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Abstract    Skeletons of characters provide vital information to support a variety of tasks, e.g., optical character recogni-

tion, image restoration, stroke segmentation and extraction, and style learning and transfer. However, automatically skele-

tonizing Chinese characters poses a steep computational challenge due to the large volume of Chinese characters and their

versatile styles, for which traditional image analysis approaches are error-prone and fragile. Current deep learning based

approach requires a heavy amount of manual labeling efforts, which imposes serious limitations on the precision, robust-

ness, scalability and generalizability of an algorithm to solve a specific problem. To tackle the above challenge, this paper

introduces a novel three-staged deep generative model developed as an image-to-image translation approach, which signifi-

cantly reduces the model's demand for labeled training samples. The new model is built upon an improved G-net, an en-

hanced X-net, and a newly proposed F-net. As compellingly demonstrated by comprehensive experimental results, the new

model is able to iteratively extract skeletons of Chinese characters in versatile styles with a high quality, which noticeably

outperforms  two state-of-the-art  peer  deep  learning  methods  and a  classical  thinning  algorithm in  terms  of F-measure,

Hausdorff distance, and average Hausdorff distance.

Keywords    skeletonization of characters, three-staged skeletonization, X-net

  

1    Introduction

The  skeleton  of  a  character  richly  reveals  essen-

tial  structural  and  shape  features  of  the  character,

which benefit a wide array of character image process-

ing tasks such as optical character recognition, image

restoration,  stroke  segmentation  and  extraction,  and

style learning and transfer, as well as identity authen-

tication and verification based on handwriting analy-

sis.  Skeletons  of  Chinese  characters  are  no  exception

in  furnishing  these  merits.  For  example,  character

skeletons  have  been  utilized  to  significantly  improve

the performance of handwritten and calligraphic char-

acters recognition[1–4]. Empowered by the valuable in-

formational  aid  provided  by  character  skeletons,  re-

searchers  have  successfully  improved  the  quality  of

style  transfers  among  characters[5–7],  and  enhanced

the  capability  of  conventional  deep  generative

models[8–10] in  skeletonizing  Chinese  characters  with

versatile styles and complex structures as well as con-

ducting  end-to-end  deep  style  learning  and

generation[11].

Unfortunately,  the  aforesaid  benefits  of  skeletons

and skeleton analysis in processing Chinese character

images  are  largely  underexplored  for  the  following

reasons.  First,  skeletonizing  Chinese  characters  on  a

manual basis incurs an inhibitive cost due to the large

character set in use. For example, the standard char-

acter set used in Chinese mainland, GB 2312—80, in-

cludes 6 763 most frequently used characters while the
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total number of Chinese characters is above 50 000①.

Moreover, skeleton analysis is severely hampered due

to  the  wide  assortment  of  writing  styles  deployed  in

everyday use. The form of a Chinese character can be

heavily influenced when written in different styles. In

Subsection 4.5, we show the appearance of a Chinese

character, “鼎 ”,  an  ancient  vessel  with  two  handles

and three or four legs that symbolizes the throne of a

kingdom,  written  in  28  well-recognized  styles.  This

example  vividly  demonstrates  the  wide  variation  in

the  possible  look of  a  character  with  versatile  styles.

Countless  handwritten  styles  have  been  invented

throughout centuries in Chinese history[12], which fur-

ther  raises  the  difficulty  in  conquering  the  Chinese

character skeletonization task.

To computationally skeletonize a Chinese charac-

ter image, thinning algorithms are often leveraged, es-

pecially  during  the  pre-deep  learning  era.  For  exam-

ple,  the  neighbor-based  thinning  algorithm  intro-

duced in [13] presents a classical solution, which itera-

tively deletes pixels on the foreground boundary of a

character until reaching the middle axis of the charac-

ter.  Follow-up  research  efforts  modified  the  particu-

lar thinning rules used in the original work, resulting

in a large number of derived algorithms, e.g., [14, 15].

The benefit of these thinning algorithms is their data-

free  nature.  That  is,  no  training  data  is  required  to

construct  an  algorithm  thanks  to  the  carefully  de-

signed  and  manually  encoded  thinning  heuristics  de-

ployed in  building such an algorithm.  Unfortunately,

no known heuristics are able to reliably cope with the

diverse and complex stroke combinations and compo-

sitions  exhibited  in  Chinese  characters,  and  thus

heuristics-based thinning algorithms tend to be error-

prone  and  fragile. Fig.1 shows  skeletons  extracted

from a  few sample  characters  using  the  algorithm of

[13]  where the enlarged inserts  show erroneous skele-

tonization  results,  which  frequently  occur  in  the  ar-

eas of overlapping strokes.

Most  recently,  the  research  published  by  Wang

and  Liu[1] introduced  a  deep  learning  based  solution

to  address  the  above  limitation  in  skeletonizing  Chi-

nese characters. Their method relies upon a handwrit-

ten  Chinese  character  recognition  task  for  pre-train-

ing  the  new  model.  The  derived  features  are  subse-

quently  repurposed  for  the  skeletonization  task.  To

successfully  conduct  the  first  recognition  task,  their

method anticipates recognition labels for a large num-

ber  of  Chinese  characters.  Such  a  heavy  demand  for

the  training  data  severely  limits  the  transferability

and  generalizability  of  their  method  in  processing

characters  with  versatile  styles.  To  obtain  skeletons

with a single-pixel width, Wang and Liu[1] further ap-

plied  binarization  and  thinning  to  post-process  the

probability map outputted by their model, leading to

unnatural distortions shown in Subsection 4.5.

On  a  separate  line  of  research,  holistically-nested

edge  detector  (HED)[17],  which  is  originally  designed

for edge detection, is found to have positive effect on

detecting  skeletons  of  objects  and  thus  becomes  a

popular model for conquering the skeletonization task.

Recent  methods  of  object  skeleton  detection[18–21] are

based  on  HED.  However,  these  revised  approaches

still fail to reliably extract character skeletons. Anoth-

er  class  of  skeletonization  models  is  developed  based

upon  the  classic  SegNet  algorithm[16],  which  is  origi-

nally introduced as an image-to-image translation ap-

proach  for  semantic  segmentation.  Compared  with

peer methods[22, 23], SegNet has fewer layers and there-

fore  attains  a  faster  inference  efficiency.  SegNet  is

suitable  for  skeletonization  because  skeleton  points

are  primarily  determined  by  their  surrounding  pixels

 

(b)(a) (c) (d) (e) (f)

Fig.1.   Ground  truth  (GT)  skeletonization  results  in  compari-
son  with  results  by  different  algorithms,  including  results  by
the  proposed  model  (Proposed),  by  a  classical  thinning  algo-
rithm (Thinning[13]),  and by two state-of-the-art  deep learning
models  (SegNet[16] and  HED[17]).  (a)  Input.  (b)  GT.  (c)  Pro-
posed. (d) Thinning. (e) SegNet. (f) HED.
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within  a  local  neighbourhood  in  a  Chinese  character

image,  whose  extraction  thus  does  not  require  im-

agery  information  supplied  from  distant  elements  in

the image.  However,  skeletons extracted by the both

HED and SegNet methods tend to carry many break-

points  and  uneven  skeleton  trajectories  as  shown  in

Section 4.

To  overcome  shortcomings  of  the  above  state-of-

the-art  solutions,  this  paper  introduces  a  novel  deep

generative  model  to  extract  high-quality  skeletons  of

Chinese characters following an image-to-image trans-

lation  framework,  which  significantly  reduces  the

model's demand for training samples when applied to

process characters in versatile  styles.  The new model

employs  a  three-staged  generative  pipeline,  which

leverages a modified G-net, an enhanced X-net, and a

newly  proposed  F-net.  The  newly  introduced  F-net

comprises a deep multiresolution convolutional struc-

ture,  coupled  with  a  pair  of  attention  modules,  re-

sponsible for extracting channel and spatial attention

from underlying feature maps. The new model is fur-

ther equipped with a newly composed contextual loss

term to enhance the visual quality of the end charac-

ter skeletonization results.

The  main  contribution  of  the  proposed  Chinese

character  skeletonization  model  lies  in  the  novel  de-

sign  of  its  underlying  deep  neural  network.  Enabled

by the newly introduced three-staged iterative image-

to-image  generation  model,  the  proposed  solution  is

capable  of  attaining  a  noticeably  superior  quality  in

its  skeletonization  results  in  comparison  with  results

generated  by  multiple  state-of-the-art  peer  methods.

To the best of our knowledge, the proposed model is

the  first  one  capable  of  effectively  skeletonizing  Chi-

nese  characters  in  versatile  styles  with  a  satisfactory

quality.

Inspired  by  the  prior  work[24],  we  further  intro-

duce  a  contextual  loss  term that  calculates  the  simi-

larity of  a  pair  of  images  by comparing their  respec-

tively  derived  feature  maps  while  loosening  certain

types  of  spatial  constraints.  An auto-encoder  trained

with skeleton data is employed to obtain features for

computing  contextual  loss,  which  evidently  outper-

forms the VGG19[25] used in original work[24]. Empow-

ered by the contextual loss and the specially designed

feature  derivation  method[25],  the  proposed  model

achieves  better  performance  under  the  measure  of

frechet  inception  distance  (FID)[26],  the  metric  of

which is widely considered to resemble human percep-

tion and hence valuable for evaluating the capability

of an image generation model.

It is noteworthy that the proposed model requires

a much smaller size of training samples than its peer

methods  to  attain  a  comparable  visual  quality.  For

example,  the  leading  deep  learning  based  peer

method[1] needs 1.121 million pairs of Chinese charac-

ter images and their associated skeletons for the train-

ing  when  applied  to  tackle  the  skeletonization  task

defined in [27].  In contrast,  the proposed model  only

needs 0.14 million pairs of training samples, a reduc-

tion of  training  data  by 87.5%,  to  obtain  the  results

which perform better on subjective opinions scores. For

two other smaller datasets, SkeletonMF[28] with 13 500

pairs  of  training  samples  and  Kaiti9574② with 7 000

pairs of training samples, the peer method[1] cannot be

adequately  trained  to  obtain  decent  skeletonization

results. In contrast, the proposed model is still able to

produce visually satisfactory results as shown later in

Section 4.  It  is  noted  that  for  the  Kaiti9574  dataset,

the  smallest  one  among  the  three  experimental  sets,

the new model is able to learn using only 40 training

samples  to  produce  visually  acceptable  results  (see

Subsection 4.4).  These  results  consistently  demon-

strate the capability of the new model in learning us-

ing a much smaller sample size than all its peer deep

learning solutions.

The  remaining  sections  of  this  paper  are  orga-

nized  as  follows. Section 2 briefly  overviews  existing

work  most  closely  related  to  this  study. Section 3

presents the key design of the proposed method in de-

tail. Section 4 elaborates  on  the  experimental  results

by  the  new algorithm,  which  are  compared  with  the

results of multiple state-of-the-art peer methods. Sec-

tion 5 concludes  this  study and points  out  directions

for future research. 

2    Related Work
 

2.1    Image-to-Image Translation

Image-to-image  translation  aims  to  learn  specific

mapping  between  two  image  domains  while  preserv-

ing their  shared characteristics.  Once the mapping is

acquired,  the  style  of  one  domain  can  be  transferred

to that of the other domain without distorting the un-

derlying  image  content.  For  example,  the  PIX2PIX

work[29] applies  conditional  adversarial  networks  as  a

1252 J. Comput. Sci. & Technol., Nov. 2023, Vol.38, No.6
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general-purpose  solution  to  tackle  image-to-image

translation tasks. It can effectively solve tasks such as

synthesizing photos from label maps and reconstruct-

ing objects from edge maps. In addition, image-to-im-

age translation algorithms have also been successfully

applied to tackle a variety of image generation tasks,

such  as  neural  style  transfer[30],  cross-view  image

translation[31, 32],  and  font  generation[5–7].  In  this

study,  we  consider  the  image  of  a  character  and  its

corresponding skeleton as an object manifested in two

image  domains,  under  which  perspective  the  charac-

ter  skeletonization  task  is  converted  into  an  image

translation task.

When  conquering  generative  tasks  with  complex

or  visually  challenging goals,  a  single  image-to-image

translation network may not be able to deliver satis-

factory results. In this circumstance a cascade of net-

works  are  sometimes  leveraged  to  progressively  syn-

thesize a desirable result,  e.g.,  [11, 31, 33–36].  In the

character  skeletonization  task,  our  model  considers

the width of a skeleton as a single pixel width. In this

way  our  model  recognizes  the  difficulty  for  a  single

generative  network  to  accurately  produce  a  skeleton

in one shot. Hence, our model recognizes the need to

utilize  a  cascade of  generative  networks  to  provide a

more  adept  solution.  This  idea  inspires  the  three-

staged generative deep network approach proposed in

this paper. We propose a set of comprehensive experi-

mental  results  to  demonstrate  the  effectiveness  of

such a design approach.

For  the  font  generation,  many  studies  in  recent

years  have  tried  to  integrate  the  domain  knowledge

into  the  model[8–10, 37–41] to  further  improve  perfor-

mance.  This  is  actually  a  return  to  the  traditional

Chinese character generation method in the pre-deep

learning era[42–45]. As a key form of expression of Chi-

nese  characters,  skeletons  play  an  important  role  in

this  trend,  which  highlights  the  importance  of  auto-

matic skeleton extraction. 

2.2    Skeleton Detection

Skeleton  extraction  and  detection  are  intensively

investigated in computer vision and image processing,

under  tasks  such  as  action  detection[46] and  natural

object  skeletonization[21, 47],  to  name  just  a  couple.

Traditional algorithms are architectured around some

thinning  process,  which  derive  a  target  skeleton  ei-

ther by iteratively deleting points on the boundary of

an  object  or  directly  through  a  single  hop.  Modern

skeleton  detection  algorithms  are  mostly  empowered

by deep learning methods.

End-to-end skeleton detection through CNNs is a

popular class of approaches, of which many are based

on an end-to-end edge detection algorithm, including

HED[17] and  many  of  its  variants  and  improve-

ments[18–21, 47, 48].  Among  the  follow-up  studies  of

HED,  [18]  leverages  a  bidirectional  residual  learning

scheme;  [21]  adopts  a  hierarchical  fusion  procedure;

[47]  employs  a  geometry-based  loss  function.  Very

limited  attention  has  been  paid  however  to  extract-

ing skeletons of Chinese characters. To the best of our

knowledge,  [1]  is  the  only  deep  learning  based  ap-

proach  solely  developed  for  skeletonizing  Chinese

characters.  As  discussed  earlier,  the  deep  learning

based  model  requires  a  much  larger  size  of  training

samples  than  the  proposed  approach.  It  is  therefore

difficult to apply the peer method to skeletonize char-

acters  in  versatile  styles,  a  drawback  we  seek  to  ad-

dress in this study. 

3    Proposed Model

Fig.2 presents the main architecture of the three-

staged proposed model for skeletonizing Chinese char-

acters in versatile styles. G, X and F represent a pre-

generation network, a refined X-net, and a multireso-

lution feature fusion net (see details  in Figs.3–5),  re-

spectively.  These  three  networks,  which  are  referred

to  as  the  G-Net,  X-net,  and  F-net  from now on,  re-

spectively,  sequentially  power  each  of  the  three  key

generation stages of the new model. The initial moti-

vation  of  using  the  multi-stage  model  is  an  observa-

tion that  the  single-pixel  width characteristics  of  the

skeleton make it quite difficult to directly generate a

satisfactory  skeleton.  In  particular,  this  task  is  not
 

Input 

Final Output  

Ground Truth

Loss Computation

Features ExtractedStage 1

Stage 3

Stage 2



 






FX

G

Fig.2.   Architecture  of  the  proposed  model.  Details  of  three
sub-networks G, X, and F are displayed in Figs.3–5, respectively.
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particularly complicated, so that increasing the num-

ber of parameters of the network is not effective. Un-

der  the  above  considerations,  it  is  a  natural  idea  to

make  detailed  corrections  to  a  preliminary  result,

which leads  to  our  three-staged model.  However,  the

selection of the networks in the subsequent stages still

requires a careful design.

S1

I

I

S1

S2 I

I

S1

The  pre-generation  G-net  produces  a  preliminary

version of  the skeleton  for an input character im-

age ,  which  is  subsequently  fed  to  the  X-net  along

with  the  original  character  image .  One  branch  of

the X-net takes  as its guidance information to ex-

tract  a  refined  skeleton  for  while  the  other

branch of  the  X-net  treats  as  a  reference  to  refine

the preliminary skeletonization result , thus produc-

S3

S4

F1 F2

F3

ing the output . Such a crossover procedure imple-

mented by the X-net allows us to fully exploit poten-

tially useful information from multiple sources. Final-

ly,  the F-net employs a convolutional  structure nest-

ed with a multiresolution synthesis  paradigm to syn-

thesize the ultimate output of the network  by uti-

lizing  the  three  generative  feature  maps , ,  and

 (see  details  in Fig.2 and Figs.4–5) derived by the

X-net, respectively. 

3.1    Stage 1: Pre-Generation Network, G-Net

As mentioned earlier, we regard the Chinese char-

acter  skeletonization  problem  as  an  image-to-image

translation  task  because  of  the  considerable  resem-
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Fig.3.  Architectural detail of the pre-generation network, G-net. The dimensions of feature maps are specified in Table 1.
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Fig.4.  Architectural detail of the refined X-net. The dimensions for feature maps are specified in Table 2.
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blance  between  the  contour  of  a  character  and  its

skeleton. The pre-generation network, G-net, which is

responsible  for  the  first  stage  of  the  skeleton genera-

tion  task  in  the  proposed  model,  is  architectured

based upon the backbone of the U-net design. Such a

choice  is  deliberately  made  because  U-net  is  able  to

sensitively  respond  to  local  characteristics  in  an  in-

put  image  as  supported  by  the  skip  connections  em-

bedded in the U-net. We argue this property of U-net

is particularly desirable for our character skeletoniza-

tion task because of the heavy influence of local shape

characteristics  of  a  stroke on its  underlying skeleton,

especially  the  skeletons  of  its  intersecting  strokes.  In

fact, the choice of this backbone network is not com-

mon  in  the  field  of  skeletonization,  for  example  the
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Fig.5.   Architectural  detail  of  the  attention-based  multiresolution  feature  fusion  net,  F-net.  The  dimensions  for  feature  maps  are
specified in Table 3. (a) Channel attention module. (b) Spatial attention module. (c) F-net. MLP: multi-layer perceptron.
 

Table  1.    Dimensions of Feature Maps in G-Net

Feature Name Resolution Number of Channels

F 1
1 128 8

F 1
2 64 16

F 1
3 32 32

F 1
4 16 64

F 1
5 8 128

F 2
1 16 128

F 2
2 16 64

F 2
3 32 64

F 2
4 32 32

F 2
5 64 32

F 2
6 64 16

F 2
7 128 16

F 2
8 128 8

 

Table  2.    Dimensions of Feature Maps in X-Net

Feature Name Resolution Number of Channels

F 3
1 , F

3
2 128 8

F 3
3 , F

3
4 , F

3
5 64 16

F 3
6 , F

3
7 , F

3
8 32 32

F 4
1 , F

4
2 128 8

F 4
3 , F

4
4 , F

4
5 64 16

F 4
6 , F

4
7 , F

4
8 32 32

F 5
1 32 128

F 5
2 , F

5
3 32 32

F 5
4 64 64

F 5
5 128 32

F 6
1 64 48

F 6
2 , F

6
3 64 16

F 6
4 128 24

F 6
5 , F

6
6 128 8

F 7
1 64 48

F 7
2 , F

7
3 64 16

F 7
4 128 24

F 7
5 , F

7
6 128 8
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object skeletonization[14–18].

128× 128 8× 8

In our design for the G-net,  we modify the origi-

nal  U-net  architecture  by  adding  a  series  of  residual

connections to the network to better preserve the de-

tail and sharpness of its skeletonization result. The ef-

fectiveness of the adding operation is empirically vali-

dated through our experiments. The end design of the

G-net  first  conducts  an  encoding  process  by  down-

sampling the input image of a character with a resolu-

tion of  pixels to the resolution of  pix-

els through five consecutive convolutional layers with

a step size of 2. A subsequent decoding process is exe-

cuted by the G-net to reproduce an image at the orig-

inal  resolution  of  input  with  the  aid  of  skip  connec-

tions. In the decoding phase, a residual connection is

introduced accompanying each skip connection in the

original U-net design considering the sensitivity of the

skeleton  to  localized  details.  Since  an  ideal  skeleton

shall assume only a single pixel width, we use a step

size of  2 in the de-convolution layers to mitigate the

degradation  of  visual  quality  during  the  upsampling

process. 

3.2    Stage 2: X-Net

S1

S1

I

S1 I

S1

The second stage of the network, as implemented

through  the  X-net,  aims  to  refine  the  preliminary

skeletonization  result  generated  in  the  first  stage

by the G-net. To fully exploit visually useful informa-

tion latent in both  and the original input image of

a character , we introduce the X-net. It is noted that

simply  concatenating  and  for  feeding  the  result

into  a  deep  network  with  a  single  input  branch  will

not achieve the same quality of skeletonizing as X-net

with  two  input  branches,  which  is  both  empirically

verified through our experiments (see S.2U in Tables

4–6) and analyzed as follows: when  is perceptually

close  to  the  end  skeletonization  result,  the  network

Itends to ignore visual information provided by  dur-

ing its training, and vice versa. In either situation, the

network is inclined to ignore one of the input sources.

To  adequately  explore  potentially  useful  information

from both sources, we introduce the X-net. The main

purpose  of  introducing  the  X-net  is  to  thoroughly

mine  useful  information  for  the  skeleton  in  each  in-

put  image  through  a  specific  network  structure.  An

observation  that  replacing  a  certain  input  in  S.2U

with a blank image sometimes does not heavily affect

the final result contributes to this special design.

X-net  has  two  input  and  two  output  branches.

Any  combination  of  an  input  and  an  output  branch

 

Table  3.    Dimensions of Feature Maps in F-Net

Feature Name Resolution Number of Channels

F 8
1 , F

8
2 32 112

F 8
3 32 64

F 8
4 64 32

F 9
1 , F

9
2 64 144

F 9
3 64 64

F 9
4 128 32

F 10
1 , F 10

2 128 144

F 10
3 128 64

F 10
4 128 8

 

Table   4.      Performance  of  Different  Versions  of  Proposed
Model on Dataset Kaiti9574

Model FID OFM OAHD OHD

S.1 80.7 0.726 0.552 6.06

S.2U 77.1 0.728 0.542 5.26

S.2M 72.4 0.754 0.481 4.60

S.2 67.8 0.760 0.472 4.50

S.3WOA 66.4 0.772 0.448 4.27

S.3WOMR 64.7 0.761 0.472 4.95

S.3M 68.7 0.768 0.459 4.72

S.3 61.8 0.774 0.446 4.21

S3.D 63.7 0.777 0.438 4.02

Note:  The  numbers  that  indicate  the  best  performance  are
presented in bold. A larger OFM value, a smaller FID value, a
smaller  OAHD value  and  a  smaller  OHD value  all  indicate  a
better skeletonization result.

 

Table   5.      Performance  of  Different  Versions  of  Proposed
Model on Dataset HW

Model FID OFM OAHD OHD

S.1 39.8 0.891 0.266 3.82

S.2U 34.2 0.896 0.246 3.80

S.2M 27.9 0.889 0.262 3.22

S.2 28.0 0.911 0.208 3.14

S.3WOA 19.2 0.920 0.190 3.06

S.3WOMR 20.6 0.919 0.192 3.08

S.3M 20.1 0.915 0.187 3.00

S.3 18.8 0.923 0.179 2.98

S3.D 18.6 0.925 0.174 3.01

 

Table   6.      Performance  of  Different  Versions  of  Proposed
Model on Dataset SkeletonMF

Model FID OFM OAHD OHD

S.1 165.2 0.498 1.263 10.54

S.2U 153.5 0.509 1.212 10.12

S.2M 155.6 0.515 1.211 9.95

S.2 154.8 0.520 1.162 9.84

S.3WOA 152.9 0.520 1.149 9.73

S.3WOMR 148.8 0.522 1.162 9.76

S.3M 149.1 0.521 1.153 9.75

S.3 148.5 0.525 1.143 9.69

S3.D 144.9 0.529 1.125 9.58
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I

S1

S2

S1

I

S3

I S1

I S2

S1 S2

F 5
3

forms an encoder-decoder pathway with skip connec-

tions. The network takes the original character image

 as one of its input, transformed by features extract-

ed from the preliminary skeleton extraction result .

The latter is fed in by the G-net as the second input

to  the  X-net.  After  performing  the  above  encoding

process,  X-net  decodes  the encoded feature  map into

a refined skeleton image . In a similar way, the in-

put  image  is  transformed  by  features  extracted

from  to generate another encoded feature map, fol-

lowed by a similar decoding process used in the above

to produce another refined version of the skeleton im-

age .  By  utilizing  such  interwound pairs  of  encod-

ing-decoding  transformations,  visual  clues  latent  in

both  and  are thoroughly mined to produce two

refined  skeletonization  results  as  the  output  of  the

model  in  its  second  stage.  The  skip  connections  be-

tween  the  paired  input  branch  and  output  branch

force the network to use the corresponding input im-

age as the main reference for generating the skeleton

(for example,  for generating ), and to use the fea-

tures of the other input (  for generating the ) as

supplementary  information  because  it  only  partici-

pates  in  the  generated  bottom  layer  (  in Fig.4).

This design allows that both two inputs contribute to

each  generated  skeleton  and  the  valid  information

carried by each input is sufficiently explored.

128× 128

32× 32

I

S1

32× 32

128× 128

The  detailed  construction  of  the  X-net  is  com-

posed by three parts, encoding, fusion, and decoding.

In the first encoding part, an input image of 

pixels  is  down-sampled  progressively  through  multi-

ple  convolutional  layers.  After  downsampling  with  a

reduction factor of 4, we obtain a feature map of the

resolution of . It is noted that even though the

two encoder branches of the X-net, shown as the two

branches positioned in the left side of Fig.4 have the

same structure, they do not share any parameters due

to  the  differences  in  shapes  and  visual  features  of 

and  respectively. The second fusion part is the on-

ly step in which two branches of the X-net exchange

information. As shown in Fig.2, features with a reso-

lution  of  generated  by  the  two  encoding

branches are concatenated and then fed into the con-

volutional layers for a more thorough fusion. Finally,

in  the decoding part,  low-resolution encoded features

are  re-sampled  to  the  resolution  of .  In  the

decoding process, features from the encoding part are

also  incorporated  through  skip  connections  provided

by  the  X-net.  Like  the  two  encoding  branches,  the

two decoding branches also do not share their param-

eters to preserve the possible difference in the two re-

S2 S3

F1 32× 32 F2 64× 64

F3 128× 128

fined  skeletonization  results.  It  is  noted  that  the  F-

net,  the  downstream network to  the  X-net,  does  not

directly utilize  the skeletons  and  outputted by

the X-net. Instead, it only uses the three sets of fea-

tures extracted by X-net, ( ), ( ) and

( ), all produced through concatenating in-

termediary  features  generated  by  the  two  decoding

branches.

I S1

To  explore  the  effectiveness  of  the  two  output

branches utilized in the X-net, we experiment with an

alternative  design  where  the  two  output  branches  of

X-net are merged into one branch so that the X-net is

reduced  into  a  Y-net.  All  the  relevant  skip  connec-

tions  originally  forked  into  the  two  output  branches

are  also  merged  into  one  skip  connection.  Another

similar  attempt  is  to  directly  concentrate  and 

and  feed  the  results  to  another  G-net,  which  can  be

considered further merging the two input branches of

the Y-net. Benchmarked experimental results demon-

strate the advantage of using the X-net in our model

design.  We  attribute  this  performance  advantage  to

the independent skeleton refinement processes carried

out by the two output branches in the X-net. 

3.3    Stage 3: F-Net

F1 F2 F3

S4

I S1

Finally,  the  F-net  takes  the  three  feature  maps,

,  and ,  all  derived by the X-net,  as its  input

to  produce  the  final  skeletonization  result .  The

main  aim  of  the  F-net  is  to  refine  the  intermediate

skeletonization  results  generated  by  the  X-net  to  at-

tain richer synthesis  details  and better stability.  The

effectiveness  of  the  F-net  is  based  on  the  following

two  points.  1)  It  combines  the  features  of  the  two

output  branches  from  the  X-net  (mainly  expressing

the skeleton-related information in  and ) for gen-

eration. 2) It simultaneously employs features of mul-

tiple  resolutions,  and  explores  them  with  a  specially

designed multi-resolution framework.

F1 F2 F3

The  F-net  is  built  upon  a  deep  convolutional

structure  nested  with  a  multiresolution  synthesis

paradigm in that the convolutional structure takes as

its input a set of multiresolution feature maps resam-

pled from the raw input feature maps, ,  and ,

at  various  resolutions.  We adopt this  multiresolution

processing paradigm according to the empirical under-

standing  gained  through  our  explorative  experiments

that  suggest  the  choice  of  a  particular  resolution  at

which  a  character  image  is  skeletonized  could  intro-

duce  a  profound  impact  on  the  quality  of  the  end

skeletonization result. This trait is frequently exhibit-
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ed  by  learning-based  image  processing  algorithms[17].

More  specifically,  skeletonization  results  produced  at

a lower resolution tend to attain a more accurate de-

piction of the overall structure of a character, howev-

er,  at  the  expense  of  missing fine  details;  conversely,

skeletons inferred at higher resolutions are more like-

ly to capture minute details of a character, yet at the

risk of overlooking the global characteristics of a char-

acter.

F1 32× 32 F2 64× 64 F3 128× 128

32× 32 64× 64 128× 128

Fi (i = 1, 2, 3)

j2 (j = 32, 64,128) Fi(j × j)

As  illustrated  in Fig.5,  inside  the  F-net,  the  fea-

ture maps  ( ),  ( ) and  ( )

are first transformed to the other two resolutions via

either an interpolation or a resampling procedure such

that each feature map ends up with three versions at

the resolutions of , ,  and ,  re-

spectively.  We  denote  the  feature  map 

at the resolution of  as .

F1(32× 32)

F2(32× 32) F3(32× 32)

F1
⊕

2
⊕

3(32× 32)

32× 32 F1
⊕

2
⊕

3(32× 32)

64× 64 F1
⊕

2
⊕

3(64×64)

F1
⊕

2
⊕

3(64× 64)

F1(64× 64), F2(64× 64), F3(64× 64)

F1
⊕

2
⊕

3(128× 128)

128× 128 F1
⊕

2
⊕

3(128× 128)

F1(128× 128), F2(128× 128),

F3(128× 128)

S4

Next,  inspired  by the  design  of  the  convolutional

block attention module proposed in [49],  is

concatenated  with  and .  The

result  is  additionally  processed  by  a  channel  atten-

tion module, a spatial attention module, and a series

of convolutional layers sequentially, to derive an over-

all feature map, , at the resolution of

.  is  then  upsampled  to  the

resolution  of ,  resulting  in .

 is  subsequently  concatenated  with

 and ,  the  result  of

which  is  similarly  processed  by  the  aforementioned

channel  attention  module,  spatial  attention  module,

and  another  set  of  convolutional  layers  to  derive  an

integrated  feature  map, ,  at  the

resolution  of .  Lastly,  is

concatenated  with  and

, followed by similar transformations car-

ried out by the above two attention modules and the

convolution layers to yield the final skeletonization re-

sult . 

3.4    Overall Optimization Objective

Following the treatment adopted by the majority

of  previous  work  on  the  detection  and  extraction  of

skeletons  from  character  images[1],  the  proposed  ap-

proach also models the skeletonization operation as a

pixel-level binary classification task in which each im-

age pixel is individually determined regarding whether

it belongs to the skeleton region of a character or not.

Under  this  modeling  perspective,  we  employ  the  loss

function defined as follows: 

losstotal1 =
4∑

i=1

αi × lossCE(Si, GTS), (1)

GTS

I lossCE
αi (i = 1, 2, 3, 4)

where  is  the  ground truth  skeleton  correspond-

ing to an input character image ,  is the cross

entropy  loss,  and  are  the  coefficients

corresponding to each loss term respectively.

It  is  also  noted  that  the  above  loss  function  (1)

does not consider the severity of a particular classifi-

cation error in its measurement. Intuitively, if a pixel

staying close to yet not belonging to the skeleton of a

character  is  mistakenly  classified  as  a  skeletal  pixel,

the  severity  of  such  an  error  should  be  smaller  than

that of classifying a pixel distant from the skeleton as

a skeletal pixel. Unfortunately, the cross entropy loss

term  as  employed  in  (1)  does  not  differentiate  these

two  situations,  overlooking  valuable  feedbacks  that

can be otherwise leveraged to guide the optimization

of a machine learning-based solution.

P
S pixel(qj) qj

Q S

To address the requirement, we introduce a novel

distance-based loss function, which has not been used

in prior studies in the field. For efficient evaluation of

the  distance-based  loss  function,  a  distance  map  im-

age  needs  to  be  first  derived  where  each  pixel  posi-

tion  in  the  map  is  assigned  a  distance  value  that

records  the  position's  shortest  distance  to  the  skele-

ton of a concerned character (see Fig.6). Formally, let

 be the set of all skeletal points in a skeleton image

. The pixel value  of any point  in the dis-

tance map  for  is defined as follows: 

pixel(qj) =
0.9

D
×min(min

pi∈P
d(qj, pi), D),

D d(qj, pi)

qj pi

D

where  is  the  threshold  parameter,  and  is

the  Euclidean distance  between points  and .  To

encourage the proposed network to focus on correctly

classifying skeletal points in marginal situations where

most errors tend to occur, the threshold parameter 

is  introduced such that  those  pixel  positions  too dis-

tant  away  from  the  skeleton  would  not  occupy  too

much  attention  from  the  network.  Such  a  tactic  es-

sentially  helps  the  network  better  learn  from  nega-
 

(a) (b) (c)

M = 3
Fig.6.  Examples of (a) a skeleton and (b) its corresponding dis-
tance map ( ) with (c) a partial enlarged view.
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tive  and positive  samples,  otherwise  significantly  un-

balanced between prospects and background.

GTD

I

Once a distance map  is  prepared for a giv-

en character image ,  we can efficiently evaluate the

following distance map based loss function: 

lossdis(Si) = lossMSE(Si, GTD), (2)

lossMSEwhere  is  the  mean  squared  error  term.  And

the  total  loss  function  for  any  candidate  skeletoniza-

tion result is 

losstotal2 =
3∑

i=1

αi × lossdis(Si) + α4 × lossCE(S4, GTS).

The above loss function (2) takes into account the

geometric severity of the errors, but still does not ade-

quately reflect  the impact of  the errors  on the skele-

ton topology. Errors that make two separated strokes

intersect change the original topology of the skeleton;

thus they are more serious in human perception than

simply  shortening  a  stroke  and  may  significantly  af-

fect the performance of  the skeletons on downstream

tasks  such  as  handwriting  recognition.  However,  the

cross  entropy  loss  and  distance  map  based  loss  can-

not give proper feedback considering the impact of er-

rors on the skeleton structure. Alignment errors, e.g.,

a  small  displacement  or  rotation,  belong  to  such  an

important type of errors that seriously affects the val-

ues of cross entropy loss and distance map based loss

but does not change the skeleton topology.

x

y

X = {xi}
N

i=1 Y = {yj}
N

j=1

x y N

x y

Based  on  the  above  considerations,  we  introduce

the contextual loss proposed in [24], which employs a

novel feature-based method to compare the similarity

between  images  without  the  requirement  of  spatial

alignment.  Specifically,  given  the  generated  image 

and  ground  truth ,  the  corresponding  collection  of

features  and  are  derived  by

utilizing a  pre-trained model  to  represent  the images

,  respectively,  where  is  the  count  of  feature

maps.  The  contextual  similarity  between  two images

 and  is defined as below: 

CX(x, y) = CX(X,Y )

= −log

(
1

N

∑
j

max
i

CXij

)
, (3)

CXij xi yj
dij xi yj

CXij xi yj

where  is  the  similarity  between  and .  Let

 be the cosine distance between  and , and the

similarity  between  and  is  defined  as  fol-

lows: 

d̃ij =
dij

min
k

dik + ϵ
,

wij = exp

(
1− d̃ij

h

)
,

CXij = wij/
∑
k

wik,

(4)

ϵ h

max
i

CXij

yj X

CXjj

CXij

where  and  are  fixed  hyper-parameters.  (3)  em-

ploys best similarity  to measure the similar-

ity  between  and  instead  of  using  spatially

aligned  directly,  and  consequently  enforces  the

model  to  pay  more  attention  to  structural  similarity

rather than strict spatial correspondence, which is al-

so emphasized by the design of  in (4). Intuitive-

ly,  features  tend  to  represent  the  informative  skele-

ton points instead of the background points, and alle-

viate  the  imbalance  between  the  number  of  positive

and negative points in the skeleton images.

The  design  of  contextual  loss  requires  a  pre-

trained model to derive feature maps from generated

skeleton  and  target  skeletons,  while  VGG19[25] train-

ing  on  image-net  employed  by  the  original  paper[24]

brings  no  promising  improvement.  Considering  the

significant difference between skeleton images and re-

al  world  images,  we  propose  to  utilize  auto-encoder

pre-trained  on  skeleton  data,  which  does  not  require

any  additional  information  other  than  the  skeleton

images.  Such  a  model  is  particularly  effective  in  ex-

tracting the skeleton features without causing difficul-

ties  in  data  collection  or  model  training.  Meanwhile,

the auto-encoder is dedicated to reconstructing the in-

put  skeletons  from  the  extracted  representations,

which therefore helps to encode all the valid informa-

tion in the skeleton images and ensures that the com-

parison between images is comprehensive enough.

Ecx Dcx Ecx

{Ecx,l}
M

l=1

M s

{ϕl(s)}M

l=1

ϕl(s) = Ecx,l(ϕ
l−1(s)) ϕ0(s) = s

Dcx

ϕM(s) sfake
Ecx Dcx

Specifically,  the  auto-encoder  consists  of  an  en-

coder  and a decoder , where  includes con-

volutional layers  with a step size of 2, where

 is  a  hyper-parameter.  Given  a  skeleton  image ,

the  sequence  of  feature  maps  is  computed

step  by  step  as  where .

The  followed  decoder  reconstructs  the  final  fea-

tures  into  the  skeleton  image .  We  utilize

the cross entropy loss to train  and  as below: 

lossauto(sfake, s) = lossCE(sfake, s),

lossCE
x

y

where  is  the cross entropy loss.  The final con-

textual  loss  between  generated  image  and  target

image  using  the  above-mentioned  auto-encoder  is

computed as: 
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lossCX(x, y) =
∑

l

CX(ϕl(x), ϕl(y)),

lwhere  the  value  range  of  is  an  optional  hyper-pa-

rameter.

GTS

We apply  contextual  loss  as  a  supplement  of  the

aforementioned losses in the third stage and the corre-

sponding overall loss under the ground truth skeleton

 is as follows: 

losstotal3 =
3∑

i=1

αi × lossdis(Si) + α4 × lossCE(S4, GTS)+

α5 × lossCX(S4, GTS).
 

4    Experiments
 

4.1    Implementation Detail
 

4.1.1    Datasets

Three  datasets,  Kaiti9574,  HW,  and  SkeletonMF

are  used  in  our  experiments.  The  Kaiti9574  dataset,

collected  from  the  Make-Me-a-Hanzi  project③,  con-

tains images of 9 574 Kaiti characters and their corre-

sponding skeletons. We randomly select 7 000 charac-

ters for the training. The SkeletonMF dataset provid-

ed  in  [28]  contains  27  fonts,  each  of  which  has  639

characters.  We  randomly  select  500  characters  from

each font of the dataset to make up a training set of a

total  size  of 13 500 sample  characters.  The  HW

dataset  is  obtained  from  the  data  released  by  [27],

which carries a total of 220 000 online trajectories for

handwritten  Chinese  characters.  We  randomly  select

140 000 characters  as  training  samples  in  our  experi-

ment. 

4.1.2    Experimental Setup

The  proposed  model  is  implemented  in  PyTorch.

All  experiments  are  conducted  on  NVIDIA  GeForce

RTX 2080 Ti GPU. The learning rate used for train-

ing  the  proposed  network  has  an  initial  value  of

0.000 2. Unless otherwise specified, each model train-

ing takes 10 epochs.

To verify  the  effectiveness  of  various  components

in the proposed model, ablation analysis is conducted.

A series of variations of the proposed model are hence

introduced.  S.1  refers  to  the  version  of  the  proposed

model  that  only  executes  its  first  stage  and uses  the

S1output  from the  pre-generation  network  G-net  as

its result. Similarly, S.2 and S.3 refer to the version of

the  proposed  model  that  uses  the  output  of  stage  2

and stage 3 as the model output, respectively. For the

two  outputs  generated  by  stage  2  of  the  model,  the

one that yields a higher performance metric is used in

the following analysis. Note that S.3 is the full model

proposed.  S.2M  refers  to  a  version  of  the  proposed

model that uses the output of a Y-net instead of the

X-net as its output (see details discussed in Section 3)

while  S.3D refers  to  a  version that  turns  the  ground

truth of the first two stages into the distance map as

described  in Section 3.  Finally,  S.3C  refers  to  a  ver-

sion that adds contextual loss (see Subsection 3.4) to

S.3D with an auto-encoder pre-trained on skeleton da-

ta,  while  S.3CV  that  adopts  contextual  loss  with

VGG19  pre-trained  on  image-net  is  also  trained  for

comparison. Four new variants of the proposed mod-

el,  S.2U,  S.3M,  S.3WOA,  and  S.3WOMR,  are  also

trained  to  more  carefully  verify  the  effectiveness  of

the model's components. S.2U refers to a version that

employs modified U-net to replace the X-net of S.2 in

stage 2 (see Section 3), S.3M is an extended version of

S.2M which takes the features obtained by the Y-net

in  stage  2  as  the  input  of  the  F-net,  and  S.3WOA,

S.3WOMR refer to the variants of S.3 without CAM,

SAM (see Subsection 3.3) and without the multireso-

lution synthesis paradigm, respectively. 

4.1.3    Evaluation Metrics

F

Four  experimental  metrics,  including  the  frechet

inception  distance  (FID)[26], -measure,  Hausdorff

distance  (HD),  and  average  Hausdorff  distance

(AHD),  are  used  to  evaluate  the  performance  of  the

proposed model, its variants and peer methods.

F

ps p̃s

ps p̃s

The -measure gives a description of accuracy in

the pixel-wise level, while the Hausdorff distance gives

a  description  of  geometric  similarity.  Assuming  that

 and  are  the  two  sets  of  skeleton  pixels  in  a

ground  truth  skeleton  and  the  corresponding  skele-

tonization  result,  respectively,  for  and ,  HD  is

computed as: 

HD(ps, p̃s) = max(max
b∈ps

min
a∈p̃s

d(b, a),max
a∈p̃s

min
b∈ps

d(a, b)),

d(x, y)

a b

where  is  the  Euclidean  distance  between  pix-

els  and .  In order to reflect  the overall  quality of

an  extracted  skeleton,  we  also  introduce  the  average

Hausdorff distance (AHD) as: 
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ahd(ps, p̃s) =
1

|ps|
∑
b∈ps

min
a∈p̃s

d(b, a),

AHD(ps, p̃s) = ahd(ps, p̃s) + ahd(p̃s, ps). (5)

τ

τ = 0.01, 0.02, . . . , 0.99

ahd(ps, p̃s) ahd(p̃s, ps)

F

F

τ

The probability prediction map outputted by the

network needs to be binarized before being compared

with  the  ground  truth.  The  binarization  threshold 

will  seriously  affect  the  result.  For  a  fair  and  more

comprehensive comparison, we explore a range of the

threshold value. We let  and re-

port  the  resulting  model  performance  using  both  the

precision-recall  curve  and  the  average  Hausdorff  dis-

tance curve. In the average Hausdorff distance curve,

the  two  terms  in  (5),  and ,  are

treated  as  the  coordinates  of  a  point  on  the  curve.

Lastly,  we  also  calculate  an  optimal -measure

(OFM), an optimal HD score (OHD), and an optimal

AHD score (OAHD) as described in (5), which stand

for the highest -measure, HD score, and AHD score

encountered during the exhaustive search of the afore-

said threshold , respectively.

We  also  adopt  the  frechet  inception  distance

(FID)[26] commonly  used  in  the  image  generation

tasks for assessing the generation quality. FID is em-

ployed to measure the distance between images in the

feature  level,  and  is  consequently  closer  to  human

perception than pixel-wise metrics. A smaller FID in-

dicates  better  generated results  in  terms of  the  simi-

larity between features of a generated image and fea-

tures of the corresponding ground truth images. 

4.2    Ablation Study
 

4.2.1    Effectiveness of Three-Staged Model

An ablation study is conducted to explore the re-

spective  contribution  of  each  proposed  algorithmic

module in the new method to its  end skeletonization

capability.  Specifically,  we  compare  the  relative  per-

formance among nine alternative versions of the pro-

posed  model,  S.1,  S.2U,  S.2M,  S.2,  S.3WOA,

S.3WOMR,  S.3M,  S.3,  and  S.3D  (see Subsection 4.1

for details), using the three experimental datasets.

Tables 4–6 show  the  respective  performance  of

these  nine  versions  of  the  proposed  model  quantita-

tively  evaluated  by  using  FID,  OFM,  OHD,  and

OAHD. It is also noted that the last three numerical

metrics  are  sensitive  to  the  particular  binarization

threshold applied at the final output stage of the pro-

posed  network  (see Section 3).  To  comprehensively

explore the relative performance among the five mod-

el versions under a variety of binarization thresholds,

we  further  derive  and  report  the  precision-recall

curves  and  the  average  Hausdorff  distance  curves  in

Fig.7 for  five  main  model  versions  applied  in  experi-

ments.

According to the performance measurements both

numerically reported in Tables 4–6 and graphically il-

lustrated  in  terms  of  the  precision-recall  curve  and

the average Hausdorff distance curve in Fig.7, we can

see that S.2 significantly outperforms S.1 in all experi-

ments conducted over the three datasets.  As S.2 dif-

fers  from  S.1  only  in  that  the  X-net  is  employed  in

S.2  but  not  S.1,  the  above  performance  advantage

shows  the  usefulness  of  the  X-net.  It  is  also  recog-

nized  from Tables 4–6 and Fig.7 that  S.2  is  consis-

tently  superior  to  S.2M,  as  well  as  S.2U.  The  differ-

ence between S.2 and S.2M is that S.2 employs an X-

net in its second stage while S.2M adopts a Y-net in-

stead,  and  the  X-net  differs  from  the  Y-net  only  in

that  the  former  network  has  two  output  branches

while  the  latter  network  has  a  single  branch.  And

thus  such  performance  advantage  demonstrates  that

the  two  output  branches  of  the  X-net  both  con-

tribute meaningfully to the end capability of the pro-

posed  skeletonization  method.  A  similar  comparison

also occurs between S.2M and S.2U that S.2M is con-

sistent and significantly better than S.2U, which veri-

fies  the  necessity  of  two  separate  input  branches  in

the  X-net  and  the  Y-net  and  supports  the  analysis

and discussion in Section 3. S.3 and S.3M are extend-

ed versions of S.2 and S.2M respectively, and the ad-

vantages  of  S.3  in  numerical  evaluation  metrics  re-

veal that not only the skeleton, but also the features

extracted  by  the  X-net  outperform  those  by  the  Y-

net.  It  is  worth  noting  that  S.3M  still  has  a  signifi-

cant  improvement  over  S.2M.  This  indicates  the  ad-

vantages of using F-net in stage 3, not only consider-

ing two output branches, but also using multi-resolu-

tion features as input and performing special process-

ing  on  it.  The  performance  degradation  of  S.3WOA

and S.3WOMR compared with S.3 in Tables 4–6 indi-

cates  that  the  two  important  components  of  the  F-

net,  the  multi-resolution  structure  and  attention

mechanism,  are  necessary  and  effective  components,

because the only difference between S.3WOA and S.3

is that S.3WOA does not employ the attention mod-

ule while the only difference between S.3WOMR and

S.3 is that S.3WOMR does not employ the multireso-

lution convolutional structure. Lastly, Tables 4–6 and

Fig.7 also show that S.3D generally outperforms S.3,
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which  indicates  that  the  distance  map  based  loss

function defined in (2) indeed helps improve the over-

all skeletonization capability of the proposed method.

Finally, to give an intuitive demonstration on the

gradual refinement effects attained by individual com-

ponents in the model, Fig.8 shows a set of skeletoniza-

tion  results  progressively  produced  by  various  stages

of the proposed model. 

4.2.2    Effectiveness of Contextual Loss

We also conduct experiments to illustrate the in-

fluence  of  contextual  loss  on  skeleton  generation.

Three  versions  of  the  proposed  model,  S.3C,  S.3CV

and  S.3D  (see Subsection 4.1),  are  trained  on  three

datasets and evaluated by metrics FID, OFM, OHD,

and  OAHD.  S.3C  and  S.3CV  utilize  contextual  loss

with  the  pre-training  model  using  skeleton  data  and

image-net  data  as  described  in Subsection 3.4,  and

S.3D is trained without contextual loss.

The  results  are  shown  in Tables 7–9.  The  num-

bers  that  indicate  the  best  performance  is  presented

in bold. A larger OFM value, a smaller FID value, a

smaller OAHD value and a smaller OHD value all in-

dicate a better skeletonization result.

According  to  the  numerical  performance,  S.3C
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Fig.7.   Precision-recall  curves  on  (a)  Kaiti9574,  (c)  HW,  and  (e)  SkeletonMF,  and  the  average  Hausdorff  distance  curves  on
(b) Kaiti9574, (d) HW, and (f) SkeletonMF.
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performs consistently better than S.3D on FID, which

is  considered  closer  to  human  perception,  and  per-

forms  similarly  to  S.3D  on  the  other  metrics.  Com-

pared with S.3D, S.3C only adds contextual loss, and

thus  the  above  advantages  indicate  that  the  skele-

tonization performance of the proposed model can be

effectively  improved  by  introducing  the  contextual

loss.  It  is  worth  noting  that  S.3CV  only  employs

VGG19  as  the  original  work[38] trained  with  the  im-

age-net data to replace the auto-encoder trained with

the skeleton data in S.3C, but its performance is sig-

nificantly reduced. This verifies the necessity of using

skeleton  data  instead  of  real-world  images  for  pre-

training.

Furthermore,  we  explore  the  impact  of  reducing

the number of training samples on S.3D and S.3C by

conducting  experiments  over  the  Kaiti9574  dataset.

We employ 7 000, 1 000, 200, and 40 training samples

of Kaiti9574 to train S.3D and S.3C, and the respec-

tive  performance  is  evaluated  in Table 10.  The  re-

sults indicate that the reduction in the data size im-

pairs  the  performance  of  the  model  on  all  metrics;

however, S.3C is less affected. For example, S.3C per-

forms slightly  weaker  than S.3D on OFM with 7 000

training samples (0.774 vs 0.777),  but performs simi-

larly  with 1 000 (0.728 vs  0.727),  and clearly  outper-

forms  S.3D  with  200  or  40  training  samples  (0.705,

0.674  vs  0.691,  0.643).  This  expanded  experiment

shows  that  the  contextual  loss  has  stronger  advan-

tages in the scenario with a small size of the dataset. 

 

(e)(d)(c)(b)(a)

Fig.8.  Results by the proposed model in three stages from dif-
ferent datasets. (a) Input. (b) Ground truth. (c) Output of S.1.
(d) Output of S.2. (e) Output of S.3.

 

Table  7.    Effectiveness of Contextual Loss on Dataset Kaiti9574

Model FID OFM OAHD OHD

S.3D 63.7 0.777 0.438 4.02

S.3C 56.9 0.774 0.442 3.98

S.3CV 62.7 0.759 0.471 4.05

 

Table  8.    Effectiveness of Contextual Loss on Dataset HW

Model FID OFM OAHD OHD

S.3D 18.6 0.925 0.174 3.01

S.3C 17.3 0.924 0.176 3.00

S.3CV 17.9 0.914 0.185 3.67

 

Table  9.    Effectiveness of Contextual Loss on Dataset Skele-
tonMF

Model FID OFM OAHD OHD

S.3D 144.9 0.529 1.125 9.58

S.3C 124.1 0.524 1.148 9.45

S.3CV 133.3 0.507 1.388 10.05

 

Table   10.      Impact  of  Training  Set  Size  on  S.3D  and  S.3C
over Dataset Kaiti9574

Model FID OFM OAHD OHD

S.3D (7 000) 63.7 0.777 0.43 4.02

S.3C (7 000) 56.9 0.774 0.44 3.98

S.3D (1 000) 81.4 0.727 0.59 5.93

S.3C (1 000) 66.4 0.728 0.54 4.87

S.3D (200) 90.0 0.691 0.64 7.12

S.3C (200) 74.9 0.705 0.61 7.45

S.3D (40) 107.9 0.643 0.77 8.39

S.3C (40) 82.6 0.674 0.71 8.63

Note: 7 000, 1 000,  200,  and  40  are  the  number  of  training
samples.
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4.3    Comparison  with  State-of-the-Art  Peer

Methods

Next,  we  compare  the  performance  of  the  pro-

posed model and multiple state-of-the-art peer meth-

ods, including the classical thinning algorithm Zhang-

Suen introduced in [13]  and two deep learning based

skeletonization  models— HED[17] and  SegNet[16].  In

this  set  of  comparative  experiments,  we  use  the  full

version  of  the  proposed  model,  S.3D,  since  it  attains

the best skeletonization results according to the find-

ing  obtained  in  the  above  ablation  study. Tables

11–13 show  the  respective  performance  of  all  con-

cerned  methods  under  comparison  as  quantitatively

evaluated using the three performance metrics, OFM,

OHD, and OAHD in experiments conducted over the

three  datasets.  S3.D  indicates  the  proposed  model.

The  numbers  that  indicate  the  best  performance  is

presented in bold. A larger OFM value, a smaller FID

value, a smaller OAHD value and a smaller OHD val-

ue  all  indicate  a  better  skeletonization  result.  These

results  consistently  reveal  the  superiority  of  the  pro-

posed model compared with all peer solutions.
  
Table   11.      Comparison  with  Peer  Methods  on  Dataset
Kaiti9574

Model FID OFM OAHD OHD

ZhangSuen[13] 74.8 0.427 1.37 10.45

HED[17] 145.1 0.740 0.57 6.45

SegNet[16] 94.4 0.726 0.57 5.74

S3.D 63.7 0.777 0.44 4.02

  
Table  12.    Comparison with Peer Methods on Dataset HW

Model FID OFM OAHD OHD

ZhangSuen[13] 114.5 0.452 1.65 9.67

HED[17] 90.5 0.355 2.28 11.34

SegNet[16] 29.5 0.893 0.28 5.41

S3.D 18.6 0.925 0.17 3.01

  
Table  13.    Comparison with Peer Methods on Dataset Skele-
tonMF

Model FID OFM OAHD OHD

ZhangSuen[13] 190.2 0.313 2.13 12.82

HED[17] 218.0 0.490 1.77 13.21

SegNet[16] 170.4 0.485 1.64 11.30

S3.D 144.9 0.529 1.13 9.56
 

Among  the  three  existing  methods,  it  is  noted

that the traditional thinning algorithm is generally in-

ferior  to  the  other  two  methods  in  conducting  these

experiments,  except  for  the  experiment  carried  out

over  the  HW  dataset,  where  the  thinning  algorithm

outperforms the HED method. For the two peer deep

learning  based  skeletonization  algorithms,  HED  and

SegNet  perform  comparatively  over  the  SkeletonMF

and  Kaiti9574  datasets;  yet  in  experiments  executed

over  the  HW dataset,  SegNet  outperforms  the  HED

algorithm.  Considering  the  fact  that  characters  in

HW, all of which are handwritten, display much more

cursive and versatile shapes and structures than char-

acters in the other two datasets, where all characters

are  printed in  some standard font,  the  above experi-

mental  results  suggest  that  SegNet  is  more  capable

than  HED in  coping  with  handwritten  characters  or

characters  in  versatile  styles.  In  comparison  with  all

the  three  peer  methods,  the  proposed  approach

achieves a consistent and significant lead in conduct-

ing  all  experiments  carried  out  over  these  three

datasets,  according  to  the  three  numerical  perfor-

mance metrics reported in Tables 11–13.

To  intuitively  demonstrate  the  relative  perfor-

mance  among  all  peer  methods  including  the  pro-

posed approach, Fig.9 lists a few results selected from

the  above  comparison  experiments  where  areas  dis-

playing  the  most  erroneous  skeletonization  results

with respect to the corresponding ground truth skele-

ton are shown in a zoomed-in view. It is easy to no-

tice that skeletons extracted by the ZhangSuen algo-

rithm[13] tend to be continuous and stable, which how-

ever are error-prone at stroke intersections. The HED

algorithm  suffers  from  the  same  difficulty  in  skele-

tonizing  overlapping  strokes,  and  produces  fragile

skeletonization  results  for  handwritten  characters.

This  observation  is  consistent  with  the  finding  ob-

tained from the quantitative performance analysis dis-

cussed  in  the  above.  The  SegNet  algorithm performs

most  competently  among  all  the  three  existing  solu-

tion  approaches.  It  is  able  to  extract  skeletons  even

from relatively complex or cursive characters. Howev-

er, SegNet fails to retain continuity and details in its

skeletonization results, partly because of the frequent

breakpoints  undesirably  generated.  In  comparison

with  all  these  peer  methods,  the  proposed  approach

achieves a marked advantage in satisfactorily extract-

ing  skeletons  from  characters,  both  in  printed  fonts

and  cursively  written  by  hand,  while  preserving  the

continuity of the resulting skeletons with rich details.

The  proposed  model  also  noticeably  outperforms  all

peer  solutions  in  skeletonizing  characters  with  over-

lapping strokes. 
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4.4    Skeletonizing Characters in Small

Samples

Considering  the  label-intensive  operations  needed

for  acquiring  groundtruth  skeletons,  a  model's  capa-

bility  of  learning  from  a  small  number  of  training

samples  to  tackle  the  skeletonization  task  is  particu-

larly  appealing.  To  explore  such  capability,  we  con-

duct  another  experiment  over  the  Kaiti9574  dataset

where  the size  of  the  training set  is  progressively  re-

duced  from 7 000 to 1 000,  200,  and 40,  respectively.

The  proposed  model  and  all  the  three  peer  methods

are applied in this experiment. Fig.10 shows results of

this  experiment.  Except  for  the  classical  thinning  al-

gorithm  ZhangSuen,  which  does  not  depend  on  any

training  data,  all  the  other  three  machine  learning-

based  skeletonization  methods  experience  a  decayed

performance  when  the  size  of  training  samples

shrinks.  Among  the  three  learning-based  methods,

skeletons produced by the proposed model get slight-

ly blurred, yet remain at a high visual quality; in con-

trast,  the  quality  of  skeletons  produced by the  other

two  learning-based  peer  models  declines  significantly

when the size of training samples drops.

 

(a)

ZSHEDSegOursGTInput

(b)

ZSHEDSegOursGTInput

(c)

ZSHEDSegOursGTInput

Fig.9.   Skeletons  generated  by  three  peer  methods  and  the  proposed  approach  for  character  images  from  three  datasets.
(a) Kaiti9574, (b) HW and (c) SkeletonMF. From left to right are the input images, ground truth skeletons (GT) and results by pro-
posed model (Ours), SegNet (Seg)[16], HED[17] and ZhangSuen (ZS)[13].
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HED
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Input
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Truth

ZhangSuen

(a)

Input

ZhangSuen

SegNet

HED

Prop-

osed

7 000 1 000 200 40

(b)

Ground
Truth

Fig.10.   Results  generated  by  the  models  trained  using  a  pro-
gressively smaller set of 7 000, 1 000, 200, and 40 training sam-
ples, respectively, on the Kaiti9574 dataset. ZhangSuen[13], Seg-
Net[16], HED[17] are peer methods in which ZhangSuen does not
need training samples. (a) Character “龆”. (b) Character “龍”. 

4.5    Skeletonizing Characters in Newly

Encountered Styles

To  explore  the  generalization  capability  of  the

proposed method in skeletonizing characters in newly

encountered styles, we carry out two additional exper-

iments.

In the first experiment, real-world calligraphic im-

ages are used for evaluation, the results of which are

shown in Fig.11.  These calligraphic characters exhib-

it  fuzzy  boundaries  with  uneven  edges,  often  accom-

panied by heavy background noises, whose shapes and

structures  often  deviate  noticeably  from  those  print-

ed  in  standard  fonts,  all  of  which  make  their  skele-

tonization operations much more challenging. It is al-

so noted that calligraphic characters can be written in

a  vast  number  of  personal  styles,  which  provide  a

good  test-bed  to  explore  an  algorithm's  capability  of

skeletonizing characters written in styles not previous-

ly witnessed.

When  conducting  this  experiment,  we  train  all

three learning-based skeletonization models  using the

SkeletonMF dataset because the dataset carries 27 di-

verse  looking fonts,  making an algorithm more likely

to learn to skeletonize characters in style not encoun-

tered previously. This hypothesis is supported by ad-

ditional  experiments  where  either  of  the  other  two

datasets is used as a training source, which produces

compromised  outcomes.  It  is  noted  that  none  of  the

calligraphic writing styles  encountered in this  experi-

ment is covered in the training dataset. From Fig.11,

we can observe that the proposed model achieves vi-

sually  noticeable  advantages  over  all  the  three  peer

methods.  The  peer  method,  SegNet,  produces  much

poorer  results  in  this  experiment  than  the  proposed

method  despite  SegNet's  relatively  decent  perfor-

mance  in  earlier  experiments  involving  characters

with previously encountered styles.

In  the  second  experiment,  we  test  the  perfor-

mance of the proposed model in comparison with that

of  the  peer  methods  using  a  cursive  handwriting

dataset,  CASIA-OFFHWDB1.1[27],  introduced  in  [1].

Again,  all  the  three  learning-based  skeletonization

models using the SkeletonMF dataset due to the same

empirical reason explain the above. Similarly, none of

the  handwriting  styles  encountered  in  this  experi-

ment is covered in the training dataset. Fig.12 gives a

few skeletonization results generated by the proposed

method  in  comparison  with  those  by  the  peer  ap-

proaches, where the proposed method delivers visual-

ly  more  plausible  results.  It  is  noted  that  no  ground

truth  skeletons  are  provided  in  the  CASIA-OFFH-

 

(a) (b) (c) (d) (e) (f)

Fig.11.   Skeletons  extracted  from  (a)  real-world  calligraphic
characters  by  different  methods.  (b)  Ground  truth.  (c)  Pro-
posed model. (d) ZhangSuen[13]. (e) SegNet (Seg)[16]. (f) HED[17].
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WDB1.1  dataset.  To  quantitatively  explore  the  rela-

tive performance among all peer solutions, we formu-

late a panel of 10 human evaluators, proficient in rec-

ognizing  cursive  Chinese  handwritings.  Each  evalua-

tor is invited to assess the visual quality of a charac-

ter  skeletonization  result  in  terms  of  its  structural

correctness,  the consistency with corresponding input

character image (conformance), and the overall  plau-

sibility  of  the  skeleton  as  perceived  by  the  human

reader.  The assessment outcome is  expressed using a

five-point Likert scale from 1 (poor) to 5 (excellent).

The  evaluation  results  are  shown in Table 14,  which

convincingly demonstrates the superiority of the pro-

posed method to all peer methods compared.

Finally, Fig.13 shows skeletons extracted using the

proposed approach for the Chinese character “鼎” in
28  writing  styles,  which  comprehensively  demon-

strates the morphological diversity of Chinese charac-

ters  as  well  as  the  proposed  model's  ability  to  cope

with such versatile styles. 

4.6    Impact on Handwriting Chinese

Characters Recognition

To measure the generation quality in another view

and  explore  its  impact  on  downstream  tasks,  we

choose the handwritten Chinese character recognition

task, a widely-used Chinese character related task, for

testing  the  generated  skeleton  of  different  methods.

Specifically,  we  train  ResNet-50[50] by  taking  the

ground truth skeletons in the HW dataset  as  the in-

 

(a) (b) (c) (d) (e)

Fig.12.  Skeletons extracted for character images in the CASIA-
OFFHWDB1.1  dataset[27].  (a)  Input.  (b)  Proposed  model.
(c) FNCBS[1]. (d)Seg[16]. (e) HED[17].

 

Table  14.    Mean of Subjective Opinions Scores for Skeletons
Generated by Different Methods

Structure Conformance Plausibility

Proposed 3.8 3.7 3.9

FNCBS[1] 2.7 2.2 2.5

SegNet[16] 1.3 1.5 1.2

HED[17] 1.6 1.8 1.5

 

(a) (c)(b) (d) (f)(e) (g) (i)(h) (j) (l)(k)

Fig.13.  Skeletonization results generated by the proposed model regarding the Chinese characters “鼎” in 28 font styles. (a), (d), (g),
and (j) are input images of model, (b), (e), (h), and (k) are corresponding ground truth skeletons, and (c), (f), (i), and (l) are model
results.
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put  of  the  model  and  their  corresponding  character

classification  labels  as  the  target  output.  After  the

training, we feed the skeleton images obtained by dif-

ferent methods to the ResNet-50 classifier and calcu-

late the classification accuracy of the generated skele-

tons.  Since  only  the  ground truth  skeletons  are  used

in  the  training,  a  higher  accuracy  indicates  that  the

input skeletons are more similar  to the ground truth

in the view of recognition, and this fact partially illus-

trates  the  potential  of  the  models  to  be  applied  in

recognition tasks.

The  top-1  and the  top-5  recognition  accuracy  re-

ported in Table 15 indicate that skeletons obtained by

the proposed model are easily recognized by the mod-

el (with the top-1 accuracy of 94.6% and the top-5 ac-

curacy  of  99.8%)  and  are  relatively  close  to  the

ground truth  (with  the  top-1  accuracy  of  96.6% and

the  top-5  accuracy  of  99.8%).  Although  SegNet  per-

forms the best among the three peer methods, its ac-

curacy still has a considerable gap compared with the

proposed  model.  The  top-1  recognition  accuracy  of

the  rest  two  methods  is  less  than  50%,  indicating

their errors have a considerable impact on the correct-

ness  of  the  topology  or  structure  of  the  skeleton,

which is consistent with our previous analysis. We al-

so  conduct  comparisons between different  versions  of

the  proposed  model,  whose  results  are  displayed  in

Table 16.  The  gradually  increasing  top-1  and  top-5

accuracy with the use of more components effectively

illustrates the effectiveness of the proposed model.
  
Table  15.    Recognition Accuracy (%) of Skeletons Extracted
by Three Peer Methods and Proposed Model

Model Top-1 Top-5

Ground Truth 96.6 99.8

Proposed 94.6 99.8

SegNet[16] 84.1 94.1

HED[17] 36.4 51.8

ZhangSuen[13] 46.2 67.4

  
Table  16.      Recognition Accuracy (%) of  Skeletons Obtained
by Different Versions of Proposed Model

Model Top-1 Top-5

S.3C 94.6 99.8

S.3D 94.6 99.6

S.3 93.6 99.4

S.2 92.0 99.0

S.2M 93.0 99.2

S.1 90.4 98.2

 

It is worth noting that the simplest model version

S.1 does not outperform SegNet on pixel-wise metrics

OFM,  OAHD,  and  OHD,  but  S.1  significantly  ex-

ceeds SegNet in the recognition task (90.4% top-1 ac-

curacy  compared  with  84.1%).  This  further  demon-

strates  that  the  proposed  model  has  stronger  poten-

tial to be applied to downstream tasks compared with

the peer methods. 

5    Conclusions

This  research  proposed  a  novel  deep  generative

model  capable  of  extracting  high-quality  skeletons  of

Chinese characters following an image-to-image trans-

lation  approach.  The  new  model  comprises  three  se-

quential processing stages, empowered by three deep-

learning  modules  respectively,  including  an  improved

G-net  module,  an adapted X-net  module,  and a  cus-

tom-designed convolutional module augmented by an

attention mechanism as well as a multiscaled genera-

tive pathway. Simultaneously, by using a newly intro-

duced  contextual  loss  with  modification  as  a  supple-

ment  for  pixel-wise  loss,  the  ability  of  the  proposed

model  to  generate  better  skeletons  is  further  en-

hanced.  As  a  whole,  such  a  multistage  processing

pipeline  is  able  to  progressively  improve  the  skele-

tonization  result  of  a  character.  Its  effectiveness  is

comprehensively  demonstrated  in  comparison  with

peer  methods  and  different  versions  of  the  proposed

model, including comparison of numerical metrics and

amouts  of  generated  images.  The  experimental  re-

sults reported throughout this paper showed that the

proposed  model  is  superior  to  existing  methods  in

generation quality and capabilities in coping with less

data and various styles.

Results of an ablation study additionally revealed

the respective usefulness of the three constituent mod-

ules and newly introduced loss in the proposed gener-

ative model. The new model is also particularly well-

suited  for  processing  characters  with  only  a  small

number  of  training  samples,  a.k.a.  the  small-sample

learning  capability  of  the  new  method,  as  well  as

characters  written  in  versatile  styles  previously  un-

seen to the algorithm, a.k.a. the transfer learning ca-

pability of the method.

The outstanding performance of our model in the

handwriting recognition task showed its promising po-

tential  and  broad  prospects  for  better  completion  of

downstream tasks.  In the future,  we will  further  uti-

lize  skeletons  and  features  obtained  by  the  proposed

model  to  enhance  the  performance  of  downstream

tasks,  including  handwriting  recognition  as  shown  in

this  paper,  and  other  tasks,  e.g.,  image  restoration
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and segmentation, and style learning and transfer. 
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