
Minimal Context-Switching Data Race Detection with Dataflow Tracking

Zheng Long, Li Yang, Xin Jie, Liu Hai-Feng, Zheng Ran, Liao Xiao-Fei, Jin Hai

View online: http://doi.org/10.1007/s11390-023-1569-7

Articles you may be interested in

A Dataflow-Oriented Programming Interface for Named Data Networking

Li-Jing Wang, Yong-Qiang Lv, Ilya Moiseenko, Dong-Sheng Wang

Journal of Computer Science and Technology. 2018, 33(1): 158-168 http://doi.org/10.1007/s11390-018-1812-9

Exploiting Unlabeled Data for Neural Grammatical Error Detection

Zhuo-Ran Liu, Yang Liu

Journal of Computer Science and Technology. 2017, 32(4): 758-767 http://doi.org/10.1007/s11390-017-1757-4

A Non-Stop Double Buffering Mechanism for Dataflow Architecture

Xu Tan, Xiao-Wei Shen, Xiao-Chun Ye, Da Wang, Dong-Rui Fan, Lunkai Zhang, Wen-Ming Li, Zhi-Min Zhang, Zhi-Min Tang

Journal of Computer Science and Technology. 2018, 33(1): 145-157 http://doi.org/10.1007/s11390-017-1747-6

An Efficient Network-on-Chip Router for Dataflow Architecture

Xiao-Wei Shen, Xiao-Chun Ye, Xu Tan, Da Wang, Lunkai Zhang, Wen-Ming Li, Zhi-Min Zhang, Dong-Rui Fan, Ning-Hui Sun

Journal of Computer Science and Technology. 2017, 32(1): 11-25 http://doi.org/10.1007/s11390-017-1703-5

Semi-Supervised Classification of Data Streams by BIRCH Ensemble and Local Structure Mapping

Yi-Min Wen, Shuai Liu

Journal of Computer Science and Technology. 2020, 35(2): 295-304 http://doi.org/10.1007/s11390-020-9999-y

Minimizing Resource Cost for Camera Stream Scheduling in Video Data Center

Yi-Hong Gao, Hua-Dong Ma, Wu Liu

Journal of Computer Science and Technology. 2017, 32(3): 555-570 http://doi.org/10.1007/s11390-017-1743-x

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-023-1569-7
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1812-9
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1757-4
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1747-6
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1703-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9999-y
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1743-x
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

Minimal Context-Switching Data Race Detection with Dataflow
Tracking

Long Zheng (郑　龙), Member, CCF, ACM, IEEE, Yang Li (李　洋), Student Member, CCF
Jie Xin (辛　杰), Student Member, CCF, Hai-Feng Liu (刘海峰), Student Member, CCF
Ran Zheng (郑　然), Member, CCF, ACM, IEEE
Xiao-Fei Liao* (廖小飞), Senior Member, CCF, Member, IEEE
and Hai Jin (金　海), Fellow, CCF, IEEE, Life Member, ACM

National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, China

Services Computing Technology and System Laboratory, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan 430074, China

Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China

E-mail: longzh@hust.edu.cn; ly_winter@hust.edu.cn; jxin@hust.edu.cn; hfliu@hust.edu.cn; zhraner@hust.edu.cn
xfliao@hust.edu.cn; hjin@hust.edu.cn

Received May 7, 2021; accepted December 23, 2023.

Abstract Data race is one of the most important concurrent anomalies in multi-threaded programs. Emerging con-

straint-based techniques are leveraged into race detection, which is able to find all the races that can be found by any oth-

er sound race detector. However, this constraint-based approach has serious limitations on helping programmers analyze

and understand data races. First, it may report a large number of false positives due to the unrecognized dataflow propa-

gation of the program. Second, it recommends a wide range of thread context switches to schedule the reported race (in-

cluding the false one) whenever this race is exposed during the constraint-solving process. This ad hoc recommendation

imposes too many context switches, which complicates the data race analysis. To address these two limitations in the

state-of-the-art constraint-based race detection, this paper proposes DFTracker, an improved constraint-based race detec-

tor to recommend each data race with minimal thread context switches. Specifically, we reduce the false positives by ana-

lyzing and tracking the dataflow in the program. By this means, DFTracker thus reduces the unnecessary analysis of false

race schedules. We further propose a novel algorithm to recommend an effective race schedule with minimal thread con-

text switches for each data race. Our experimental results on the real applications demonstrate that 1) without removing

any true data race, DFTracker effectively prunes false positives by 68% in comparison with the state-of-the-art constraint-

based race detector; 2) DFTracker recommends as low as 2.6–8.3 (4.7 on average) thread context switches per data race in

the real world, which is 81.6% fewer context switches per data race than the state-of-the-art constraint based race detec-

tor. Therefore, DFTracker can be used as an effective tool to understand the data race for programmers.

Keywords data race, satisfiability modulo theory, multi-threaded program, dynamic detection

1 Introduction

A data race happens when multiple threads ac-

cess the same memory location without appropriate

synchronization, and at least one of them updates the

value[1]. For programmers, data races reported by a

race detector are generally used for verification and

further understanding so that data races can be cor-

rectly fixed. For the sake of programmer productivity,

it is particularly important for race detection in terms

Regular Paper

This work is supported by the National Key Research and Development Program of China under Grant No. 2023YFB4503400,
and the National Natural Science Foundation of China under Grant Nos. 62322205, 62072195, and 61825202.

*Corresponding Author

Zheng L, Li Y, Xin J et al. Minimal context-switching data race detection with dataflow tracking. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 39(1): 211−226 Jan. 2024. DOI: 10.1007/s11390-023-1569-7

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7

of precision[2, 3] and the number of thread context

switches exposed on the data race[4, 5]. Precision

means that the race detector reports true data races

without false positives so that programmers can con-

centrate on the real ones. The number of thread con-

text switches represents the complexity of scheduling

a data race. The larger the number of thread context

switches is, the more difficult it is for programmers to

understand this data race. If both aspects are well

done by the race detector, much debugging effort of

data races will be saved for programmers. An ideal

race detection tool should report true data races and

recommend the minimal context switches for each da-

ta race[6]. In this paper, we investigate whether and

how we can improve the precision and reduce the

number of context switches for each recommended da-

ta race.

Constraint-based analysis has been an effective

means for race detection[7–9] (hereinafter referred to as

CRD). [7–9] identify data races by formulating race

detection as a constraint-solving problem. Specifically,

on the basis of specific program execution, they con-

struct a series of constraints to represent the pro-

gram semantics and further generate all feasible pro-

gram schedules by solving these constructed con-

straints via a satisfiability modulo theories (SMT)

solver[10]. By this means, CRD is able to find all the

races that can be found by any other sound race de-

tector, and the generated schedules for the identified

data races (abbreviated as race schedules) can be al-

so used to reproduce how data races are scheduled.

Nevertheless, in practice, constraint-based race de-

tectors[7–9] still have two major problems, limiting

their application and productivity for programmers.

CRD perceives only the semantics of basic program

components (e.g., lock, read/write, and fork/join) and

does not detect the complex and implicit control flow

arising from the dataflow propagation of programs.

CRD often leads to the incompleteness of constraint

generation and mishandles the possible thread inter-

leavings of lock-free structures (as discussed in Sub-

section 2.2).

88.7

As a result, [7–9] may generate excessive unneces-

sary race schedules for a large number of false posi-

tives (i.e., false races). Note that this weakness can be

common in practice. As shown in the previous

study[11], more than % data races are related to

the dataflow of the program (including ad hoc syn-

chronization), especially with the pointer alias and

reference variable. For a given data race, there may

involve a crowd of race schedules to expose it. Never-

theless, CRD generates the race schedules for each da-

ta race whenever this data race is exposed during con-

straint solving. As a result, this ad hoc recommenda-

tion can impose too many context switches, which

complicates the data race analysis for programmers.

In summary, the state-of-the-art constraint-based race

detection[7] is not friendly to programmers, which fails

to detect true races only, and offers a minimal num-

ber of thread context switches for the debugging of a

data race.

To address the two limitations in the state-of-the-

art constraint-based race detection, this paper propos-

es DFTracker, an improved constraint-based race de-

tector, which attempts to schedule the data races

with a minimal number of thread context switches

while removing unnecessary false positives. In order to

eliminate the false dataflow-related races, we enhance

CRD with dataflow tracking. DFTracker only focuses

on tracking the dataflow related to the data races so

as to reduce the analysis overhead. To be specific, the

core process of dataflow detection is as follows. First,

DFTtracker takes the data race candidates reported

by the CRD approach as a dataflow analysis base.

Second, DFTracker checks whether there exists a

dataflow propagation path between two conflicting

accesses of this data race candidate. Therefore, we

maintain a happens-before (HB) order between them,

and this data race candidate is classified as a false

positive. Otherwise, this race candidate reported by

CRD can be regarded as a true race.

In order to recommend the race schedule with the

minimal number of thread context switches (abbrevi-

ated as minimal schedule), we propose a novel offline

detection algorithm, which takes all generated feasi-

ble race schedules for each reported data race as in-

put. Among these race schedules per data race, it an-

alyzes all numbers of context switches for each race

and then selects the minimal schedule for this race.

We evaluate the efficiency and effectiveness of

DFTracker on five real programs including two ser-

ver applications—Apache① and MySQL②, and three

desktop applications—pbzip2③, TransmissionBT④, and

Handbrake⑤. The experimental results demonstrate

212 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

①http://www.apache.org/, Jan. 2024.

②http://www.mysql.com/, Jan. 2024.

③http://compression.ca/pbzip2/, Jan. 2024.

④http://www.transmissionbt.com/, Jan. 2024.

⑤http://handbrake.fr/, Jan. 2024.

http://www.apache.org/
http://www.mysql.com/
http://compression.ca/pbzip2/
http://www.transmissionbt.com/
http://handbrake.fr/

that 1) without removing any true data race, DF-

Tracker effectively prunes false positives by 68% in

comparison with the state-of-the-art CRD[7]; 2) DF-

Tracker recommends as low as 2.6–8.3 (4.7 on aver-

age) thread context switches per data race for those

real applications, which is 81.6% fewer context

switches per data race than the state-of-the-art CRD.

Therefore, DFTracker can be used as an effective tool

to better understand and analyze data races for pro-

grammers.

The rest of this paper is organized as follows. Sec-

tion 2 outlines the background and motivation of our

work. We present the dataflow propagation detection

in Section 3, and Section 4 elaborates how to recom-

mend effective race schedules with the minimal num-

ber of thread context switches. Section 5 shows the

experimental results. We survey related work in Sec-

tion 6 and conclude this work in Section 7.

2 Background and Motivation

In this section, we first give a brief introduction to

CRD[7]. Next, we give motivating examples to show

two issues of CRD, including reporting false positives

and recommending ineffective race schedules for race

debugging. Motivated by the discussed examples, we

finally present the overview of our proposal DFTrack-

er to solve these problems for more effective and

programmer-friendly race detection. To facilitate the

descriptions, we define several notations listed in Ta-

ble 1.

2.1 Constraint-Based Race Detection (CRD)

For a given program schedule, most existing dy-

namic analysis techniques (e.g., [3]) take the strict

happens-before order[2] for the program analysis. Us-

ing different program schedules, they generally pro-

duce a different set of data races, that is, each pro-

gram schedule is taken to report a set of data races

(i.e., the race set in Fig.1), where the red star repre-

sents false data races.

Thus a large number of unobserved data races in

other schedules may be missed, as shown in Fig.1(a).

If we want to get all race sets, we have to test all pro-

gram schedules. In contrast, CRD breaks this limita-

tion by using constraint-based analysis. It achieves

the objective of getting all race sets without actually

requiring all program schedules. Instead, it just takes

only one representative program schedule as input.

Specifically, it records a specific program execu-

tion into a trace or a minimal set of traces[7]. Through

analyzing the concrete program semantics (such as

thread paths, reads/writes, and synchronization or-

der) in the trace, CRD then abstracts a series of con-

straints to represent program schedules. They encode

the constraint order of these events of a program

schedule as follows:

ρπ ∧ ιπ ∧ γπ,

ρπ

ιπ γπ

where denotes the partial order constraints which

represent the must-happen-before relation between

events (i.e., two events have the hard program order,

such as fork/join, signal/wait, and program control

flows). denotes the locking constraints, and de-

Table 1. Notations in the Constraint Model

Notation Description

e Event in an execution trace

� Operator to obtain the attribute of an event, e.g.,
e.type

π Set of events in a program schedule

Race (i, j) i jData race between line and line in different
threads

Xπ X π constraints operated on the events in

Ri
v

v
i

Value of read access to the shared variable at
line

W i
v

v
i

Value of write access to the shared variable at
line

Oi
v v iPartial order of at line in a program schedule

Program

Schedule
Race Sets

Program

Schedules
Race Sets

(a) (b)

Program

Schedule
Race Sets

(c)

Fig.1. Different detection approaches. (a) HB-based detector. (b) CRD. (c) A precise CRD.

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 213

a b Oi
a = Oj

b + 1

b a

notes the read-write constraints. Finally, CRD in-

vokes an SMT solver[10] to solve these constraints and

generates all feasible program schedules. To further

identify data races, CRD also encodes race con-

straints such that the order of two conflicting events

 and should be consecutive as , mean-

ing that event immediately happens after event .

Combining program constraints and race constraints,

CRD then can generate all feasible race schedules. By

this means, taking only one program schedule, CRD

can identify all race sets in all feasible program sched-

ules, as shown in Fig.1(b).

Unfortunately, due to the incomplete constraint

generation, only the semantics of basic program com-

ponents (e.g., lock, read/write, and fork/join) is guar-

anteed in their work. It lacks the corresponding

strategies to track the implicit control flows arising

from the dataflow propagation of the program. This

weakness is also acknowledged by the authors in their

paper[7], which does not provide a solution. Thus, the

CRD approach may generate false positives and fur-

ther induce to conduct some unnecessary constraint

analysis. For a given data race, there may involve

many race schedules to expose it.

Nevertheless, CRD generates the race schedules

for each data race whenever this data race is exposed

during constraint solving. As a result, this ad hoc rec-

ommendation can impose too many context switches,

which complicates the data race analysis for program-

mers. In summary, the state-of-the-art constraint-

based race detection[7] is not friendly to programmers,

which fails to detect true data races only, and offers a

minimal number of thread context switches for the

debugging of a data race. Next, we will introduce mo-

tivating examples to illustrate these two issues of the

CRD approach.

2.2 Motivating Examples

Dataflow propagation is very common in multi-

threaded programs. It generally means that a thread

requires shared data that is produced by another

thread. As discussed previously, program components

(e.g., lock, read/write, and fork/join) can be tracked

precisely by the CRD approach. However, numerous

program semantics of the lock-free structures, which

can be scheduled with many possible thread interleav-

ings for a multi-threaded program, may lead to the

imprecision of the CRD approaches. The implicit or-

der of these lock-free structures is generally propagat-

ed in the form of dataflow information, which is

missed in the CRD approach. One common use case

of dataflow propagation is producer-consumer com-

munication, e.g., push/pop, enqueue/dequeue, write/

read, and insert/delete. For the push/pop pair, only

when the data is pushed into the stack, and later this

data can be used with the pop operation.

S1 S2

S1 S2

Race(S1, S2)

S1 → S2

S1

S2

Fig.2 depicts a simplified code from pbzip2. It em-

ploys the producer-consumer mechanism to compress

the file in parallel: the main process produces the

blocks into the queue q by reading the file and the

consumer process compresses these blocks from the

queue q in parallel. In this example, though the mutu-

al semantics of the lock structure can be preserved by

the existing CRD approach, the scheduling order of

two critical sections is flexible and can be alternative-

ly executed in different orders, depending on the run-

time scheduling. In this case, the lock-free structures,

i.e., the code snippets in and , may be executed

simultaneously. The CRD approach reports the

shared data on block between and as a data

race , since it argues that two blocks may

be operated on the same shared memory location. In

fact, when two blocks point to the same block, the or-

der of is guaranteed through the manipula-

tion of enqueue and dequeue. The parallelism of

and is only valid when they are operated on differ-

ent blocks.

 Main: Consumer:

… …

S 1: (char*)block = read_block(i); lock(&L);

 lock(&L); block = dequeue(&q);

 enqueue(&q, block); unlock(&L);

 unlock(&L); S 2: compress(block);

 /*pbzip2*/

S1 → S2

Fig.2. The shaded memory accesses are reported as a data race
by CRD. In fact, it is a false positive because the order of

 is ensured by queue maintenance when both blocks in
two threads are operated on the same shared memory address.

Race(S1, S2) is a false positive reported by CRD,

because CRD is unaware of the dataflow propagation

of the program, thus missing the potential happens-

before order arising from the unrecognized dataflows.

Still, it is a nontrivial task for CRD to recognize the

dataflow propagation paths in real applications. First,

two conflicting memory addresses of a data race may

not be exactly the shared data used in the programs.

In general, as shown in Fig.2, they may be the local

memory that uses the same shared data computed or

transferred from the values of other multiple objects.

Second, the dataflow propagation of a conflicting

memory address may be triggered in various forms,

214 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

e.g., write-to-read pair, library call, and address pass-

ing. Both complex programming designs/implementa-

tions complicate the dataflow analysis of the program.

4 5

Race 4, 10

The memory order model is another main reason

for the hard reproducibility of data races. A more

subtle and critical point is that many relaxed memo-

ry models allow the compiler or CPU to reorder the

shared memory accesses to different memory address-

es. In Fig.3(b), only if line and line are reordered,

() can be exposed by CRD.

T1.4 T1.5
Race(T1.2, T2.3)

Race(T1.4, T2.5) Race(T1.4, T2.5)

T1.1 → T2.1 → T1.2

→ T2.2 → T1.3 → T2.3 → T1.5 → T2.4 → T1.4 → T2.5

T2.1→T2.2

→ T2.3→T1.1→T1.2→T1.3→T1.5→T2.4→T2.5 →T1.4

Apart from the above-discussed problem, by solv-

ing the program constraint with the race constraint

via the SMT solver, we then get an enormous num-

ber of program schedules for each true data race.

However, it is still difficult for programmers to effec-

tively understand all these identified data races with

these massively-generated schedules. As observed in

real programs, the CRD approach recommends a

schedule with an excessively randomized number of

context switches, which is rather difficult and tedious

for programmers to understand these data races. On

the other hand, we can observe the opportunities to

find the minimal number of context switches for each

recommended schedule. Fig.3 shows a code snippet

with two threads accessing two shared variables (x
and y). If and can be reordered, there are

two latent data races (i.e., and

) in this code. For ,

CRD may recommend many possible race schedules.

For instance, the race schedule

 is

relatively hard to understand because 10 thread

switches are invoked for these 10 lines of code (i.e.,

LOC). On the other hand, the race schedule

involves only three thread switches. This race sched-
ule is more intuitive. The CRD approach may recom-
mend those race schedules in an ad hoc manner.

A few studies[12, 13] attempt to reduce the impact

arising from context switching by producing simpli-

fied interleavings to find a root cause schedule for

concurrency failures. In this earlier research, failures

are assumed to be assertion violations. However, data

races have far more complex concurrency

behaviors[14]. They cannot always be formalized as an

invariant assertion problem[13]. RaceDebugger comple-

ments to use dynamic slicing to tailor the original

schedules generated by constraint-solving systems[8].

However, each exposed race schedule in RaceDebug-

ger needs to be re-executed at runtime with some

manual checkings to locate root causes precisely, lim-

iting its practicability. DFTracker is different from

but orthogonal to these earlier root cause

researches[7–9]. DFTracker enables finding a minimal

context-switching schedule which can be further used

to explore the easy-to-understand root causes of con-

currency bugs.

In addition, DFTracker works purely upon con-

straint-solving systems in a self-contained and auto-

matic fashion without any manual interruption, im-

proving the productivity of data race analysis.

2.3 Overview of DFTracker

To address the limitation of the CRD approach,

we design DFTracker, an improved constraint-based

race detector. Fig.4 shows the overview of DFTracker.

The basic idea of DFTracker is that it 1) uses

dataflow tracking to eliminate the false positives re-

ported by the CRD approach, and 2) recommends the

Thread 2

1: lock l;

2: y=1;

3: unlock l;

4: x =2;

5: done =true;

Thread 1

 1: a=1;

 2: b=2;

 3: y =3;

 4: while(! done);

 5: x =4;

Initialization: done ==false

(a) (b)

Thread 2

1: lock l;

2: y=1;

3: unlock l;

4: x =2;

5: done =true;

Thread 1

 1: a=1;

 2: b=2;

 3: y =3;

 4: while(! done);

 5: x =4;

Race (T1.4, T2.5)
Race (T1.4, T2.5) T1.4 T1.5
Fig.3. Code snippet on different memory models. (a) is undetectable on sequential consistent memory. (b)

 is detectable if and are reordered.

CRD

Data Race

Candidate Dataflow

Detection

 Discarded

True

Race

False

Race

Schedule

Recommendation

Race

Schedules

Minimal

Schedule

Fig.4. Overview of DFTracker.

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 215

race schedule with a minimal number of thread con-

text switches. By this means, DFTracker improves

the producibility of race detection in understanding

and debugging data races.

DFTracker takes each data race candidate report-

ed by the CRD approach as input, and augments the

CRD approach in two major steps: dataflow detec-

tion and schedule recommendation. First, it invokes a

dataflow checker to detect whether this data race can-

didate is caused by the unrecognized dataflow of the

program (Section 3). If it is, DFTracker classifies this

race candidate as a false race and discards it. Other-

wise, we consider it as a true data race and DFTrack-

er next generates all feasible race schedules that can

expose this race. Among these generated race sched-

ules, DFTracker invokes the schedule recommender to

find out the final schedule with the minimal number

of thread context switches (Section 4). Next, we will

introduce each of them in detail.

3 Dataflow Propagation Detection

Since the existing CRD approach[7] reports false

positives arising from the dataflow propagation of the

program (discussed in Subsection 2.2), we propose to

augment it with dataflow propagation tracking in or-

der to suppress false positives of reported results. In

this section, we present the design and implementa-

tion details for our dataflow tracking enhancement.

3.1 Overview

Fig.5 depicts the detailed dataflow detection pro-

cess. In this work, the dataflow propagation of the

program mainly refers to the observation that one ac-

cess of data race candidate requires shared data that

is updated by the other access.

S1 S2

Race(S1, S2)

S2

S1

S2

S1

S1

DFTracker first performs the symbol parsing to

track the dataflow dependency for two conflicting ac-

cesses of the data race candidate (i.e., and). For

the sake of symbol parsing, we develop an efficient

approach to express and parse the dataflow of the

program (①). Next, considering a data trace candi-

date suggested by CRD (denoted as),

DFTracker then identifies the dependency point of

(②) and the impact point of (③). The dependen-

cy point means the program point that depends

on, whereas the impact point means the program

point that impacts. The analysis of the dependen-

cy point and impact point is to ascertain the real

dataflow path of the data race candidate. Recall that,

in Subsection 2.2, we have shown the case studies

where the dataflow propagation results in false posi-

tives in CRD. Therefore, after getting the dependen-

cy point and the impact point, DFTracker finally

checks (④) whether there exists a dataflow propaga-

tion between the dependency point and the impact

point. If so, it means that an HB order between them

occurs, and this identified data race should be classi-

fied as a false positive. Otherwise, a true data race is

reported. However, taking an identified data race can-

didate with two conflicting accesses, we still need to

confirm which access happens first (abbreviated as

the first order access, i.e.,), because this is critical

to distinguishing the impact point from the dependen-

cy point. More details about how we solve it can be

found in Subsection 3.6.

3.2 Dataflow Parsing

A multi-threaded program can run in a huge num-

1st Access

2nd Access

+

Data Race

Candidate

Impact Point

Dependency
Point

?

False
Positive

Dataflow

Checking

True Race

Yes

No

S
y
m

b
o
l

P
a
rsin

g

Impact

Point

Dependency

PointDataflow
Checking

④

①

③

②

Fig.5. Dataflow propagation detection scheduling.

216 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

ber of ways because of well-known inter-thread inter-

leavings. In addition, different program paths can fur-

ther worsen the situation of the interleaving space sig-

nificantly (a.k.a. the path explosion problem), lead-

ing to exponential space complexity. Therefore, it is

generally difficult to capture a complete set of

dataflows for a large multi-threaded program[15, 16].

However, analyzing the dataflow relation on this large

exploration space also slows down the analysis effi-

ciency significantly. Fortunately, race detection tech-

niques focus on exposing data races from a specific ex-

ecution trace. We, therefore, require only to explore

the thread scheduling (e.g., lock interleavings[17]).

Path explosion problem can be mitigated and also the

analysis efficiency can be improved significantly. In

particular, when parsing the input trace, the follow-

ing information is recorded: 1) the number of threads

launched, 2) executed instructions in each thread, and

3) the branch conditions triggering this execution.

Based on the recorded information, the program exe-

cution can be transformed to be a sequence of state-

ments.

In order to express the dataflow of the program,

we adopt the symbolic expression and assignments for

the program statements[6]. We can further reduce the

overhead of program statements for dataflow analysis.

Any reads or writes of a variable could be either a

concrete value or a symbolic value computed from

other symbolic value variables. To represent program

statements, we define two basic statements as follows:

x | x op y | op x● expression: ,

x = y | x = y op z | x = op y● assignment: ,

x y z

Ri
v W i

v op

x > y 1

R1
x > R1

y
x = 1

W 2
x = 1

a = foo() foo
foo

a

where , , and are the variables in the format of

 and in Table 1. is the operator between

two variables. For instance, we represent a branch ex-

pression at line of a program as the symbolic

equation . The assignment statement

at line 2 is denoted as the symbolic equation .

For other compound statements, such as return, goto,

and call, we directly execute them with the symbolic

variable until all statements can be expressed with

basic statements. For instance, for the statement

, we first call , then record the basic

statements in , and finally assign its returned val-

ue to .

After getting the symbolic equations of program

statements, we parse the dataflow propagation of the

program by analyzing these symbolic equations. With

parsing, we can obtain the dataflow propagation path

for variables of an arbitrary code line pair. For in-

a = x; y = a+ 1;

y

a

x

x → y

stance, for the statements `` ", we can

infer that the shared memory address depends on

the variable which further relies on the shared ac-

cess . Thus, we can get the dataflow propagation

path of these two statements as .

3.3 Dependency Point Analysis

S2

To preserve the precision of dataflow analysis, all

possible dependency points of access must be de-

tected. However, it is notoriously difficult, if not pos-

sible, to find a complete set of dependency points. Not

all statements declare the variables they will use

clearly. For example, the third-party library is often

self-enclosed and little information is available from

its public manual. In addition, the dependency rela-

tionship between two variables is not necessarily di-

rect. They may be potentially dependent through one

(or more) dependency relationship(s) from other vari-

able(s).

Race(S1, S2)

S2

S2

Given a data trace candidate suggested by CRD

(), DFTracker first parses the symbolic

equation of and finds all variables it depends on

(i.e., dependency variables). Then it searches the pro-

gram statements that happen before the access in

the same thread and locates the program statements

assigning the value to those dependency variables.

During the search process, we consider the following

four cases by addressing the challenges raised above.

x = 1

x

Constant. It means that the statement does not

have a dependency point. For the statement ,

the shared memory is no longer dependent on any

other variable.

Local Memory. In this case, we still do not find

the final dependency point, because this local vari-

able may point to (i.e., depend on) the other shared

variable that is then propagated to another shared

variable, e.g., the address exchange between two

shared accesses using the temporary pointer reference.

As a consequence, DFTracker next finds the latest

change of this local variable by further searching the

statements that happens before in the same thread

and repeats the process.

Shared Memory. In this case, a dependency point

candidate is found, but still, we do not find all poten-

tial ones because this dependency point may still de-

pend on other shared variables. In order to find the

remaining possible dependency points, DFTracker

then sets this shared memory as a new source to be

analyzed and finds its dataflow dependency by repeat-

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 217

ing the local search.

→

Function Calls. For an internal function call (e.g.,

a customized function), DFTracker identifies its

dataflow by tracking the program statements of the

function. For an external function call (e.g., a library

call and system call), it is hard to obtain the con-

crete symbolic equation of the program statement in

the external function. However, this is not a problem

for the dataflow analysis since the dataflow dependen-

cy can be still tracked by observing the input/output

of the function at runtime. By and large, we can ob-

tain the dataflow dependency of external functions

with a general pattern of input output.

Finally, DFTracker ends the search process when

either of the following conditions is satisfied: 1) no

more statements are available in the local thread; 2) a

constant is identified (the first case in the above);

3) a certain function call is found, which does not

take the shared memory address as input. If the

head/tail of a thread is reached, it means that no

more dependency points exist. Besides, in our obser-

vations, almost all dataflow cases end in the format of

the direct constant assignment (or indirect constant

expression). Otherwise, the potential dataflow exists,

such as local memory and shared memory. For in-

stance, if a function call does not take the shared

memory address as input, any returned value of this

function may not depend on the previous dataflow,

e.g., malloc(sizes). In this case, an indirect constant is

calculated.

3.4 Impact Point Analysis

Race S1, S2

S1

After getting all possible dependency point candi-

dates for the data trace candidate suggested by CRD

(()), DFTracker attempts to identify the

corresponding impact point of the access. Each im-

pact point produces the shared data required by a de-

pendency point. The CRD suffers from the substan-

tial unnecessary analysis arising from false positives,

since it misses the implicit dataflow propagation rela-

tionship. That is, false positives of CRD arise from

the dataflow propagation pattern: the dependency

point reads the shared memory address whose ad-

dress is updated by the impact point. In this context,

we have an insight that the false positive reduction

can be transformed into a problem of finding impact

points.

S1

Based on this insight, we identify the impact

point of as follows. First, DFTracker searches the

S1

S1

program statements that happen after the access

in the same thread. Second, DFTracker tries to find

the latest write operation which uses the conflicting

address of the data race candidate to update a shared

variable. If such a write operation is found, DFTrack-

er then treats the corresponding writing site as the re-

sult impact point. Otherwise, DFTracker keeps on

searching until no more statements are left. If no such

impact point is found, we consider as the result

impact point.

Similar to the dependency point analysis, if the

impact point analysis encounters the external func-

tion calls, DFTracker just validates whether the in-

put and output of this call are the conflicting address

of the reported race and other different shared vari-

ables. If so, DFTracker determines this program point

as the result impact point. Otherwise, the local search

continues.

3.5 Dataflow Checking

Given a pair of a dependency point and an im-

pact point, DFTracker then checks whether there ex-

ists a dataflow between the dependency point and the

impact point, i.e., whether the impact point writes

shared data that is read by the dependency point. In

this context, we know that the impact point must

happen after the dependency point. That is, we must

explicitly know the scheduling order of the impact

and dependency points. Unlike the logic clock that re-

quires computing the relative order of any two events,

we simply use the physical time when an instruction

is executed as the timestamp without the overhead of

maintaining the relative orders. Since the shared vari-

able can induce a dataflow propagation, we propose

to reduce the timestamp cost by recording only the

timestamp for shared variables in a minimized times-

tamp recording overhead.

DFTracker first compares the timestamp of the

impact point with that of each dependency point can-

didate. We record the timestamp and dynamic ad-

dress of the shared memory accesses when the pro-

gram trace is being recorded (more details in Subsec-

tion 3.6). According to the timestamps of the impact

point and the dependency point at runtime, we then

discard those dependency point candidates that have

a smaller timestamp than the impact point because a

valid dependency point oughts to happen after the

impact point if they indeed involve a dataflow depen-

dency.

218 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

addr addr

addr

S1

S2

Next, DFTracker determines a dataflow propaga-

tion path between the impact point and the depen-

dency point. Particularly, we consider the following

three conditions: 1) the impact point and each depen-

dency point share the same memory address variable

, 2) the impact point writes , and 3) the

dependency point reads . If all the three condi-

tions above are satisfied, a dataflow propagation path

between the impact point and the dependency point

exists. In this case, two conflicting accesses (and

) have an HB order, and DFTracker classifies it as

a false positive. Otherwise, DFTracker considers CRD

reports the true race. We note that the dataflow

checking procedure above can be very fast since the

checking on the memory address simply uses compari-

son operations.

3.6 Implementation Issues

S1 S2

OS1
= OS2

+ 1

OS2
= OS1

+ 1 Race S1, S2

Race S1, S2

S1 → S2 OS1
=

OS2
+ 1

S2

S1

S1 S2

S1

Race x, y x y

Oy = Ox + 1 x

S1

y S2

Race Access Order Confirmation with Timestamp.
Each data race candidate is paired with two accesses,

i.e., and in Fig.5. To expose this race, CRD

may construct the race constraint as or

. If () is a real race, both race

constraints above show the race behavior. However, if

() is a false positive on account of the

dataflow dependency , the case of

 will invalidate our dataflow propagation de-

tection in Section 3. That is because, in this case, DF-

Tracker will perform the impact point analysis for

(instead of) and the dependency point analysis for

 (instead of). This leads to the opposite (wrong)

analysis and violates the real dataflow propagation

path. Therefore, given a data race candidate, we need

to confirm which access is the first order access, i.e.,

, for the correct dataflow analysis. To tackle this

problem, we record the timestamp of the memory ac-

cess of data race candidates when the program trace

is being recorded. For a given data race candidate

(), if has a smaller timestamp than at

runtime, DFTracker uses the race constraint

 to expose this race. That is, is the first

order access (i.e.,) for the impact point analysis,

and is the second order access (i.e.,) for the de-

pendency point analysis.

Symbolic Address Profiling. A known issue for the

symbolic execution is that the runtime information of

memory addresses is lost, e.g., pointer references.

KLEE[18] does not provide any address tracking for

the pointer analysis. For the sake of the precise analy-

sis of pointers, we track each data when the program

is being performed, and maintain an ordered list of

memory addresses for each symbolic object. If a data

race is detected, DFTracker will check the dynamic

memory addresses of two accesses in the profiling list.

If they are the same, we accept this reported race as

the data race candidate for further dataflow detec-

tion. Otherwise, we ignore this report. Through sym-

bolic address profiling, we can significantly reduce the

large number of data race candidates arising from the

pointer alias as the input of DFTracker, thereby mak-

ing the dataflow detection more effective.

4 Schedule Recommendation

In this section, we present a novel offline ap-

proach, which recommends the optimal race sched-

ules with minimal thread context switches for pro-

grammers.

4.1 Minimal Thread Context Switches:

Research Method

To better help programmers understand how the

data race occurs, it is necessary to recommend the

easy-to-follow minimal schedule for programmers. In

fact, most real-world concurrency bugs generally can

be exposed with a few thread context switches[5].

To find the minimal schedule, one intuitive

method is to bound the number of context switches

for the recommended race schedules during the con-

straint solving. Specifically, the context switch thresh-

old starts from zero. For each round of constraint

solving, if the SMT solver fails to return a race sched-

ule at some threshold, the threshold will be added.

Then the next round of solving process with the

added threshold is performed. Once a solution is

found, the current threshold of context switches is

minimal. However, this online approach serializes the

solving process due to the bottleneck of the continu-

ously-increasing context switch threshold, thus pro-

viding inefficient constraint solving. Next, we intro-

duce a novel offline approach to solve this problem

more efficiently.

4.2 An Offline Algorithm

In our work, we perform constraint solving based

on a specific execution trace. Hence, DFTracker does

not suffer from the path explosion as discussed in

Subsection 3.2. This is also the very reason for the on-

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 219

line bounded method above to enable reducing the

search space for program analysis. More importantly,

DFTracker further narrows the search space of thread

schedules with the main focus on a few data race can-

didates. Hence, instead of solving race schedules one

by one, we can enumerate all race schedules in a fi-

nite number and perform an offline approach to free

the capacity of the SMT solver without serialization

searching.

To find the minimal schedule, we first collect all

feasible race schedules for all identified data races.

Then, we divide all these collected race schedules in-

to different race schedule sets by each data race, that

is, each data race has a set of race schedules that can

expose itself. Ultimately, the problem is transformed

to this question: in each race schedule set, how to find

out the minimal schedule to expose this race?

i S S(i)

S1(1) O5
b(T2)

b 5

T2 S1

S1(1) < S1(2) < . . . < S1(7)

·
S1(1).threadnum

1 S1

We, therefore, propose Algorithm 1, which main-

ly aims to answer the above-proposed question. To fa-

cilitate the descriptions, we define the partial order of

the -th event in a race schedule as . For in-

stance, in Fig.6 represents which means

the program order of the data at code line in

thread . Hence, the race schedule order of can be

rewritten as . To further

obtain the attribute of an event, we can make it

through the operator defined in Table 1, e.g.,

 denotes the thread identifier of the

st event in . As illustrated in Algorithm 1, we

take two major steps.

Algorithm 1. Minimal Thread Context Switches

SS = {S1, . . . , Sm} Input: the schedule set
RecS MSN Output: , the recommended schedule ,

 minimal switch number
MSN ←∞1: ;

i← 1 m2: for to do

(Si) < MSN3: if SwitchNum then

MSN ← (Si)4: SwitchNum ;
RecS ← Si5: ;

⟨RecS,MSN⟩6: return

 SwitchNum Function

S = {S(1) < S(2) < . . . < S(n)} Input:
SwitchNum← 07: ;
i← 1

Check the type of data race
8: ;
 /* */

S(i) < S(i+ 1)

Check thread identifier. If not
equal, the context is switched

9: while:
 is not the data race candidate do
 /*
 */

S(i).threadnum ̸= S(i+ 1).threadnum10: if: then
SwitchNum← SiwtchNum+ 111: ;

i← i+ 112: ;
SwitchNum13: return

1) In a certain race schedule, it checks the thread

identifier of each pair of two adjacent events as de-

picted by lines 9–11 in Algorithm 1. If they are per-

formed by different threads, the thread context is

switched. Otherwise, no context switch happens. By

this means, we can calculate the context switch of

each race schedule in a race schedule set for a given

race.

2) After the results are collected in the first step,

we then compare the number of context switches of

all race schedules in a sequential order as depicted by

lines 2–5 in Algorithm 1. In the end, we recommend

the race schedule with minimal thread context switch-

es.

Race(3, 7) S1 S2

S1

S2

S2

As depicted in Fig.6, there are two race schedules

that can expose , such as and . Algo-

rithm 1 collects that invokes five context switches

while has two context switches. From these two

results, race schedule is recommended by Algo-

rithm 1 as the minimal schedule.

In addition, it should be noted that two loop bod-

ies in Algorithm 1 do not contain any data dependen-

cy. As a result, our offline approach also provides the

opportunity to drastically accelerate the look-up of

the minimal schedule using parallel solving. A more

detailed discussion can be found in Section 6.

5 Evaluation

In this section, we evaluate the effectiveness and

efficiency of DFTracker against the state-of-the-art

constraint-based race detection.

5.1 Methodology

We evaluate DFTracker with five common real-

 T1

1: read a;

2: lock(l);

3: read(x);

4: unlock(l);

 T2

5: read b;

6: read b;

7: write(x);

(a)

 T1

1: read a;

2: lock(l);

3: read(x);

4: unlock(l);

 T2

5: read b;

6: read b;

7: write(x);

(b)

S1:

Race Schedules Race Schedule Order

S2:

O5
b (T2) < O1

a(T1) < O6
b(T2) < O2

acq(T1) < O7
x(T2) < O3

x(T1) < O4
rel(T1)

O
1
a (T1) < O 2

acq(T1) < O5
b(T2) < O6

b(T2) < O7
x(T2) < O3

x(T1) < O4
rel(T1)

(c)

Fig.6. Thread context switches with two cases, where the ar-
row across threads denotes the thread context switch. (a) A
case with five thread switches. (b) Another case with two
thread switches. (c) Race schedules where the data race is
shaded in the race schedule order.

220 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

world applications with different complexities (in-

cluding two server applications—Apache and MySQL,

and three desktop applications—pbzip2, Transmission-

BT, and Handbrake). We use the underlying con-

straint-solving kernel of RaceDebugger[8] (with its dy-

namic slicing component disabled) as the representa-

tive of CRD. To support the symbolic computation

for C/C++ programs, we also extend to use the un-

derlying constraint system as in Symbiosis[12] on top

of LLVM[19] and KLEE[18]. We use Yices SMT solver⑥

as our constraint solver.

–without-dataflow

To facilitate usability, we have integrated CRD in

the DFTracker framework. We can enable the func-

tionality of CRD by using DFTracker with the op-

tion of . To compare CRD with DF-

Tracker, we first record one execution trace of each

application and then perform two tools to collect the

results using the same trace. The previous study[11]

has shown that almost all data races are guaranteed

to manifest themselves with two threads. Therefore,

in our tests, all applications run with two threads.

All experiments are on a machine with four Intel®

Hexa-core Xeon® CPU E5-2620 v2@2.10 GHz proces-

sors, 126 GB memory, and 1 TB SATA hard disk.

The running operating system is CentOS 6.5 (x86_64)

with Linux kernel 2.6.32.

We next present the effectiveness of how DF-

Tracker can prune false positives reported by CRD.

Then, we study the number of context switches for

the recommended schedule by DFTracker in compari-

son with CRD. Finally, we report the runtime over-

head of DFTracker to show that DFTracker is an effi-

cient tool to understand races.

5.2 Precision of DFTracker

To evaluate the capability of false positive prun-

ing of DFTracker, three scenarios are considered. We

analyze: 1) the program trace with a given input 10

times using HB relation; 2) one selected execution

trace once using CRD; and 3) one selected execution

trace once using DFTracker.

↓

False Race Pruning. Table 2 shows the number of

reported data races with three techniques in the real

world. For completeness, we also study the HB-based

approach⑦. The results show that CRD detects more

data races than the HB-based technique for all bench-

marks. This is consistent with the previous study[7].

DFTracker prunes as many as 68% of false dataflow-

related data races reported by CRD (68%). For in-

stance, CRD detects 126 races for Apache, and DF-

Tracker detects 86 of them as false positives. This

demonstrates that while CRD offers a more sound so-

lution to enhance the detection capability of the HB-

based technique, it introduces a quite significant num-

ber of false data races due to the unawareness of pro-

gram dataflows.

To further verify that DFTracker effectively

prunes false dataflow-related alarms reported by CRD

without removing any true data races, we have manu-

ally checked each reported race in Table 2 by CRD.

The HB-based detector does not report the false data

race related to the dataflow, as HB relation enforces

the hard ordering of the program dataflow. In our ob-

servations, we find that 1) all races identified by HB

are also included in the race set of CRD/DFTracker;

2) all false positive races identified by DFTracker are

truly false races (caused by dataflow propagations).

We use case studies to demonstrate those findings

from our manual investigation.

S1 S2

S1 S2

1 1 2

fd

Case Studies. We have presented a case study for

pbzip2 in Fig.2. Here, we list several real examples

identified by DFTracker in the other four real appli-

cations in Fig.7. All cases show a dataflow propaga-

tion of the program between and , and CRD re-

ports the false data races between and . For in-

stance, for TransmissionBT, the address of data in

thread is propagated from thread to thread

through the shared pipe identifier , and then used

Table 2. Effectiveness of DFTracker in Pruning the False Data Races Arising from the Unrecognized Dataflow for CRD

App LOC (k) Code Size (M) Number of Data Races

HB CRD DFTracker Reduction

Apache 392 6 31 126 40 86

MySQL 1 132 22 44 211 63 148

pbzip2 5 1 3 28 9 19

TransmissionBT 79 4 8 45 19 26

Handbrake 1 070 3 6 34 11 23

Total - - 92 444 142 ↓302 (68%)

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 221

⑥http://yices.csl.sri.com/, Jan. 2024.

⑦https://software.intel.com/en-us/intel-inspector-xe, Jan. 2024.

http://yices.csl.sri.com/
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe

2

S1 S2

to invoke a task in thread . Since there is a happens-

before order between pipewrite and piperead, the two

shared accesses between and will be ordered as

well and never conflict with each other. However,

CRD fails to recognize this implicit control flow, with-

out tracking the dataflow. Likewise, the cases from

Apache, MySQL, and Handbrake also have similar

dataflow propagations, and CRD identifies them as

data races (in fact, these reports are wrong).

5.3 Effective Schedule Recommendations

To evaluate the effectiveness of DFTracker for the

understanding and debugging of data races, we main-

ly measure two metrics: 1) schedule reduction

with/without the dataflow detection strategy dis-

cussed in Section 3, and 2) minimal thread-context-

switching schedule recommendation with/without our

Algorithm 1 proposed in Section 4. The detailed re-

sults are listed in Table 3.

Schedule Reduction with Dataflow Detection. In

order to illustrate how the data race happens, a large

number of race schedules have been generated via

constraint solving. In Table 3, we can find that one

data race generally involves a large number of race

schedules. For instance, for Apache, CRD reports 126

data races, and 89 210 race schedules have been gen-

↓

erated. In contrast, DFTracker reports 40 true data

races, and only 7 021 race schedules are generated,

thus reducing 92.1% of race schedules in comparison

with CRD. On average, through pruning the false

positives with the dataflow detection, the number of

race schedules is reduced significantly by 92.4% on

average (92.4%). As a side product, this reduction

also increases the efficiency of race schedule analysis

for the optimal schedule recommendation.

Schedule Recommendation with Minimal Thread
Context Switches. Programs can have very different

data races, which require different numbers of con-

text switches to expose themselves. As shown in Ta-

ble 3, DFTracker recommends 2.6–8.3 (4.7 on aver-

age) thread switches for each race while CRD reports

11.7–53.9 (25.5 on average) thread switches. That is

because CRD recommends the current thread sched-

ule in an ad hoc manner.

81.6

↓

Overall, DFTracker reduces the number of con-

text switches per recommended trace by % on

average (81.6%). For instance, Fig.8 illustrates a re-

al race example from MySQL. We have tested this ex-

ample 10 times using CRD and DFTracker, respec-

tively. The results show that CRD produces the un-

certain recommendation of thread switches ranging

from 14 to 26; while DFTracker always recommends

10 context switches for this race. We highlight that

 Thread 1: Thread 2:
 ap_q_pop(&mpool);
S1: c->sbh=sbh; …

 … c=(conn*)mpool->active
 ap_q_push(mpool); S2: c->sbh=sbh;
 /*Apache*/

 Thread 1: Thread 2:

S1: data->session=session; piperead(fd, &data, nwant);
 … …

pipewrite(fd, &data, len); S2: session=data->session;
 /*TransmissionBT*/

 Thread 1: Thread 2:
S1: str(share->table_name, share=hash_search(&open_table
 table_name); table_name, length);
 my_hash_insert(
 &open_tables, share); S2: share->count++;
 /*MySQL*/

 Thread 1: Thread 2:
S1: w->audio=audio; w=hb_list_item(list_work)

 hb_list_add(S2: hb_thread_init(…, w,
 list_work, w); HB_LOW_PRIORITY)
 /*Handbrake*/

(b)(a)

(c) (d)

Fig.7. False data races caused by the unrecognized dataflows in the four real-world programs. The two statements indicated by the
arrow are the impact point and the dependency point, respectively.

Table 3. Effectiveness Evaluation of Race Schedules in the Real World

App Schedule Reduction Schedule Recommendation

CRD DFTracker CRD DFTracker

Apache 89 210 7 021 34.2 6.5

MySQL 195 916 9 198 53.9 8.3

pbzip2 4 201 872 11.7 2.6

TransmissionBT 17 194 5 891 13.1 3.4

Handbrake 11 352 1 087 14.6 4.0

Average 63 575 ↓4 814 (92.4%) 25.5 ↓4.7 (81.6%)

222 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

DFTracker is deterministic while the CRD approach

is nondeterministic. Therefore, DFTracker saves much

debugging effort for programmers to understand the

complex thread context switching.

5.4 Runtime Overhead

To evaluate the runtime overhead, we compare

the elapsed time of constraint solving between CRD

and DFTracker using the five real applications above.

Fig.9 illustrates the elapsed time of constraint

solving for the race schedules between DFTracker and

CRD. DFTracker has almost the same performance as

CRD, introducing only 5.4% runtime overhead. That

means DFTracker is able to amend the two weak

points of CRD with almost negligible runtime over-

head reintroduced. There are two main reasons for

such high efficiency. First, we leverage the symbolic

expression for the program statements, and then per-

form symbolic execution to simulate the program exe-

cution. This makes the dataflow analysis of the pro-

gram much easier through only parsing the symbolic

equations as discussed in Subsection 3.2. Second, the

S1 S2

impact point of the first-order access and the depen-

dency point of the second-order access tend to have a

locality in real applications. For instance, and

of all cases in Fig.7 have a few lines of the distance to

the impact point and the dependency point. As a re-

sult, DFTracker can locate the impact point and the

dependency point fast in practice.

6 Related Work

Dynamic Race Detection. Dynamic race

detection[3, 14, 20, 21] is an important and fruitful re-

search area in the literature. It is mainly used to pre-

cisely track some inclusive data races observed from a

specific program execution. Most existing dynamic de-

tectors are rooted in the happens-before (HB) rela-

tion[2, 22], which holds the hard ordering for lock se-

mantics, and thus limits the detection capability. As

a consequence, the lockset algorithm[23] and causally-

precede relation[24] were proposed to improve the de-

tection coverage. However, these approaches are still

either unsound or missing some races. Constraint

analysis techniques (CRDs) are used to significantly

improve the detection coverage[7, 25]. The CRD ap-

proaches are sound and can generate all feasible pro-

gram executions for race detection. However, CRD

still suffers from false positives and the excessive

number of context switches for the recommended da-

ta race. DFTracker augments the existing CRD tool

with the awareness of dataflow and resolves the two

issues of CRD.

Dataflow Analysis. Dataflow analysis is a tech-

nique for gathering information about the possible set

of values calculated at various program points[26–29].

Procrustes[26] uses dataflow graphs to accelerate the

sparse deep neural network training by characteriz-

ing access patterns. Wongsuphasawat et al. used the

dataflow to improve the graph visualization in Ten-

sorFlow[27]. However, these techniques cannot be ap-

plied to our problem, since DFTracker only takes one

execution trace performed by a specific input. As a

consequence, DFTracker does not need to track the

whole branch/path (i.e., control flow) information of

the program. Also, the dataflow propagation of the

program is identified by backtracking the related-

event order in a recorded trace[30]. To pinpoint the

data dependencies of program executions, they have

to record a volume of runtime information into the

trace, e.g., instructions, register values, memory ad-

dresses, and their changes every time. This makes the

Thread 1:

buf_pool_check_no_pending_io(void){

 bool ret=true;

 if(buf_pool ->n_pend_reads){

 ret=false;

 }

 return ret;

}

Thread 2:

buf_page_ip_completed(buf_page_t* bpage){

 //processing read requests

 buf_pool ->n_pend_read --;

} /*MySQL*/

Fig.8. True data race from MySQL.

A
pa

ch
e

M
yS

Q
L

pb
zi
p2

T
ra
ns
B
T

H
an

db
ra
ke

A
ve
ra
ge

0

10

20

30

40

50

60

E
la

p
se

d
 T

im
e
 o

f
C

o
n
st

ra
in

t
S
o
lv

in
g
 (

s)

CRD

DFTracker

Fig.9. Elapsed time of constraint solving between CRD and
DFTracker.

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 223

dataflow detection with prohibitively high cost. Be-

sides, this technique also strictly depends on the event

order in a specific execution trace, which is not help-

ful for race exploration in other execution traces. In

contrast, DFTracker simplifies the dataflow analysis

through symbolic parsing (without CFG (Control

Flow Graph)). Furthermore, DFTracker generalizes

the dataflow problem with the constraint analysis

technique, which removes the restricted event order

recorded in the trace.

Context Switch Bounded Analysis. The context

switch bounded analysis is originally used to trans-

form an NP-hard problem to a solvable polynomial

problem for the complete analysis of concurrent pro-

grams in theory[4–6, 31]. Later, it is used for program-

mers to understand how the bugs happen. For in-

stance, Inverso et al.[32] found a large number of bugs

with a fixed bound of context switches in a parallel

and distributed manner. Other work[4–6] extends the

analysis of context switch bounded problems by giv-

ing priority to schedules with fewer preemptions. As

we have discussed in Section 4, context switch bound-

ed analysis may lead to inefficient constraint solving.

Even worse, for those races with a relatively large

number of context switches, the existing context

switch bounded analysis has to discard them for effi-

ciency. In this study, we formulate the problem as a

special case of a few identified data races. DFTracker

collects a finite number of race schedules. As a result,

we are able to enumerate all race schedules to find

minimal context switches for each data race, with a

low runtime overhead.

7 Conclusions

In this paper, we proposed DFTracker, which en-

ables recommending each race with minimal thread

context switches while ensuring no false positives.

DFTracker uses the dataflow propagation of pro-

grams to determine false positives for the constraint-

based approach. A novel algorithm was further devel-

oped to recommend effective race schedules for debug-

ging. This facilitates programmers to understand a

data race reported better. Experimental results and

case studies on real applications showed DFTracker

removes false positives with fewer context switches

significantly over the state-of-the-art approaches. In

the future, it would be interesting to apply DFTrack-

er to debug data races that exist in more than two

threads, which involves further dataflow analysis

across multiple threads.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Netzer R H B, Miller B P. What are race conditions?:

Some issues and formalizations. ACM Letters on Pro-

gramming Languages and Systems, 1992, 1(1): 74–88.

DOI: 10.1145/130616.130623.

[1]

 Lamport L. Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 1978,

21(7): 558–565. DOI: 10.1145/359545.359563.

[2]

 Flanagan C, Freund S N. FastTrack: Efficient and pre-

cise dynamic race detection. In Proc. the 30th ACM SIG-

PLAN Conference on Programming Language Design and

Implementation, Jun. 2009, pp.121–133. DOI: 10.1145/

1542476.1542490.

[3]

 Tessler C, Fisher N. BUNDLEP: Prioritizing conflict free

regions in multi-threaded programs to improve cache

reuse. In Proc. the 2018 IEEE Real-Time Systems Sympo-

sium, Dec. 2018, pp.325–337. DOI: 10.1109/RTSS.2018.

00048.

[4]

 Davis R I, Altmeyer S, Burns A. Mixed criticality sys-

tems with varying context switch costs. In Proc. the 2018

IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, Apr. 2018, pp.140–151. DOI: 10.1109/

RTAS.2018.00024.

[5]

 Huang J, Zhang C, Dolby J. CLAP: Recording local exe-

cutions to reproduce concurrency failures. In Proc. the

34th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Jun. 2013, pp.141–152.

DOI: 10.1145/2491956.2462167.

[6]

 Huang J, Meredith P O N, Rosu G. Maximal sound pre-

dictive race detection with control flow abstraction. In

Proc. the 35th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, Jun. 2014,

pp.337–348. DOI: 10.1145/2594291.2594315.

[7]

 Zheng L, Liao X F, Jin H, He B S, Xue J L, Liu H K. To-

wards concurrency race debugging: An integrated ap-

proach for constraint solving and dynamic slicing. In

Proc. the 27th International Conference on Parallel Archi-

tectures and Compilation Techniques, Nov. 2018, Article

No. 26. DOI: 10.1145/3243176.3243206.

[8]

 Pereira J C, Machado N, Pinto J S. Testing for race con-

ditions in distributed systems via SMT solving. In Proc.

the 14th International Conference on Tests and Proofs,

Jun. 2020, pp.122–140. DOI: 10.1007/978-3-030-50995-8_7.

[9]

 De Moura L, Bjørner N. Z3: An efficient SMT solver. In

Proc. the 14th International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems,

Mar. 2008, pp.337–340. DOI: 10.1007/978-3-540-78800-3_24.

[10]

 Lu S, Park S, Seo E, Zhou Y Y. Learning from mistakes:

A comprehensive study on real world concurrency bug

characteristics. In Proc. the 13th International Confer-

[11]

224 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1109/RTSS.2018.00048
https://doi.org/10.1109/RTSS.2018.00048
https://doi.org/10.1109/RTAS.2018.00024
https://doi.org/10.1109/RTAS.2018.00024
https://doi.org/10.1145/2491956.2462167
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/3243176.3243206
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-030-50995-8_7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

ence on Architectural Support for Programming Lan-

guages and Operating Systems, Mar. 2008, pp.329–339.

DOI: 10.1145/1346281.1346323.

 Machado N, Lucia B, Rodrigues L. Concurrency debug-

ging with differential schedule projections. In Proc. the

36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, Jun. 2015, pp.586–595.

DOI: 10.1145/2737924.2737973.

[12]

 Machado N, Lucia B, Rodrigues L. Production-guided

concurrency debugging. In Proc. the 21st ACM SIG-

PLAN Symposium on Principles and Practice of Parallel

Programming, Feb. 2016, Article No. 29. DOI: 10.1145/

2851141.2851149.

[13]

 Mathur U, Pavlogiannis A, Viswanathan M. The com-

plexity of dynamic data race prediction. In Proc. the 35th

Annual ACM/IEEE Symposium on Logic in Computer

Science, Jul. 2020, pp.713–727. DOI: 10.1145/3373718.3394

783.

[14]

 Zhang X Y, Gupta R. Whole execution traces. In Proc.

the 37th International Symposium on Microarchitecture,

Dec. 2004, pp.105–116. DOI: 10.1109/MICRO.2004.37.

[15]

 Qin F, Wang C, Li Z M, Kim H S, Zhou Y Y, Wu Y F.

LIFT: A low-overhead practical information flow track-

ing system for detecting security attacks. In Proc. the

39th Annual IEEE/ACM International Symposium on

Microarchitecture, Dec. 2006, pp.135–148. DOI: 10.1109/

MICRO.2006.29.

[16]

 Zheng L, Liao X F, He B S, Wu S, Jin H. On perfor-

mance debugging of unnecessary lock contentions on mul-

ticore processors: A replay-based approach. In Proc. the

2015 IEEE/ACM International Symposium on Code Gen-

eration and Optimization, Feb. 2015, pp.56–67. DOI: 10.

1109/CGO.2015.7054187.

[17]

 Cadar C, Dunbar D, Engler D. KLEE: Unassisted and au-

tomatic generation of high-coverage tests for complex sys-

tems programs. In Proc. the 8th USENIX Conference on

Operating Systems Design and Implementation, Dec.

2008, pp.209–224.

[18]

 Lattner C, Adve V. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proc. the

International Symposium on Code Generation and Opti-

mization, Mar. 2004, pp.75–86. DOI: 10.1109/CGO.2004.

1281665.

[19]

 Xu M, Kashyap S, Zhao H Q, Kim T. Krace: Data race

fuzzing for kernel file systems. In Proc. the 2020 IEEE

Symposium on Security and Privacy, May 2020,

pp.1643–1660. DOI: 10.1109/SP40000.2020.00078.

[20]

 Endo A T, Møller A. NodeRacer: Event race detection for

Node. js applications. In Proc. the 13th IEEE Internation-

al Conference on Software Testing, Validation and Verifi-

cation, Oct. 2020, pp.120–130. DOI: 10.1109/ICST46399.

2020.00022.

[21]

 Mathur U, Kini D, Viswanathan M. What happens-after

the first race? Enhancing the predictive power of hap-

pens-before based dynamic race detection. Proceedings of

[22]

the ACM on Programming Languages, 2018, 2(OOPSLA):

Article No. 145. DOI: 10.1145/3276515.

 Xie X W, Xue J L. Acculock: Accurate and efficient de-

tection of data races. In Proc. the International Sympo-

sium on Code Generation and Optimization, Apr. 2011,

pp.201–212. DOI: 10.1109/CGO.2011.5764688.

[23]

 Genç K, Roemer J, Xu Y F, Bond M D . Dependence-

aware, unbounded sound predictive race detection. Pro-

ceedings of the ACM on Programming Languages, 2019,

3(OOPSLA): Article No. 179. DOI: 10.1145/3360605.

[24]

 Roemer J, Genç K, Bond M D. SmartTrack: Efficient pre-

dictive race detection. In Proc. the 41st ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, Jun. 2020, pp.747–762. DOI: 10.1145/3385412.

3385993.

[25]

 Yang D Q, Ghasemazar A, Ren X W, Golub M, Lemieux

G, Lis M. Procrustes: A dataflow and accelerator for

sparse deep neural network training. In Proc. the 53rd

Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2020, pp.711–724. DOI: 10.1109/MI-

CRO50266.2020.00064.

[26]

 Wongsuphasawat K, Smilkov D, Wexler J, Wilson J,

Mané D, Fritz D, Krishnan D, Vi égas F B, Wattenberg

M. Visualizing dataflow graphs of deep learning models in

tensorFlow. IEEE Trans. Visualization and Computer

Graphics, 2018, 24(1): 1–12. DOI: 10.1109/TVCG.2017.

2744878.

[27]

 Lai L B, Qing Z, Yang Z Y, Jin X, Lai Z M, Wang R,

Hao K Z, Lin X M, Qin L, Zhang W J, Zhang Y, Qian Z

P, Zhou J R. Distributed subgraph matching on timely

dataflow. Proceedings of the VLDB Endowment, 2019,

12(10): 1099–1112. DOI: 10.14778/3339490.3339494.

[28]

 Chen R, Li S S, Li Z. From monolith to microservices: A

dataflow-driven approach. In Proc. the 24th Asia-Pacific

Software Engineering Conference, Dec. 2017, pp.466–475.

DOI: 10.1109/APSEC.2017.53.

[29]

 Zhang J Q, Xiong W W, Liu Y, Park S, Zhou Y Y, Ma Z

Q. ATDetector: Improving the accuracy of a commercial

data race detector by identifying address transfer. In

Proc. the 44th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, Dec. 2011, pp.206–215. DOI:

10.1145/2155620.2155645.

[30]

 Abdulla P A, Arora J, Atig M F, Krishna S. Verification

of programs under the release-acquire semantics. In Proc.

the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, Jun. 2019, pp.1117–

1132. DOI: 10.1145/3314221.3314649.

[31]

 Inverso O, Trubiani C. Parallel and distributed bounded

model checking of multi-threaded programs. In Proc. the

25th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, Feb. 2020, pp.202–216.

DOI: 10.1145/3332466.3374529.

[32]

Long Zheng et al.: Minimal Context-Switching Data Race Detection with Dataflow Tracking 225

https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/2737924.2737973
https://doi.org/10.1145/2851141.2851149
https://doi.org/10.1145/2851141.2851149
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1109/MICRO.2004.37
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/CGO.2015.7054187
https://doi.org/10.1109/CGO.2015.7054187
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/ICST46399.2020.00022
https://doi.org/10.1109/ICST46399.2020.00022
https://doi.org/10.1145/3276515
https://doi.org/10.1109/CGO.2011.5764688
https://doi.org/10.1145/3360605
https://doi.org/10.1145/3385412.3385993
https://doi.org/10.1145/3385412.3385993
https://doi.org/10.1109/MICRO50266.2020.00064
https://doi.org/10.1109/MICRO50266.2020.00064
https://doi.org/10.1109/MICRO50266.2020.00064
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.1109/TVCG.2017.2744878
https://doi.org/10.14778/3339490.3339494
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1145/2155620.2155645
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3332466.3374529

Long Zheng is an associate profes-

sor in the School of Computer Science

and Technology at Huazhong Univer-

sity of Science and Technology

(HUST), Wuhan. He received his

Ph.D. degree in computer science from

HUST, Wuhan, in 2016. His research

interests include program analysis, runtime systems, and

configurable computer architecture with a particular fo-

cus on graph processing.

Yang Li is a Master student in the

School of Computer Science and Tech-

nology at Huazhong University of Sci-

ence and Technology (HUST),

Wuhan. He received his B.E. degree in

computer science from HUST, Wuhan,

in 2018. His research interests include

graph processing and multi-threaded programs.

Jie Xin is a Master student in the

School of Computer Science and Tech-

nology at Huazhong University of Sci-

ence and Technology (HUST),

Wuhan. He received his B.E. degree in

computer science from HUST, Wuhan,

in 2019. His current research interests

include graph processing and in-memory computing.

Hai-Feng Liu is currently a Master

student in the School of Computer

Science and Technology at Huazhong

University of Science and Technology

(HUST), Wuhan. He received his B.E.

degree in computer science from

Wuhan University, Wuhan, in 2020.

His research interests include in-memory computing and

resistive random-access memory.

Ran Zheng received her M.S. and

Ph.D. degrees in computer science

from Huazhong University of Science

and Technology (HUST), Wuhan, in

2002 and 2006, respectively. She is an

associate professor of computer sci-

ence and engineering at HUST,

Wuhan. Her research interests include distributed com-

puting, cloud computing, high-performance computing,

and their applications.

Xiao-Fei Liao received his Ph.D.

degree in computer science and engi-

neering from Huazhong University of

Science and Technology (HUST),

Wuhan, in 2005. He has served as a

reviewer for many conferences and

journal papers. His research interests

are in the areas of system software, P2P systems, clus-

ter computing, and streaming services. He is a senior

member of CCF and a member of IEEE.

Hai Jin is a Cheung Kung Scholars

Chair Professor of computer science

and engineering at Huazhong Universi-

ty of Science and Technology (HUST),

Wuhan. Jin received his Ph.D. degree

in computer engineering from HUST,

Wuhan, in 1994. In 1996, he was

awarded a German Academic Exchange Service fellow-

ship to visit the Technical University of Chemnitz,

Chemnitz. Jin worked at University of Hong Kong,

Hong Kong, between 1998 and 2000, and as a visiting

scholar at University of Southern California, Los Ange-

les, between 1999 and 2000. He was awarded Excellent

Youth Award from the National Science Foundation of

China in 2001. Jin is the chief scientist of ChinaGrid,

the largest grid computing project in China, and the

chief scientist of National 973 Basic Research Program

Project of Virtualization Technology of Computing Sys-

tem, and Cloud Security. Jin is a fellow of CCF and

IEEE, and a life member of ACM. He has co-authored

22 books and published over 900 research papers. His re-

search interests include computer architecture, virtual-

ization technology, cluster computing and cloud comput-

ing, peer-to-peer computing, network storage, and net-

work security.

226 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

	1 Introduction
	2 Background and Motivation
	2.1 Constraint-Based Race Detection (CRD)
	2.2 Motivating Examples
	2.3 Overview of DFTracker

	3 Dataflow Propagation Detection
	3.1 Overview
	3.2 Dataflow Parsing
	3.3 Dependency Point Analysis
	3.4 Impact Point Analysis
	3.5 Dataflow Checking
	3.6 Implementation Issues

	4 Schedule Recommendation
	4.1 Minimal Thread Context Switches: Research Method
	4.2 An Offline Algorithm

	5 Evaluation
	5.1 Methodology
	5.2 Precision of DFTracker
	5.3 Effective Schedule Recommendations
	5.4 Runtime Overhead

	6 Related Work
	7 Conclusions
	Conflict of Interest
	References

