBST[23] (8 bits) -- -- 96.5

BSBST (16 bits) 99.3 89.4 98.0

Note: --: the fault coverage is not known for prior methods.

The parallel SBST effectively tests the kilo-core

NoC used in our experiments. As shown in Table 3,

the PSBST method achieves a total of 94.08% fault

coverage on the kilo-core NoC. This method ab-

stracts the test packets generated by BSBST into test

scenarios and then uses the Monte-Carlo simulation

to ensure that all test scenarios emerge on each

router. Since these test packets have an excellent test

performance and have been successfully imposed on

each router by the parallel method, the PSBST test

achieves a high fault coverage on the NoC. We have

changed the buffer size from 16 to 4 due to the time-

consuming fault simulation. As a result, the propor-

tion of faults related to external signals that cannot

416 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

be directly tested by SBST rises up. Hence, the

buffer’ s fault coverage has decreased compared with

that of the BSBST method in Table 2. The Herms

router contains all turn channels from one input port

to any output port. However, many turn channels

cannot be activated under the XY routing algorithm.

Even if the circuit corresponding to such a turn has a

fault, the NoC function will not have any impact.

Therefore, considering the over-testing problem, the

PSBST with a lower fault coverage has actually a

higher test quality than the full-scan method.

The existing methods cannot meet the online test

requirements of kilo-core NoCs. First, the full-scan

test is a robust method for testing kilo-core NoCs. In

Table 3, the method achieves 100% fault coverage.

However, the full-scan method requires the use of ex-

ternal test equipment to inject test data and a dedi-

cated test mode beyond the normal operation. There-

fore, this method is only suitable for manufacturing

testing but not for online self-testing. Second, the ran-

dom test approach hardly achieves any reasonable

fault coverage. Random packets cannot have a high

test quality as they often repeatedly test easy-to-test

faults. Furthermore, the scale of a kilo-core NoC is

huge, and the packet configurations generated with

the random test approach correspond only to a small

proportion of the entire legal configurations. Fig.10

presents the fault coverages that a random test ap-

proach achieves with multiple times of the packet

amount used in PSBST. As the packet amount in-

creases from one time (e.g., 1x) to four times (e.g.,

4x), the growth rate of fault coverage gradually slows

down, and the fault coverage reaches 57.27% at most.

Therefore, the random test cannot meet the online

test requirement of kilo-core NoCs due to its low fault

coverage.

Next, we use a set of heatmaps to illustrate how

the PSBST covers the buffers and routers at different

locations of the kilo-core (i.e., 32×32) NoC, where the

value of the horizontal and vertical axes represent the

X and Y coordinates of a node respectively. The

heatmaps in Fig.11(a) and Fig.11(b) present the fault

coverage of the buffers (the average coverage of five

buffers) in each router achieved by PSBST and the

random test, respectively. PSBST achieves a higher

fault coverage on every buffer of the kilo-core NoC

under test. That is because the packets generated by

BSBST have an excellent test performance, and the

parallel test ensures that these packets appear on ev-

ery buffer. As a comparison, the random test has a

much lower fault coverage on most buffers, and the

fault coverage of the internal routers is even lower.

That is because many cells in the buffers are not be-

ing completely triggered by random packets. Besides,

the routers at the periphery of the kilo-core NoC un-

der test are usually connected to the outside through

the boundary scan or JTAG (Joint Test Action

Group), while internal routers are difficult to access.

PSBST effectively tests the routers anywhere in

the kilo-core NoC while avoiding the over-testing

problem at the same time. First, many transmission

turns in the internal router will not be triggered in

the functional mode, i.e., they are functionally

untestable. For example, packets from the eastern in-

put port of an internal router cannot be forwarded to

the eastern output port. According to the XY rout-

ing algorithm, the X coordinate of the destination

node of the packet should not be more than the X co-

ordinate of the current router. However, forwarding

to the eastern output port requires the X coordinate

of the destination node to be greater than that of the

current router. Furthermore, the packet from the

southern input port cannot be forwarded to the east-

Table 3. Comparison Between Different Test Methods on the
Kilo-Core NoC in Terms of Test Cost and Overheads

FC.
(%)

Area
(%)

Gen.
Time (s)

App. Time
(cycle)

Data Vol.
(KB)

Fscan 100.00 17.14 2 242.5 8 130 000 000 992 000.00

Random Buf. 64.17

0.00 804.0 97 430 1 980.00Swit. 53.61

All 57.27

PSBST Buf. 98.17

0.00 59 883.0 81 815 402.25Swit. 87.73

All 94.08

Note: FC.: fault coverage; Gen. Time: generating time; APP.
Time: application time; vol: volume.

1x 2x 3x 4x
0

10

20

30

40

50

60

70

80

90

100

C
o
v
e
ra

g
e
 (

%
)

Fig.10. Fault coverage using different data volumes.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 417

ern output port. This is because the XY routing algo-

rithm needs to prioritize forwarding packets along the

X direction instead of the Y direction. In this case, an

internal router contains 25 turn channels, but only

68% (=(25–4–4)/25) of them are functionally testable.

PSBST will achieve higher fault coverage on routers if

other routing algorithms have fewer untestable turns.

Meanwhile, the arbitrating circuit is also difficult

to test as it requires multiple packets to simultane-

ously arrive at the router. This requirement is diffi-

cult to meet in a kilo-core NoC, especially for the

switch in an internal router. PSBST sets all feasible

turns in a router as test scenarios, and the Monte-

Carlo simulation will not terminate until it covers all

these scenarios. The high-level simulator also main-

tains cycle accuracy with the gate-level simulator.

This ensures test packets arrive at the router under

test on time and thus effectively test the arbitrating

circuit. The heatmap in Fig.11(c) presents the fault

coverage of each router achieved by PSBST. PSBST

achieves a higher fault coverage at each router. Since

the edge nodes of the kilo-core NoC under test can

obtain packets from the external boundary scan or

JTAG, they have more testable turns and thus high-

er fault coverages. As a comparison, the fault cover-

ages of the random test are generally low and greatly

fluctuate among different routers in the heatmap, as

shown in Fig.11(d). We thereby conclude that the

parallel SBST method is effective in testing kilo-core

NoCs.

 5.3 Test Cost on the Kilo-Core NoC

Another reason why PSBST is desirable for on-

line testing lies in its negligible cost. Table 3 shows

also the test cost of the proposed method, where the

full-scan technique and the random test are used as

references. Since the PSBST method tests an NoC by

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

31
29
27
25
23
21
19
17
15
13
11
9
7
5
3
1

80

82

84

86

88

90

92

94

96

98

100

40

42

44

46

48

50

52

54

56

58

60

(d)

80

82

84

86

88

90

92

94

96

98

100
(a)

(c)

50

52

54

56

58

60

62

64

66

68

70

(b)

Fig.11. Heatmaps for fault coverage on different positions using PSBST and the random test. （a）Fault coverage of buffers using
PSBST. (b) Fault coverage of buffers using random test. (c) Fault coverage of routers using PSBST. (d) Fault coverage of routers
using random test.

418 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

transmitting packets among the NoC routers, it does

not require any intrusive hardware or any area over-

head. In contrast, the full-scan technique introduces

17.14% (i.e., 0.91 million µm2) of the total area, which

is very large due to the large scale of the kilo-core

NoC. Besides, the PSBST program is executed in the

functional mode; hence it does not require any expen-

sive external ATE.

Table 3 also shows the test software generating

time for the PSBST method. First, the generating

time (i.e., Gen. time) includes the solving time of

BMC. Since the slicing technique significantly com-

presses the state machines of the buffers and NoC,

the entire process only takes 2.48 seconds. Second, the

generating time also involves the executing time of

the Monte-Carlo simulation. Since each iteration of

the Monte-Carlo simulation has to simulate 1 000 dif-

ferent configurations of packets, and PSBST requires

multiple iterations to derive an approximately opti-

mum configuration, the Monte-Carlo simulation

would be time-consuming. However, PSBST uses mul-

ti-threading technology, as discussed in Subsection

5.1, which significantly reduces the execution time.

Fig.12 shows the generating time for each configura-

tion, which is at an acceptable level. The executing

time can be further reduced if a computing platform

with more processor cores is employed.

Interation Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
u
n
 T

im
e
 (

s)

1 5 9 13 17 21 25 29 33 37

103

Fig.12. Iteration numbers and the sum of cov for the configura-
tion sequence.

Finally, we note that the test-data volume (i.e.,

Data vol.) and the test application time (i.e., App

time) for the proposed PSBST method are reasonable.

Since the high-level simulator counts the number of

detected scenarios in the entire kilo-core NoC, PSB-

ST can preferentially select the test packet that cov-

ers multiple test scenarios. Once PSBST selects a test

packet, it will delete the scenarios that the packet

covers. In this way, the packet that triggers the test-

ed scenarios again will have a minimum objective val-

ue (i.e., 0). PSBST will not select that packet. Fur-

thermore, PSBST uses the Monte-Carlo simulation to

minimize the test cost. As a comparison, the random

test fails to effectively test routers and repeatedly

tests the easy-to-test regions of the kilo-core NoC.

Therefore, although the random test uses almost four

times the number of test packets of PSBST, it

achieves only 57.27% fault coverage. The original full-

scan test does not exploit the NoC’s characteristics to

carry out parallel testing. It needs to connect all in-

ternal registers into a scan chain, resulting in ex-

tremely large test patterns. It needs also to shift these

very large patterns into (out of) the NoC through the

scan chain, causing a very large test application time.

In this way, the full-scan test is orders of magnitude

higher than PSBST in terms of test-data volume and

test application time. Therefore, the experimental re-

sults demonstrate that PSBST is efficient and effec-

tive for the online testing of the kilo-core NoC in the

functional mode.

 6 Conclusions

We developed a parallel SBST technique to sup-

port the efficient online detection of faults in kilo-core

networks-on-chip. The proposed PSBST method can

automatically generate a configuration sequence of

parallel packets and effectively and efficiently test a

large NoC in the functional mode. First, the pro-

posed SBST technique makes use of a BMC algo-

rithm to derive the leading sequence for each router’s
internal function and detect all functional-testable

faults corresponding to each router's internal func-

tion. Second, a Monte-Carlo simulation algorithm en-

sures the proposed technique to search for the opti-

mum configuration of the parallel packets, which not

only guarantees the test quality but also minimizes

the test cost. Finally, the multi-threading technology

is used to ensure that the Monte-Carlo simulation can

find the approximately optimum configuration in a

large random space and reduce the generating time of

the parallel tests. Experimental results showed that

the proposed method leads to a high test quality and

avoids the over-testing problem caused by functional-

ly untestable turns in the functional mode.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 419

References

 Zhang Y, Hong X P, Chen Z S, Peng Z B, Jiang J H. A

deterministic-path routing algorithm for tolerating many

faults on very-large-scale network-on-chip. ACM Trans.

Design Automation of Electronic Systems, 2021, 26(1):

Article No. 8. DOI: 10.1145/3414060.

[1]

 Zhang Y, Chakrabarty K, Li H W, Jiang J H. Software-

based online self-testing of network-on-chip using bound-

ed model checking. In Proc. the 2017 IEEE International

Test Conference, Oct. 31–Nov. 2, 2017. DOI: 10.1109/TEST.

2017.8242037.

[2]

 Dongarra J. Report on the Sunway TaihuLight system.

Tech Report UT-EECS-16-742, Oak Ridge National Labor-

atory, 2016. https://netlib.org/utk/people/JackDongarra/

PAPERS/sunway-report-2016-old.pdf, Mar. 2023.

[3]

 Zhang L, Han Y H, Xu Q, Li X W, Li H W. On topology

reconfiguration for defect-tolerant NoC-based homoge-

neous manycore systems. IEEE Trans. Very Large Scale

Integration (VLSI) Systems, 2009, 17(9): 1173–1186. DOI:

10.1109/TVLSI.2008.2002108.

[4]

 Ouyang Y M, Da J, Wang X M, Han Q Q, Liang H G,

Du G M. A TSV fault-tolerant scheme based on failure

classification in 3D-NoC. Journal of Circuits, Systems and

Computers, 2017, 26(4): 1750059. DOI: 10.1142/

S0218126617500591.

[5]

 Chen Z S, Zhang Y, Peng Z B, Jiang J H. A determinis-

tic-path routing algorithm for tolerating many faults on

wafer-level NoC. In Proc. the 2019 Design, Automation

and Test in Europe Conference & Exhibition, Mar. 2019,

pp.1337–1342. DOI: 10.23919/DATE.2019.8714948.

[6]

 Lee D, Das S, Doppa J R, Pande P P, Chakrabarty K.

Performance and thermal tradeoffs for energy-efficient

monolithic 3D network-on-chip. ACM Trans. Design Au-

tomation of Electronic Systems, 2018, 23(5): Article No.

60. DOI: 10.1145/3223046.

[7]

 Liu W C, Yang L, Jiang W W, Feng L, Guan N, Zhang

W, Dutt N. Thermal-aware task mapping on dynamically

reconfigurable network-on-chip based multiprocessor sys-

tem-on-chip. IEEE Trans. Computers, 2018, 67(12):

1818–1834. DOI: 10.1109/TC.2018.2844365.

[8]

 Xiang D, Chakrabarty K, Fujiwara H. Multicast-based

testing and thermal-aware test scheduling for 3D ICs with

a stacked network-on-chip. IEEE Trans. Computers,

2016, 65(9): 2767–2779. DOI: 10.1109/TC.2015.2493548.

[9]

 Wang L, Wang X H, Leung H F, Mak T. A non-minimal

routing algorithm for aging mitigation in 2D-mesh NoCs.

IEEE Trans. Computer-Aided Design of Integrated Cir-

cuits and Systems, 2019, 38(7): 1373–1377. DOI: 10.1109/

TCAD.2018.2855149.

[10]

 Xiang D, Shen K L, Bhattacharya B B, Wen X Q, Lin X

J. Thermal-aware small-delay defect testing in integrated

circuits for mitigating overkill. IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, 2016,

35(3): 499–512. DOI: 10.1109/TCAD.2015.2474365.

[11]

 Biere A, Cimatti A, Clarke E M, Strichman O, Zhu Y S.

Bounded model checking. Advances in Computers, 2003,

[12]

58: 117–148. DOI: 10.1016/S0065-2458(03)58003-2.

 Clarke E, Biere A, Raimi R, Zhu Y S. Bounded model

checking using satisfiability solving. Formal Methods in

System Design, 2001, 19(1): 7–34. DOI: 10.1023/A:

1011276507260.

[13]

 Cota E, Liu C. Constraint-driven test scheduling for NoC-

based systems. IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, 2006, 25(11): 2465–2478.

DOI: 10.1109/TCAD.2006.881331.

[14]

 Yuan F, Huang L, Xu Q. Re-examining the use of net-

work-on-chip as test access mechanism. In Proc. the 2008

Conference on Design, Automation and Test in Europe,

Mar. 2018, pp.808–811. DOI: 10.1145/1403375.1403571.

[15]

 Richter M, Chakrabarty K. Optimization of test pin-

count, test scheduling, and test access for NoC-based mul-

ticore SoCs. IEEE Trans. Computers, 2014, 63(3):

691–702. DOI: 10.1109/TC.2013.82.

[16]

 Strano A, Gómez C, Ludovici D, Favalli M, Gómez M E,

Bertozzi D. Exploiting network-on-chip structural redun-

dancy for a cooperative and scalable built-in self-test ar-

chitecture. In Proc. the 2011 Design, Automation and

Test in Europe, Mar. 2011. DOI: 10.1109/DATE.2011.

5763109.

[17]

 Wang J S, Ebrahimi M, Huang L T, Xie X, Li Q, Li G J,

Jantsch A. Efficient design-for-test approach for net-

works-on-chip. IEEE Trans. Computers, 2019, 68(2):

198–213. DOI: 10.1109/TC.2018.2865948.

[18]

 Herve M B, Cota E, Kastensmidt F L, Lubaszewski M.

NoC interconnection functional testing: Using boundary-

scan to reduce the overall testing time. In Proc. the 10th

Latin American Test Workshop, Mar. 2009. DOI: 10.1109/

LATW.2009.4813801.

[19]

 Kakoee M R, Bertacco V, Benini L. At-speed distributed

functional testing to detect logic and delay faults in

NoCs. IEEE Trans. Computers, 2014, 63(3): 703–717.

DOI: 10.1109/TC.2013.202.

[20]

 Kranitis N, Merentitis A, Theodorou G, Paschalis A, Gi-

zopoulos D. Hybrid-SBST methodology for efficient test-

ing of processor cores. IEEE Design & Test of Computers,

2008, 25(1): 64–75. DOI: 10.1109/MDT.2008.15.

[21]

 Collet J H, Zajac P, Psarakis M, Gizopoulos D. Chip self-

organization and fault tolerance in massively defective

multicore arrays. IEEE Trans. Dependable and Secure

Computing, 2011, 8(2): 207–217. DOI: 10.1109/TDSC.

2009.53.

[22]

 Dalirsani A, Imhof M E, Wunderlich H J. Structural soft-

ware-based self-test of network-on-chip. In Proc. the 32nd

VLSI Test Symposium, Apr. 2014. DOI: 10.1109/VTS.2014.

6818754.

[23]

 Cheng K T, Krishnakumar A S. Automatic functional

test generation using the extended finite state machine

model. In Proc. the 30th International Design Automa-

tion Conference, June 1993, pp.86–91. DOI: 10.1145/157485.

164585.

[24]

 Psarakis M, Gizopoulos D, Sanchez E, Reorda M S. Mi-

croprocessor software-based self-testing. IEEE Design &

Test of Computers, 2010, 27(3): 4–19. DOI: 10.1109/

[25]

420 J. Comput. Sci. & Technol., Mar. 2023, Vol.38, No.2

https://doi.org/10.1145/3414060
 https://doi.org/10.1109/TEST.2017.8242037
 https://doi.org/10.1109/TEST.2017.8242037
https://netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.pdf
https://netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016-old.pdf
https://doi.org/10.1109/TVLSI.2008.2002108
https://doi.org/10.1142/S0218126617500591
https://doi.org/10.1142/S0218126617500591
 https://doi.org/10.23919/DATE.2019.8714948
https://doi.org/10.1145/3223046
https://doi.org/10.1109/TC.2018.2844365
https://doi.org/10.1109/TC.2015.2493548
https://doi.org/10.1109/TCAD.2018.2855149
https://doi.org/10.1109/TCAD.2018.2855149
https://doi.org/10.1109/TCAD.2015.2474365
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1109/TCAD.2006.881331
 https://doi.org/10.1145/1403375.1403571
https://doi.org/10.1109/TC.2013.82
 https://doi.org/10.1109/DATE.2011.5763109
 https://doi.org/10.1109/DATE.2011.5763109
https://doi.org/10.1109/TC.2018.2865948
https://doi.org/10.1109/LATW.2009.4813801
https://doi.org/10.1109/LATW.2009.4813801
https://doi.org/10.1109/TC.2013.202
https://doi.org/10.1109/MDT.2008.15
https://doi.org/10.1109/TDSC.2009.53
https://doi.org/10.1109/TDSC.2009.53
 https://doi.org/10.1109/VTS.2014.6818754
 https://doi.org/10.1109/VTS.2014.6818754
 https://doi.org/10.1145/157485.164585
 https://doi.org/10.1145/157485.164585
https://doi.org/10.1109/MDT.2010.5

MDT.2010.5.

 Ganai M K, Gupta A. Accelerating high-level bounded

model checking. In Proc. the 2006 International Confer-

ence on Computer Aided Design, Nov. 2006, pp.794–801.
DOI: 10.1109/ICCAD.2006.320122.

[26]

 Tupuri R S, Abraham J A. A novel functional test gener-

ation method for processors using commercial ATPG. In

Proc. the 1997 International Test Conference, Nov. 1997,

pp.743–752. DOI: 10.1109/TEST.1997.639687.

[27]

 Zhang Y, Li H W, Li X W. Automatic test program gen-

eration using executing-trace-based constraint extraction

for embedded processors. IEEE Trans. Very Large Scale

Integration (VLSI) Systems, 2013, 27(7): 1220–1233. DOI:

10.1109/TVLSI.2012.2208130.

[28]

 Negro V C, Goldstein L H. The generation of correlated

multivariate samples for Monte Carlo simulation. IEEE

Spectrum, 1968, 5(2): 5. DOI: 10.1109/MSPEC.1968.

5214753.

[29]

Ying Zhang received his B.S. de-

gree in computer science from Harbin

Engineering University, Harbin, in

2006, and his Ph.D. degree in comput-

er architecture from the Institute of

Computing Technology, Chinese

Academy of Sciences, Beijing, in 2011.

Now, he is an associate professor at Tongji University,

Shanghai. He is a member of CCF and IEEE. His re-

search interests include signal integrity, reliable design

of network-on-chip, and software-based self-testing.

Peng-Fei Ji received his Master’s de-

gree from School of Software Engineer-

ing, Tongji University, Shanghai. His

research interests include kilo-core net-

works-on-chip online testing and soft-

ware-based self-testing.

Pan-Wei Zhu is an undergraduate

student of the School of Software En-

gineering, Tongji University, Shang-

hai. His current research interests in-

clude routing algorithms of network-

on-chip, data mining, and reinforce-

ment learning.

Zebo Peng received his Ph.D. de-

gree in computer science from

Linköping University, Linköping, in

1987. He is currently a professor of

computer systems, the Director of the

Embedded Systems Laboratory, and

the Vice-Chairman of the Department

of Computer and Information Science, Linköping Uni-

versity, Linköping. He has published over 350 technical

papers and five books in various topics related to em-

bedded and cyber-physical systems.

Hua-Wei Li received her B.S. de-

gree in computer science from Xiang-

tan University, Xiangtan, in 1996, and

her M.S. and Ph.D. degrees in com-

puter architecture from the Institute

of Computing Technology (ICT), Chi-

nese Academy of Sciences (CAS), Bei-

jing, in 1999 and 2001, respectively. She has been a pro-

fessor with ICT, CAS and CAS since 2008. Her current

research interests include testing of very large-scale inte-

gration/SoC circuits, approximate computing architec-

ture and machine learning accelerators.

Jian-Hui Jiang received his B.E.,

M.E. and Ph.D. degrees in traffic in-

formation engineering in Shanghai

Railway University, Shanghai, in 1985,

1988, and 1999, respectively. He is

currently a full professor of software

engineering and a vice dean of the

School of Software Engineering at Tongji University,

Shanghai. His current research interests include depend-

able systems and networks, software reliability engineer-

ing, VLSI/SoC testing and fault-tolerance.

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 421

https://doi.org/10.1109/MDT.2010.5
 https://doi.org/10.1109/ICCAD.2006.320122
 https://doi.org/10.1109/TEST.1997.639687
https://doi.org/10.1109/TVLSI.2012.2208130
https://doi.org/10.1109/MSPEC.1968.5214753
https://doi.org/10.1109/MSPEC.1968.5214753

	1 Introduction
	2 Background
	3 SBST with BMC for Sequential Circuits
	3.1 Implementation of BMC for Testing
	3.2 Flowchart of SBST with BMC
	3.3 Sets of Properties in BMC
	3.4 Generation of Test Patterns Using Constrained ATPG
	3.5 Implementation of SBST with BMC on an NoC Router

	4 Parallel SBST for Kilo-Core NoCs
	4.1 Framework of Parallel SBST
	4.2 Network-on-Chip Modeling
	4.3 Test Objectives and Problem Modeling
	4.4 Multi-Threading Test Generation

	5 Experimental Results
	5.1 Multi-Threading Test Generation
	5.2 Multi-Threading Test Generation
	5.3 Test Cost on the Kilo-Core NoC

	6 Conclusions
	References

