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Abstract    Online testing is critical to ensuring reliable operations of the next generation of supercomputers based on a

kilo-core network-on-chip (NoC) interconnection fabric. We present a parallel software-based self-testing (SBST) solution

that makes use of the bounded model checking (BMC) technique to generate test sequences and parallel packets. In this

method, the parallel SBST with BMC derives the leading sequence for each router’s internal function and detects all func-

tionally-testable faults related to the function. A Monte-Carlo simulation algorithm is then used to search for the approxi-

mately optimum configuration of the parallel packets, which guarantees the test quality and minimizes the test cost. Final-

ly, a multi-threading technology is used to ensure that the Monte-Carlo simulation can reach the approximately optimum

configuration in a large random space and reduce the generating time of the parallel test. Experimental results show that

the proposed method achieves a high fault coverage with a reduced test overhead. Moreover, by performing online testing

in the functional mode with SBST, it effectively avoids the over-testing problem caused by functionally untestable turns in

kilo-core NoCs.
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 1    Introduction

Large-scale  networks-on-chip[1] (NoCs)  have

emerged as a promising architecture for supercomput-

ers  due  to  their  outstanding  parallel  communication

capability[2].  This  architecture  integrates  many  pro-

cessor cores into a single chip and turns the chip into

a  small  supercomputer.  This  architecture  effectively

alleviates the bottleneck faced by the next generation

of  supercomputers,  as  most  of  the  communications

among chips are moved inside a chip to reduce trans-

mission delays[1]. For example, the Taihu-light super-

computer  uses  such  a  large-scale  NoC  (i.e.,  the

SW26010  processor),  which  integrates  260  processor

cores[1].  According  to  a  report  from  Oak  Ridge  Na-

tional  Laboratory[3],  the  excellent  performance  of  the

architecture  helped  the  Taihu-light  Supercomputer

hold  its  status  as  the  fastest  supercomputer  in  the

world  for  three  years  (2016– 2018).  Currently,  many

research institutes are trying to design kilo-core NoCs

for the next generation of supercomputers.

A  kilo-core  NoC requires  to  be  robust  and  fault-

tolerant[4, 5] as  it  is  not  only  used  in  low-fault  situa-

tions[1]. Since a chip’s fault probability is proportion-
 
 

Regular Paper

This paper was supported in part by the National Key Research and Development Program of China under Grant No. 2020YFB
1600201, the National Natural Science Foundation of China (NSFC) under Grant Nos. 61974105, 62090024, and U20A20202, and the
Zhejiang Lab under Grant No. 2021KC0AB01.

*Corresponding Author

Zhang Y, Ji PF, Zhu PW et al. Parallel software-based self-testing with bounded model checking for kilo-core networks-

on-chip. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(2): 405−421 Mar. 2023. DOI: 10.1007/s11390-

022-2553-3

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-022-2553-3
https://doi.org/10.1007/s11390-022-2553-3


al to its size, and the size of a kilo-core NoC reaches

the  scale  of  the  entire  wafer[6],  ensuring  the  NoC  is

fault-free  during  the  manufacturing  stage  becomes

very difficult. If a foundry simply discards a kilo-core

NoC  that  is  faulty  somewhere  in  the  chip,  the  chip

yield will be very low, and its cost will be impractical-

ly high[1].  A faulty NoC should,  therefore,  be treated

as  a  good  chip  after  its  faults  have  been  dealt  with.

During the operating stage, a kilo-core NoC continu-

ously  works  in  a  thermal-intensive  environment[7– 9],

and  severe  thermal-intensive  conditions  will  exacer-

bate  the  aging  problem[10] and  increase  its  faulty

probability.  Long  downtimes  in  replacing  the  faulty

chip would result in unacceptable operating costs for

supercomputers. Therefore, a kilo-core NoC must sup-

port  dynamic reconfiguration to handle  its  faults  on-

line.  A  feasible  solution  to  this  problem  is  to  imple-

ment  more  processor  cores  on  a  single  chip,  discard

the faulty cores and links, and treat the faulty chip as

a  good  one  as  long  as  the  number  of  its  available

cores  meets  the  design  requirement[1].  To  implement

this  solution,  we  first  need  an  online  test  method  to

discover faults in an NoC.

Although online testing is required to guarantee a

kilo-core  NoC’ s  reliability,  testing  such  a  large  NoC

remains a great challenge. First, this system contains

about 1 000 switchers and nearly 5 000 buffers. Its test

packets have to cover all the buffers and all the feasi-

ble turns and conflicting scenarios on each switch. In

addition, not all turn channels in an NoC can be acti-

vated by the routing algorithm in the function mode.

If all NoCs with faults on the functionally untestable

turns  will  be  discarded,  it  will  lead to  yield  loss  and

cause  the  over-testing  problem[11].  Furthermore,  the

packets  for  online  testing  will  occupy  the  high-speed

L1  cache  (i.e.,  critical  resources)  in  a  kilo-core  NoC.

In order to avoid the interference of functional pack-

ets  on  the  test  process,  the  test  packets  have  to  be

transmitted in the NoC’s idle periods. Hence, a paral-

lel test technique has to minimize its required storage

space and executing time. Manually configuring paral-

lel packets to achieve the above two goals will be an

arduous  task.  Therefore,  a  novel  technology  is  re-

quired to automatically configure test packets.

In this paper, we develop a parallel software-based

self-testing (SBST) method to form a sequence of op-

timized packet configurations to test a kilo-core NoC

in  parallel  with  the  minimal  test  overhead.  We  ap-

plied SBST with bounded model checking (BMC)[12, 13]

in our previous work[2] aiming at generating test pack-

ets for a single buffer or switch. In this work, we gen-

erate  the  optimal  configuration  of  such  test  packets

for  the  kilo-core  NoCs  using  a  Monte-Carlo  simula-

tion  algorithm.  Furthermore,  we  employ  a  multi-

threading  technology  to  evaluate  the  performance  of

the  configurations  of  these  packets  in  parallel.  The

key contributions are as follows.

1)  The  developed  SBST  with  BMC[12, 13] can  de-

rive  the  leading  sequence  for  each  internal  function

and  detect  all  functionally  testable  faults  related  to

the different functions of the NoC.

2)  A  Monte-Carlo  simulation  algorithm  is  devel-

oped to search for the approximately optimum config-

uration  of  the  test  packets,  which  not  only  guaran-

tees the test quality but also minimizes the test over-

head.

3) The multi-threading technology is used to facil-

itate the Monte-Carlo simulation to search for the ap-

proximately  optimum  configuration  in  a  large  ran-

dom space and reduce the generating time of the par-

allel tests.

The rest of the paper is organized as follows. Sec-

tion 2 describes the background of implementing SB-

ST  on  an  NoC.  In Section 3,  we  describe  the  SBST

with  BMC for  testing  the  NoC buffer  or  switch  pre-

sented  in  our  previous  work[2].  The  parallel  SBST

technique is then presented in detail in Section 4. Sec-

tion 5 describes and explains the experimental results.

Finally, we conclude the paper in Section 6.

 2    Background

Many  NoC  testing  techniques  have  been  pub-

lished in the literature. In early work, Cota et al. used

an  NoC  as  a  test  access  mechanism  for  manufactur-

ing tests[14, 15],  while Richter and Chakrabarty[16] fur-

ther  optimized  the  number  of  test  pins  and  mini-

mized the test application time. Although these meth-

ods can be used for manufacturing tests, they require

external  automatic  test  equipment  (ATE)  and  are

therefore  not  suitable  for  online  tests.  The  built-in

self-test  (BIST)  was  also  used  to  test  an  NoC[17, 18].

Although BIST reduces the need for external ATE, it

cannot be used for online testing when the system is

in  operation,  because  it  requires  the  system  to  be

switched to an extra test mode. Besides, its area over-

head is reported to be as high as 21% of the original

design  area[17].  Researchers  also  proposed  boundary

scans  for  NoC  testing,  by  inserting  design-for-test

hardware into an NoC router’s ports[19, 20]. This meth-
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od can effectively test the router’s data path but on-

ly achieves limited coverage on its  control  logic.  The

effective functional test for the sequential circuit cor-

responding to the control logic remains an open prob-

lem.

Software-based self-testing (SBST) is  a promising

online testing method[21] as it executes native instruc-

tions in the functional mode and can potentially lead

to  high  fault  coverage[2].  The  method  is  also  capable

of  online  testing  an  NoC  by  transmitting  packets

through  its  on-chip  network[2].  Specifically,  when  the

SBST  program  loads  or  stores  data  (i.e.,  packets)

from/to  the  remote  core,  the  NoC  transmits  these

packets  from  the  source  core  to  the  target  core

through  the  on-chip  network,  and  the  transmitted

packets can be used to test the functional and struc-

tural  faults  in  the  on-chip  network.  Besides,  the  SB-

ST  program  can  also  generate  ``stalls"  between  flits

by  inserting  NOP  instructions  (or  interrupts);  these

stalls can activate the router’s internal functions.

Collet et al. proposed an SBST method for NoC-

based  multi-core  arrays[22],  where  the  SBST program

tests  the  processors  but  requires  auxiliary  circuits  to

test  the  on-chip  network.  Although  this  method  re-

quires low area overhead, it has to switch the system

from the functional mode to the test mode; therefore,

it  is  not  suitable  for  the  online  testing  scenarios.

Dalirsani et  al. developed a  structural  SBST method

for  NoCs[23].  The  method  applies  a  timeframe  exten-

sion  to  the  router  and  generates  test  patterns  using

the SAT solver. However, automatically extracting in-

put sequences is still an open issue. The method giv-

en in [23] manually generates test sequences within a

small  sequence  depth  but  has  its  limitations  for  cir-

cuits with a large sequence depth. Therefore, a novel

SBST  method  is  required  to  automatically  generate

test packets and test the hard-to-access faults under a

large sequence depth.

 3    SBST with BMC for Sequential Circuits

In this  work,  we develop an SBST method based

on BMC (i.e., BSBST)[2] to online test the sequential

control  logic  and  target  hard-to-detect  faults.  The

method  uses  an  extended  finite-state  machine  (EF-

SM)[24] to model the sequential control logic. The EF-

SM  can  be  automatically  extracted  from  an  RTL

(register-transfer level) description[24].

We define an EFSM as an eight-tuple (I, O, S, R,
T,  E,  F,  W),  where I(O)  denotes  the  set  of  input

(output)  symbols,  corresponding  to,  e.g.,  input  (out-

put)  packets. S represents  the  state  set,  e.g.,  the

states of the handshake FSM, and R denotes the vari-

able set, e.g., data registers in buffers. T is the transi-

tion set,  and W is  the  set  of  internal  wires. A given

transition ta is controlled by an enable function ea and

an  update  function fa.  The  sets  of  enable  functions

and update functions are denoted by E and F, respec-

tively. Finally, we denote the property set to test the

faults  on  the  wires  corresponding  to E and  the  set

corresponding to F as PE and PF, respectively.

Definition 1. A functional test on a sequential cir-
cuit is a test that detects structural faults that are ex-
cited during every internal state transition.

As some structural faults never lead to errors in a

sequential  circuit  during normal  operation[25],  a  func-

tional test is used to target the testable faults in the

functional mode. In this work, we consider the stuck-

at fault model. We assume that a sequential circuit is

effectively  tested  if  every  transition ta is  activated,

and all  wires  in  the  subset  of W corresponding  to ta
are controllable and observable.

 3.1    Implementation of BMC for Testing

In  this  subsection,  we  apply  BMC  to  excite  the

target function, denoted by a given property p. Let us

assume  that  the  model  takes b timeframes  from  the

initial  state  to  arrive  at  the  state  where  the  target

function is  activated.  Let B refer  to an upper bound

on b. BMC efficiently searches all the paths from the

initial state within B timeframes to check the proper-

ty !p (the  complement  of p).  Once  a  counterexample

that violates !p emerges,  it  activates the target func-

tion p.

I1 I2

Ib R1 R2 Rb

I1 R1 I2 R2 Ib

Rb

The BMC tool can also output the input signal se-

quence  and  the  internal  variable  sequence  associated

with  the  counterexample.  We  combine  these  se-

quences  to  form the  leading  sequence.  Let , ,  ...,

 be the input signals, and , , ...,  be the in-

ternal variables at these b timeframes; then the lead-

ing  sequence  is  defined as  (( , ),  ( , ),  ...,  ( ,

)).

Definition  2. A  leading  sequence  that  excites  the
property p, referred to as LS(p), is the combination of
the input signal sequence and the internal variable se-
quence from the initial state in the counterexample.

A leading sequence is used to facilitate the test of

structural faults in a sequential circuit.  For example,

if a stuck-at 0 fault on a wire w in the NoC is under

Ying Zhang et al.: Parallel Software-Based Self-Testing with BMC for Kilo-Core NoCs 407



test, we can set “w is equal to 1 and w is observable

on output signals”  as the target function p and load

this function into the BMC tool. Once the BMC tool

derives  the  leading  sequence,  the  input  signal  se-

quence in LS(p) will then be transformed into the test

sequence.

 3.2    Flowchart of SBST with BMC

We  present  a  flowchart  for  the  SBST  algorithm

with BMC (i.e., BSBST) in Fig.1[2] for sequential cir-

cuits.  First,  the  algorithm automatically  extracts  the

EFSM from the design[24] and stores the sets of prop-

erties PE and PF in  a  property  database.  Second,  it

checks  if  an  unchecked  property  exists  in  the

database. If so, the algorithm takes one property from

the database and goes to the next step; otherwise, the

algorithm terminates. Third, the algorithm makes use

of a slicing technique to reduce the model size in or-

der  to  alleviate  the  state-space  explosion  problem.

Fourth, it uses a BMC tool to check the property. If

the tool fails to derive the leading sequence, the prop-

erty is not testable in the functional mode, and the al-

gorithm returns to the second step; otherwise, the al-

gorithm goes to the next step. Fifth, if the property is

in PE,  the  input  signal  sequence  in  the  leading  se-

quence is assumed as the test sequence; otherwise, the

algorithm goes to the next step. Sixth, the leading se-

quence  guides  the  design  to  the  timeframe  when  the

given  update  function  happens,  and  then  a  con-

strained  automatic  test  pattern  generation  (con-

strained  ATPG)  procedure  will  be  used  to  generate

test patterns for the faults that are excited by the up-

date  function.  Finally,  the  algorithm  translates  the

test  patterns  into  test  sequences  and  returns  to  the

second step for the next property.

In  the  BMC  process,  the  state-space  explosion

problem can become serious if the BMC tool directly

loads the complete design, which is usually very large.

We use two methods to reduce the size of the model.

First,  we  exploit  the  slicing  method[26] to  reduce  the

size of the model by removing non-contributive tran-

sitions  and  variables.  The  non-contributive  transi-

tions/variables  are  those  that  do  not  affect  the  vari-

ables  in  the  target  property.  Second,  we  remove  the

data variables that simply store data information in-

stead of activating any transitions, and thereby signif-

icantly reduce the size of the design.

 3.3    Sets of Properties in BMC

In this subsection, we describe the sets of proper-

ties PE and PF used in BMC.

First, let Iea, Rea, and Wea be the subsets of I, R,

and W corresponding  to  a  given  enable  function ea,

respectively.  Let v(Rea)  refer  to  one  possible  assign-

ment  of  the  variables  in Rea.  As Rea contains  only  a

few registers, a small group of v(Rea) exists. We enu-

merate all possible assignments of the variables in Rea

to  test  faults  on  the  wires  in Wea.  The  property  re-

quires four conditions: 1) the current state is cs(ta), 2)

the enable function ea is true, 3) the variables in Rea

are equal to the values of the given assignment v(Rea),

and 4) the elements of Rea are observable. Finally, we

collect the group corresponding to every enable func-

tion and build the property set PE.

Second, let Rfa and Wfa be the subsets of R and W
corresponding  to  a  given  update  function fa respec-

tively.  We  develop  one  property  to  activate  the  up-

date function fa in BMC. This property requires three

conditions:  1)  the  current  state  is cs(ta),  2)  the  en-

able function ea is true, and 3) the elements of Rfa are

observable.  Finally,  we  collect  the  property  corre-

Extract EFSM

Start

Unchecked

Property?

BMC with SAT

?

Property

in ?

SBST for the

Wires for 

Constrained ATPG

Generate SBST

End

No

No

No

Yes

Yes

Reduce Model

Size Using Slicing

Yes

Properties  

 and  

SBST for the

Wires for 

 
Fig.1.  Flowchart of SBST with BMC[2].
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sponding  to  every  update  function  and  build  the

property set PF.

 3.4    Generation of Test Patterns Using

Constrained ATPG

We utilize  constrained  ATPG[27] to  generate  test

patterns  for  the  faults  on  the  wires  in Wfa.  The  key

idea  is  to  fix  the  variables  in Rea and  the  input  sig-

nals Iea in  the  leading  sequence  and  to  detect  the

testable faults on the wires in Wfa by assigning the re-

maining variables and input signals.

Fig.2 presents the steps needed to implement con-

strained  ATPG  for  the  faults  on  the  wires  in Wfa.

First,  the  method  transforms  the  synthesized  design

into  a  combinational  circuit  by removing all  internal

registers and setting these registers’ outputs as pseu-

do-primary  inputs  (PPIs)  of  the  combinational  cir-

cuit  and  their  inputs  as  pseudo-primary  outputs

(PPOs).  Second,  the values  of Rea in Rb of  the lead-

ing  sequence  are  mapped  to  PPIs  corresponding  to

Rea, while the values of Iea in Ib are mapped to inputs

corresponding  to Iea.  If  the  update  function fa does

not update some variables, such as the register r2, the

method  makes  the  PPO corresponding  to r2 non-ob-

servable. Third, ATPG is used to target faults on the

wires in Wfa by assigning values to unspecified inputs

and PPIs and thereby generating compact and effec-

tive test patterns. Finally, the method uses the map-

ping technique from [28] to translate test patterns in-

to SBST programs.

 3.5    Implementation  of  SBST  with  BMC  on

an NoC Router

In  this  subsection,  we  implement  the  SBST with

the BMC method on the critical components, such as

a  buffer  or  a  switch.  The  buffer  is  often  used  for

handshaking  with  an  adjacent  node. Fig.3 presents

the handshake state  machine of  a  buffer  in  the well-

D Q

Q

D Q

Q

D Q

Q

PPI(ea) PPI(1) PPI(2)

PPO(1)

PPO(ea)

PPO(2)

Transform Circuit

Impose 

Run ATPG

Generate SBST

  ea

ea

1

2

1

2
 

Fig.2.  Constrained ATPG on a sequential circuit.
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Fig.3.  Handshake state machine in a buffer.
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known  Herms  routers①,  where  the  bold  text  on  the

transition  arc  refers  to  an  enable  function,  and  the

normal text corresponds to an update function. Note

that the SBST with BMC is a general test generation

technique  that  can  be  applied  to  NoCs  with  other

routing algorithms. We first prepare the sets of prop-

erties PE and PF according to the EFSM correspond-

ing to the buffer respectively. Each property p in PE

should  activate  a  transition ta and  assign  a  given

v(Rea)  to  the  variables  corresponding  to  the  enable

function ea.  If  the  BMC  tool  derives  a  leading  se-

quence LS(p)  for  property p,  the  input  sequence  of

LS(p) is considered as the test sequence. Each proper-

ty p in PF activates  the  update  function fa.  If  the

BMC tool  derives  a  leading  sequence LP(p),  this  se-

quence can trigger the update function. Subsequently,

the  method  runs  a  constrained  ATPG  algorithm  on

the  transformed  buffer  for  faults  that  are  sensitized

by  the  update  function.  Finally,  the  method  trans-

lates these sequences into test packets for the buffer.

In  our  model-checking  flow,  the  BMC  tool  NuS-

MV② is  used  by  us.  At  first,  it  loads  in  a  16-bit

buffer’ s  model  whose  sequential  depth  is  set  to  31.

Next,  it  loads  the  sets  of  properties PE and PF and

derives  the  leading  sequences  for  these  properties.  It

loads in 25 properties in total and takes only 1.19 s of

CPU time to derive the leading sequences for all  the

properties on the sliced EFSM.

The switch is responsible for forwarding the pack-

ets in the input buffer to the correct output port and

arbitrating  input  requests  if  multiple  requests  exist.

Fig.4 presents  its  arbitrating  state  machine.  The

method sets the condition of activating each transmis-

sion turn as a property for the following step. In the

model checking, the slicing method[26] greatly reduces

the size of the original design, which, in this case, is a

16-bit router with five buffers and one switch. In Ta-

ble 1, the number of variables and wires is reduced to

3.8%  and  7.4%,  respectively,  of  the  original  design.

The BMC tool takes only 1.29 s to verify 32 proper-

ties  and  generate  all  the  leading  sequences.  Finally,

the method translates these sequences into test pack-

ets for the switch.

 4    Parallel SBST for Kilo-Core NoCs

 4.1    Framework of Parallel SBST

In this work, we develop a parallel SBST (i.e., PS-

BST)  based  on  the  Monte-Carlo  simulation

technique[29] to  automatically  generate  configurations

of  test  packets  that concurrently emerge on different

NoC nodes and test the NoC in parallel with the min-

imal  test  overhead.  Since  the  NoC mapping  problem

is  an  NP-complete  problem,  and  the  scale  of  a  kilo-

core NoC is huge, it is infeasible to find the optimum

configuration  of  test  packets.  Instead,  we  apply  the

Monte-Carlo simulation to find an approximately op-

timum solution. Fig.5 presents  the  framework  of  the

PSBST algorithm. First, the algorithm generates a set

of  random  configurations  of  test  packets  at  the  cur-

rent time Ts. Then, it simulates each configuration till

its  termination  time Te when  all  packets  arrive  at

their destination cores. It also counts the packet num-

ber and the contribution to the fault coverage. Later,

the algorithm comprehensively evaluates these config-

urations and obtains an optimized configuration. The

algorithm  then  generates  another  set  of  configura-
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Fig.4.  Arbitrating state machine in a switch.
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tions,  derives  another  optimized  configuration,  and

checks  whether  the  new  configuration  improves  the

previous one.  If  so,  the algorithm updates the select-

ed  configuration,  and  the  Monte-Carlo  simulation

continues.  Otherwise,  the  configuration  is  finally  se-

lected.  With this  approach,  the  final  configuration  is

derived  from  a  huge  amount  of  random  configura-

tions, and the optimum one is not guaranteed. Hence

the  final  selected  configuration  is  only  an  approxi-

mately optimum solution based on the principle of the

Monte-Carlo simulation[29].

 4.2    Network-on-Chip Modeling

Modeling  a  kilo-core  NoC at  the  high  level  is  re-

quired to speed up packet simulation, as simulating a

kilo-core NoC at the gate level faces many problems.

First, the gate-level netlist contains too many details,

and  a  kilo-core  NoC  is  huge  in  size,  and  thus  the

gate-level simulation is very time-consuming. Second,

the simulation of massive configurations cannot be ac-

celerated by parallel computing as the number of par-

allel simulators is strictly limited by commercial tools.

Hence a high-level and cycle-accurate simulator is re-

quired for the parallel SBST solution.

We have developed a high-level simulator using C

language for  kilo-core  NoCs.  The simulator  preserves

the  necessary  variables  of  the  NoC  using  the  Herms

routers③,  omits  many  low-level  details,  and  thereby

ensures  its  efficiency.  Also,  we  can  design  high-level

simulators  for  NoCs  with  other  routing  algorithms.

The  simulator  also  completes  the  functions  of  the

buffers  and  the  switches③,  and  its  results  maintain

cycle  accuracy  with  that  of  the  gate-level  simulator.

Fig.6 presents the simulator’s workflow. First, the si-

mulator puts the given packets onto the NoC’s input

ports. Then, it updates the state of each switch (i.e.,

state(xi, yi))  according  to  the  arbitrating  state  ma-

chine in Fig.4. If the state is s1, the simulator checks

if  each  input  buffer  has  a  packet  request  and  sends

these  requests  to  the  switch.  If  the  state  is s2,  the

simulator  selects  a  packet  request  according  to  the

round  strategy③.  If  the  state  is s3,  the  simulator

checks whether the next buffer in an adjacent router

for  the  selected  request  is  not  full.  If  it  is  full,  the

state  returns  to s1.  Otherwise,  the  simulator  deter-

mines the transmission direction. If the state is s4, s5,

or s6, the simulator sends the head flit in the select-

ed packet to the next buffer and reduces the buffer’s
flit number by 1.

Then,  the  simulator  checks  the  tail  flit  in  each

buffer according to the handshake state machine③ in

Fig.3. If  the head flit  from the same packet exists in

the  buffer,  the  tail  flit  has  to  wait.  Otherwise,  the

simulator  checks  if  the  next  buffer  for  the  tail  flit  is

full.  If  it  is  full,  the tail  flit  also has to wait.  Other-

wise, the flit number in the packet state (i.e., pnum)

is  reduced  by  1.  Once  the  flit  number  in  the  packet

state  is  reduced  to  0,  the  tail  flit  enters  its  next

buffer.  This  simulation  preserves  the  critical  func-

tions of the NoC and eliminates many control signals.

Therefore, this high-level simulator can quickly simu-

late the NoC and keep cycle accuracy with the gate-

level simulator.

 4.3    Test Objectives and Problem Modeling

Simulating faults directly on the netlist is not ap-

plicable to the Monte-Carlo simulation either. A kilo-

core NoC contains tens of millions of faults, and fault

simulation  is  extremely  time-consuming  (e.g.,  hun-

dreds  of  hours  per  configuration).  Moreover,  our

Monte-Carlo simulation involves thousands of config-

urations. Hence, it requires a novel method to evalu-

Table  1.   BMC Results for the Buffer and the Arbitrator

Number
of

Variables

Number
of

Wires

Max
Timeframes

Number
of

Properties

CPU
Time
(s)

Normal buffer 275 490 23 25 1.19

Sliced buffer 19 114 23 25 1.19

Normal
arbitrator

1 429 2 961 9 32 1.29

Sliced arbitrator 54 218 9 32 1.29

Generate Random Configuration

Evaluate Each Configuration

Choose an Optimal One

Better Than the
Previously Selected One?

Obtain the Optimum Configuration

 Update the

Selected

Configuration

N

Y

 
Fig.5.  Framework of the parallel SBST.
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ate  the  test  quality  of  a  given  configuration  of  test

packets efficiently.

The  proposed  parallel  test  method  abstracts  the

test  packets  generated  in Section 4 as  test  scenarios.

First,  since  the  BSBST  method  generates  four  test

packets for a buffer,  the parallel  test  has to consider

four test scenarios corresponding to these packets for

each buffer.  Second, properties in the BMC cover all

transmission turns from an input port to each output

port  in  a  switch.  However,  some  turns  are  not

testable  due  to  the  XY  algorithm  used  for  routing

packets  through  the  network[2].  The  method  will

therefore  consider  only  the  packets  corresponding  to

these  testable  turns  as  test  scenarios.  Third,  the

method also abstracts the test packets for the arbitra-

tor  as  test  scenarios.  The  parallel  test  evaluates  the

test coverage of a configuration by counting these test

scenarios on every router. (1) presents the test cover-

age  (i.e., cov),  where Nscen and sumscen denote  the

amount of the newly detected scenarios and the total

scenarios,  respectively.  Once  a  test  scenario  men-

tioned  above  firstly  appears  on  a  buffer  or  a  switch,

this method increases Nscen by 1. 

cov =
Nscen

sumscen
, (1)

 

objective =
cov

√
numflit ×

timecur

timepre

. (2)

(numflit)

Furthermore, (2) presents the objective formula to

evaluate  the  current  configuration.  The  numerator

part  is  the  test  coverage,  indicating  the  number  of

scenarios  newly  detected  by  the  configuration.  The

denominator  contains  two  parts.  The  first  is  the

square root of the flit number  in the configu-

ration.  The  square  root  operation  can  avoid  a  small

packet covering a few test scenarios to obtain a large

objective  value.  The  second  is  the  ratio  of  the  com-

pleting time after adding the configuration (i.e., timecur)
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Fig.6.  Workflow of the high-level NoC simulator.
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to the originally completing time (i.e., timepre). Initial-

ly, we assume that the original completing time is the

longest transmission time of a single packet. This ob-

jective formula, therefore, not only evaluates the test

coverage  without  applying  the  time-consuming  fault

simulation but also considers the flit number and the

test time.

 4.4    Multi-Threading Test Generation

Generating  the  packet  configurations  using  the

Monte-Carlo  simulation  remains  time-consuming,

even with the high-level simulator and quick evaluat-

ing method. On the other hand, the simulation of dif-

ferent  configurations  is  independent  of  each  other,

and  the  current  computing  platform  often  supports

running multi-threading programs. Therefore, the pro-

posed  PSBST  technique  uses  the  multi-threading

technology to generate parallel packets for testing ki-

lo-core NoCs more efficiently.

Fig.7 presents  the  multi-threading  algorithm  to

generate a sequence of packet configurations. This al-

gorithm  in Fig.7(a)  contains  four  types  of  threads:

main  threads,  configuration  threads,  simulation

threads,  and  statistics  threads. Fig.7(b)  presents  the

process  of  a  configuration  thread.  First,  the  thread
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Fig.7.  Multi-threading algorithm for generation parallel packets. (a), (b), (c), (d), and (e) are for the algorithm mainframe, configu-
ration thread flowchart (thread 2), simulation thread flowchart (thread 3), statistics thread flowchart (thread 4), and main thread
flowchart (thread 1), respectively. Config. means configuration; Temp. means temporary; Scen. means scenarios.
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has  generated  a  large  number  of  different  configura-

tions of test packets in the temporary storage. Specifi-

cally,  the  thread  counts  free  input  ports  under  the

current  NoC state  and  selects Nport ports  from these

free ports. Then it randomly chooses the test packets

as discussed in Subsection 3.5, whose source and des-

tination addresses are also random, for these selected

ports,  i.e.,  a  configuration  of  packets.  Later,  the

thread copies Nconf configurations into a table for one

Monte-Carlo iteration and individually sets the flag of

a ready configuration as 1. When the number of ready

configurations  reaches  the  number  of  available

threads  supported  by  the  computing  platform  (i.e.,

availthread),  the  thread  sends  a ready message  to  the

main  thread.  Once  a request message  arrives,  the

thread  sends availthread configurations  to  the  simula-

tion threads and sets their flags to 2. Once the thread

generates Nconf configurations whose flags become 2, it

empties  the  table.  If  the  thread receives  an iteration
message, it copies other Nconf configurations from the

temporary  storage.  If  the  thread  receives  an update
message,  it  updates  these  free  input  ports  according

to  the  updated  NoC  state  and  returns  to  the  first

step.

Te

Fig.7(c)  presents  the  process  of  simulation

threads, which are no more than the available threads

supported by the computing platform. These threads

first  obtain  the  current  NoC  state  from  the  main

thread  and  send  a request message  to  the  main

thread. Once a ready message arrives, the simulation

threads  can  obtain availthread configurations.  Then

each  simulation  thread  simulates  a  configuration  on

the  high-level  simulator.  If  the  completing  time (i.e.,

) is within the idle period of the kilo-core NoC, the

thread  derives  the  objective  value  of  the  configura-

tion.  Otherwise,  the  thread  abandons  the  configura-

tion.  The  thread  also  adds  a  synchronization  opera-

tion after itself. When all simulation threads are com-

pleted, they send their results to the statistics thread.

Fig.7(d)  presents  the  process  of  the  statistical

thread. First, this thread receives the results submit-

ted  by  the  simulation  threads  and  selects  the  maxi-

mum objective value and its corresponding configura-

tion  from  these  results.  Then,  the  thread  compares

this  value  with  the  previous  maximum  value  in  the

temporary  storage.  If  the  new  value  is  greater  than

the  previous  one,  the  thread saves  this  new value  in

the  temporary  storage.  Next,  the  thread  checks

whether  the  number  of  simulated  configurations

reaches Nconf.  If  so,  the  thread  compares  the  current

maximum values with the one achieved in the previ-

ous Monte-Carlo iteration (if it exists). If the current

one is larger, the thread selects the current configura-

tion  and  sends  an iteration message  to  the  main

thread. Then the algorithm starts another Monte-Car-

lo iteration. Otherwise, it obtains the optimum config-

uration  and  sends  an update message  to  the  main

thread.

Fig.7(e)  presents  the  process  of  the  main  thread.

The  thread  first  starts  the  configuration  thread  and

transmits the NoC state to the simulation threads. If

the  main  thread  receives  a ready message  and  a re-
quest message,  it  imposes  the  generated  configura-

tions on the simulation threads. If all synchronization

operations in the simulation threads are triggered, the

main thread activates the statistics thread. If an iter-
ation message emerges, the main thread starts anoth-

er  Monte-Carlo  iteration.  If  an update message  ar-

rives, the main thread selects the optimum configura-

tion and applies it to the NoC. If the configuration’s
completing  time  is  very  close  to  the  idle  period,  the

thread stores the NoC’s state at the completing time

and  clears  all  temporary  variables.  The  thread  then

restarts from the stored NoC state to generate packet

configurations for the next idle period. Otherwise, the

main thread simulates this configuration until a pack-

et arrives at its destination core for the first time (i.e.,

Tfirst).  It  updates  the  NoC’ s  state  with  that  at Tfirst

and  continues  to  test  the  undetected  scenarios.  The

thread is terminated when it covers all test scenarios.

This  multi-threading  technology  ensures  that  the

Monte-Carlo simulation can derive the approximately

optimum  configuration  in  a  large  random  space  and

reduce the generating time.

 5    Experimental Results

In  this  section,  we  use  the  parallel  SBST to  test

kilo-core  NoCs  and  evaluate  the  fault  coverage  and

the test cost of this approach, where the NoC used in

all experiments is made up of Hermes routers④. First,

we develop the SBST with BMC to test  the Hermes

router④. Since the fault simulation of a kilo-core NoC

is  very  time-consuming,  we  set  the  flit  width  to  16.

Hence  the  fault  simulation  can  be  completed  within

reasonable  time (e.g.,  a  month).  Besides,  we will  use
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the existing full-scan method (i.e.,  FScan[14]),  a  func-

tional  testing  method  (i.e.,  FTest)[20],  and  the  struc-

tural  SBST  (i.e.,  SSBST)  on  the  router  for  compar-

isons[23].

Second,  we  perform  experiments  with  the  pro-

posed  parallel  algorithm  to  generate  a  sequence  of

packet  configurations  by  Monte-Carlo  simulation,

where the test packets generated in the previous step

are transformed into test scenarios. In the test genera-

tion, Nconf is a critical parameter. If this parameter is

set  to  be  too  large,  since  it  is  a  high-order  factor  in

the  time  complexity  of  this  algorithm,  the  algorithm

will  be difficult  to  terminate due to the long execut-

ing time; if  this parameter is  too small,  too few con-

figurations  in  each  iteration  will  be  generated  and it

may  affect  the  quality  of  the  generated  solution.  In

this  work,  we  have  gotten  a  good  trade-off  between

the  quality  of  the  Monte-Carlo  simulation  and  our

platform's  computing  power,  and  set Nconf to 1 000,

based on several experiments.

Third, we test the kilo-core NoC with the Hermes

router using the configurations of parallel packets and

evaluate their test performance and cost, and we also

use  the  full-scan  test  and  the  random  test  as  refer-

ences.  Since  the  fault  simulation  on  this  kilo-core

NoC’ s  netlist  is  extremely  time-consuming,  we  have

to reduce the buffer size from 16 to 4, and the maxi-

mum flit number per packet from 31 to 15. Next, we

synthesize the kilo-core NoC into the netlist using the

45  nm  technology  node,  where  this  netlist  occupies

5.31  million µm2 area  and  has  about  17.5  million

stuck-at  faults.  Then,  we  simulate  the  sequence  of

packet  configurations  on  the  netlist  to  derive  the

VCDE file,  and finally evaluate the fault coverage of

the  kilo-core  NoC.  Furthermore,  the  proposed  multi-

threading program runs on a workstation with AMD

R5 5600x CPU and 64 G memory, which supports 12

threads,  and  the  EDA  platform  for  fault  simulation

runs  on  a  server  with  Intel  Xeon  6148  and  256  G

memory (supporting 160 threads).

 5.1    Multi-Threading Test Generation

The Monte-Carlo simulation can find an approxi-

mately optimum packet configuration. The configura-

tion not only covers test  scenarios as many as possi-

ble  but  also  minimizes  the  test  cost. Fig.8 presents

the objective values achieved by each Monte-Carlo it-

eration  starting  from  the  NoC’ s  initial  state.  Al-

though  the  Monte-Carlo  simulation  algorithm selects

an  optimized  configuration  from 1 000 different  con-

figurations,  in  each iteration,  the  proportion of  these

configurations  in  the  entire  configuration  set  is  still

very low, and another configuration may get a better

objective value. Hence the parallel test starts another

Monte-Carlo  iteration  to  check  if  a  better  configura-

tion  exists.  The  algorithm  will  continue  the  Monte-

Carlo  iterations  until  no  more  optimized  configura-

tion emerges.  In Fig.8,  the maximum objective value

increases from 66 to 76 after eight Monte-Carlo itera-

tions and no longer grows. In this way, the algorithm

obtains  an  approximately  optimum  configuration.

This  configuration  is  not  necessarily  the  optimum

one,  but  most  configurations  cannot  achieve  the  ob-

jective value comparable to that of this configuration.

The  high-level  simulator  and  the  multi-threading

technology effectively support the Monte-Carlo simu-

lation.  The  histogram  in Fig.9 presents  the  Monte-
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Fig.8.  Objective values of Monte-Carlo iterations.
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Fig.9.  Iteration number and the sum of cov for the configura-
tion sequence. cov means the coverage rate.
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Carlo  iteration  number  that  the  parallel  test  per-

forms  each  time  when  the  algorithm  generates  the

new  configuration  of  packets  to  be  injected  into  the

NoC.  The  iteration  number  ranges  from  2  and  8.

Since  the  parallel  test  evaluates 1 000 configurations

per iteration, it has to simulate at least 2 000 configu-

rations to derive an optimum one. The gate-level sim-

ulator runs slowly, and its commercial license strictly

limits  its  running  in  parallel.  As  a  comparison,  the

proposed high-level simulator significantly reduces the

simulation  time  for  each  packet  configuration  and

maintains  cycle  accuracy  with  the  gate-level  simula-

tor. It thus underpins the Monte-Carlo simulation as

an appropriate evaluation technique. Furthermore, al-

though  a  large  number  of  configurations  have  to  be

evaluated,  these  configurations  are  independent  of

each other. In this case, the multi-threading technolo-

gy  can  take  advantage  of  the  many-core  hardware

platforms used to run the simulation program and re-

duce  the  overall  simulation  time  significantly.  The

technology thus supports the Monte-Carlo simulation

to search for the optimum configurations of test pack-

ets efficiently.

Finally, the high-level evaluation assists the paral-

lel algorithm in covering all test scenarios. In the ob-

jective  formula,  the  number  of  newly  activated  sce-

narios  is  the  numerator.  If  a  configuration  does  not

activate any new scenario and its value becomes 0, it

will  be  eliminated.  This  evaluation  that  keeps  purg-

ing  out  configurations  with  value  0  will  guide  the

Monte-Carlo simulation in covering new scenarios and

eventually  activate  all  test  scenarios.  The  curve  in

Fig.9 shows  that  the  cumulative  coverage  ratio  of

tested  scenarios  increases  until  it  reaches  100%.  Be-

sides,  the  high-level  evaluation  greatly  reduces  the

evaluating time of  each configuration.  As a  compari-

son,  the  gate-level  fault  simulation  on  this  kilo-core

NoC requires hundreds of hours for one configuration.

Finally,  the  evaluation  counts  the  newly-activated

scenarios  on  the  entire  NoC.  Once  a  new scenario  is

activated, the evaluation removes it from the untest-

ed  scenario  set.  In  this  way,  the  parallel  test  would

not select  the configuration that  repeatedly activates

tested scenarios  and thereby reduces the overhead of

online testing.

 5.2    Multi-Threading Test Generation

The SBST with BMC effectively tests the routers

in  the  functional  mode.  This  method  leads  to  ex-

tremely high fault coverage (i.e., 98%), which is very

close  to  that  obtained  with  the  full-scan  method.  In

particular, the proposed method is highly effective for

testing  the  data  registers  in  the  buffers.  In Table 2,

the  fault  coverage  for  the  buffers  equals  that  ob-

tained using the full-scan test. Although the full-scan

test leads to the highest fault coverage, it cannot test

the NoC in the functional mode. Compared with func-

tional testing[20], the BSBST is more effective for test-

ing  the  sequential  unit.  Although  the  insertion  of

testability logic at the ports[20] can increase the fault

coverage  for  the  datapath  of  an  NoC,  a  major  prob-

lem still lies in the testing of the sequential units. Ta-

ble 2 shows that the fault coverage provided by func-

tional testing[20] for the buffer and the arbitrator is far

less  than  that  provided  by  the  proposed  method.

Compared with structural SBST[23] (i.e., SSBST), the

SBST with  BMC is  more  attractive  for  circuits  with

large sequential depth. For example, although the ac-

tivation  of  the  counter  in  the  buffer  requires  more

than  10  timeframes,  the  BSBST  still  leads  to  100%

fault  coverage on that unit  regardless  of  its  large se-

quential  depth.  In  the  literature,  structural  SBST

considers  usually  only  a  small  number  of  timeframes

(3 or 5),  and thus it  may not be able to test such a

control  unit  with  large  sequential  depth.  Finally,  we

conclude that the proposed SBST method with BMC

outperforms competing methods for the NoC router.
  
Table  2.   Fault  Coverage (%) on the Router Using Different
Methods

Buffer Arbitrator Router

FScan (16 bits) -- -- 100.0

FTest[20] (32 bits) 88.9 76.5 85.0

SSBST[23] (8 bits) -- -- 96.5

BSBST (16 bits) 99.3 89.4 98.0

Note: --: the fault coverage is not known for prior methods.
 

The  parallel  SBST  effectively  tests  the  kilo-core

NoC  used  in  our  experiments.  As  shown  in Table 3,

the  PSBST  method  achieves  a  total  of  94.08%  fault

coverage  on  the  kilo-core  NoC.  This  method  ab-

stracts the test packets generated by BSBST into test

scenarios  and  then  uses  the  Monte-Carlo  simulation

to  ensure  that  all  test  scenarios  emerge  on  each

router. Since these test packets have an excellent test

performance  and  have  been  successfully  imposed  on

each  router  by  the  parallel  method,  the  PSBST test

achieves a high fault coverage on the NoC. We have

changed the buffer size from 16 to 4 due to the time-

consuming  fault  simulation.  As  a  result,  the  propor-

tion  of  faults  related  to  external  signals  that  cannot
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be  directly  tested  by  SBST  rises  up.  Hence,  the

buffer’ s  fault  coverage  has  decreased  compared  with

that  of  the  BSBST  method  in Table 2.  The  Herms

router contains all turn channels from one input port

to  any  output  port.  However,  many  turn  channels

cannot be activated under the XY routing algorithm.

Even if the circuit corresponding to such a turn has a

fault,  the  NoC  function  will  not  have  any  impact.

Therefore,  considering  the  over-testing  problem,  the

PSBST  with  a  lower  fault  coverage  has  actually  a

higher test quality than the full-scan method.

The existing methods cannot meet the online test

requirements  of  kilo-core  NoCs.  First,  the  full-scan

test is a robust method for testing kilo-core NoCs. In

Table 3,  the  method  achieves  100%  fault  coverage.

However, the full-scan method requires the use of ex-

ternal  test  equipment to inject  test  data and a dedi-

cated test mode beyond the normal operation. There-

fore,  this  method  is  only  suitable  for  manufacturing

testing but not for online self-testing. Second, the ran-

dom  test  approach  hardly  achieves  any  reasonable

fault  coverage.  Random  packets  cannot  have  a  high

test quality as they often repeatedly test easy-to-test

faults.  Furthermore,  the  scale  of  a  kilo-core  NoC  is

huge,  and  the  packet  configurations  generated  with

the random test approach correspond only to a small

proportion  of  the  entire  legal  configurations. Fig.10

presents  the  fault  coverages  that  a  random  test  ap-

proach  achieves  with  multiple  times  of  the  packet

amount  used  in  PSBST.  As  the  packet  amount  in-

creases  from  one  time  (e.g.,  1x)  to  four  times  (e.g.,

4x), the growth rate of fault coverage gradually slows

down, and the fault coverage reaches 57.27% at most.

Therefore,  the  random  test  cannot  meet  the  online

test requirement of kilo-core NoCs due to its low fault

coverage.

Next,  we use  a  set  of  heatmaps to  illustrate  how

the PSBST covers the buffers and routers at different

locations of the kilo-core (i.e., 32×32) NoC, where the

value of the horizontal and vertical axes represent the

X  and  Y  coordinates  of  a  node  respectively.  The

heatmaps in Fig.11(a) and Fig.11(b) present the fault

coverage  of  the  buffers  (the  average  coverage  of  five

buffers)  in  each  router  achieved  by  PSBST  and  the

random  test,  respectively.  PSBST  achieves  a  higher

fault  coverage  on  every  buffer  of  the  kilo-core  NoC

under test. That is because the packets generated by

BSBST  have  an  excellent  test  performance,  and  the

parallel test ensures that these packets appear on ev-

ery  buffer.  As  a  comparison,  the  random  test  has  a

much  lower  fault  coverage  on  most  buffers,  and  the

fault  coverage  of  the  internal  routers  is  even  lower.

That is because many cells in the buffers are not be-

ing completely triggered by random packets. Besides,

the routers at the periphery of the kilo-core NoC un-

der test are usually connected to the outside through

the  boundary  scan  or  JTAG  (Joint  Test  Action

Group), while internal routers are difficult to access.

PSBST  effectively  tests  the  routers  anywhere  in

the  kilo-core  NoC  while  avoiding  the  over-testing

problem  at  the  same  time.  First,  many  transmission

turns  in  the  internal  router  will  not  be  triggered  in

the  functional  mode,  i.e.,  they  are  functionally

untestable. For example, packets from the eastern in-

put port of an internal router cannot be forwarded to

the  eastern  output  port.  According  to  the  XY  rout-

ing  algorithm,  the  X  coordinate  of  the  destination

node of the packet should not be more than the X co-

ordinate  of  the  current  router.  However,  forwarding

to the eastern output port  requires  the X coordinate

of the destination node to be greater than that of the

current  router.  Furthermore,  the  packet  from  the

southern input port cannot be forwarded to the east-

Table  3.   Comparison Between Different Test Methods on the
Kilo-Core NoC in Terms of Test Cost and Overheads

FC.
(%)

Area
(%)

Gen.
Time (s)

App. Time
(cycle)

Data Vol.
(KB)

Fscan 100.00 17.14 2 242.5 8 130 000 000 992 000.00

Random Buf. 64.17

0.00 804.0 97 430 1 980.00Swit. 53.61

All 57.27

PSBST Buf. 98.17

0.00 59 883.0 81 815 402.25Swit. 87.73

All 94.08

Note:  FC.:  fault  coverage;  Gen.  Time:  generating  time;  APP.
Time: application time; vol: volume.
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Fig.10.  Fault coverage using different data volumes.
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ern output port. This is because the XY routing algo-

rithm needs to prioritize forwarding packets along the

X direction instead of the Y direction. In this case, an

internal  router  contains  25  turn  channels,  but  only

68% (=(25–4–4)/25) of them are functionally testable.

PSBST will achieve higher fault coverage on routers if

other routing algorithms have fewer untestable turns.

Meanwhile,  the  arbitrating circuit  is  also  difficult

to  test  as  it  requires  multiple  packets  to  simultane-

ously  arrive  at  the  router.  This  requirement  is  diffi-

cult  to  meet  in  a  kilo-core  NoC,  especially  for  the

switch  in  an  internal  router.  PSBST sets  all  feasible

turns  in  a  router  as  test  scenarios,  and  the  Monte-

Carlo simulation will not terminate until it covers all

these  scenarios.  The  high-level  simulator  also  main-

tains  cycle  accuracy  with  the  gate-level  simulator.

This  ensures  test  packets  arrive  at  the  router  under

test  on  time and thus  effectively  test  the  arbitrating

circuit.  The  heatmap  in Fig.11(c)  presents  the  fault

coverage  of  each router  achieved by PSBST. PSBST

achieves a higher fault coverage at each router. Since

the  edge  nodes  of  the  kilo-core  NoC  under  test  can

obtain  packets  from  the  external  boundary  scan  or

JTAG, they have more testable turns and thus high-

er  fault  coverages.  As  a  comparison,  the  fault  cover-

ages of the random test are generally low and greatly

fluctuate  among  different  routers  in  the  heatmap,  as

shown  in Fig.11(d).  We  thereby  conclude  that  the

parallel  SBST method is  effective in testing kilo-core

NoCs.

 5.3    Test Cost on the Kilo-Core NoC

Another  reason  why  PSBST  is  desirable  for  on-

line  testing  lies  in  its  negligible  cost. Table 3 shows

also the test cost of the proposed method, where the

full-scan  technique  and  the  random  test  are  used  as

references. Since the PSBST method tests an NoC by
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Fig.11.  Heatmaps for fault coverage on different positions using PSBST and the random test. （a）Fault coverage of buffers using
PSBST. (b) Fault coverage of buffers using random test. (c) Fault coverage of routers using PSBST. (d) Fault coverage of routers
using random test.
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transmitting packets among the NoC routers, it does

not require any intrusive hardware or any area over-

head.  In  contrast,  the  full-scan  technique  introduces

17.14% (i.e., 0.91 million µm2) of the total area, which

is  very  large  due  to  the  large  scale  of  the  kilo-core

NoC. Besides, the PSBST program is executed in the

functional mode; hence it does not require any expen-

sive external ATE.

Table 3 also  shows  the  test  software  generating

time  for  the  PSBST  method.  First,  the  generating

time  (i.e.,  Gen.  time)  includes  the  solving  time  of

BMC.  Since  the  slicing  technique  significantly  com-

presses  the  state  machines  of  the  buffers  and  NoC,

the entire process only takes 2.48 seconds. Second, the

generating  time  also  involves  the  executing  time  of

the  Monte-Carlo  simulation.  Since  each  iteration  of

the Monte-Carlo simulation has to simulate 1 000 dif-

ferent configurations of packets,  and PSBST requires

multiple  iterations  to  derive  an  approximately  opti-

mum  configuration,  the  Monte-Carlo  simulation

would be time-consuming. However, PSBST uses mul-

ti-threading  technology,  as  discussed  in Subsection

5.1,  which  significantly  reduces  the  execution  time.

Fig.12 shows  the  generating  time  for  each  configura-

tion,  which  is  at  an  acceptable  level.  The  executing

time can be further  reduced if  a  computing platform

with more processor cores is employed.
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Fig.12.  Iteration numbers and the sum of cov for the configura-
tion sequence.
 

Finally,  we  note  that  the  test-data  volume  (i.e.,

Data  vol.)  and  the  test  application  time  (i.e.,  App

time) for the proposed PSBST method are reasonable.

Since  the  high-level  simulator  counts  the  number  of

detected  scenarios  in  the  entire  kilo-core  NoC,  PSB-

ST can preferentially select the test packet that cov-

ers multiple test scenarios. Once PSBST selects a test

packet,  it  will  delete  the  scenarios  that  the  packet

covers. In this way, the packet that triggers the test-

ed scenarios again will have a minimum objective val-

ue  (i.e.,  0).  PSBST will  not  select  that  packet.  Fur-

thermore, PSBST uses the Monte-Carlo simulation to

minimize the test cost. As a comparison, the random

test  fails  to  effectively  test  routers  and  repeatedly

tests  the  easy-to-test  regions  of  the  kilo-core  NoC.

Therefore, although the random test uses almost four

times  the  number  of  test  packets  of  PSBST,  it

achieves only 57.27% fault coverage. The original full-

scan test does not exploit the NoC’s characteristics to

carry  out  parallel  testing.  It  needs  to  connect  all  in-

ternal  registers  into  a  scan  chain,  resulting  in  ex-

tremely large test patterns. It needs also to shift these

very large patterns into (out of) the NoC through the

scan chain, causing a very large test application time.

In this way, the full-scan test is orders of magnitude

higher than PSBST in terms of test-data volume and

test application time. Therefore, the experimental re-

sults  demonstrate  that  PSBST  is  efficient  and  effec-

tive for the online testing of the kilo-core NoC in the

functional mode.

 6    Conclusions

We developed  a  parallel  SBST technique  to  sup-

port the efficient online detection of faults in kilo-core

networks-on-chip.  The  proposed  PSBST  method  can

automatically  generate  a  configuration  sequence  of

parallel  packets  and  effectively  and  efficiently  test  a

large  NoC  in  the  functional  mode.  First,  the  pro-

posed  SBST  technique  makes  use  of  a  BMC  algo-

rithm to derive the leading sequence for each router’s
internal  function  and  detect  all  functional-testable

faults  corresponding  to  each  router's  internal  func-

tion. Second, a Monte-Carlo simulation algorithm en-

sures  the  proposed  technique  to  search  for  the  opti-

mum configuration of the parallel packets, which not

only  guarantees  the  test  quality  but  also  minimizes

the test cost.  Finally,  the multi-threading technology

is used to ensure that the Monte-Carlo simulation can

find  the  approximately  optimum  configuration  in  a

large random space and reduce the generating time of

the  parallel  tests.  Experimental  results  showed  that

the proposed method leads to a high test quality and

avoids the over-testing problem caused by functional-

ly untestable turns in the functional mode.
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