
DIR: Dynamic Request Interleaving for Improving the Read Performance of Aged Solid-State Drives

Nie Shi-Qiang, Zhang Chi, Wu Wei-Guo

View online: http://doi.org/10.1007/s11390-023-1601-y

Articles you may be interested in

ROCO: Using a Solid State Drive Cache to Improve the Performance of a Host-Aware Shingled Magnetic Recording Drive

Wen-Guo Liu, Ling-Fang Zeng, Dan Feng, Kenneth B. Kent

Journal of Computer Science and Technology. 2019, 34(1): 61-76 http://doi.org/10.1007/s11390-019-1899-7

Endurable SSD-Based Read Cache for Improving the Performance of Selective Restore from Deduplication Systems

Jian Liu, Yun-Peng Chai, Xiao Qin, Yao-Hong Liu

Journal of Computer Science and Technology. 2018, 33(1): 58-78 http://doi.org/10.1007/s11390-018-1808-5

Extending SSD Lifespan with Comprehensive Non-Volatile Memory-Based Write Buffers

Ziqi Fan, Dongchul Park

Journal of Computer Science and Technology. 2019, 34(1): 113-132 http://doi.org/10.1007/s11390-019-1902-3

A Lookahead Read Cache: Improving Read Performance for Deduplication Backup Storage

Dongchul Park, Ziqi Fan, Young Jin Nam, David H. C. Du

Journal of Computer Science and Technology. 2017, 32(1): 26-40 http://doi.org/10.1007/s11390-017-1680-8

COLIN: A Cache-Conscious Dynamic Learned Index with High Read/Write Performance

Zhou Zhang, Pei-Quan Jin, Xiao-Liang Wang, Yan-Qi Lv, Shou-Hong Wan, Xi-Ke Xie

Journal of Computer Science and Technology. 2021, 36(4): 721-740 http://doi.org/10.1007/s11390-021-1348-2

Hot Data Identification with Multiple Bloom Filters: Block-Level Decision vs I/O Request-Level Decision

Dongchul Park, Weiping He, David H. C. Du

Journal of Computer Science and Technology. 2018, 33(1): 79-97 http://doi.org/10.1007/s11390-018-1809-4

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-023-1601-y
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1899-7
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1808-5
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1902-3
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1680-8
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-021-1348-2
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-018-1809-4
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

DIR: Dynamic Request Interleaving for Improving the Read
Performance of Aged Solid-State Drives

Shi-Qiang Nie (聂世强), Member, IEEE, Chi Zhang (张　驰), and Wei-Guo Wu* (伍卫国), Member, CCF

Department of Computer Science and Technology, Xi’an Jiaotong University, Shaanxi 710049, China

E-mail: shiqiang.nie@xjtu.edu.cn; chi.zhang@stu.xjtu.edu.cn; wgwu@xjtu.edu.cn

Received May 28, 2021; accepted December 24, 2023.

Abstract Triple-level cell (TLC) NAND flash is increasingly adopted to build solid-state drives (SSDs) for modern

computer systems. While TLC NAND flash effectively improves storage density, it faces severe reliability issues; in partic-

ular, the pages exhibit different raw bit error rates (RBERs). Integrating strong low-density parity-check (LDPC) code

helps to improve reliability but suffers from prolonged and proportional read latency due to multiple read retries for worse

pages. The straightforward idea is that dispersing page-size data across several pages in different types can achieve a low-

er average RBER and reduce the read latency. However, directly implementing this simple idea into flash translation lay-

er (FTL) induces the read amplification issue as one logic page residing in more than one physical page brings several read

operations. In this paper, we propose the Dynamic Request Interleaving (DIR) technology for improving the performance

of TLC NAND flash-based SSDs, in particular, the aged ones with large RBERs. DIR exploits the observation that the la-

tency of an I/O request is determined, without considering the queuing time, by the access of the slowest device page, i.e.,

the page that has the highest RBER. By grouping consecutive logical pages that have high locality and interleaving their

encoded data in different types of device pages that have different RBERs, DIR effectively reduces the number of read re-

tries for LDPC with limited read amplification. To meet the requirement of allocating hybrid page types for interleaved

data, we also design a page-interleaving friendly page allocation scheme, which splits all the planes into multi-plane re-

gions for storing the interleaved data and single-plane regions for storing the normal data. The pages in the multi-plane re-

gion can be read/written in parallel by the proposed multi-plane command and avoid the read amplification issue. Based

on the DIR scheme and the proposed page allocation scheme, we build DIR-enable FTL, which integrates the proposed

schemes into the FTL with some modifications. Our experimental results show that adopting DIR in aged SSDs exploits

nearly 33% locality from I/O requests and, on average, reduces 43% read latency over conventional aged SSDs.

Keywords triple-layer cell solid-state drive (TLC SSD), performance, interleaving data, unbalanced bit error rate

1 Introduction

NAND-based flash has become the primary stor-

age media in modern computer systems, ranging from

mobile devices to servers in data centers[1]. High-den-

sity NAND flash-based solid-state drives (SSDs) are

promising as they meet the capacity demands of mod-

ern applications with reduced per-bit cost. Triple-lev-

el cell (TLC) SSDs, the widely employed high-densi-

ty NAND flash, usually have a high raw bit error rate

(RBER) as they have a much narrow margin be-

tween neighboring voltage levels and thus are more

vulnerable to programming noises[2]. While low-densi-

ty parity-check (LDPC) codes are increasingly adopt-

ed for TLC SSDs to improve their reliabilities[3], the

extra flash sensing for soft-decision decoding is time-

consuming, especially for aged SSDs with high

RBERs.

Regular Paper

A preliminary version of the paper was published in the Proceedings of NVMSA 2019.

This work was supported by the National Key Research and Development Project of China under Grant No. 2017YFB1001701,
and the National Natural Science Foundation of China under Grant No. 61972311, and in part by Shandong Provincial Natural Sci-
ence Foundation of China under Grant No. ZR2019LZH007.

*Corresponding Author

Nie SQ, Zhang C, Wu WG. DIR: Dynamic request interleaving for improving the read performance of aged solid-state

drives. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(1): 82−98 Jan. 2024. DOI: 10.1007/s11390-023-

1601-y

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-1601-y
https://doi.org/10.1007/s11390-023-1601-y
https://doi.org/10.1007/s11390-023-1601-y
https://doi.org/10.1007/s11390-023-1601-y
https://doi.org/10.1007/s11390-023-1601-y
https://doi.org/10.1007/s11390-023-1601-y
https://doi.org/10.1007/s11390-023-1601-y

The three different bits of TLC flash cells, re-

ferred to as least significant bit (LSB), central signifi-

cant bit (CSB), and most significant bit (MSB), of-

ten exhibit very different bit error rates, even when

they have the same program/erase (P/E) cycle and

retention time. This imbalance often leads to unequal

read and decode latency for LDPC-based SSD stor-

age systems. Given a read I/O request consisting of

multiple page sub-requests, its completion time is de-

termined by the slowest sub-request, which depends

on the sub-request queuing length and the service

time of the sub-request. Prior studies optimize queu-

ing latency[4, 5] and reduce the service time[6] to im-

prove SSD performance. However, for aged SSDs that

adopt LDPC, reading a device page with a high

RBER results in multiple read retries such that page

reading remains a significant portion of the I/O re-

quest service time. The read latency of the LSB page

is only 2/3 of that of the MSB page at the early

stage, but the latency gap worsens in the aged SSD[6, 7].

These studies that are close to our design are the

bit-level data layout optimization strategies[8–10].

These strategies interleave the data from each logic

page into the three types of bits of the same device

page. Since the device bits are accessed sequentially,

directly integrating these strategies in flash transla-

tion layer (FTL) leads to severe read/write amplifica-

tion and large performance degradation, which is not

practical. Compared with [8–10], our work designs a

data interleaving-enable FTL, which alleviates the

read amplification issue and makes the data interleav-

ing technology available to the SSD design.

This paper is an extended version of our previous

work[11]. In the conference paper, we observed that ac-

cess locality exists in workloads and exploited this ob-

servation to interleave the data segment from consec-

utive sub-requests with limited read/write amplifica-

tion. Recent research work has depicted the low uti-

lization ratio of plane-level parallelism[12], which moti-

vates us to explore the opportunity to design an en-

hanced multi-plane command to read the data seg-

ment of a logic page within one read cycle. Com-

pared with the previous work[11], this paper makes the

following additional contributions: to alleviate the

overhead induced by the read amplification issue and

assign the specific page type efficiently, we propose a

novel page allocation scheme, in which the planes in

NAND flash are split into two kinds of regions (i.e.,

the multi-plane region and the single-plane region).

The pages in multi-plane regions are assigned in a

page-interleaving-friendly way. Then these pages

could be read out by enhanced multi-plane read com-

mand, shortening the processing time of additional

read requests.

Overall, this paper makes the following contribu-

tions.

• We explore page-level access locality from mod-

ern applications, and propose exploiting page-level ac-

cess locality and distributing interleaved data of these

pages to device pages of different types at different lo-

cations, which amortizes the RBER at the page

level[11].

• We design a complementary plane-level organi-

zational scheme. Firstly, we divide an NAND flash

chip into two parts: the multi-plane region and the

single-plane region. The former maintains the write

point, enabling the assignment of a page with any re-

quired type for requests whose data is interleaved.

The latter serves as the normal plane for normal write

requests. Secondly, we redesign the hardware that im-

plements a novel multi-plane command to mitigate

the read amplification issue. The scheme in Subsec-

tion 3.2 is not proposed in [11].

• We evaluate the proposed Dynamic Request In-

terleaving (DIR) scheme and compare it with the

state-of-the-art. Our experimental results show that

adopting DIR in aged SSDs exploits nearly 33% local-

ity from I/O requests and, on average, reduces 43%

read latency over conventional aged SSDs.

In the rest of the paper, Section 2 discusses the

SSD background and motivates our DIR design. Sec-

tion 3 presents the detailed DIR scheme. Section 4 de-

scribes the experimental methodology and analyzes

the results. Section 5 gives related work. Section 6

concludes the paper.

2 Background and Research Motivation

In this section, we discuss the SSD architecture

and the execution workflow of I/O requests. We then

motivate our design with the uneven bit error rate

among different bits of TLC NAND flash.

2.1 SSD Architecture

Fig.1 shows the internal organization of SSD[13],

which consists of host interface logic (HIL), FTL, and

flash back-end[13]. The function of each component is

as follows.

1) HIL receives an I/O request from the host,

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 83

splits it into page-sized sub-requests, and then inserts

them into device queues for services. Each sub-re-

quest has a specific logical page number (LPN)[14].

2) The FTL maintains a mapping table to track

the current physical location, i.e., physical page num-

ber (PPN), of each LPN. Additional components,

such as garbage collection, wear leveling, and the LD-

PC encoder/decoder engine, are also included in the

FTL.

3) The SSD back-end contains multiple channels,

which can service I/O sub-requests in parallel. Each

channel is connected to one or more chips. Each chip

consists of one or more dies, where each die contains

one or more planes. Each plane can service an I/O

sub-request concurrently with the other planes.

In this paper, we adopt the dynamic mapping

scheme such that the channel, chip, die, and plane in-

dices are random for a given LPN. Such an organiza-

tion provides four levels of parallelism for servicing

I/O requests (channel, chip, die, and plane). The

front end manages the back-end resources and issues

I/O requests to the back-end channels.

2.2 Basic Operations of TLC SSD

In TLC SSD, each cell uses eight states to repre-

sent the three bits of data, and each state uses the

stored amount of charge, i.e., the threshold voltage,

to distinguish itself from the others. Fig.2 illustrates a

typical threshold voltage distribution for TLC

SSDs[11]. To reduce the raw bit error probability, TLC

SSD adopts the gray code so that two neighboring

levels differ by one bit—the voltage levels Er, P1, P2,

P3, P4, P5, P6, and P7 denote the information bits

“111”, “011”, “001”, “101”, “100”, “000”, “010”, and

“110”, respectively.

The program/read operations of LSB, CSB, and

MSB pages are different. As shown in Fig.2, the val-

ue stored in a TLC cell is determined by the thresh-

old voltage or the amount of charge in the cell. TLC

cell programming is often performed by using incre-

mental step-pulse programming (ISPP)[15]. It can be

divided into three distinct steps for minimizing the in-

 ① HIL

Device-Level
I/O Request Queue

 ② FTL

Sub-Request


L
P
A

PPA

Page 

Page
-1

Request 

Wear-

Send Request

A
d
d
re

ss

T
ra

n
sl

a
ti
o
n

L
D

P
C

 E
n
c
o
d
e
r/

D
e
c
o
d
e
r

T
ra

n
sa

c
ti
o
n

S
ch

e
d
u
li
n
g

Leveling
Garbage

Collection

Flash Chip Array

D
ie

D
ie

D
ie

D
ie

FCC

FCC Chip 

Channel 0

Channel 

Chip 0

Host Interface

③ Back-End

Flash Chip Array

D
ie

D
ie

D
ie

D
ie

Host

Page 1

...

..
.

Fig.1. Generic architecture of SSD[13].

Er P1 P2 P7P6P5P3 P4

xx0

LSB Programming

x01 x00 x10

CSB Programming

111 011 001 110010000101 100

MSB Programming

Vth1 Vth2 Vth3 Vth4 Vth5 Vth6 Vth7

Threshold Voltage

T
L
C

 P
ro

g
ra

m
m

in
g

HighLow

111

111

111

Fig.2. Threshold voltage distribution for TLC NAND flash[11].

84 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

ter-page program interference. The LSB page is pro-

grammed firstly and quickly to the target threshold

voltage range, as shown in Fig.2. If the bit “11” is

programmed into the LSB page, the cell threshold

voltage is kept in the erased state, marked as Er. If

the bit is “0”, the cell is charged to transfer the

threshold voltage from the Er state to the temporary

state. When the CSB page is programmed, if the bit

is “1”, the voltage threshold does not change, and the

cell remains in either the Er state or the next state,

depending on the value of LSB, the same program

procedure as the MSB page has. When reading LSB

page data, during the read operation, if the sensing

threshold is lower than Vth1, the cell denotes bit “1”;
the cell denotes bit “0” otherwise. For CSB and MSB

pages, the flash cell needs to be sampled twice and

three times, respectively, by changing the sensing

voltage levels. This is referred to as hard decision

memory sensing, differentiating one sensing level be-

tween two adjacent states.

When adopting LDPC to improve TLC SSD relia-

bility, we may need to differentiate more than one

sensing level between two adjacent states, referred to

as soft-decision flash sensing. LDPC increases the

number of sensing levels so that more errors are like-

ly to be corrected. However, such an approach leads

to multiple read tries, significantly increasing flash

read latency and degrading the read performance of

SSDs, particularly aged SSDs with high RBER.

2.3 Advanced Read/Program Command of

NAND Flash

The multi-plane command supports multiple read,

program, or erase operations across all planes in the

same die. Compared with the basic read, program, or

erase operations, it saves operation overhead several

times as multiple operations are executed in parallel.

However, the host must follow the operation restric-

tion to issue a multi-plane command. That is, a mul-

ti-plane read/write operation must have the same

chip, die, block, and page addresses. Besides, the

blocks executing a multi-plane erase operation must

have the same chip, die, and block addresses[16, 17].

However, Gao et al. reported that plane-level paral-

lelism was far from well-utilized in a wide range of re-

al workloads due to these strict restrictions (i.e., only

about 1%–4% of requests can be written into pages

with multi-plane command)[12].

Many researches aim to exploit plane-level paral-

N

lelism maximally from FTL to the flash hardware de-

sign. Gao et al. utilized the DRAM cache to evict a

multiple of dirty pages at a time such that these

pages can be written by using multi-plane

command[12]. A novel NFM architecture enabling a

decoupled word-line (WL) selection for the mated

planes was proposed to relax the restriction—the WL

addresses could be a different value for multi-plane

command[18]. An independent plane read scheme was

proposed to improve further total system perfor-

mance, in which two planes can perform read opera-

tions independently and asynchronously on any

block/page address and combination of QLC/SLC

modes[19–21]. In this paper, similar to the above work,

we modify the hardware design of NAND flash to per-

mit pages at different positions to operate in parallel

at the plane level.

2.4 Problem Statement

↔ ↔ ↔
↔ ↔ ↔

↔
↔

Recent studies reveal that different bits of MLC

and TLC flash exhibit a significant RBER variati-

on[9, 10]. Fig.3 compares the RBERs of different de-

vice pages for TLC SSDs according to [10]. As shown

in Fig.3, the RBERs of MSB pages are significantly

higher than those of LSB pages. This is because er-

rors come mainly from cells having their voltage lev-

els shifted across neighboring levels. There is only one

bit flipping possibility for the LSB page (i.e.,

111 xx0/x01 x00/P3 P4), but four possibilities

for the MSB page, i.e., Er P1, P2 P3, P4 P5,

and P6 P7. As another example, the shift between

P1 and P2, i.e., P1 P2, causes CSB bit errors but

not LSB and MSB errors. The amount of charges

stored in different threshold voltage levels is also dif-

ferent. The charge in the P7 state is more likely to

leak.

To address the RBER difference, Zhao et al.[9] and

Nakamura et al.[10] proposed to store data from one

logic page to different types of bits in several device

P1 P2 P3 P4 P5 P6 P7

105

104

103

102

M
e
a
su

re
d
 B

it
 E

rr
o
r

R
a
te

 (
a
.u

.)

Fig.3. Measured bit error rates of each state[10]. a.u.: arbitrary
unit.

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 85

pages. The idea of these strategies is that storing da-

ta in both the worst page and the strongest page can

achieve an average lower RBER and then fewer read-

retries for the LDPC decoding procedure. Modern

SSD always employs the LDPC engine to recover the

corrupted page for its high error-correct capacity.

Still, it suffers from severe read latency due to the in-

creasing number of read retries. The page with a high

RBER may cost up to 10 times more read latency

than that with a low RBER[3]. Let us take an exam-

ple to illustrate the advantage of this strategy. As-

suming both the LSB page and the MSB page are

written into the same WL, after a while, we read out

the LSB page and the MSB page one by one. If the

RBERs of the LSB page and the MSB page are 0.005

and 0.006, respectively, and the number of read-re-

tries is 2 and 3, respectively, then the read procedure

costs twice the read latency of the MSB page. If the

two page-size data spans the LSB page and the MSB

page, the average RBER is 0.005 5, and the corre-

sponding number of read-retry is 2 (e.g., 512 B LD-

PC coding redundancy per 4 KB user data). However,

while these strategies help mitigate the bit error rate

at the page level, they face a major challenge— one

logic page writes results to more than one device

page. Since these writes are done sequentially, these

designs face severe read and write amplification and

thus extensive performance degradation (i.e., reading

one logic page induces several internal read opera-

tions).

To summarize, the read latency of reading page-

size data can be reduced by data interleaving technol-

ogy. However, the read procedure induces more inter-

nal read requests than those delivered by the host.

This data interleaving technology is not practical as

directly integrating these strategies in FTL leads to

severe read/write amplification and extensive perfor-

mance degradation[11].

2.5 Motivation

To solve the read amplification issue and page-

type-induced read performance deterioration issue, we

first study the characterization of I/O requests in

modern applications. An I/O read request typically

consists of multiple sub-requests for pages spanning

different channels, chips, dies, and planes. Without

considering the lengths of the request queue, we as-

sume to service these sub-requests at the same time.

Due to RBER differences across different pages, their

read latency varies dramatically—the data from LSB/-

CSB pages tends to be ready much earlier than that

from MSB pages. Such scheduling tends to generate

sub-optimal results as the I/O latency is throttled by

the time servicing the slowest pages.

N

N

(1/3)n

1− (2/3)n

(2/3)n − (1/3)n

We have experimented with this read latency

variation-induced performance degradation issue,

where the experimental parameters are listed in Sec-

tion 4. We calculate the mean read latency for a giv-

en read request with sub-requests as shown in

Fig.4. The result depicts that the mean read latency

becomes larger with the request size greatly. We

refer to this issue as the worse page-dominated read.

The main reason for the worse page-dominated read is

that the default page allocation scheme allocates

pages in a round-robin way for the coming write re-

quests, which ignores the page type. Each sub-re-

quest has a 1/3 chance of being served by an

LSB/CSB/MSB page in TLC SSD, and thus the

page-level read latency of the request depends on the

page type. If the target pages of sub-requests are all

LSB pages, the probability of all sub-requests being

served by LSB pages is equal to . If at least one

of the sub-requests is issued to an MSB page, the

probability is equal to . And also, the prob-

ability of CSB page-dominated read is equal to

. According to the math formulation,

MSB-dominated read has the largest probability for a

given read request. As the RBER of the MSB page in-

creases more quickly than that of the others, a basic

idea is to amortize the RBER of the logic page resid-

ing in the MSB page to the LSB page or CSB page.

To amortize the RBERs of a worse page to a

strong page, we devise to utilize the data interleaving

technology to bridge the read latency gap between

different pages with suppressed write and read ampli-

fication. We conduct an experiment to analyze the

2.2

1 2 3 4 5 6 7 8

2.0

1.8

1.6

1.4

1.2

1.0 N
o
rm

a
li
z
e
d
 R

e
a
d
 L

a
te

n
c
y

Number of Sub-Requests

Read Level 1 Read Level 2

Read Level 3 Read Level 4

Fig.4. Normalized read latency of a request with the varied
number of sub-requests and read levels.

86 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

page-level access locality in modern applications, i.e.,

for pages consecutively written to SSDs, the likeness

of accessing them simultaneously later. Fig.5 summa-

rizes the results showing spatial locality in different

applications. For example, 80% pages that are writ-

ten consecutively are accessed (i.e., read or written)

simultaneously at a later time. This result motivates

our design of page-level data interleaving for mitigat-

ing read and write amplification and improving SSD

read performance.

1.0

0.8

0.6

0.4

0.2

0.0P
ro

b
a
b
il
it
y
 o

f
R

e
a
c
c
e
ss

e
d

L
o
g
ic

 A
d
d
re

ss

H
M
_
0

H
M
_
1

P
R

N
_
0

P
R

N
_
1

P
R

O
J
_
1

P
R

O
J
_
3

P
R

O
J
_
4

P
R

X
Y
_
0

R
S
R

C
H

S
R

C
1
_
2

S
R

C
2
_
0

S
T

G
_
0

U
S
R
_
0

W
D

E
V
_
0

Fig.5. Read locality across workloads[11].

With the above motivational method, this paper

aims to resolve these technical difficulties, including

1) how to decide whether the data in the request

queue needs to be interleaved or not; 2) how to allo-

cate the page with a specific type and reduce the read

and write amplification further. The detail of the pro-

posed strategy is presented in Section 3.

3 Details of DIR-Enable FTL

In this section, we elaborate on the DIR scheme.

When an I/O request arrives at the host interfaces,

the HIL splits it into multiple page-sized sub-re-

quests sent to the FTL. We assume LDPC is applied

to each page to improve data reliability.

DIR is designed to exploit access locality to miti-

gate the long read latency when reading MSB device

pages from aged SSDs. It interleaves the data from

any two consecutive pages and writes those pages in

two different device pages. These device pages are of

different types, i.e., LSB/MSB pages, LSB/CSB

pages, or CSB/MSB pages. The interleaving helps

mitigate the RBER at the page level such that the

number of read retries can be effectively reduced at

read time, which greatly improves the read perfor-

mance of aged SSDs. We also design a novel page in-

terleaving-friendly page allocation scheme to assist

the read procedure of the logic page residing in two

physical pages, which consists of two strategies: 1) to

assign the page with a specific type, we design novel

plane organization and employ relaxing program or-

der; 2) to alleviate read amplification, we design an

enhanced multi-plane command, which introduces a

dedicated peripheral circuit for each block to free the

restrictions of conventional multi-plane command.

This scheme bases on enhanced multi-plane com-

mand to support reading two pages with different

page types in parallel. By utilizing this scheme, the

read amplification induced by page interleaving is

ameliorated further, but the utilization ratio of multi-

plane command increases. Fig.6 shows the design ar-

chitecture of our proposed scheme.

Host Interface

F
T

L

C
o
n
tr

o
ll
e
r

Flash Chip Array

DieDie Die Die

Flash Chip Array

DieDie Die Die

Channel Controller

Page InterleavingPage Interleaving

S
c
h
e
d
u
le

r

IO

Multi-Plane Commands

Plane 0 Plane 1

Parallel

Read

Fig.6. SSD architecture with page interleaving.

The page interleaving module[11] and page assign-

ment module are implemented inside FTL. Before the

IO scheduler delivers the requests to the flash back-

end, DIR exchanges the data of two pages from two

consecutive sub-requests segment by segment with the

page interleaving module. Besides these two pages are

written into two planes in one die with enhanced mul-

ti-plane command with the page assignment module.

The un-interleaved sub-request is written in the sin-

gle-plane region with the page assignment module.

3.1 Interleaving Data from Write Requests

When these coming write requests are queued in

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 87

the device IO queue for servicing in the next stage,

FTL splits each request into page-size sub-requests

and decides which sub-requests are pre-processed by

the page interleaving technology. The former sub-re-

quests are programmed into the multi-plane regions,

where they store the interleaved data. The left sub-re-

quests are programmed into the single-plane regions

used as the normal plane in SSD. Note that FTL

maintains the logic space of the multi-plane regions.

The DIR scheme organizes the data from consecutive

write sub-requests in an interleaving way. It consists

of two components, i.e., sub-requests grouping and

device page assignments. Algorithm 1 depicts the

main procedure[11].

Algorithm 1. Interleaving Write Request in DIR
Scheme[11]

WQRequire: : the write request delivered by host

subWQ WQRequire: : the sub-requests of

subWQ← split_request(WQ)1:

HWQ2: : grouped sub-requests

NWQ3: : free sub-requests

HWQ,NWQ← group(subWQ)4:

sub ∈ HWQ5: for each do

assign_page(sub)6: 　　

interleave_data(sub)7: 　　
8: end for

sub ∈ NWQ9: for each do
assign_random(sub)10:

11: end for

Step 1: Grouping Sub-Requests. The DIR scheme

traverses the sub-requests split from the same I/O re-

quest and groups any two sub-requests with adjacent

LPNs. The sub-requests in the same group are to be

written to two different types of device pages. We

adopt the heuristics of using adjacent LPNs while the

high-level semantic information may further improve

access locality. We always place two sub-requests in a

group so that if the number of sub-requests is not a

multiple of 2, the remaining one sub-request is left

without being placed in any group. The sub-requests

in groups and the sub-requests not in any group are

referred to as grouped sub-requests and free sub-re-

quests, respectively.

DIR only interleaves the data from grouped sub-

requests. Given one group, DIR saves one second of

each grouped sub-request on the LSB/MSB/CSB de-

vice page and the left one second is saved on the oth-

er pages. One device page contains one-second data

from each grouped sub-request. As we discuss next,

the LSB, CSB, and MSB device pages are from differ-

ent blocks. By interleaving only grouped sub-requests,

DIR avoids write amplification by introducing extra

write sub-requests. Writing free sub-request remains

the same as that in the baseline (i.e., single-plane re-

gions).

Step 2: Device Page Assignment. DIR assigns the

interleaving data in one group to two different types

of device pages in blocks from two different planes.

The detailed page allocation scheme for grouped

pages is presented in Subsection 3.2. For free sub-re-

quests, i.e., those not grouped, we first assign LSB or

CSB pages so that their response time is short.

3.1.1 Writing Sub-Requests with Update

Operation

For the page written by free sub-requests, we on-

ly invalidate the page and assign another new page to

the new coming sub-requests. While for updating the

page written by grouped sub-requests, the reference

count of the page, which is initialized to 2, is sub-

tracted by 1 each time, and the page is invalidated

when the reference count is 0. This scheme does not

influence the procedure of wear leveling and garbage

collection.

3.1.2 Generating Dummy Read Sub-Requests

i i+ 1

i i+ 1

The page-sized data written by free sub-requests

stored on a physical page can be read using the de-

fault method. While for the page-sized data written

by grouped sub-requests which are distributed on two

pages, it is necessary to deliver two sub-requests gen-

erated by the host and FTL to read and decode the

data. The DIR scheme is host-transparent, and the

host is unaware that the data in some LPN is kept on

two different pages, and FTL needs to generate an-

other one read sub-request with the request delivered

by the host. For simplicity, we refer to the read re-

quest generated by FTL as the dummy sub-request.

The flag of the LPN in the mapping table is used to

indicate whether it requires two read sub-requests.

Fig.5 shows the locality among requests in those

workloads released by Microsoft[22, 23]. As a result of

the locality of the read requests, the dummy read

sub-requests may replicate with the other free sub-re-

quests. For example, the host sends a read request to

read the data ranging from LPN to . In the

best conditions, the data of LPN and is writ-

ten by the grouped sub-requests in the same group.

FTL generates an extra dummy read sub-request to

88 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

i

i+ 1

i i+ 1

read the data of LPN along with the original sub-re-

quest, the same as reading the data of LPN . In

all, four sub-requests will be generated to read the da-

ta from LPN to , but two of the four requests

replicate each other. As a result, this method im-

proves read performance with no read amplification.

3.2 Page Interleaving-Friendly Page

Allocation Scheme

In Subsection 3.1, we present how to interleave

data from write requests, and we discuss a novel page

organization scheme in this subsection. This subsec-

tion introduces how to depict the building of DIR-en-

able FTL. We make some modifications ranging from

the FTL layer to the hardware layer. Firstly, to meet

the requirement of assigning the suitable page type,

we split the NAND flash into two parts, namely, mul-

ti-plane region and single-plane region. The former

maintains the write-point enabling to assign a page

with any type for grouped write sub-requests. The

latter is used as the normal plane, storing for the free

sub-requests. Secondly, we redesign the hardware of

implementing multi-plane command, which allows

block/page in the paired plane not to be equal. The

proposed multi-plane command can read out the in-

terleaved pages in parallel.

3.2.1 Constructing Multi-Plane Region and

Single-Plane Region

The construction of the multi-plane region aims to

assign desired pages for grouped sub-requests as the

conventional FTL does not support page type aware

allocation. We pick up any two planes in one die to

construct the multi-plane regions. The partition of the

two regions depends on the workloads. If the work-

loads are suitable for employing the page interleaving

technology, the number of multi-plane regions could

be increased dynamically and the number of single-

plane regions is decreased accordingly. Additionally,

the multi-plane should be distributed on all the die

evenly to exploit the parallelism. For large write-dom-

inated workloads, DIR-enable FTL redirects most re-

quests into multi-plane regions, and the multi-plane

regions are used up quickly. For small write-dominat-

ed workloads, more requests are located in a single

plane region. Based on this condition, we split the

plane resource dynamically. In the initial stage, only a

few planes are set to be multi-plane regions.

3.2.2 Relaxing Program Sequence

The strict program order within blocks in the con-

ventional TLC SSD design is necessary to minimize

the inter-page (inter-cell) program interference by

guaranteeing that a fully programmed word-line is in-

terfered with by only one adjacent page. DIR-enable

FTL requires the combination of any two pages in

different types to store the interleaved data. However,

the conventional program order does not meet the re-

quirement as shown in Fig.7(a). It must follow the

following constraints to suppress the program interfer-

ence, and these pages in each block are programmed

in the “Z” mode. To allocate a specific page type,

DIR-enable FTL employs a relax program order with

ignorable program interference[24] as shown in

Fig.7(b). All the LSB/CSB/MSB pages in a block can

be sequentially written one by one. We split the us-

age of a block into three stages, referred to as LSB-

block, CSB-block, and MSB-block.

0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

1712

LSB CSB MSB

0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

1712
LSB CSB MSB

(b)(a)

Fig.7. Program order comparison. (a) Default program order.
(b) Employed program order.

Noted that only multi-plane regions employ this

relax program order. For servicing the write requests,

the multi-plane regions maintain several active blocks

in each plane. The difference between the two active

blocks is that they are in different stages. Let us take

an example to illustrate this procedure as shown in

Fig.8. At some point, block 0 in plane 0 uses up all

the LSB pages and then assigns the CSB page, while

block 1 in plane 1 starts to assign its MSB page.

Block 0 and block 1 are combined with each other to

store the interleaved data from group sub-requests.

Therefore, DIR-enable FTL operates block 0 and

block 1 in parallel with the help of enhanced multi-

plane command.

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 89

3.2.3 Implementing Parallel Read in Multi-Plane

Regions

To implement the read/write of different pages in

one multi-plane command, the NAND flash requires

hardware modifications to decouple block and page

selection. Considering the chip area overhead, tradi-

tional NAND flash vendors make planes share the

row address decoder in one die. Such a decoder-share

architecture requires the same page address for multi-

plane operations. Fig.9 presents the conventional

components in a die. It consists of NAND flash cell

arrays, page buffers, and other peripheral circuitry

(e.g., command interface, IO logic). The blocks are

grouped into two or more planes. Each plane owns a

dedicated page buffer; hence, each plane can operate

independently. But they share the row address de-

coder, which denotes the block/page address, limiting

the plane-level parallelism. A basic optimization op-

portunity is to trade off the chip area and perfor-

mance improvement from plane-level parallelism. In

2D planner NAND flash, the area of peripheral cir-

cuitry is limited due to enlarging bit density. Consid-

ering the high bit density of 3D NAND flash, which is

1 000 times higher than that of 2D NAND flash[25], it

is feasible to design partial dedicated peripheral cir-

cuitry for each plane in one die, which contains the

row address decoder, the circuitry logic to control the

operation timing and input voltage separately, and so

on with reasonable area costs. This similar decoupled

WL design has presented in many recent studies[18–21].

In their design, the WL of QLC NAND flash can

work in SLC/TLC/QLC mode and be read by multi-

plane command without any restriction. Additionally,

we could put additional dedicated peripheral circuit-

ry underneath the memory cell in the Z direction if it

is hard to add hardware in the same X/Y direction to

the memory cells[26]. Based on the proposed multi-

plane command, the pages in multi-plane regions can

be read in one read cycle, eliminating the read ampli-

fication issue.

3.2.4 Garbage Collection and Wear Levelling

As the pages with the same offset may be invalid-

ed together or invalided separately, the GC proce-

dure in multi-plane regions is different from that in

single-plane regions. After the multi-plane regions

trigger the GC operation, the pages with the same

LPN are read out together; if the two pages are both

valid, then both two pages will be written into other

active blocks in multi-plane regions; if one page is

valid and the other one is invalid, then the data is re-

covered from two pages and written into single-plane

regions. After finishing the GC operation, the FTL

mapping table also is modified.

The wear-out speed of the multi-plane region and

the single-plane region depends on the workloads.

DIR-enable FTL picks up the plane as the multi-

plane region in a round-robin way. Therefore the de-

fault wear-leveling algorithm still works as well.

3.3 Overhead Analysis

Design Overhead of Enhanced Multi-Plane Com-

LSB CSB MSB

Plane 0 Block 0

LSB CSB MSB

Plane 1 Block 1

Used LSB Page

Used CSB Page

Used MSB Page

Candidate Page

Fig.8. Generating paired pages with different types.

Plane 0 Plane 1

Page Buffer Page Buffer

WL
WL

Periphery Circuit

High Voltage Generator
IO Logic

Die Architecture

Command Interface & Logic

R.Addr. Dec. (Baseline)

C.Addr. Dec.

R.Addr. Dec. R.Addr. Dec.

Fig.9. DIR-enable multi-plane operation. C.Addr. Dec.: col-
umn address decoder; R.Addr. Dec.: row address decoder.

90 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

mand. The area overhead mainly comes from the

block-level selector and the page-level selector (extra

2%–3% area overhead), which could be ignored[18, 26].

The time overhead comes from the GC operation in

the multi-plane region, which migrates data from two

blocks in two planes once compared with the normal

GC operation. The GC overhead comes from reading

out valid pages, writing valid pages to another block,

and erasing blocks. However, the overhead also can be

ignored as the pages in multi-plane regions are read

out by the multi-plane read command. Then the

pages are programmed by the normal write command

or multi-plane command, and then the blocks also are

erased by the multi-plane erase operation. In some

cases, the GC in multi-plane regions may save GC

overhead as it could reclaim more blocks than nor-

mal GC and reduces the frequency of GC[12].

×

×

Storage Overhead. Some LPNs are associated with

two physical pages, i.e., the data of some LPNs is

stored in two different physical pages, and thus the

mapping table of the FTL needs to trace two PPNs

for some specific LPNs. Taking 1 TB SSD with the

4 KB page size as an example, the mapping table size

of conventional SSD is (1 TB/4 KB) (4 B + 4 B) =

2 GB. For SSD with the DIR scheme, the maximum

size of the mapping table is (1 TB/4 KB) (4 B +

4 B + 4 B) = 3 GB. The storage overhead of DIR in-

creases by 50% over the baseline, which only induces

an extra 0.9% storage capacity for 1 TB SSD; there-

fore this storage overhead is negligible. These fre-

quently-used entries in the mapping table could be

cached. Other studies[6] show that the performance

impact is less than 1%, which can be ignored[6]. Oth-

erwise, for the commercial open-channel SSD, the

mapping table of FTL is stored in the server's memo-

ry. The memory capacity may be up to hundreds of

gigabytes, which is enough to cache all the entries in

the mapping table.

Time Overhead. The DIR scheme may introduce

time overhead in two folds. Firstly, the time over-

head comes from the physical address lookup of the

mapping table. It takes only one step for DIR-enable

FTL to involve the mapping table and find out one or

more physical pages for a given logical address. In our

design, the entries in the mapping table include the

logic address and the corresponding physical pages;

therefore the lookup procedure costs the same time as

the original one. The page allocation scheme assigns

one or more pages for given sub-requests, and thus it

costs no extra time. DIR-enable FTL does not bring

extra time overhead compared with the default FTL.

3.4 Feasibility Discussions for High-Density

NAND Flash

As high-density NAND flashes (i.e., QLC/PLC)

have been designed and popularized into the market

by vendors in recent years, the feasibility of the DIR

scheme in the high-density NAND flash is studied in

this subsection. In Section 3, we take the TLC NAND

flash as an example to illustrate how the DIR scheme

works. The main idea contains two folds— interleav-

ing data from consecutive logic sub-requests and

keeping physical pages containing parts of the page-

sized data read in parallel. Compared with the QLC

NAND flash or others, the high-density NAND flash

has more cell states to store more bits (i.e., four-page

types exist in QLC). To employ the DIR scheme in

the high-density NAND flash, the flash chip must

meet two restrictions. The skewed RBER must exist

among pages in one WL; therefore DIR can utilize

this characterization to disperse one logic page to

more than one physical page and achieve a low RBER

on average; otherwise, the high-density NAND flash

must support the enhanced multi-plane command in

the hardware layer, and the SSD employs DIR-en-

able FTL to manage the NAND flash resource. To the

best of our knowledge, the high-density NAND flash

still adapts gray code and the ISPP scheme to pro-

gram the NAND flash cell, which results in skewed

RBER across WL[19]. Otherwise, some vendors have

already produced the QLC NAND flash with various

multi-plane commands similar to our hardware

design[19–21]. Therefore, we argue that DIR-enable

FTL is practical to high-density NAND flash.

4 Experimental Evaluation

In this section, we evaluate our proposed scheme

against existing schemes in respect of IO performance,

overhead, and sensitivity on SSD with varied configu-

rations.

4.1 Experimental Setting

To evaluate the effectiveness of the proposed DIR

scheme, we implement the DIR scheme based on SS-

Dsim, which has been validated against the hardware

platform[27]. In our experiments, the program and the

read latency of LSB, CSB, and MSB pages in TLC

SSD are adopted from [10, 28]. Table 1 provides the

detailed configuration of the TLC SSD.

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 91

Workloads. We use the enterprise servers traces

from Microsoft research Cambridge[22, 23] to evaluate

the DIR scheme, as shown in Table 2. These work-

loads are widely used in previous studies[5, 12].

Table 2. Statistics of Workloads

Trace Read/Write
Ratio

Avg. Read
(KB)

Avg. Write
(KB)

Interval
(ms)

HM_0 0.25 11.61 11.21 194.49

HM_1 0.97 18.15 22.86 513.11

PRN_0 0.11 26.55 13.93 120.29

PROJ_1 0.91 43.43 22.23 8.38

PROJ_3 0.90 15.03 30.14 439.71

PRXY_0 0.03 9.72 6.28 48.33

RSRCH 0.09 15.70 12.70 427.31

SRC2_0 0.14 12.64 11.02 418.94

SRC2_2 0.28 88.26 57.79 146.20

STG_0 0.23 33.56 12.69 273.72

USR_0 0.37 47.42 13.55 275.36

WDEV_0 0.20 16.57 12.11 528.09

In this subsection, we compare the following

schemes.

• NOAC[27]. This scheme disables the advanced

multi-plane command to present the original perfor-

mance as the baseline.

• AC[27]. This scheme enables the advanced multi-

plane command to explore the potential opportunity

to utilize the plane-level parallelism.

• Interleaving[11]. We implement the interleaving

technology proposed in our conference paper[11] based

on AC. FTL groups any two successive write sub-re-

quests (instead of three successive write sub-requests

in the original paper[11] for fairness) in the request

queue greedy.

• DIR. It is the scheme proposed in this paper

adopting the page interleaving strategy and the page

interleaving-friendly page allocation strategy in SSD-

sim.

4.2 Experimental Evaluation

We evaluate the DIR scheme by measuring the

average response time, the percentage of pages that

benefit from the DIR scheme, the read amplification

rate relative to compared schemes, and the utiliza-

tion of plane-level parallelism, and studying its sensi-

tivity on SSD with varied configurations.

N

Page-Level Read Latency Comparison. Before

measuring the response time of the SSD architecture,

we first study our proposed scheme's mean latency

compared with the default page. The RBER of

LSB/CSB/MSB is referenced from the experimental

results[29]. The mean page-level read latency of re-

quests with varied request sizes is shown in Fig.10.

We observe that DIR induces increased read latency

smoothly when the NAND flash has few errors (i.e.,

RBER < 0.005, the same LDPC configuration in [3]),

as the read latency of interleaved pages is decided by

CSB/MSB pages in DIR while the LSB read still has

1/3 chance to be read in the baseline. However, the

read latency of the baseline and DIR becomes equal

to each other when the request size increases.

When SSD becomes aged, the mean read latency of

DIR is reduced by 8%–33% compared with the base-

line. This result depicts that DIR achieves significant

performance improvement for page-level access.

Read Performance Comparison. Fig.11 shows the

normalized read response time among the NOAC,

AC, interleaving, and the DIR scheme. In this part,

we only compare the read performance of the aged

SSD. For aged SSDs, we observe large performance

improvement over the baseline—19%–62% improvem-

ent could be achieved. Due to the higher locality,

workloads such as HM_1, PROJ_0, SRC2_2, USR_0

benefit more from the DIR scheme. We also observe

39%, 41%, 62%, and 61% reduction in read response

time, respectively. For SSDs in the early stage, the

read response time increases by between 1% and 10%

across all the workloads, which is not presented in the

paper. This is because the extra dummy read re-

quests cause a decline in read performance. Read re-

quests only require few or no soft sensing at the early

stage so that the performance benefits from DIR are

negligible.

Table 1. Configuration of TLC SSD

Parameter Value

Number of channels 8

Number of chips per channel 2

Number of planes per chip 2

Number of blocks per plane 768

Page size (KB) 4

µLSB read latency (s) 60

µCSB read latency (s) 90

µMSB read latency (s) 120

Flash type TLC

Transfer latency (ns/byte) 3

µSense latency (s) 24

Number of pages per block (KB) 4

Erase (ms) 3

µLSB write latency (s) 900

µCSB write latency (s) 1 200

µMSB write latency (s) 1 500

92 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

Write Performance Comparison. As shown in

Fig.12 compared with the AC and interleaving, the

write performance in DIR does not fluctuate signifi-

cantly except HM_1 whose read-write ratio is 97%.

When the RBER increases continuously, the decod-

ing time increases as well, and the write performance

is sensitive to the processing time of read requests.

Accordingly, the read amplification induced by DIR

also worsens the write performance. Although the

DIR scheme only interleaves the data of sub-requests

for a given write request without bringing extra

writes, our proposed page allocation scheme allocates

two pages with different types once, and the worse

pages determine the program latency. For the case

that the amount of read requests is larger than that

of AC and NOAC, the extra read sub-requests can be

serviced between requests. For the workloads with

large write ratios, e.g., SRC2_2, we observe large

write performance degradation due to many read sub-

requests targeting on the same die and holding the

channel for a long time (i.e., more pages are inter-

leaved).

Read Amplification Analysis. Next, we evaluate

the read amplification in DIR. We compare the num-

1 2 3 4 5 6 7 8

Number of Sub-Requests

(a)

1 2 3 4 5 6 7 8

Number of Sub-Requests

(b)

1 2 3 4 5 6 7 8

Number of Sub-Requests

(c)

1 2 3 4 5 6 7 8

Number of Sub-Requests

(d)

150

120

90

60

30

0

R
e
a
d
 L

a
te

n
c
y
 (
m
s)

500

400

300

200

100

0

R
e
a
d
 L

a
te

n
c
y
 (
m
s)

750

600

450

300

150

0

R
e
a
d
 L

a
te

n
c
y
 (
m
s)

150

120

90

60

30

0

R
e
a
d
 L

a
te

n
c
y
 (
m
s)

Baseline DIR Baseline DIR

Baseline DIR Baseline DIR

Fig.10. Page-level mean read latency between the baseline and the DIR scheme. Page read latency under (a) RBER < 0.004, (b) RBER <
0.006, (c) RBER < 0.008, and (d) 0.007 < RBER < 0.009.

N
o
rm

a
li
z
e
d
 R

e
a
d
 L

a
te

n
c
y

1.2

0.8

0.4

0.0

H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
ge

DIRACInterleavingNOAC

Fig.11. Normalized read latency in aged SSD among these schemes.

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 93

ber of read requests introduced by DIR across all the

workloads and summarize the results in Fig.13. DIR

introduces 3%–20% (14% on average) more read re-

quests. We can see that HM_0 has the most signifi-

cant increase in the number of read requests, and

SRC2_2 has the least read amplification. This is be-

cause most read requests in HM_0 range in size from

1 KB to 2 KB. Its read amplification factor is be-

tween 1 and 2, and the effectiveness is 0.75 for HM_0

as mentioned above, and thus the read amplification

factor is larger than the others. The average read re-

quest size of SRC2_2 is 88 KB, such that many read

sub-requests replicate each other. In summary, DIR

introduces extra reads but its impacts on the lifetime

and reliability are negligible.

Multi-Plane Read Analysis. To explore the effec-

tiveness of DIR on multi-plane read, we have statis-

tics for the utilization of multi-plane read. Fig.14

shows the percentage of multi-plane read to all read

operations across all the workloads. As more pages

are grouped to physical adjacent pages in interleav-

ing, the multi-plane read cannot be utilized totally.

For AC, the pages are distributed across all the chan-

nels, chips, dies, and planes to exploit parallelism, and

thus the multi-plane read is used more frequently

compared with interleaving. Our proposed scheme

DIR designs the multi-plane friendly page allocation

strategy so that its multi-plane utilization could be

the highest compared with both interleaving and AC

schemes.

Hybrid-Page Read Analysis. We next study the

pages being interleaved by counting the number of

N
o
rm

a
li
z
e
d
 W

ri
te

 L
a
te

n
c
y

1.2

0.8

0.4

0.0
H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
ge

DIRACInterleavingNOAC

Fig.12. Normalized write latency in aged SSD among these schemes.

1.6

1.2

0.8

0.4

0.0

H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
ge

DIRACInterleaving

R
e
a
d
 R

e
q
u
e
st

A
m

p
li
fi
c
a
ti
o
n
 R

a
ti
o

Fig.13. Normalized read amplification rate.

0.8

0.4

0.0

H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
ge

DIRACInterleaving

M
u
lt
i-
P
la

n
e

U
ti
li
z
a
ti
o
n
 R

a
ti
o

Fig.14. Multi-plane read utilization comparison.

94 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

pages with and without interleaving data in the map-

ping table. Fig.15 illustrates the percentage of the

pages with data interleaving. It shows that nearly

33% of SSD pages can benefit from DIR, although in-

terleaving achieves more interleaved pages. HM_1

achieves the highest percentage among all the work-

loads because the average size of its I/O requests is

approximately twice the page size. On the contrary,

for SRC2_0, only 19% of pages in SSD can benefit

from the DIR scheme because the I/O request size in

SRC2_0 is either too small or too large. The efficien-

cy is relatively low with most request sizes being

68 KB or 2 KB.

Sensitivity Analysis. In this part, we study the

sensitivity of DIR on SSD with varied parameters.

We first modify the number of planes in one die to be

2 and 4, respectively, to observe the performance fluc-

tuation, as shown in Fig.16. Compared with AC, DIR

still achieves about 18% performance improvements.

We also modify the page size from 4 KB to 8 KB to

study the impact of the page size on performance.

The result also indicates that DIR still achieves high-

er performance improvement than AC, as shown in

Fig.17.

5 Related Work

Many studies work on optimizing read perfor-

mance with LDPC in flash-based SSDs. They can be

categorized into three groups as follows.

BER Reduction. Zhang et al. proposed to dynami-

cally adjust the sensing voltages to reduce read laten-

DIRInterleaving

1.2

0.8

0.4

0.0

H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
ge

H
y
b
ri
d
-P

a
g
e
 R

e
a
d
 R

a
ti
o

Fig.15. Ratio of hybrid-page read to all reads.

1.2

0.8

0.4

0.0

H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
geN

o
rm

a
li
z
e
d
 R

e
a
d
 L

a
te

n
c
y

DIRAC

Fig.16. Read latency comparison between two planes per die and four planes per die.

1.2

0.8

0.4

0.0

H
M
_ 0

H
M
_ 1

P
R
N
_ 0

P
R
O
J
_ 1

P
R
O
J
_ 3

P
R
X
Y
_ 0

R
S
R
C
H

S
R
C
2
_ 2

S
R
C
2
_ 0

S
T
G
_ 0

U
S
R
_ 0

W
D
E
V
_ 0

A
ve

ra
geN

o
rm

a
li
z
e
d
 R

e
a
d
 L

a
te

n
c
y

DIRAC

Fig.17. Read latency with 8 KB page size.

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 95

cy[30]. Wu et al. exploited the error modes of 3D TLC

NAND flash to optimize LLR information for further

enhancing the decoding performance[31]. Zhang et al.
proposed to integrate the decoding result of the LSB

page into the initial information of LDPC decoding

for the MSB page to reduce the LDPC decoding la-

tency of the MSB page in NAND Flash[32]. These re-

fresh methods[33–35] were proposed to periodically cor-

rect data with long retention and reprogram the data

into new blocks, which can reduce retention-induced

errors.

Flash Sensing Optimization. Zhao et al.[3] pro-

posed to apply fine-grained levels in LDPC reads pro-

gressively. When the read with a lower level fails, the

next level with several extra read voltages is applied

for flash sensing[3]. Tokutomi et al. proposed AEP-

LDPC, which considers the effects of program dis-

turb, data retention, and floating-gate capacitive cou-

pling, to reduce the times of decode iterations[36]. Li

et al. proposed a smart sensing level placement scheme

to reduce the LDPC decoding latency[37]. In order to

read out correct data with BCH codes, Cai et al. pro-

posed to record the optimal threshold voltages of the

last programmed page in each block[38]. Peleato et al.
proposed a mathematical model based on the read

voltages in the last read to estimate the appropriate

read voltages of the current read adaptively[39].

LDPC Decoding Algorithm Optimization. Zhao

et al. exploited intra-cell error characteristics to speed

up LDPC decoding by reducing overall error probabil-

ity and decoding latency[9]. REAL incorporates nu-

meric-correlation characteristics of different error pat-

terns in both the MSB page and the LSB page of the

MLC flash into the message-passing process of the de-

coding[40]. Aslam et al. proposed a two-round LDPC

decoding process by reusing the read-back voltages

and the decoded results for flash cells from retention-

induced failure, which can further improve read per-

formance[41].

6 Conclusions

This paper proposed the DIR (Dynamic Request

Interleaving) scheme that exploits the unbalanced bit

error rate among LSB, CSB, and MSB pages in TLC

SSD and the locality in requests to improve read per-

formance. A page interleaving-friendly page alloca-

tion scheme was also proposed to utilize the plane-lev-

el parallelism to speed up read operation to alleviate

the read amplification issue. Experimental results

showed that DIR can improve read performance by

43% compared with the existing aged SSD. As zoned

namespace (ZNS) SSD has become popular in recent

studies, it restricts applications to writing data into

distinct zones sequentially. We will try to study the

DIR scheme on ZNS SSDs and solve the possible po-

tential issues facing the novel write mode of ZNS SS-

Ds.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Min C, Kim K, Cho H, Lee S W, Eom Y I. SFS: Random

write considered harmful in solid state drives. In Proc. the

10th USENIX Conference on File and Storage Technolo-

gies, Feb. 2012, pp.1–16. DOI: 10.5555/2208461.2208473.

[1]

 Matsui C, Sun C, Takeuchi K. Design of hybrid SSDs

with storage class memory and NAND flash memory. Pro-

ceedings of the IEEE, 2017, 105(9): 1812–1821. DOI: 10.

1109/JPROC.2017.2716958.

[2]

 Zhao K, Zhao W Z, Sun H B, Zhang T, Zhang X D,

Zheng N N. LDPC-in-SSD: Making advanced error correc-

tion codes work effectively in solid state drives. In Proc.

the 11th USENIX Conference on File and Storage Tech-

nologies, Feb. 2013, pp.243–256. DOI: 10.5555/2591272.

2591298.

[3]

 Elyasi N, Arjomand M, Sivasubramaniam A, Kandemir M

T, Das C R, Jung M. Exploiting intra-request slack to im-

prove SSD performance. In Proc. the 22nd International

Conference on Architectural Support for Programming

Languages and Operating Systems, Apr. 2017, pp.375–

388. DOI: 10.1145/3037697.3037728.

[4]

 Cui J H, Zhang Y T, Wu W G, Yang J, Wang Y F,

Huang J H. DLV: Exploiting device level latency varia-

tions for performance improvement on flash memory stor-

age systems. IEEE Trans. Computer-Aided Design of In-

tegrated Circuits and Systems, 2018, 37(8): 1546–1559.

DOI: 10.1109/TCAD.2017.2766156.

[5]

 Du Y J, Zou D Q, Li Q, Shi L, Jin H, Xue C J. LaLDPC:

Latency-aware LDPC for read performance improvement

of solid state drives. In Proc. the 33rd International Con-

ference on Massive Storage Systems and Technology, May

2017, pp.1–11.

[6]

 Wu F, Zhu Y, Xiong Q, Lu Z H, Zhou Y, Kong W Z, Xie

C S. Characterizing 3D charge trap NAND flash: Obser-

vations, analyses and applications. In Proc. the 36th In-

ternational Conference on Computer Design, Oct. 2018,

pp.381–388. DOI: 10.1109/ICCD.2018.00064.

[7]

 Yaakobi E, Grupp L, Siegel P H, Swanson S, Wolf J K.

Characterization and error-correcting codes for TLC flash

memories. In Proc. the 2012 International Conference on

Computing, Networking and Communications, Jan. 2012,

pp.486–491. DOI: 10.1109/ICCNC.2012.6167470.

[8]

 Zhao W Z, Sun H B, Lv M J, Dong G Q, Zheng N N,

Zhang T. Improving min-sum LDPC decoding through-

[9]

96 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://dl.acm.org/doi/10.5555/2208461.2208473
https://doi.org/10.1109/JPROC.2017.2716958
https://doi.org/10.1109/JPROC.2017.2716958
https://dl.acm.org/doi/10.5555/2591272.2591298
https://dl.acm.org/doi/10.5555/2591272.2591298
https://doi.org/10.1145/3037697.3037728
https://doi.org/10.1109/TCAD.2017.2766156
https://doi.org/10.1109/ICCD.2018.00064
https://doi.org/10.1109/ICCNC.2012.6167470

put by exploiting intra-cell bit error characteristic in

MLC NAND flash memory. In Proc. the 30th Sympo-

sium on Mass Storage Systems and Technologies, Jun.

2014, pp.1–6. DOI: 10.1109/MSST.2014.6855550.

 Nakamura T, Deguchi Y, Takeuchi K. AEP-LDPC ECC

with error dispersion coding for burst error reduction of

2D and 3D NAND flash memories. In Proc. the 2017

IEEE International Memory Workshop, May 2017. DOI:

10.1109/IMW.2017.7939070.

[10]

 Nie S Q, Zhang Y T, Wu W G, Zhang C, Yang J. DIR:

Dynamic request interleaving for improving the read per-

formance of aged SSDs. In Proc. the 2019 IEEE Non-

Volatile Memory Systems and Applications Symposium,

Aug. 2019. DOI: 10.1109/NVMSA.2019.8863520.

[11]

 Gao C M, Shi L, Xue C J, Ji C, Yang J, Zhang Y T. Par-

allel all the time: Plane level parallelism exploration for

high performance SSDs. In Proc. the 35th Symposium on

Mass Storage Systems and Technologies, May 2019,

pp.172–184. DOI: 10.1109/MSST.2019.000-5.

[12]

 Agrawal N, Prabhakaran V, Wobber T, Davis J D, Man-

asse M S, Panigrahy R. Design tradeoffs for SSD perfor-

mance. In Proc. the 2008 USENIX Annual Technical

Conference, Feb. 2008, pp.57–70.

[13]

 Tavakkol A, Gómez-Luna J, Sadrosadati M, Ghose S,

Mutlu O. MQSim: A framework for enabling realistic

studies of modern multi-queue SSD devices. In Proc. the

16th USENIX Conference on File and Storage Technolo-

gies, Feb. 2018, pp.49–65.

[14]

 Suh K D, Suh B H, Lim Y H, Kim J K, Choi Y J, Koh Y

N, Lee S S, Kwon S C, Choi B S, Yum J S, Choi J H,

Kim J R, Lim H K. A 3.3 V 32 Mb NAND flash memory

with incremental step pulse programming scheme. IEEE

Journal of Solid-State Circuits, 1995, 30(11): 1149–1156.

DOI: 10.1109/4.475701.

[15]

 Micheloni R. 3D Flash Memories. Springer, 2016. DOI:

10.1007/978-94-017-7512-0.

[16]

 Hu Y, Jiang H, Feng D, Tian L, Luo H, Zhang S P. Per-

formance impact and interplay of SSD parallelism

through advanced commands, allocation strategy and da-

ta granularity. In Proc. the 2011 International Confer-

ence on Supercomputing, May 2011, pp.96–107. DOI: 10.

1145/1995896.1995912.

[17]

 Kim M, Jung W, Lee H J, Chung E Y. A novel NAND

flash memory architecture for maximally exploiting plane-

level parallelism. IEEE Trans. Very Large Scale Integra-

tion (VLSI) Systems, 2019, 27(8): 1957–1961. DOI: 10.

1109/TVLSI.2019.2905626.

[18]

 Khakifirooz A, Balasubrahmanyam S, Fastow R, Gaewsky

K H, Ha C W, Haque R, Jungroth O W, Law S,

Madraswala A S, Ngo B, Naveen Prabhu V, Rajwade S,

Ramamurthi K, Shenoy R S, Snyder J, Sun C, Thim-

megowda D, Pathak B M, Kalavade P. 30.2 A 1Tb

4b/cell 144-tier floating-gate 3D-NAND flash memory

with 40MB/s program throughput and 13.8Gb/mm2 bit

density. In Proc. the 2021 IEEE International Solid-State

Circuits Conference, Feb. 2021, pp.424–426. DOI: 10.1109/

ISSCC42613.2021.9365777.

[19]

 Shibata N, Kanda K, Shimizu T, Nakai J, Nagao O,

Kobayashi N, Miakashi M, Nagadomi Y, Nakano T,

Kawabe T, Shibuya T, Sako M, Yanagidaira K, Hashimo-

to T, Date H, Sato M, Nakagawa T, Musha J, Minamoto

T, Uda M, Nakamura D, Sakurai K, Yamashita T, Zhou

J Y, Tachibana R, Takagiwa T, Sugimoto T, Ogawa M,

Ochi Y, Kawaguchi K, Kojima M, Ogawa T, Hashiguchi

T, Fukuda R, Masuda M, Kawakami K, Someya T, Kaji-

tani Y, Matsumoto Y, Sato J, Raghunathan N, Koh Y L,

Chen S, Lee J, Nasu H, Sugawara H, Hosono K, Hisada

T, Nakamura H. A 1.33-Tb 4-bit/cell 3-D flash memory

on a 96-word-line-layer technology. IEEE Journal of Sol-

id-State Circuits, 2020, 55(1): 178–188. DOI: 10.1109/JSSC.

2019.2941758.

[20]

 Kalavade P. 4 bits/cell 96 layer floating gate 3D NAND

with CMOS under array technology and SSDs. In Proc.

the 2020 IEEE International Memory Workshop, May

2020. DOI: 10.1109/IMW48823.2020.9108135.

[21]

 Narayanan D, Donnelly A, Rowstron A. Write off-load-

ing: Practical power management for enterprise storage.

ACM Trans. Storage, 2008, 4(3): Article No. 10. DOI: 10.

1145/1416944.1416949.

[22]

 Narayanan D, Thereska E, Donnelly A, Elnikety S, Row-

stron A. Migrating server storage to SSDs: Analysis of

tradeoffs. In Proc. the 4th ACM European Conference on

Computer Systems, Apr. 2009, pp.145–158. DOI: 10.1145/

1519065.1519081.

[23]

 Park J, Jeong J, Lee S, Song Y, Kim J. Improving perfor-

mance and lifetime of NAND storage systems using re-

laxed program sequence. In Proc. the 53rd Annual De-

sign Automation Conference, Jun. 2016, Article No. 63.

DOI: 10.1145/2897937.2898032.

[24]

 Parat K, Goda A. Scaling trends in NAND flash. In Proc.

the 2018 IEEE International Electron Devices Meeting,

Dec. 2018. DOI: 10.1109/IEDM.2018.8614694.

[25]

 Huh H, Cho W, Lee J, Noh Y, Park Y, Ok S, Kim J, Cho

K, Lee H, Kim G, Park K, Kim K, Lee H, Chai S, Kwon

C, Cho H, Jeong C, Yang Y J, Goo J, Park J, Lee J, Kirr

H, Jo K, Park C, Nam H, Song H, Lee S, Jeong W, Ahn

K O, Jung T S. 13.2 A 1Tb 4b/cell 96-stacked-WL 3D

NAND flash memory with 30MB/s program throughput

using peripheral circuit under memory cell array tech-

nique. In Proc. the 2020 IEEE International Solid-State

Circuits Conference, Feb. 2020, pp.220–221. DOI: 10.1109/

ISSCC19947.2020.9063117.

[26]

 Chen F, Hou B, Lee R. Internal parallelism of flash mem-

ory-based solid-state drives. ACM Transactions on Stor-

age (TOS), 2016, 12(3): 1–39. DOI: 10.1145/2818376.

[27]

 Jung M, Zhang J, Abulila A, Kwon M, Shahidi N, Shalf

J, Kim N S, Kandemir M. SimpleSSD: Modeling solid

state drives for holistic system simulation. IEEE Comput-

er Architecture Letters, 2018, 17(1): 37–41. DOI: 10.1109/

LCA.2017.2750658.

[28]

 Abe M, Matsui C, Mizushina K, Suzuki S, Takeuchi K.

Computational approximate storage with neural network-

based error patrol of 3D-TLC NAND flash memory for

machine learning applications. In Proc. the 2020 IEEE In-

[29]

Shi-Qiang Nie et al.: DIR: Interleaving Requests for Improving Read Performance of Aged SSD 97

https://doi.org/10.1109/MSST.2014.6855550
https://doi.org/10.1109/IMW.2017.7939070
https://doi.org/10.1109/NVMSA.2019.8863520
https://doi.org/10.1109/MSST.2019.000-5
https://doi.org/10.1109/MSST.2019.000-5
https://doi.org/10.1109/MSST.2019.000-5
https://doi.org/10.1109/4.475701
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1007/978-94-017-7512-0
https://doi.org/10.1145/1995896.1995912
https://doi.org/10.1145/1995896.1995912
https://doi.org/10.1109/TVLSI.2019.2905626
https://doi.org/10.1109/TVLSI.2019.2905626
https://doi.org/10.1109/ISSCC42613.2021.9365777
https://doi.org/10.1109/ISSCC42613.2021.9365777
https://doi.org/10.1109/JSSC.2019.2941758
https://doi.org/10.1109/JSSC.2019.2941758
https://doi.org/10.1109/IMW48823.2020.9108135
https://doi.org/10.1145/1416944.1416949
https://doi.org/10.1145/1416944.1416949
https://doi.org/10.1145/1519065.1519081
https://doi.org/10.1145/1519065.1519081
https://doi.org/10.1145/2897937.2898032
https://doi.org/10.1109/IEDM.2018.8614694
https://doi.org/10.1109/ISSCC19947.2020.9063117
https://doi.org/10.1109/ISSCC19947.2020.9063117
https://doi.org/10.1145/2818376
https://doi.org/10.1109/LCA.2017.2750658
https://doi.org/10.1109/LCA.2017.2750658

ternational Memory Workshop, May 2020. DOI: 10.1109/

IMW48823.2020.9108136.

 Zhang M, Wu F, Chen X B, Du Y J, Liu W H, Zhao Y

H, Wan J G, Xie C S. RBER aware multi-sensing for im-

proving read performance of 3D MLC NAND flash memo-

ry. IEEE Access, 2018, 6: 61934–61947. DOI: 10.1109/AC-

CESS.2018.2873081.

[30]

 Wu F, Zhang M, Du Y J, Liu W H, Lu Z, Wan J G, Tan

Z H, Xie C S. Using error modes aware LDPC to im-

prove decoding performance of 3-D TLC NAND flash.

IEEE Trans. Computer-Aided Design of Integrated Cir-

cuits and Systems, 2020, 39(4): 909–921. DOI: 10.1109/

TCAD.2019.2897706.

[31]

 Zhang M, Wu F, Du Y J, Yang C M, Xie C S, Wan J G.

CooECC: A cooperative error correction scheme to re-

duce LDPC decoding latency in NAND flash. In Proc. the

2017 IEEE International Conference on Computer Design,

Nov. 2017, pp.657–664. DOI: 10.1109/ICCD.2017.115.

[32]

 Cai Y, Yalcin G, Mutlu O, Haratsch E F, Cristal A, Un-

sal O S, Mai K. Flash correct-and-refresh: Retention-

aware error management for increased flash memory life-

time. In Proc. the 30th IEEE International Conference on

Computer Design, Sept. 2012, pp.94–101. DOI: 10.1109/

ICCD.2012.6378623.

[33]

 Luo Y X, Cai Y, Ghose S, Choi J, Mutlu O. WARM: Im-

proving NAND flash memory lifetime with write-hotness

aware retention management. In Proc. the 31st Sympo-

sium on Mass Storage Systems and Technologies, May

30–Jun. 5, 2015, pp.1–14. DOI: 10.1109/MSST.2015.

7208284.

[34]

 Li Q, Shi L, Gao C M, Wu K J, Xue C J, Zhuge Q F,

Sha E H M. Maximizing IO performance via conflict re-

duction for flash memory storage systems. In Proc. the

2015 Design, Automation & Test in Europe Conference &
Exhibition, Mar. 2015, pp.904–907. DOI: 10.5555/

2755753.2757022.

[35]

 Tokutomi T, Tanakamaru S, Iwasaki T O, Takeuchi K.

Advanced error prediction LDPC for high-speed reliable

TLC NAND-based SSDs. In Proc. the 6th IEEE Interna-

tional Memory Workshop, May 2014. DOI: 10.1109/IMW.

2014.6849375.

[36]

 Li Q, Shi L, Xue C J, Zhuge Q F, Sha E H M. Improving

LDPC performance via asymmetric sensing level place-

ment on flash memory. In Proc. the 22nd Asia and South

Pacific Design Automation Conference, Jan. 2017, pp.560–
565. DOI: 10.1109/ASPDAC.2017.7858383.

[37]

 Cai Y, Luo Y X, Haratsch E F, Mai K, Mutlu O. Data re-

tention in MLC NAND flash memory: Characterization,

optimization, and recovery. In Proc. the 21st Internation-

al Symposium on High Performance Computer Architec-

ture, Feb. 2015, pp.551–563. DOI: 10.1109/HPCA.2015.

7056062.

[38]

 Peleato B, Agarwal R, Cioffi J M, Qin M H, Siegel P H.

Adaptive read thresholds for NAND flash. IEEE Trans.

[39]

Communications, 2015, 63(9): 3069–3081. DOI: 10.1109/

TCOMM.2015.2453413.

 Zhang M, Wu F, He X B, Huang P, Wang S Z, Xie C S.

REAL: A retention error aware LDPC decoding scheme

to improve NAND flash read performance. In Proc. the

32nd Symposium on Mass Storage Systems and Technolo-

gies, May 2016. DOI: 10.1109/MSST.2016.7897085.

[40]

 Aslam C A, Guan Y L, Cai K. Retention-aware belief-

propagation decoding for NAND flash memory. IEEE

Trans. Circuits and Systems II: Express Briefs, 2017,

64(6): 725–729. DOI: 10.1109/TCSII.2016.2602359.

[41]

Shi-Qiang Nie received his Ph.D.

degree in computer science from Xi’an

Jiaotong University, Xi’an, in 2021.

He is currently a postdoctoral re-

searcher with the Department of Com-

puter Science and Technology, Xi’an

Jiaotong University, Xi’an. His re-

search interests include non-volatile memory, architec-

ture optimizations, and distributed storage systems.

Chi Zhang is currently pursuing his

Ph.D. degree at the Department of Co-

mputer Science and Technology, Xi’an

Jiaotong University, Xi’an. His re-

search interests include performance

optimization of SMR drives, garbage

collection strategy in the hybrid stor-

age system, and coarse-grained cache replacement algo-

rithm that mitigates the SMR write amplification to op-

timize read/write cache hit ratio and to reduce replace-

ment overhead.

Wei-Guo Wu received his B.S.,

M.S., and Ph.D. degrees in computer

science from Xi’an Jiaotong Universi-

ty, Xi’an, in 1986, 1993, and 2006, re-

spectively. He is currently with the

Department of Computer Science and

Technology at Xi’an Jiaotong Univer-

sity as a professor. His research interests include high-

performance computer architecture, storage system,

cloud computing, and embedded system.

98 J. Comput. Sci. & Technol., Jan. 2024, Vol.39, No.1

https://doi.org/10.1109/IMW48823.2020.9108136
https://doi.org/10.1109/IMW48823.2020.9108136
https://doi.org/10.1109/ACCESS.2018.2873081
https://doi.org/10.1109/ACCESS.2018.2873081
https://doi.org/10.1109/ACCESS.2018.2873081
https://doi.org/10.1109/TCAD.2019.2897706
https://doi.org/10.1109/TCAD.2019.2897706
https://doi.org/10.1109/ICCD.2017.115
https://doi.org/10.1109/ICCD.2012.6378623
https://doi.org/10.1109/ICCD.2012.6378623
https://doi.org/10.1109/MSST.2015.7208284.
https://doi.org/10.1109/MSST.2015.7208284.
https://dl.acm.org/doi/10.5555/2755753.2757022
https://dl.acm.org/doi/10.5555/2755753.2757022
https://doi.org/10.1109/IMW.2014.6849375
https://doi.org/10.1109/IMW.2014.6849375
https://doi.org/10.1109/IMW.2014.6849375
https://doi.org/10.1109/IMW.2014.6849375
https://doi.org/10.1109/ASPDAC.2017.7858383
https://doi.org/10.1109/HPCA.2015.7056062
https://doi.org/10.1109/HPCA.2015.7056062
https://doi.org/10.1109/TCOMM.2015.2453413
https://doi.org/10.1109/TCOMM.2015.2453413
https://doi.org/10.1109/MSST.2016.7897085
https://doi.org/10.1109/TCSII.2016.2602359

	1 Introduction
	2 Background and Research Motivation
	2.1 SSD Architecture
	2.2 Basic Operations of TLC SSD
	2.3 Advanced Read/Program Command of NAND Flash
	2.4 Problem Statement
	2.5 Motivation

	3 Details of DIR-Enable FTL
	3.1 Interleaving Data from Write Requests
	3.1.1 Writing Sub-Requests with Update Operation
	3.1.2 Generating Dummy Read Sub-Requests

	3.2 Page Interleaving-Friendly Page Allocation Scheme
	3.2.1 Constructing Multi-Plane Region and Single-Plane Region
	3.2.2 Relaxing Program Sequence
	3.2.3 Implementing Parallel Read in Multi-Plane Regions
	3.2.4 Garbage Collection and Wear Levelling

	3.3 Overhead Analysis
	3.4 Feasibility Discussions for High-Density NAND Flash

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Experimental Evaluation

	5 Related Work
	6 Conclusions
	Conflict of Interest
	References

