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Abstract    Data race  is  one  of  the  most  important  concurrent  anomalies  in  multi-threaded programs.  Emerging  con-

straint-based techniques are leveraged into race detection, which is able to find all the races that can be found by any oth-

er sound race detector. However, this constraint-based approach has serious limitations on helping programmers analyze

and understand data races. First, it may report a large number of false positives due to the unrecognized dataflow propa-

gation of the program. Second, it recommends a wide range of thread context switches to schedule the reported race (in-

cluding the false one) whenever this race is exposed during the constraint-solving process. This ad hoc recommendation

imposes  too  many context  switches,  which  complicates  the  data  race  analysis.  To  address  these  two limitations  in  the

state-of-the-art constraint-based race detection, this paper proposes DFTracker, an improved constraint-based race detec-

tor to recommend each data race with minimal thread context switches. Specifically, we reduce the false positives by ana-

lyzing and tracking the dataflow in the program. By this means, DFTracker thus reduces the unnecessary analysis of false

race schedules. We further propose a novel algorithm to recommend an effective race schedule with minimal thread con-

text switches for each data race. Our experimental results on the real applications demonstrate that 1) without removing

any true data race, DFTracker effectively prunes false positives by 68% in comparison with the state-of-the-art constraint-

based race detector; 2) DFTracker recommends as low as 2.6–8.3 (4.7 on average) thread context switches per data race in

the real world, which is 81.6% fewer context switches per data race than the state-of-the-art constraint based race detec-

tor. Therefore, DFTracker can be used as an effective tool to understand the data race for programmers.

Keywords    data race, satisfiability modulo theory, multi-threaded program, dynamic detection

 
 

1    Introduction

A  data  race  happens  when  multiple  threads  ac-

cess  the  same  memory  location  without  appropriate

synchronization, and at least one of them updates the

value[1].  For  programmers,  data  races  reported  by  a

race  detector  are  generally  used  for  verification  and

further  understanding so  that  data races  can be cor-

rectly fixed. For the sake of programmer productivity,

it is particularly important for race detection in terms
 
 

Regular Paper

This work is supported by the National Key Research and Development Program of China under Grant No. 2023YFB4503400,
and the National Natural Science Foundation of China under Grant Nos. 62322205, 62072195, and 61825202.

*Corresponding Author

Zheng L, Li Y, Xin J et al. Minimal context-switching data race detection with dataflow tracking. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 39(1): 211−226 Jan. 2024. DOI: 10.1007/s11390-023-1569-7

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7
https://doi.org/10.1007/s11390-023-1569-7


of  precision[2, 3] and  the  number  of  thread  context

switches  exposed  on  the  data  race[4, 5].  Precision

means  that  the  race  detector  reports  true  data  races

without false positives so that programmers can con-

centrate on the real ones. The number of thread con-

text switches represents the complexity of scheduling

a data race. The larger the number of thread context

switches is, the more difficult it is for programmers to

understand  this  data  race.  If  both  aspects  are  well

done  by  the  race  detector,  much  debugging  effort  of

data  races  will  be  saved  for  programmers.  An  ideal

race detection tool should report true data races and

recommend the minimal context switches for each da-

ta  race[6].  In  this  paper,  we  investigate  whether  and

how  we  can  improve  the  precision  and  reduce  the

number of context switches for each recommended da-

ta race.

Constraint-based  analysis  has  been  an  effective

means for race detection[7–9] (hereinafter referred to as

CRD).  [7–9]  identify  data  races  by  formulating  race

detection as a constraint-solving problem. Specifically,

on the basis  of  specific  program execution,  they con-

struct  a  series  of  constraints  to  represent  the  pro-

gram semantics and further generate all  feasible pro-

gram  schedules  by  solving  these  constructed  con-

straints  via  a  satisfiability  modulo  theories  (SMT)

solver[10].  By this  means,  CRD is  able to find all  the

races that can be found by any other sound race de-

tector,  and the generated schedules  for  the identified

data races (abbreviated as race schedules) can be al-

so used to reproduce how data races are scheduled.

Nevertheless, in practice, constraint-based race de-

tectors[7–9] still  have  two  major  problems,  limiting

their  application  and  productivity  for  programmers.

CRD  perceives  only  the  semantics  of  basic  program

components (e.g., lock, read/write, and fork/join) and

does not detect the complex and implicit control flow

arising  from  the  dataflow  propagation  of  programs.

CRD often  leads  to  the  incompleteness  of  constraint

generation  and  mishandles  the  possible  thread  inter-

leavings  of  lock-free  structures  (as  discussed  in Sub-

section 2.2).

88.7

As a result, [7–9] may generate excessive unneces-

sary  race  schedules  for  a  large  number  of  false  posi-

tives (i.e., false races). Note that this weakness can be

common  in  practice.  As  shown  in  the  previous

study[11],  more  than % data  races  are  related to

the  dataflow  of  the  program  (including  ad  hoc  syn-

chronization),  especially  with  the  pointer  alias  and

reference  variable.  For  a  given  data  race,  there  may

involve a crowd of race schedules to expose it. Never-

theless, CRD generates the race schedules for each da-

ta race whenever this data race is exposed during con-

straint solving. As a result, this ad hoc recommenda-

tion  can  impose  too  many  context  switches,  which

complicates  the  data  race  analysis  for  programmers.

In summary, the state-of-the-art constraint-based race

detection[7] is not friendly to programmers, which fails

to detect true races only,  and offers a minimal num-

ber of thread context switches for the debugging of a

data race.

To address the two limitations in the state-of-the-

art constraint-based race detection, this paper propos-

es DFTracker, an improved constraint-based race de-

tector,  which  attempts  to  schedule  the  data  races

with  a  minimal  number  of  thread  context  switches

while removing unnecessary false positives. In order to

eliminate the false dataflow-related races, we enhance

CRD with dataflow tracking. DFTracker only focuses

on tracking the dataflow related to the data races so

as to reduce the analysis overhead. To be specific, the

core process of dataflow detection is as follows. First,

DFTtracker  takes  the  data  race  candidates  reported

by  the  CRD  approach  as  a  dataflow  analysis  base.

Second,  DFTracker  checks  whether  there  exists  a

dataflow  propagation  path  between  two  conflicting

accesses  of  this  data  race  candidate.  Therefore,  we

maintain a happens-before (HB) order between them,

and  this  data  race  candidate  is  classified  as  a  false

positive.  Otherwise,  this  race  candidate  reported  by

CRD can be regarded as a true race.

In order to recommend the race schedule with the

minimal number of thread context switches (abbrevi-

ated as minimal schedule), we propose a novel offline

detection  algorithm,  which  takes  all  generated  feasi-

ble  race  schedules  for  each  reported  data  race  as  in-

put. Among these race schedules per data race, it an-

alyzes  all  numbers  of  context  switches  for  each  race

and then selects the minimal schedule for this race.

We  evaluate  the  efficiency  and  effectiveness  of

DFTracker  on  five  real  programs  including  two  ser-

ver  applications—Apache① and  MySQL②,  and  three

desktop applications—pbzip2③, TransmissionBT④, and

Handbrake⑤.  The  experimental  results  demonstrate
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that  1)  without  removing  any  true  data  race,  DF-

Tracker  effectively  prunes  false  positives  by  68%  in

comparison  with  the  state-of-the-art  CRD[7];  2)  DF-

Tracker  recommends  as  low  as  2.6–8.3  (4.7  on  aver-

age)  thread  context  switches  per  data  race  for  those

real  applications,  which  is  81.6%  fewer  context

switches per data race than the state-of-the-art CRD.

Therefore, DFTracker can be used as an effective tool

to better understand and analyze data races for pro-

grammers.

The rest of this paper is organized as follows. Sec-

tion 2 outlines the background and motivation of our

work. We present the dataflow propagation detection

in Section 3,  and Section 4 elaborates  how to recom-

mend effective race schedules with the minimal num-

ber  of  thread  context  switches. Section 5 shows  the

experimental results.  We survey related work in Sec-

tion 6 and conclude this work in Section 7. 

2    Background and Motivation

In this section, we first give a brief introduction to

CRD[7].  Next,  we  give  motivating  examples  to  show

two issues of CRD, including reporting false positives

and recommending ineffective  race  schedules  for  race

debugging.  Motivated  by  the  discussed  examples,  we

finally present the overview of our proposal DFTrack-

er  to  solve  these  problems  for  more  effective  and

programmer-friendly  race  detection.  To  facilitate  the

descriptions, we define several notations listed in Ta-

ble 1. 

2.1    Constraint-Based Race Detection (CRD)

For  a  given  program  schedule,  most  existing  dy-

namic  analysis  techniques  (e.g.,  [3])  take  the  strict

happens-before  order[2] for  the  program  analysis.  Us-

ing  different  program  schedules,  they  generally  pro-

duce  a  different  set  of  data  races,  that  is,  each  pro-

gram schedule  is  taken  to  report  a  set  of  data  races

(i.e.,  the race set in Fig.1), where the red star repre-

sents false data races.

Thus a large number of unobserved data races in

other schedules may be missed, as shown in Fig.1(a).

If we want to get all race sets, we have to test all pro-

gram schedules. In contrast, CRD breaks this limita-

tion  by  using  constraint-based  analysis.  It  achieves

the objective of getting all  race sets without actually

requiring all program schedules. Instead, it just takes

only one representative program schedule as input.

Specifically,  it  records  a  specific  program  execu-

tion into a trace or a minimal set of traces[7]. Through

analyzing  the  concrete  program  semantics  (such  as

thread  paths,  reads/writes,  and  synchronization  or-

der) in the trace, CRD then abstracts a series of con-

straints to represent program schedules. They encode

the  constraint  order  of  these  events  of  a  program

schedule as follows: 

ρπ ∧ ιπ ∧ γπ,

ρπ

ιπ γπ

where  denotes the partial  order constraints which

represent  the  must-happen-before  relation  between

events (i.e., two events have the hard program order,

such  as  fork/join,  signal/wait,  and  program  control

flows).  denotes the locking constraints, and  de-

 

Table  1.    Notations in the Constraint Model

Notation Description

e Event in an execution trace

� Operator to obtain the attribute of an event, e.g.,
e.type

π Set of events in a program schedule

Race (i, j) i jData race between line  and line  in different
threads

Xπ X π constraints operated on the events in 

Ri
v

v
i

Value of read access to the shared variable  at
line 

W i
v

v
i

Value of write access to the shared variable  at
line 

Oi
v v iPartial order of  at line  in a program schedule

 

Program

Schedule
Race Sets

Program

Schedules
Race Sets

(a) (b) 

Program

Schedule
Race Sets

(c)  

Fig.1.  Different detection approaches. (a) HB-based detector. (b) CRD. (c) A precise CRD.
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a b Oi
a = Oj

b + 1

b a

notes  the  read-write  constraints.  Finally,  CRD  in-

vokes an SMT solver[10] to solve these constraints and

generates  all  feasible  program  schedules.  To  further

identify  data  races,  CRD  also  encodes  race  con-

straints such that the order of two conflicting events

 and  should be consecutive as , mean-

ing  that  event  immediately  happens  after  event .

Combining program constraints and race constraints,

CRD then can generate all feasible race schedules. By

this  means,  taking  only  one  program schedule,  CRD

can identify all race sets in all feasible program sched-

ules, as shown in Fig.1(b).

Unfortunately,  due  to  the  incomplete  constraint

generation, only the semantics of basic program com-

ponents (e.g., lock, read/write, and fork/join) is guar-

anteed  in  their  work.  It  lacks  the  corresponding

strategies  to  track  the  implicit  control  flows  arising

from  the  dataflow  propagation  of  the  program.  This

weakness is also acknowledged by the authors in their

paper[7], which does not provide a solution. Thus, the

CRD approach  may  generate  false  positives  and  fur-

ther  induce  to  conduct  some  unnecessary  constraint

analysis.  For  a  given  data  race,  there  may  involve

many race schedules to expose it.

Nevertheless,  CRD  generates  the  race  schedules

for each data race whenever this data race is exposed

during constraint solving. As a result, this ad hoc rec-

ommendation can impose too many context switches,

which complicates the data race analysis for program-

mers.  In  summary,  the  state-of-the-art  constraint-

based race detection[7] is not friendly to programmers,

which fails to detect true data races only, and offers a

minimal  number  of  thread  context  switches  for  the

debugging of a data race. Next, we will introduce mo-

tivating examples to illustrate these two issues of the

CRD approach. 

2.2    Motivating Examples

Dataflow  propagation  is  very  common  in  multi-

threaded programs.  It  generally  means that  a  thread

requires  shared  data  that  is  produced  by  another

thread. As discussed previously, program components

(e.g.,  lock,  read/write,  and fork/join)  can be  tracked

precisely  by  the  CRD approach.  However,  numerous

program  semantics  of  the  lock-free  structures,  which

can be scheduled with many possible thread interleav-

ings  for  a  multi-threaded  program,  may  lead  to  the

imprecision of  the CRD approaches.  The implicit  or-

der of these lock-free structures is generally propagat-

ed  in  the  form  of  dataflow  information,  which  is

missed in  the  CRD approach.  One common use  case

of  dataflow  propagation  is  producer-consumer  com-

munication,  e.g.,  push/pop,  enqueue/dequeue,  write/

read,  and  insert/delete.  For  the  push/pop  pair,  only

when the data is pushed into the stack, and later this

data can be used with the pop operation.

S1 S2

S1 S2

Race(S1, S2)

S1 → S2

S1

S2

Fig.2 depicts a simplified code from pbzip2. It em-

ploys  the  producer-consumer  mechanism to  compress

the  file  in  parallel:  the  main  process  produces  the

blocks  into  the  queue q by  reading  the  file  and  the

consumer  process  compresses  these  blocks  from  the

queue q in parallel. In this example, though the mutu-

al semantics of the lock structure can be preserved by

the  existing  CRD  approach,  the  scheduling  order  of

two critical sections is flexible and can be alternative-

ly executed in different orders, depending on the run-

time scheduling. In this case, the lock-free structures,

i.e., the code snippets in  and , may be executed

simultaneously.  The  CRD  approach  reports  the

shared  data  on block between  and  as  a  data

race , since it argues that two blocks may

be operated on the same shared memory location. In

fact, when two blocks point to the same block, the or-

der  of  is  guaranteed  through  the  manipula-

tion  of  enqueue  and  dequeue.  The  parallelism  of 

and  is only valid when they are operated on differ-

ent blocks.
  

   Main:                                                               Consumer:

          

… …

S 1: (char*)block = read_block(i);                        lock(&L);                      

   lock(&L);                                                        block = dequeue(&q);

   enqueue(&q, block);                                        unlock(&L);

   unlock(&L);                                                       S 2: compress(block);

                                                                                               /*pbzip2*/

S1 → S2

Fig.2.  The shaded memory accesses are reported as a data race
by  CRD.  In  fact,  it  is  a  false  positive  because  the  order  of

 is ensured by queue maintenance when both blocks in
two threads are operated on the same shared memory address.
 

Race(S1, S2) is  a  false  positive  reported  by  CRD,

because CRD is unaware of the dataflow propagation

of  the  program,  thus  missing  the  potential  happens-

before order arising from the unrecognized dataflows.

Still, it is a nontrivial task for CRD to recognize the

dataflow propagation paths in real applications. First,

two conflicting memory addresses of a data race may

not be exactly the shared data used in the programs.

In general,  as  shown in Fig.2,  they may be the local

memory that uses the same shared data computed or

transferred from the values of other multiple objects.

Second,  the  dataflow  propagation  of  a  conflicting

memory  address  may  be  triggered  in  various  forms,

214 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1



e.g., write-to-read pair, library call, and address pass-

ing. Both complex programming designs/implementa-

tions complicate the dataflow analysis of the program.

4 5

Race 4, 10

The memory order  model  is  another  main reason

for  the  hard  reproducibility  of  data  races.  A  more

subtle and critical point is that many relaxed memo-

ry  models  allow the  compiler  or  CPU to  reorder  the

shared memory accesses to different memory address-

es. In Fig.3(b), only if line  and line  are reordered,

( ) can be exposed by CRD.

T1.4 T1.5
Race(T1.2, T2.3)

Race(T1.4, T2.5) Race(T1.4, T2.5)

T1.1 → T2.1 → T1.2

→ T2.2 → T1.3 → T2.3 → T1.5 → T2.4 → T1.4 → T2.5

T2.1→T2.2

→ T2.3→T1.1→T1.2→T1.3→T1.5→T2.4→T2.5 →T1.4

Apart from the above-discussed problem, by solv-

ing  the  program  constraint  with  the  race  constraint

via  the  SMT solver,  we  then  get  an  enormous  num-

ber  of  program  schedules  for  each  true  data  race.

However, it is still difficult for programmers to effec-

tively understand all  these  identified data races  with

these  massively-generated  schedules.  As  observed  in

real  programs,  the  CRD  approach  recommends  a

schedule  with  an  excessively  randomized  number  of

context switches, which is rather difficult and tedious

for  programmers  to  understand these  data  races.  On

the  other  hand,  we  can  observe  the  opportunities  to

find the minimal number of context switches for each

recommended  schedule. Fig.3 shows  a  code  snippet

with  two  threads  accessing  two  shared  variables  (x
and y).  If  and  can  be  reordered,  there  are

two  latent  data  races  (i.e.,  and

)  in  this  code.  For ,

CRD may  recommend  many  possible  race  schedules.

For  instance,  the  race  schedule 

 is

relatively  hard  to  understand  because  10  thread

switches  are  invoked  for  these  10  lines  of  code  (i.e.,

LOC). On the other hand, the race schedule 

involves only three thread switches.  This  race sched-
ule is more intuitive. The CRD approach may recom-
mend those race schedules in an ad hoc manner.

A few studies[12, 13] attempt to reduce the impact

arising  from  context  switching  by  producing  simpli-

fied  interleavings  to  find  a  root  cause  schedule  for

concurrency  failures.  In  this  earlier  research,  failures

are assumed to be assertion violations. However, data

races  have  far  more  complex  concurrency

behaviors[14]. They cannot always be formalized as an

invariant assertion problem[13]. RaceDebugger comple-

ments  to  use  dynamic  slicing  to  tailor  the  original

schedules  generated  by  constraint-solving  systems[8].

However,  each  exposed  race  schedule  in  RaceDebug-

ger  needs  to  be  re-executed  at  runtime  with  some

manual checkings to locate root causes precisely, lim-

iting  its  practicability.  DFTracker  is  different  from

but  orthogonal  to  these  earlier  root  cause

researches[7–9].  DFTracker  enables  finding  a  minimal

context-switching schedule which can be further used

to explore the easy-to-understand root causes of con-

currency bugs.

In  addition,  DFTracker  works  purely  upon  con-

straint-solving  systems  in  a  self-contained  and  auto-

matic  fashion  without  any  manual  interruption,  im-

proving the productivity of data race analysis. 

2.3    Overview of DFTracker

To  address  the  limitation  of  the  CRD  approach,

we  design  DFTracker,  an  improved  constraint-based

race detector. Fig.4 shows the overview of DFTracker.

The  basic  idea  of  DFTracker  is  that  it  1)  uses

dataflow  tracking  to  eliminate  the  false  positives  re-

ported by the CRD approach, and 2) recommends the
 

Thread 2

1:   lock l;

2:   y=1;

3:   unlock l;

4:   x =2;

5:   done =true;

Thread 1

  1:   a=1;

  2:   b=2;

  3:   y =3;

  4:   while(! done );

  5:   x =4;

Initialization:  done ==false

(a) (b)

Thread 2

1:   lock l;

2:   y=1;

3:   unlock l;

4:   x =2;

5:   done =true;

Thread 1

  1:   a=1;

  2:   b=2;

  3:   y =3;

  4:   while(! done );

  5:   x =4;

Race (T1.4, T2.5)
Race (T1.4, T2.5) T1.4 T1.5
Fig.3.   Code  snippet  on  different  memory  models.  (a)  is  undetectable  on  sequential  consistent  memory. (b)

 is detectable if  and  are reordered.
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Data Race
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Fig.4.  Overview of DFTracker.
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race  schedule  with a  minimal  number  of  thread con-

text  switches.  By  this  means,  DFTracker  improves

the  producibility  of  race  detection  in  understanding

and debugging data races.

DFTracker takes each data race candidate report-

ed by the CRD approach as input, and augments the

CRD  approach  in  two  major  steps:  dataflow  detec-

tion and schedule recommendation. First, it invokes a

dataflow checker to detect whether this data race can-

didate is  caused by the unrecognized dataflow of the

program (Section 3). If it is, DFTracker classifies this

race candidate as a false race and discards it. Other-

wise, we consider it as a true data race and DFTrack-

er  next  generates  all  feasible  race  schedules  that  can

expose  this  race.  Among  these  generated  race  sched-

ules, DFTracker invokes the schedule recommender to

find out the final  schedule with the minimal number

of  thread  context  switches  (Section 4).  Next,  we  will

introduce each of them in detail. 

3    Dataflow Propagation Detection

Since  the  existing  CRD  approach[7] reports  false

positives arising from the dataflow propagation of the

program (discussed in Subsection 2.2),  we propose to

augment it with dataflow propagation tracking in or-

der  to  suppress  false  positives  of  reported  results.  In

this  section,  we  present  the  design  and  implementa-

tion details for our dataflow tracking enhancement. 

3.1    Overview

Fig.5 depicts  the detailed dataflow detection pro-

cess.  In  this  work,  the  dataflow  propagation  of  the

program mainly refers to the observation that one ac-

cess of data race candidate requires shared data that

is updated by the other access.

S1 S2

Race(S1, S2)

S2

S1

S2

S1

S1

DFTracker  first  performs  the  symbol  parsing  to

track the dataflow dependency for two conflicting ac-

cesses of the data race candidate (i.e.,  and ). For

the  sake  of  symbol  parsing,  we  develop  an  efficient

approach  to  express  and  parse  the  dataflow  of  the

program  (①).  Next,  considering  a  data  trace  candi-

date  suggested  by  CRD  (denoted  as ),

DFTracker then identifies the dependency point of 

(②) and the impact point of  (③). The dependen-

cy  point  means  the  program  point  that  depends

on,  whereas  the  impact  point  means  the  program

point that  impacts. The analysis of the dependen-

cy  point  and  impact  point  is  to  ascertain  the  real

dataflow path of the data race candidate. Recall that,

in Subsection 2.2,  we  have  shown  the  case  studies

where  the  dataflow  propagation  results  in  false  posi-

tives  in CRD. Therefore,  after  getting the dependen-

cy  point  and  the  impact  point,  DFTracker  finally

checks (④) whether there exists a dataflow propaga-

tion  between  the  dependency  point  and  the  impact

point. If so, it means that an HB order between them

occurs, and this identified data race should be classi-

fied as a false positive. Otherwise, a true data race is

reported. However, taking an identified data race can-

didate  with  two conflicting  accesses,  we  still  need  to

confirm  which  access  happens  first  (abbreviated  as

the first order access, i.e., ), because this is critical

to distinguishing the impact point from the dependen-

cy point.  More  details  about  how we solve  it  can be

found in Subsection 3.6. 

3.2    Dataflow Parsing

A multi-threaded program can run in a huge num-
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Fig.5.  Dataflow propagation detection scheduling.
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ber of ways because of well-known inter-thread inter-

leavings. In addition, different program paths can fur-

ther worsen the situation of the interleaving space sig-

nificantly  (a.k.a.  the  path  explosion  problem),  lead-

ing  to  exponential  space  complexity.  Therefore,  it  is

generally  difficult  to  capture  a  complete  set  of

dataflows  for  a  large  multi-threaded  program[15, 16].

However, analyzing the dataflow relation on this large

exploration  space  also  slows  down  the  analysis  effi-

ciency significantly.  Fortunately,  race  detection tech-

niques focus on exposing data races from a specific ex-

ecution  trace.  We,  therefore,  require  only  to  explore

the  thread  scheduling  (e.g.,  lock  interleavings[17]).

Path explosion problem can be mitigated and also the

analysis  efficiency  can  be  improved  significantly.  In

particular,  when  parsing  the  input  trace,  the  follow-

ing information is recorded: 1) the number of threads

launched, 2) executed instructions in each thread, and

3)  the  branch  conditions  triggering  this  execution.

Based on the recorded information, the program exe-

cution can be transformed to be a sequence of  state-

ments.

In  order  to  express  the  dataflow  of  the  program,

we adopt the symbolic expression and assignments for

the program statements[6]. We can further reduce the

overhead of program statements for dataflow analysis.

Any  reads  or  writes  of  a  variable  could  be  either  a

concrete  value  or  a  symbolic  value  computed  from

other symbolic value variables. To represent program

statements, we define two basic statements as follows:

x | x op y | op x● expression:     ,

x = y | x = y op z | x = op y● assignment:      ,

x y z

Ri
v W i

v op

x > y 1

R1
x > R1

y
x = 1

W 2
x = 1

a = foo() foo
foo

a

where , ,  and  are the variables in the format of

 and  in Table 1.  is  the  operator  between

two variables. For instance, we represent a branch ex-

pression  at line  of a program as the symbolic

equation .  The  assignment  statement 

at line 2 is denoted as the symbolic equation .

For other compound statements, such as return, goto,

and call,  we directly execute them with the symbolic

variable  until  all  statements  can  be  expressed  with

basic  statements.  For  instance,  for  the  statement

,  we  first  call ,  then  record  the  basic

statements in , and finally assign its returned val-

ue to .

After  getting  the  symbolic  equations  of  program

statements, we parse the dataflow propagation of the

program by analyzing these symbolic equations. With

parsing, we can obtain the dataflow propagation path

for  variables  of  an  arbitrary  code  line  pair.  For  in-

a = x; y = a+ 1;

y

a

x

x → y

stance, for the statements `` ", we can

infer  that  the  shared  memory  address  depends  on

the variable  which further  relies  on the shared ac-

cess .  Thus,  we  can  get  the  dataflow  propagation

path of these two statements as . 

3.3    Dependency Point Analysis

S2

To preserve the precision of dataflow analysis, all

possible  dependency  points  of  access  must  be  de-

tected. However, it is notoriously difficult, if not pos-

sible, to find a complete set of dependency points. Not

all  statements  declare  the  variables  they  will  use

clearly.  For  example,  the  third-party  library  is  often

self-enclosed  and  little  information  is  available  from

its  public  manual.  In  addition,  the  dependency  rela-

tionship  between  two  variables  is  not  necessarily  di-

rect. They may be potentially dependent through one

(or more) dependency relationship(s) from other vari-

able(s).

Race(S1, S2)

S2

S2

Given  a  data  trace  candidate  suggested  by  CRD

( ),  DFTracker  first  parses  the  symbolic

equation  of  and  finds  all  variables  it  depends  on

(i.e., dependency variables). Then it searches the pro-

gram statements that happen before the  access in

the same thread and locates  the program statements

assigning  the  value  to  those  dependency  variables.

During  the  search  process,  we  consider  the  following

four cases by addressing the challenges raised above.

x = 1

x

Constant. It  means  that  the  statement  does  not

have  a  dependency  point.  For  the  statement ,

the shared memory  is  no longer dependent on any

other variable.

Local  Memory. In  this  case,  we  still  do  not  find

the  final  dependency  point,  because  this  local  vari-

able  may point  to  (i.e.,  depend on)  the  other  shared

variable  that  is  then  propagated  to  another  shared

variable,  e.g.,  the  address  exchange  between  two

shared accesses using the temporary pointer reference.

As  a  consequence,  DFTracker  next  finds  the  latest

change of this local variable by further searching the

statements  that  happens  before  in  the  same  thread

and repeats the process.

Shared Memory. In this case, a dependency point

candidate is found, but still, we do not find all poten-

tial ones because this dependency point may still  de-

pend  on  other  shared  variables.  In  order  to  find  the

remaining  possible  dependency  points,  DFTracker

then  sets  this  shared  memory  as  a  new source  to  be

analyzed and finds its dataflow dependency by repeat-
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ing the local search.

→

Function Calls. For an internal function call (e.g.,

a  customized  function),  DFTracker  identifies  its

dataflow  by  tracking  the  program  statements  of  the

function. For an external function call (e.g., a library

call  and  system  call),  it  is  hard  to  obtain  the  con-

crete  symbolic  equation of  the  program statement  in

the external function. However, this is not a problem

for the dataflow analysis since the dataflow dependen-

cy can be still tracked by observing the input/output

of the function at runtime. By and large, we can ob-

tain  the  dataflow  dependency  of  external  functions

with a general pattern of input output.

Finally,  DFTracker ends the search process when

either  of  the  following  conditions  is  satisfied:  1)  no

more statements are available in the local thread; 2) a

constant  is  identified  (the  first  case  in  the  above);

3)  a  certain  function  call  is  found,  which  does  not

take  the  shared  memory  address  as  input.  If  the

head/tail  of  a  thread  is  reached,  it  means  that  no

more  dependency  points  exist.  Besides,  in  our  obser-

vations, almost all dataflow cases end in the format of

the  direct  constant  assignment  (or  indirect  constant

expression).  Otherwise,  the  potential  dataflow  exists,

such  as  local  memory  and  shared  memory.  For  in-

stance,  if  a  function  call  does  not  take  the  shared

memory address  as  input,  any returned value of  this

function  may  not  depend  on  the  previous  dataflow,

e.g., malloc(sizes). In this case, an indirect constant is

calculated. 

3.4    Impact Point Analysis

Race S1, S2

S1

After getting all possible dependency point candi-

dates for the data trace candidate suggested by CRD

( ( )),  DFTracker  attempts  to  identify  the

corresponding impact point of the  access. Each im-

pact point produces the shared data required by a de-

pendency  point.  The  CRD  suffers  from  the  substan-

tial  unnecessary  analysis  arising  from  false  positives,

since it misses the implicit dataflow propagation rela-

tionship.  That  is,  false  positives  of  CRD  arise  from

the  dataflow  propagation  pattern:  the  dependency

point  reads  the  shared  memory  address  whose  ad-

dress is updated by the impact point. In this context,

we  have  an  insight  that  the  false  positive  reduction

can be transformed into a problem of finding impact

points.

S1

Based  on  this  insight,  we  identify  the  impact

point of  as follows. First, DFTracker searches the

S1

S1

program  statements  that  happen  after  the  access

in  the  same  thread.  Second,  DFTracker  tries  to  find

the  latest  write  operation  which  uses  the  conflicting

address of the data race candidate to update a shared

variable. If such a write operation is found, DFTrack-

er then treats the corresponding writing site as the re-

sult  impact  point.  Otherwise,  DFTracker  keeps  on

searching until no more statements are left. If no such

impact  point  is  found,  we  consider  as  the  result

impact point.

Similar  to  the  dependency  point  analysis,  if  the

impact  point  analysis  encounters  the  external  func-

tion  calls,  DFTracker  just  validates  whether  the  in-

put and output of this call are the conflicting address

of  the  reported  race  and  other  different  shared  vari-

ables. If so, DFTracker determines this program point

as the result impact point. Otherwise, the local search

continues. 

3.5    Dataflow Checking

Given  a  pair  of  a  dependency  point  and  an  im-

pact point, DFTracker then checks whether there ex-

ists a dataflow between the dependency point and the

impact  point,  i.e.,  whether  the  impact  point  writes

shared data that is read by the dependency point. In

this  context,  we  know  that  the  impact  point  must

happen after the dependency point. That is, we must

explicitly  know  the  scheduling  order  of  the  impact

and dependency points. Unlike the logic clock that re-

quires computing the relative order of any two events,

we simply use the physical  time when an instruction

is executed as the timestamp without the overhead of

maintaining the relative orders. Since the shared vari-

able  can  induce  a  dataflow  propagation,  we  propose

to  reduce  the  timestamp  cost  by  recording  only  the

timestamp for shared variables in a minimized times-

tamp recording overhead.

DFTracker  first  compares  the  timestamp  of  the

impact point with that of each dependency point can-

didate.  We  record  the  timestamp  and  dynamic  ad-

dress  of  the  shared  memory  accesses  when  the  pro-

gram trace is being recorded (more details in Subsec-

tion 3.6). According to the timestamps of the impact

point and the dependency point at runtime, we then

discard those dependency point candidates that have

a smaller timestamp than the impact point because a

valid  dependency  point  oughts  to  happen  after  the

impact point if they indeed involve a dataflow depen-

dency.

218 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1



addr addr

addr

S1

S2

Next,  DFTracker  determines  a  dataflow propaga-

tion  path  between  the  impact  point  and  the  depen-

dency  point.  Particularly,  we  consider  the  following

three conditions: 1) the impact point and each depen-

dency point share the same memory address variable

,  2)  the  impact  point  writes ,  and  3)  the

dependency  point  reads .  If  all  the  three  condi-

tions above are satisfied, a dataflow propagation path

between  the  impact  point  and  the  dependency  point

exists.  In  this  case,  two  conflicting  accesses  (  and

) have an HB order, and DFTracker classifies it as

a false positive. Otherwise, DFTracker considers CRD

reports  the  true  race.  We  note  that  the  dataflow

checking  procedure  above  can  be  very  fast  since  the

checking on the memory address simply uses compari-

son operations. 

3.6    Implementation Issues

S1 S2

OS1
= OS2

+ 1

OS2
= OS1

+ 1 Race S1, S2

Race S1, S2

S1 → S2 OS1
=

OS2
+ 1

S2

S1

S1 S2

S1

Race x, y x y

Oy = Ox + 1 x

S1

y S2

Race Access Order Confirmation with Timestamp.
Each data race candidate is paired with two accesses,

i.e.,  and  in Fig.5.  To  expose  this  race,  CRD

may construct the race constraint as  or

. If ( ) is a real race, both race

constraints above show the race behavior. However, if

( )  is  a  false  positive  on  account  of  the

dataflow  dependency ,  the  case  of 

 will  invalidate  our  dataflow  propagation  de-

tection in Section 3. That is because, in this case, DF-

Tracker will perform the impact point analysis for 

(instead of ) and the dependency point analysis for

 (instead of ). This leads to the opposite (wrong)

analysis  and  violates  the  real  dataflow  propagation

path. Therefore, given a data race candidate, we need

to confirm which access is  the first  order access,  i.e.,

,  for  the  correct  dataflow  analysis.  To  tackle  this

problem, we record the timestamp of the memory ac-

cess  of  data race candidates when the program trace

is  being  recorded.  For  a  given  data  race  candidate

( ),  if  has  a  smaller  timestamp  than  at

runtime,  DFTracker  uses  the  race  constraint

 to expose this race. That is,  is the first

order  access  (i.e., )  for  the  impact  point  analysis,

and  is the second order access (i.e., ) for the de-

pendency point analysis.

Symbolic Address Profiling. A known issue for the

symbolic execution is that the runtime information of

memory  addresses  is  lost,  e.g.,  pointer  references.

KLEE[18] does  not  provide  any  address  tracking  for

the pointer analysis. For the sake of the precise analy-

sis of pointers, we track each data when the program

is  being  performed,  and  maintain  an  ordered  list  of

memory addresses for each symbolic object. If a data

race  is  detected,  DFTracker  will  check  the  dynamic

memory addresses of two accesses in the profiling list.

If they are the same, we accept this reported race as

the  data  race  candidate  for  further  dataflow  detec-

tion. Otherwise, we ignore this report. Through sym-

bolic address profiling, we can significantly reduce the

large number of data race candidates arising from the

pointer alias as the input of DFTracker, thereby mak-

ing the dataflow detection more effective. 

4    Schedule Recommendation

In  this  section,  we  present  a  novel  offline  ap-

proach,  which  recommends  the  optimal  race  sched-

ules  with  minimal  thread  context  switches  for  pro-

grammers. 

4.1    Minimal Thread Context Switches:

Research Method

To better  help  programmers  understand  how the

data  race  occurs,  it  is  necessary  to  recommend  the

easy-to-follow  minimal  schedule  for  programmers.  In

fact,  most  real-world  concurrency  bugs  generally  can

be exposed with a few thread context switches[5].

To  find  the  minimal  schedule,  one  intuitive

method  is  to  bound  the  number  of  context  switches

for  the  recommended  race  schedules  during  the  con-

straint solving. Specifically, the context switch thresh-

old  starts  from  zero.  For  each  round  of  constraint

solving, if the SMT solver fails to return a race sched-

ule  at  some  threshold,  the  threshold  will  be  added.

Then  the  next  round  of  solving  process  with  the

added  threshold  is  performed.  Once  a  solution  is

found,  the  current  threshold  of  context  switches  is

minimal. However, this online approach serializes the

solving process  due to the bottleneck of  the continu-

ously-increasing  context  switch  threshold,  thus  pro-

viding  inefficient  constraint  solving.  Next,  we  intro-

duce  a  novel  offline  approach  to  solve  this  problem

more efficiently. 

4.2    An Offline Algorithm

In our work, we perform constraint solving based

on a specific execution trace. Hence, DFTracker does

not  suffer  from  the  path  explosion  as  discussed  in

Subsection 3.2. This is also the very reason for the on-
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line  bounded  method  above  to  enable  reducing  the

search space for program analysis. More importantly,

DFTracker further narrows the search space of thread

schedules with the main focus on a few data race can-

didates.  Hence,  instead  of  solving  race  schedules  one

by  one,  we  can  enumerate  all  race  schedules  in  a  fi-

nite  number  and perform an offline  approach to  free

the  capacity  of  the  SMT solver  without  serialization

searching.

To  find  the  minimal  schedule,  we  first  collect  all

feasible  race  schedules  for  all  identified  data  races.

Then, we divide all  these collected race schedules in-

to different race schedule sets by each data race, that

is, each data race has a set of race schedules that can

expose  itself.  Ultimately,  the  problem is  transformed

to this question: in each race schedule set, how to find

out the minimal schedule to expose this race?

i S S(i)

S1(1) O5
b(T2)

b 5

T2 S1

S1(1) < S1(2) < . . . < S1(7)

·
S1(1).threadnum

1 S1

We,  therefore,  propose Algorithm 1,  which  main-

ly aims to answer the above-proposed question. To fa-

cilitate the descriptions, we define the partial order of

the -th  event  in  a  race  schedule  as .  For  in-

stance,  in Fig.6 represents  which means

the  program  order  of  the  data  at  code  line  in

thread . Hence, the race schedule order of  can be

rewritten  as .  To  further

obtain  the  attribute  of  an  event,  we  can  make  it

through  the  operator  defined  in Table 1,  e.g.,

 denotes  the  thread  identifier  of  the

st  event  in .  As  illustrated  in Algorithm 1,  we

take two major steps.

Algorithm 1. Minimal Thread Context Switches

SS = {S1, . . . , Sm}  Input: the schedule set 
RecS MSN  Output: , the recommended schedule ,

  minimal switch number
MSN ←∞1:   ;

i← 1 m2:  for  to  do

(Si) < MSN3:       if SwitchNum  then

MSN ← (Si)4:            SwitchNum ;
RecS ← Si5:           ;

⟨RecS,MSN⟩6:  return 

    SwitchNum Function

S = {S(1) < S(2) < . . . < S(n)}    Input: 
SwitchNum← 07:   ;
i← 1

Check the type of data race
8:   ;
    /*  */

S(i) < S(i+ 1)

Check thread identifier. If not
equal, the context is switched

9:  while: 
      is not the data race candidate do
         /* 
               */

S(i).threadnum ̸= S(i+ 1).threadnum10:     if:  then
SwitchNum← SiwtchNum+ 111:            ;

i← i+ 112:       ;
SwitchNum13: return 

1) In a certain race schedule, it checks the thread

identifier  of  each  pair  of  two  adjacent  events  as  de-

picted by lines  9–11 in Algorithm 1.  If  they are per-

formed  by  different  threads,  the  thread  context  is

switched.  Otherwise,  no  context  switch  happens.  By

this  means,  we  can  calculate  the  context  switch  of

each race schedule  in a race schedule  set  for  a  given

race.

2) After the results are collected in the first step,

we  then  compare  the  number  of  context  switches  of

all race schedules in a sequential order as depicted by

lines  2–5  in Algorithm 1.  In  the  end,  we  recommend

the race schedule with minimal thread context switch-

es.

Race(3, 7) S1 S2

S1

S2

S2

As depicted in Fig.6, there are two race schedules

that can expose , such as  and . Algo-

rithm 1 collects that  invokes five context switches

while  has  two  context  switches.  From  these  two

results,  race  schedule  is  recommended  by  Algo-

rithm 1 as the minimal schedule.

In addition, it should be noted that two loop bod-

ies in Algorithm 1 do not contain any data dependen-

cy. As a result, our offline approach also provides the

opportunity  to  drastically  accelerate  the  look-up  of

the  minimal  schedule  using  parallel  solving.  A  more

detailed discussion can be found in Section 6. 

5    Evaluation

In  this  section,  we  evaluate  the  effectiveness  and

efficiency  of  DFTracker  against  the  state-of-the-art

constraint-based race detection. 

5.1    Methodology

We  evaluate  DFTracker  with  five  common  real-

 

        T1

1:  read a;

2:  lock(l );

3:  read(x);

4:  unlock(l );

        T2

5:  read b;

6:  read b;

7:  write(x);

(a)  

        T1

1:  read a;

2:  lock(l );

3:  read(x);

4:  unlock( l );

        T2

5:  read b;

6:  read b;

7:  write(x);

(b)  

S1: 

Race Schedules Race Schedule Order

S2: 

O5
b (T2) < O1

a(T1) < O6
b(T2) < O2

acq(T1) < O7
x(T2) < O3

x(T1) < O4
rel(T1)

O
1
a (T1) < O 2

acq(T1) < O5
b(T2) < O6

b(T2) < O7
x(T2) < O3

x(T1) < O4
rel(T1)

(c)

Fig.6.   Thread context  switches  with two cases,  where  the  ar-
row  across  threads  denotes  the  thread  context  switch.  (a)  A
case  with  five  thread  switches.  (b)  Another  case  with  two
thread  switches.  (c)  Race  schedules  where  the  data  race  is
shaded in the race schedule order.
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world  applications  with  different  complexities  (in-

cluding two server applications—Apache and MySQL,

and three desktop applications—pbzip2, Transmission-

BT,  and  Handbrake).  We  use  the  underlying  con-

straint-solving kernel of RaceDebugger[8] (with its dy-

namic slicing component disabled)  as  the  representa-

tive  of  CRD.  To  support  the  symbolic  computation

for C/C++ programs, we also extend to use the un-

derlying  constraint  system  as  in  Symbiosis[12] on  top

of LLVM[19] and KLEE[18]. We use Yices SMT solver⑥

as our constraint solver.

–without-dataflow

To facilitate usability, we have integrated CRD in

the  DFTracker  framework.  We  can  enable  the  func-

tionality  of  CRD  by  using  DFTracker  with  the  op-

tion of . To compare CRD with DF-

Tracker,  we  first  record  one  execution  trace  of  each

application and then perform two tools to collect the

results  using  the  same  trace.  The  previous  study[11]

has  shown that  almost  all  data  races  are  guaranteed

to  manifest  themselves  with  two  threads.  Therefore,

in our tests, all applications run with two threads.

All experiments are on a machine with four Intel®

Hexa-core Xeon® CPU E5-2620 v2@2.10 GHz proces-

sors,  126  GB  memory,  and  1  TB  SATA  hard  disk.

The running operating system is CentOS 6.5 (x86_64)

with Linux kernel 2.6.32.

We  next  present  the  effectiveness  of  how  DF-

Tracker  can  prune  false  positives  reported  by  CRD.

Then,  we  study  the  number  of  context  switches  for

the recommended schedule by DFTracker in compari-

son  with  CRD.  Finally,  we  report  the  runtime  over-

head of DFTracker to show that DFTracker is an effi-

cient tool to understand races. 

5.2    Precision of DFTracker

To evaluate  the  capability  of  false  positive  prun-

ing of DFTracker, three scenarios are considered. We

analyze:  1)  the  program trace  with  a  given  input  10

times  using  HB  relation;  2)  one  selected  execution

trace once using CRD; and 3) one selected execution

trace once using DFTracker.

↓

False Race Pruning. Table 2 shows the number of

reported data races with three techniques in the real

world. For completeness, we also study the HB-based

approach⑦. The results show that CRD detects more

data races than the HB-based technique for all bench-

marks.  This  is  consistent  with  the  previous  study[7].

DFTracker prunes as many as 68% of false dataflow-

related data races  reported by CRD ( 68%).  For  in-

stance,  CRD detects  126  races  for  Apache,  and  DF-

Tracker  detects  86  of  them  as  false  positives.  This

demonstrates that while CRD offers a more sound so-

lution to enhance the detection capability of the HB-

based technique, it introduces a quite significant num-

ber of false data races due to the unawareness of pro-

gram dataflows.

To  further  verify  that  DFTracker  effectively

prunes false dataflow-related alarms reported by CRD

without removing any true data races, we have manu-

ally  checked  each  reported  race  in Table 2 by  CRD.

The HB-based detector does not report the false data

race  related to  the  dataflow,  as  HB relation enforces

the hard ordering of the program dataflow. In our ob-

servations, we find that 1) all races identified by HB

are also included in the race set of CRD/DFTracker;

2) all false positive races identified by DFTracker are

truly  false  races  (caused  by  dataflow  propagations).

We  use  case  studies  to  demonstrate  those  findings

from our manual investigation.

S1 S2

S1 S2

1 1 2

fd

Case Studies. We have presented a case study for

pbzip2  in Fig.2.  Here,  we  list  several  real  examples

identified by DFTracker in the other four real  appli-

cations  in Fig.7.  All  cases  show a  dataflow  propaga-

tion of the program between  and , and CRD re-

ports the false data races between  and . For in-

stance,  for  TransmissionBT,  the  address  of  data  in

thread  is  propagated  from  thread  to  thread 

through the shared pipe identifier ,  and then used
 

Table  2.    Effectiveness of DFTracker in Pruning the False Data Races Arising from the Unrecognized Dataflow for CRD

App LOC (k) Code Size (M) Number of Data Races

HB CRD DFTracker Reduction

Apache 392 6 31 126 40 86

MySQL 1 132 22 44 211 63 148

pbzip2 5 1 3 28 9 19

TransmissionBT 79 4 8 45 19 26

Handbrake 1 070 3 6 34 11 23

Total - - 92 444 142 ↓302 ( 68%)
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⑥http://yices.csl.sri.com/, Jan. 2024.
 

⑦https://software.intel.com/en-us/intel-inspector-xe, Jan. 2024.
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https://software.intel.com/en-us/intel-inspector-xe
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2

S1 S2

to invoke a task in thread . Since there is a happens-

before order between pipewrite and piperead, the two

shared accesses between  and  will be ordered as

well  and  never  conflict  with  each  other.  However,

CRD fails to recognize this implicit control flow, with-

out  tracking  the  dataflow.  Likewise,  the  cases  from

Apache,  MySQL,  and  Handbrake  also  have  similar

dataflow  propagations,  and  CRD  identifies  them  as

data races (in fact, these reports are wrong). 

5.3    Effective Schedule Recommendations

To evaluate the effectiveness of DFTracker for the

understanding and debugging of data races, we main-

ly  measure  two  metrics:  1)  schedule  reduction

with/without  the  dataflow  detection  strategy  dis-

cussed  in Section 3,  and  2)  minimal  thread-context-

switching schedule recommendation with/without our

Algorithm 1 proposed  in Section 4.  The  detailed  re-

sults are listed in Table 3.

Schedule  Reduction  with  Dataflow  Detection. In

order to illustrate how the data race happens, a large

number  of  race  schedules  have  been  generated  via

constraint  solving.  In Table 3,  we  can  find  that  one

data  race  generally  involves  a  large  number  of  race

schedules. For instance, for Apache, CRD reports 126

data races, and 89 210 race schedules have been gen-

↓

erated.  In  contrast,  DFTracker  reports  40  true  data

races,  and  only 7 021 race  schedules  are  generated,

thus  reducing  92.1% of  race  schedules  in  comparison

with  CRD.  On  average,  through  pruning  the  false

positives  with  the  dataflow detection,  the  number  of

race  schedules  is  reduced  significantly  by  92.4%  on

average  ( 92.4%).  As  a  side  product,  this  reduction

also  increases  the  efficiency  of  race  schedule  analysis

for the optimal schedule recommendation.

Schedule  Recommendation  with  Minimal  Thread
Context  Switches. Programs  can  have  very  different

data  races,  which  require  different  numbers  of  con-

text switches to expose themselves.  As shown in Ta-

ble 3,  DFTracker  recommends  2.6–8.3  (4.7  on  aver-

age) thread switches for each race while CRD reports

11.7–53.9  (25.5  on  average)  thread  switches.  That  is

because  CRD recommends  the  current  thread  sched-

ule in an ad hoc manner.

81.6

↓

Overall,  DFTracker  reduces  the  number  of  con-

text  switches  per  recommended  trace  by %  on

average ( 81.6%). For instance, Fig.8 illustrates a re-

al race example from MySQL. We have tested this ex-

ample  10  times  using  CRD  and  DFTracker,  respec-

tively.  The  results  show that  CRD produces  the  un-

certain  recommendation  of  thread  switches  ranging

from 14  to  26;  while  DFTracker  always  recommends

10  context  switches  for  this  race.  We  highlight  that

 

   Thread 1:                                             Thread 2:
                                                      ap_q_pop(&mpool);
S1: c->sbh=sbh;                                            …

    …                                      c=(conn*)mpool->active
  ap_q_push(mpool);                       S2:  c->sbh=sbh;
                                                                        /*Apache*/

         Thread 1:                                                              Thread 2:

S1: data->session=session;                                   piperead(fd, &data, nwant);
      …                                                                    …

pipewrite(fd, &data, len);                                    S2: session=data->session;
                                                                                       /*TransmissionBT*/

       Thread 1:                                                        Thread 2:
S1: str(share->table_name,                          share=hash_search(&open_table
      table_name);                                                    table_name, length);
   my_hash_insert(          
      &open_tables, share);                                  S2: share->count++;    
                                                                                                                 /*MySQL*/

      Thread 1:                                         Thread 2:
S1: w->audio=audio;                w=hb_list_item(list_work)
                 
  hb_list_add(                       S2: hb_thread_init(…, w,
     list_work, w);                            HB_LOW_PRIORITY)
                                                                    /*Handbrake*/

(b)(a)

(c) (d)

Fig.7.  False data races caused by the unrecognized dataflows in the four real-world programs. The two statements indicated by the
arrow are the impact point and the dependency point, respectively.

 

Table  3.    Effectiveness Evaluation of Race Schedules in the Real World

App Schedule Reduction Schedule Recommendation

CRD DFTracker CRD DFTracker

Apache 89 210 7 021 34.2 6.5

MySQL 195 916 9 198 53.9 8.3

pbzip2 4 201 872 11.7 2.6

TransmissionBT 17 194 5 891 13.1 3.4

Handbrake 11 352 1 087 14.6 4.0

Average 63 575 ↓4 814 ( 92.4%) 25.5 ↓4.7 ( 81.6%)
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DFTracker  is  deterministic  while  the  CRD approach

is nondeterministic. Therefore, DFTracker saves much

debugging  effort  for  programmers  to  understand  the

complex thread context switching. 

5.4    Runtime Overhead

To  evaluate  the  runtime  overhead,  we  compare

the  elapsed  time  of  constraint  solving  between  CRD

and DFTracker using the five real applications above.

Fig.9 illustrates  the  elapsed  time  of  constraint

solving for the race schedules between DFTracker and

CRD. DFTracker has almost the same performance as

CRD, introducing only 5.4% runtime overhead. That

means  DFTracker  is  able  to  amend  the  two  weak

points  of  CRD  with  almost  negligible  runtime  over-

head  reintroduced.  There  are  two  main  reasons  for

such  high  efficiency.  First,  we  leverage  the  symbolic

expression for the program statements, and then per-

form symbolic execution to simulate the program exe-

cution.  This  makes  the  dataflow analysis  of  the  pro-

gram much easier  through only parsing the symbolic

equations  as  discussed in Subsection 3.2.  Second,  the

S1 S2

impact point of  the first-order access and the depen-

dency point of the second-order access tend to have a

locality  in  real  applications.  For  instance,  and 

of all cases in Fig.7 have a few lines of the distance to

the impact point and the dependency point. As a re-

sult, DFTracker can locate the impact point and the

dependency point fast in practice. 

6    Related Work

Dynamic  Race  Detection. Dynamic  race

detection[3, 14, 20, 21] is  an  important  and  fruitful  re-

search area in the literature. It is mainly used to pre-

cisely track some inclusive data races observed from a

specific program execution. Most existing dynamic de-

tectors  are  rooted  in  the  happens-before  (HB)  rela-

tion[2, 22],  which  holds  the  hard  ordering  for  lock  se-

mantics,  and thus  limits  the  detection capability.  As

a consequence,  the  lockset  algorithm[23] and causally-

precede relation[24] were  proposed to  improve the de-

tection  coverage.  However,  these  approaches  are  still

either  unsound  or  missing  some  races.  Constraint

analysis  techniques  (CRDs)  are  used  to  significantly

improve  the  detection  coverage[7, 25].  The  CRD  ap-

proaches are sound and can generate all feasible pro-

gram  executions  for  race  detection.  However,  CRD

still  suffers  from  false  positives  and  the  excessive

number of context switches for the recommended da-

ta  race.  DFTracker  augments  the  existing  CRD tool

with  the  awareness  of  dataflow and resolves  the  two

issues of CRD.

Dataflow  Analysis. Dataflow  analysis  is  a  tech-

nique for gathering information about the possible set

of  values  calculated  at  various  program  points[26–29].

Procrustes[26] uses  dataflow  graphs  to  accelerate  the

sparse  deep  neural  network  training  by  characteriz-

ing  access  patterns.  Wongsuphasawat et  al.  used  the

dataflow  to  improve  the  graph  visualization  in  Ten-

sorFlow[27].  However,  these  techniques  cannot  be  ap-

plied to our problem, since DFTracker only takes one

execution  trace  performed  by  a  specific  input.  As  a

consequence,  DFTracker  does  not  need  to  track  the

whole  branch/path  (i.e.,  control  flow)  information  of

the  program.  Also,  the  dataflow  propagation  of  the

program  is  identified  by  backtracking  the  related-

event  order  in  a  recorded  trace[30].  To  pinpoint  the

data  dependencies  of  program  executions,  they  have

to  record  a  volume  of  runtime  information  into  the

trace,  e.g.,  instructions,  register  values,  memory  ad-

dresses, and their changes every time. This makes the

 

Thread 1:

buf_pool_check_no_pending_io(void){ 

 bool  ret=true;

 if(buf_pool ->n_pend_reads){

             ret=false;

 }

 return ret;

}

Thread 2:

buf_page_ip_completed(buf_page_t* bpage){

 //processing read requests

 buf_pool ->n_pend_read --;

}                                              /*MySQL*/

Fig.8.  True data race from MySQL.
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Fig.9.   Elapsed  time  of  constraint  solving  between  CRD  and
DFTracker.
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dataflow  detection  with  prohibitively  high  cost.  Be-

sides, this technique also strictly depends on the event

order in a specific execution trace, which is not help-

ful  for  race  exploration  in  other  execution  traces.  In

contrast,  DFTracker  simplifies  the  dataflow  analysis

through  symbolic  parsing  (without  CFG  (Control

Flow  Graph)).  Furthermore,  DFTracker  generalizes

the  dataflow  problem  with  the  constraint  analysis

technique,  which  removes  the  restricted  event  order

recorded in the trace.

Context  Switch  Bounded  Analysis. The  context

switch  bounded  analysis  is  originally  used  to  trans-

form  an  NP-hard  problem  to  a  solvable  polynomial

problem for  the  complete  analysis  of  concurrent  pro-

grams in theory[4–6, 31].  Later,  it  is  used for  program-

mers  to  understand  how  the  bugs  happen.  For  in-

stance, Inverso et al.[32] found a large number of bugs

with  a  fixed  bound  of  context  switches  in  a  parallel

and  distributed  manner.  Other  work[4–6] extends  the

analysis  of  context  switch  bounded  problems  by  giv-

ing  priority  to  schedules  with  fewer  preemptions.  As

we have discussed in Section 4, context switch bound-

ed analysis may lead to inefficient constraint solving.

Even  worse,  for  those  races  with  a  relatively  large

number  of  context  switches,  the  existing  context

switch bounded analysis has to discard them for effi-

ciency.  In this  study,  we formulate the problem as a

special case of a few identified data races. DFTracker

collects a finite number of race schedules. As a result,

we  are  able  to  enumerate  all  race  schedules  to  find

minimal  context  switches  for  each  data  race,  with  a

low runtime overhead. 

7    Conclusions

In this paper, we proposed DFTracker, which en-

ables  recommending  each  race  with  minimal  thread

context  switches  while  ensuring  no  false  positives.

DFTracker  uses  the  dataflow  propagation  of  pro-

grams to determine false positives for the constraint-

based approach. A novel algorithm was further devel-

oped to recommend effective race schedules for debug-

ging.  This  facilitates  programmers  to  understand  a

data  race  reported  better.  Experimental  results  and

case  studies  on  real  applications  showed  DFTracker

removes  false  positives  with  fewer  context  switches

significantly  over  the  state-of-the-art  approaches.  In

the future, it would be interesting to apply DFTrack-

er  to  debug  data  races  that  exist  in  more  than  two

threads,  which  involves  further  dataflow  analysis

across multiple threads. 
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