
Random Subspace Sampling for Classification with Missing Data

Cao Yun-Hao, Wu Jian-Xin

View online: http://doi.org/10.1007/s11390-023-1611-9

Articles you may be interested in

Pre-Train and Learn: Preserving Global Information for Graph Neural Networks

Dan-Hao Zhu, Xin-Yu Dai, Jia-Jun Chen

Journal of Computer Science and Technology. 2021, 36(6): 1420-1430 http://doi.org/10.1007/s11390-020-0142-x

Temporally Consistent Depth Map Prediction Using Deep CNN and Spatial-temporal Conditional Random Field

Xu-Ran Zhao, Xun Wang, Qi-Chao Chen

Journal of Computer Science and Technology. 2017, 32(3): 443-456 http://doi.org/10.1007/s11390-017-1735-x

Exploiting Unlabeled Data for Neural Grammatical Error Detection

Zhuo-Ran Liu, Yang Liu

Journal of Computer Science and Technology. 2017, 32(4): 758-767 http://doi.org/10.1007/s11390-017-1757-4

Space Efficient Quantization for Deep Convolutional Neural Networks

Dong-Di Zhao, Fan Li, Kashif Sharif, Guang-Min Xia, Yu Wang

Journal of Computer Science and Technology. 2019, 34(2): 305-317 http://doi.org/10.1007/s11390-019-1912-1

Language Adaptation for Entity Relation Classification via Adversarial Neural Networks

Bo-Wei Zou, Rong-Tao Huang, Zeng-Zhuang Xu, Yu Hong, Guo-Dong Zhou

Journal of Computer Science and Technology. 2021, 36(1): 207-220 http://doi.org/10.1007/s11390-020-9713-0

Area Efficient Pattern Representation of Binary Neural Networks on RRAM

Feng Wang, Guo-Jie Luo, Guang-Yu Sun, Yu-Hao Wang, Di-Min Niu, Hong-Zhong Zheng

Journal of Computer Science and Technology. 2021, 36(5): 1155-1166 http://doi.org/10.1007/s11390-021-0906-y

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-023-1611-9
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-0142-x
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1735-x
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1757-4
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1912-1
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9713-0
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-021-0906-y
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

Random Subspace Sampling for Classification with Missing Data

Yun-Hao Cao (曹云浩) and Jian-Xin Wu* (吴建鑫), Member, CCF, IEEE

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

E-mail: caoyh@lamda.nju.edu.cn; wujx2001@nju.edu.cn

Received May 26, 2021; accepted February 4, 2023.

Abstract Many real-world datasets suffer from the unavoidable issue of missing values, and therefore classification

with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors. In this

paper, we propose a random subspace sampling method, RSS, by sampling missing items from the corresponding feature

histogram distributions in random subspaces, which is effective and efficient at different levels of missing data. Unlike

most established approaches, RSS does not train on fixed imputed datasets. Instead, we design a dynamic training strate-

gy where the filled values change dynamically by resampling during training. Moreover, thanks to the sampling strategy,

we design an ensemble testing strategy where we combine the results of multiple runs of a single model, which is more effi-

cient and resource-saving than previous ensemble methods. Finally, we combine these two strategies with the random sub-

space method, which makes our estimations more robust and accurate. The effectiveness of the proposed RSS method is

well validated by experimental studies.

Keywords missing data, random subspace, neural network, ensemble learning

1 Introduction

Classification is one of the most important tasks

in machine learning and data mining. Many algo-

rithms have been proposed to deal with classification

problems, but the majority of them require complete

data and cannot be directly applied to data with

missing values. Even for algorithms that can cope

with incomplete data, missing values can often result

in large classification errors[1]. Unfortunately, missing

values are a common issue in numerous real-world ap-

plications. For example, 45% of the datasets in the

UCI machine learning repository①, which is one of the

most popular benchmark databases, contain missing

values.

The simplest approach for dealing with missing

values is to ignore those instances with missing at-

tributes. Commonly referred to as the removal ap-

proaches, such techniques are clearly suboptimal

when a large portion of the data has missing at-

tributes, and of course infeasible, if each instance is

missing at least one or more features. A more prag-

matic approach commonly used to accommodate

missing data is to use imputation methods to substi-

tute missing values with plausible values. For exam-

ple, mean imputation replaces all missing values in a

feature by the average of existing values in the same

feature. Imputation can provide complete data which

can then be used by any classification algorithm. Sin-

gle-imputation methods such as mean imputation are

often efficient but they are not accurate enough. In

contrast, multiple-imputation methods such as [2] cre-

ate multiple imputed datasets to reflect better the un-

certainty in incomplete data. They are usually more

accurate but computationally expensive[3]. It remains

a challenge to determine how to combine classifica-

tion algorithms and imputation in a way that is both

effective and efficient.

With the rapid development of ensemble learning,

there have also been ensemble methods for classifica-

tion with missing data[4]. For example, Krause and

Polikar[5] trained an ensemble of base classifiers with

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61772256 and 61921006.
*Corresponding Author

Cao YH, Wu JX. Random subspace sampling for classification with missing data. JOURNAL OF COMPUTER SCI-

ENCE AND TECHNOLOGY 39(2): 472−486 Mar. 2024. DOI: 10.1007/s11390-023-1611-9

①http://archive.ics.uci.edu/ml, Mar. 2024.
©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-023-1611-9
https://doi.org/10.1007/s11390-023-1611-9
https://doi.org/10.1007/s11390-023-1611-9
https://doi.org/10.1007/s11390-023-1611-9
https://doi.org/10.1007/s11390-023-1611-9
https://doi.org/10.1007/s11390-023-1611-9
https://doi.org/10.1007/s11390-023-1611-9
http://archive.ics.uci.edu/ml

random subsets of features to classify with missing

data. These methods build multiple classifiers in the

training process and then applicable classifiers are se-

lected to classify each incomplete instance during in-

ference. However, existing ensemble methods for clas-

sification with missing data often cannot work well on

datasets with numerous missing values[6]. More impor-

tantly, they cannot guarantee to classify all incom-

plete instances. Hence, how to develop an ensemble

method that is effective even when the data contains

many missing values is still a challenge.

In this paper, we take a step towards designing an

efficient and effective method at different levels of

missing data, by combining the advantages of multi-

ple-imputation and ensemble learning. We propose

the Random Subspace Sampling (RSS) method for

classification with missing data, which first con-

structs different random subspaces and corresponding

base learners. Then, for each missing item in each

random subspace, we directly sample from the corre-

sponding feature histogram distribution to fill in. Dur-

ing the training stage, we design a dynamic training

strategy where we resample and probabilisitically

change the filled value for each missing item. During

the inference stage, thanks to our sampling strategy,

we design an ensemble testing strategy where we com-

bine the results of multiple runs of a single model,

which is efficient and effective. In contrast to multi-

ple-imputation methods which need iterative steps to

impute, ours is more efficient by sampling directly.

Moreover, the dynamic training strategy distinguish-

es our method from most established approaches that

train on fixed data after imputation.

Experimental results validate the effectiveness of

RSS. We achieve superior performance on six incom-

plete datasets with inherent missing values and nine

complete datasets at four levels of artificially intro-

duced missing values. Furthermore, we carefully study

the impact of each component in RSS through abla-

tion studies and the sensitivity of hyperparameters.

2 Related Work

This section discusses related work, including tra-

ditional and ensemble methods for classification with

missing data.

2.1 Traditional Methods for Missing Data

There are four major approaches to addressing

classification with missing data: the removal ap-

proach, the model-based approach, the machine learn-

ing approach, and the imputation approach[1]. The re-

moval approach simply deletes all instances contain-

ing missing values, which is limited to datasets with

only a few missing values in the training data and no

missing values during inference. The model-based ap-

proach generates a data distribution model from the

input data. One of the most used approaches in this

category is the mixture models trained with the ex-

pectation-maximization (EM) algorithm. Ghahra-

mani and Jordan trained Gaussian mixture models

(GMM) on incomplete data using the EM

algorithm[7]. Ahmad and Tresp[8] proposed Bayesian

techniques for estimating class probabilities from in-

complete data using neural networks. Although this

approach can classify both complete and incomplete

instances, it requires making assumptions about the

joint distribution of all features in the model[1]. The

machine learning approach makes classifiers that are

able to directly classify incomplete datasets, e.g.,

C4.5[9]. However, this approach usually suffers from

limited classification accuracies.

k

L

L

The most-used approach to classification with in-

complete data is to use imputation methods to trans-

form incomplete data into complete data before build-

ing a classifier in the training process or classifying a

new incomplete instance in the application process.

This approach has the advantage that the imputed

complete data can be used by any classification algo-

rithm. Single-imputation methods such as mean and

-NN imputation[10] provide a simple missing data im-

putation but under-represent the variability in the da-

ta[11]. Zhao and Udell[12] developed an approximate

EM algorithm to estimate copula parameters from in-

complete mixed data. Instead of filling in a single val-

ue for each missing one, multiple-imputation

methods[2, 13–15] impute the missing values for times

to produce complete datasets using an appropriate

model that incorporates random variation. Multiple-

imputation methods have become more and more

popular because they reflect better uncertainty and

often yield better performance. However, they are

computationally very expensive. Despite sharing the

similarity that our method also uses multiple plausi-

ble values for each missing item to reflect better un-

certainty, our method differs from multiple-imputa-

tion methods in at least three aspects. 1) We directly

sample from the estimated histogram distribution for

missing values, which is far more efficient than the it-

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 473

erative steps in multiple-imputation methods. 2) By

using the ensemble testing strategy, we can ensemble

multiple predictions without the need to generate

multiple datasets and train multiple models. 3) We

adopt a novel dynamic training strategy where the

imputed values dynamically change during training

and it distinguishes our method from previous ap-

proaches[2, 10–15].

2.2 Ensemble Methods for Missing Data

Ensemble learning is a powerful learning paradigm

which constructs a set of base classifiers for classifica-

tion and it has become the choice for many industrial

applications and data science projects[16]. The Ran-

dom Subspace Method (RSM), which was originally

proposed by Ho[17], is the pillar of many ensemble

methods, e.g., random forests[18]. In RSM, classifiers

are trained by using different random subsets of the

features, allowing classifiers to err in different sub-do-

mains of the feature space.

Ensemble methods, especially RSM, have also

been used for classification with missing data. One of

the earliest studies using ensembles for classification

appeared in [19], where four neural networks were

built to address classification with a thyroid database

consisting of two incomplete features. Krause and Po-

likar[5] trained an ensemble of base classifiers with

random subsets of features to classify with missing

data. In [20], the incomplete dataset is divided into a

group of complete sub-datasets, which is then used as

the training sets for neural networks. In these ap-

proaches, when an incomplete instance needs to be

classified, only those classifiers trained with those fea-

tures that are available in the instance are used to

classify the instance. Although these methods are able

to cope with incomplete data to some extent, they

usually do not obtain good accuracy when datasets

contain a large number of missing values. The under-

lying reason is that the complete sub-datasets often

only have a small number of instances for base classi-

fiers to train on when the datasets include a large

number of missing values. Moreover, they cannot

guarantee to classify all incomplete instances, espe-

cially when data contains many missing values. In

contrast, our method differs as follows. 1) We devel-

op our method from NRS[21], which implements RSM

in the context of neural networks and enables our

method to enjoy the benefits of both ensemble learn-

ing and representation learning. 2) All instances are

used in the training of each base classifier, which en-

sures that we make full use of all information. 3) Our

method can classify all incomplete instances well even

when the dataset contains many missing values.

3 Random Subspace Sampling

In this section, we propose the Random Subspace

Sampling (RSS) method. Recently, Cao et al.[21] have

proposed a neural random subspace method NRS,

which implements the random subspace idea in the

context of neural networks and has achieved impres-

sive results on various tasks. In this paper, we devel-

op our method based on NRS. First, we introduce the

notation used in this paper. We then revisit the NRS

method and introduce our RSS method.

D = {(x(i), y(i))|i = 1, . . . , n}
x(i) ∈ Rd

y(i) ∈ {1, . . . , K} n

d

K x(i)

d (x(i)
1 ,

x(i)
2 , . . . , x(i)

d) x(i)
j

j ?

Let denote a dataset,

where each represents an input instance

with its associated label , is the

number of instances, is the number of features, and

 is the number of classes. Each instance is rep-

resented by a -dimensional feature vector

, where is either a valid value of the

-th feature, or the value “ ’’, which means that its

value is unknown (a missing value).

3.1 NRS Recap

nMul

dH/dW

nPer d

x

q = dH × dW × nMul

x d q

X ∈ RdH×dW×C C = nMul × d X

X = {Xc|c = 1, . . . , C}
Xc g = dH × dW

C

C

X S

Sc (c = 1, . . . , C)

c Xc

NRS has three hyper-parameters, namely, the

depth expansion rate , the height/width expan-

sion rate , and the number of channels per

group in the group convolution . For a -dimen-

sional feature vector , NRS first generates

 randomly permuted vectors

from , each of which is -dimensional. Then, these

feature vectors are arranged into an order-3 tensor

, where . includes a

set of 2D feature maps . Each

feature map consists of features,

which are randomly selected from the original fea-

tures, that is, it is a random subspace. Hence, fea-

ture maps correspond to random subspaces. Then,

a depthwise group convolution plus the subsequent

ReLU non-linearity is acted upon to get , where

each represents the output for the

-th random subspace :

Sc = f

(∑
i

∑
j

Xc(i, j)W c(i, j)

)
, (1)

f(·) W cwhere denotes the ReLU function and each

474 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

(c = 1, . . . , C) c

{Sc|c = 1, . . . , C}

 denotes the weights of the -th depth-

wise convolution filter. Finally, a fully-connected lay-

er and a softmax layer are used to combine all base

classifiers’ outputs for classification:

ŷk =
C∑

c=1

Scw
FC
ck , (2)

wFC C ×K

dH/dW = 3

nPer = 1

where denotes the weight matrix (of size)

of the fully-connected layer. We set and

 as done in [21] in this paper.

In short, NRS implements the random subspace

idea in neural networks both efficiently and effective-

ly. Hence, we develop our algorithm on the basis of it

and will further study the impact of the selected NRS

architecture.

3.2 Proposed Method

Now, we introduce our random subspace sam-

pling algorithm, which mainly contains three steps.

1) Estimating Histogram Distribution. First, we

estimate the histogram distribution individually at

each feature dimension, which will be introduced

next.

2) Constructing Random Subspaces. Then, we

construct random subspaces following NRS.

3) Sampling for Missing Features. To handle the

missing data problem, we sample from the corre-

sponding histogram distribution for each missing item

individually in each random subspace and substitute

it with the sampled value.

xj

xj ∈ [a, b] pj(x)

[a, b]

[a, b]

M

Histogram Distribution. We calculate the his-

togram distribution for each feature individually in

the training set and we disregard all missing values at

this feature dimension when counting. Each feature

 can be either a categorical or a continuous vari-

able and the histogram can handle both situations

well. Next we consider the continuous situation and

assume that , and thus is non-zero on-

ly within . The histogram is to partition the set

 into several bins and use the count of features

falling into the bin as a density estimate. When we

have bins, this yields a partition:

B1 =

[
a, a+

b− a

M

)
, . . . ,

BM =

[
a+

(M − 1)(b− a)

M
, b

]
.

x ∈ BlThen, for a given point , the density estimate

from the histogram will be

p̂j(x) =
M

n(b− a)

n∑
i=1

I(x(i)
j ∈ Bl) ,

I(·)

x x ∈ Bl

where is the indicator function. Note that a miss-

ing value does not belong to any bin. Then, for any

given point , the probability of is

P (x ∈ Bl) =

∫
Bl

p̂j(x)dx =
1

n

n∑
i=1

I(x(i)
j ∈ Bl) .

Bl

j j = 1, 2, . . . , d

We use the average value of the endpoints in

as a representative; hence we define the histogram

distribution of the -th feature () as

P hist
j

(
x = a+

(2l − 1)(b− a)

2M

)
=

1

n

n∑
i=1

I(x(i)
j ∈ Bl) ,

(3)

l = 1, 2, . . . ,Mwhere .

P hist
j

Proposition 1. is a valid probability distribu-
tion. ∫

x
phistj (x)dx =

∑n

i=1

∑M

l=1
I(x(i)

j ∈ Bl)/n = 1

P hist
j (x) ⩾ 0

Proof.
and obviously we have . □

P hist
j (x)

j

We use the histogram distribution ((3)) to

sample the -th feature if it is missing in the subse-

quent training and inference processes.

C

X1, . . . ,XC Xc (c = 1, . . . , C)

g C g

xj ∈ Xc

P hist
j

Random Subspace Sampling. Then, we construct

random subspaces following the steps in NRS, as

shown in Fig.1. We have random subspaces

 in total, where each

contains features (and are defined as defined in

Subsection 3.1). Then for each feature , if it is

missing, then we sample from the corresponding his-

togram distribution and substitute the missing

item with the sampled value. Notice that one feature

will appear multiple times in all random subspaces

and we independently resample for each missing item

to impute every time it appears (thus can have differ-

ent sampled values). The pseudo code of RSS is

shown in Algorithm 1.

During training, we design a dynamic training

strategy where we resample all missing items at the

start of each epoch. In other words, we are changing

filled values for missing items dynamically, which dis-

tinguishes our algorithm from other imputation-based

methods[2, 13–15].

H ŷ

During inference, notice that our algorithm will

generate different outputs if we run it multiple times

for the same test instance, which is due to the ran-

dom sampling method for missing values. More specif-

ically, we resample the missing values and run the

model for times and in each time we generate

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 475

according to (2), as shown in Algorithm 1. However,

this is not a disadvantage but a benefit, because we

can run the single model multiple times and ensem-

ble these predictions. Compared with other ensemble

techniques which require training multiple models to

ensemble, e.g., multiple-imputation methods, ours us-

es a single model by running it multiple times, which

is far more resource-efficient. We will further study

the impact of our training and inference strategy in

ablation studies.

Algorithm 1. Random Subspace Sampling

Dtr = {(x(i), y(i))|i = 1, . . . , n} Dte = {(x(i)|i = n+ 1, . . . , n+m} f(·; θ)Input: training dataset , test dataset , network ,

 the total number of bins M, total training epochs T, test ensemble size H;

Ŷte = {ŷ(i)|i = n+ 1, . . . , n+m}Output: predicted labels on the test dataset;

P hist
j (j = 1, . . . , d) Dtr M1: Estimate histogram distributions on using bins in (3);

▷2: Training process:

t = 1, . . . , T3: for do

i = 1, . . . , n4: for do

x(i) {Xc|c = 1, . . . , C}5: Concatenate and reshape random permutations of and get 2D feature maps ;

c = 1, . . . , C6: for do

x
(i)
j ∈ Xc x

(i)
j == ?7: if and “ ” then

P hist
j Xc8: Sample from and substitute the missing position in with the sampled value;

9: end if

10: end for

f(·; θ)11: Train the network as normal;

12: end for

13: end for

▷14: Inference process:

i = n+ 1, . . . , n+m15: for do

h = 1, . . . , H16: for do

ŷ
(i)
h = (ŷ

(i)
h,1, . . . , ŷ

(i)
h,K) = f(x(i); θ)17: Sample for missing items as before and get the network output , as calculated in (2);

18: end for

ŷ(i) = argmaxk
∑H

h=1 ŷ
(i)
h,k

19: Ensemble predictions ;

20: end for

Ŷte = {ŷ(i)|i = n, . . . , n+m}21: return .

Sample

Sample

Sample

Sample

X
={ }

X
={ }

X
={ }

W
: -th

Conv Filter

Sample
Feature

Vector x
Sample

Depthwise Convolution

Concatenate Random
Permutations of x

Fully-Connected Layer

*

*

*

S

S

S

W

W

<
<

<

x = (x1, . . . , x5) x2 x5

nMul C = 5 X = {X1, . . . ,X5} ∗
Fig.1. RSS architecture. The input feature vector is , where and are missing and marked with diagonal lines.
For better illustration, we set to 1 and hence and . ‘‘ ’’ denotes the convolution operator.

476 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

Notice that the training and inference strategies

above are not limited to NRS and can also be ap-

plied into other architectures, e.g., multi-layer percep-

trons (MLP). In ablation studies, we show that 1) the

two strategies are effective in both NRS and MLP,

and 2) the inherent random subspace method is cru-

cial in our RSS since it produces larger improvements

than in MLP and consequently the highest accuracies

when combining with the above two strategies.

3.3 Analysis About Feature Interactions

XC

XC

x5 x1 x3 x4

Notice that when filling the missing values using

histogram random sampling, we are only considering

individual features without considering the interac-

tions between features. Most of the time the random-

ly generated values are not applicable to the sample

and now we discuss about how our method inherent-

ly utilizes feature interactions and filter out inappro-

priate values. Here we use the example in Fig.1 and

specifically we use the last subspace for illustra-

tion. As shown in Fig.1, includes one missing fea-

ture and three known features , and .

Hence, according to (1), we have:

SC = f
(
W C

1 x3 +W C
2 x1 +W C

3 x5 +W C
4 x4

)
,

W C(i, j) W C
2i+j

W C
3 > 0

SC

f(·)

where we abbreviate as in this case.

Without loss of generality, we assume . We

can notice that is activated after the ReLU func-

tion if and only if

x5 > − 1

W C
3

(W C
1 x3 +W C

2 x1 +W C
4 x4) ,

W C
3 < 0

x5 x1 x3 x4

f

where “>” becomes “<” if . In other words,

we inherently utilize interactions between missing fea-

ture and known features , and by a linear

combination and the non-linearity in .

W C

x5 SC

SC = 0

We update these weights during training and

inappropriate fill-in values will deactivate , i.e.,

. With more such random subspaces, ad-

justable weights and non-linearities, we can further

explore the interactions between features. During in-

ference, we can filter out incorrect fill-in values

through multiple sampling, thanks to such feature in-

teractions.

3.4 Analysis About Time Complexity

Now we analyze the time complexity of our

method as well as other comparison methods. As

n

m

d T

ttrain
tpre

tnet
ttest

mentioned before, the dataset contains training in-

stances and test instances, where each instance

contains features. We train all networks for

epochs. Notice that the total training time con-

tains two parts, i.e., the pre-processing time and

the network training time . Also, we denote the to-

tal test time as .

O(n)

tpre = O(nd)

tnet = O(nT) ttrain = tpre + tnet = O(nd+ nT)

ttest = O(m)

Mean Imputation. Now the imputation time for

each missing feature is (calculating the mean

value) and the total pre-processing time is

. The network training time is

 and . The

test time is .

k k

O(nd)

tpre = O(n2d)

ttrain = O(n2d+ nT)

ttest = O(mnd)

-NN Imputation. For the -NN imputation, the

imputation time for each instance is (calculat-

ing the distance for one instance) and the total pre-

processing time is (calculating the dis-

tance matrix). Hence, the total training time is

. During the inference stage, we

need to calculate the distance from the entire train-

ing set for each instance; hence the total test time is

.

O(n2d)

tpre = O(n2d2)

ttrain = O(n2d2 + nT)

O(md2)

MICE Imputation. Each feature is modeled as a

regression function of other features. Hence for each

feature, the pre-processing time is (solving the

regression) and the total time is . Hence,

the total training time is . Dur-

ing the inference stage, each feature is calculated by

using other features; hence the test time is .

tpre = O(nd)

tnet = O(nT + dnT)

ttrain = O(ndT)

ttest = O(md)

RSS. We only need to calculate the histogram dis-

tribution for each feature during the pre-processing;

hence . We need to sample for each miss-

ing feature during the training and hence our train-

ing cost is . Hence, the total train-

ing time is . We also need sampling

during the inference stage and the test time is

.

We will also empirically compare the running

speed of each method in Subsection 4.6.

4 Experimental Results

In this section, we experimentally investigate the

proposed method. First, we introduce the experimen-

tal settings and then we evaluate our method on 15

datasets. Then, we conduct ablation studies to inves-

tigate the impact of each component in RSS and also

conduct experiments to study the sensitivity of hyper-

parameters in RSS. Finally, we carefully compare the

performance of RSS with various combinations of dif-

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 477

ferent classifiers and imputation methods and also the

running speed of RSS with other imputation methods.

4.1 Experimental Settings

4.1.1 Datasets

Fifteen datasets, summarized in Table 1, are used

in the experiments. These are taken from the UCI

repository of Machine Learning Databases②. Each

dataset is presented in one row in Table 1, including

the number of instances, the number of feature di-

mensions, the number of classes, and the proportion

of missing values (PMV). The first six datasets suffer

from missing values in a “natural” way and the re-

sults on these datasets are shown in Table 2. In these

datasets, we do not know any information related to

the randomness of missing values, and thus we make

the assumption that missing values in these datasets

are distributed in a missing at random (MAR) way[22].

Fig.2 shows the histogram distributions of the first

four features on HTRU2, letter, and pendigits. As can

be seen, different features have different distributions

(which may be Gaussian, Uniform, bimodal, etc.) and

histograms are a suitable way to describe these vari-

ous distributions.

In order to test the performance of the proposed

method with datasets containing different levels of

missing values, the Missing Completely at Random

(MCAR) mechanism is utilized to introduce missing

values into the last nine complete datasets. Four dif-

ferent levels of missing values, 20%, 40%, 60%, and

70%, were used to introduce missing values into the

datasets. For each complete dataset and each level of

the four missing levels, we randomly separate the set

into two subsets, one with 70% examples for training,

and the other one with 30% examples for test. We re-

peat the random partition 10 times and report the av-

erage results.

×

Considering the small number of samples in the

first six incomplete datasets, we run 10 times in each

partition and therefore 100 (=10 10) results are ob-

tained for each of these datasets. For the last seven

complete datasets, we report both the full test accura-

cy (where we use the complete test set) and the miss-

ing test accuracy (where we use the artificially creat-

ed missing test set as in training) in Table 3. We on-

ly report missing test accuracy in ablation studies and

hyperparameter studies.

4.1.2 Implementation Details

The proposed RSS algorithm is compared with the

following methods.

1) Mean: missing features were replaced with

mean values of those features computed for all train-

ing samples.

k

k

k = 5

2) -NN: missing features were replaced with

mean values of those features from the nearest

training samples (we set).

3) MICE[2]: missing attributes were iteratively

filled using Multiple-Imputation by Chained Equa-

tion (MICE), where several imputations are drawn

from the conditional distribution of data by Markov

chain Monte Carlo techniques; we train five different

models on five imputed datasets generated by MICE

and combine their results.

4) GMM[7]: missing features were replaced with

Table 1. Dataset Statistics and Hyper-Parameter Settings

Dataset Statistics nMul

#Instances #Dim #Classes PMV (%)

mammographics 961 5 2 3.37 100

hepatitis 155 19 2 5.67 100

kidney disease 400 24 2 10.54 50

horse 368 22 2 23.80 50

pima 768 8 2 12.24 100

bands 539 19 2 5.38 100

dna 3 186 180 3 0.00 5

protein 24 387 357 3 0.00 2

chess-krkp 3 196 36 2 0.00 20

chess-krkopt 28 056 6 18 0.00 50

letter 20 000 16 10 0.00 100

HTRU2 17 898 9 2 0.00 100

yeast 1 484 8 14 0.00 100

segment 2 310 19 7 0.00 50

pendigits 10 992 10 16 0.00 50

Note: ‘‘#Instances’’ denotes the number of instances in the
dataset, ‘‘#Dim’’ denotes the number of feature dimensions,
and ‘‘#Classes’’ denotes the number of classes.

Table 2. Accuracy (%) on the First Six Incomplete Datasets

Dataset RSS Mean k-NN[10] MICE[2] GMM[7]

mammo. ±82.2 1.7 ±81.6 1.9 ±81.9 1.4 ±82.4 1.7 ±82.1 1.7

hepatitis ±82.3 5.1 ±82.1 5.6 ±82.0 4.9 ±81.9 5.1 ±81.6 6.0

kidney ±97.3 1.4 ±96.9 1.5 ±95.6 1.7● ±95.9 1.4● ±96.1 1.8●
horse ±82.3 3.5 ±80.3 3.2● ±80.6 3.5● ±80.8 3.6● ±78.9 3.5●
pima ±75.7 2.3 ±74.3 2.8● ±75.6 2.6 ±75.6 2.6 ±74.1 2.5●
bands ±70.4 2.7 ±68.4 3.2● ±68.3 3.0● ±68.5 3.1● ±68.0 3.3●
Note: We report the average accuracy and standard deviation
of 100 trails. ●/○ indicates that our RSS is significantly
better/worse than the corresponding method (pairwise t-tests
at 95% significance level). mammo.: mammographics.

478 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

②http://archive.ics.uci.edu/ml, Mar. 2024.

http://archive.ics.uci.edu/ml

values sampled from Gaussian Mixture models

(GMM) estimated from incomplete data using the

EM algorithm.

5) Softimpute[23]: missing features were replaced by

matrix completion by iterative soft thresholding of

SVD decompositions.

6) AFASMC[24]: missing features were replaced by

active feature acquisition with supervised matrix com-

pletion.

Since the last two matrix completion methods

treat the training matrix as a whole to complete

based on low-rank assumptions and cannot be ap-

plied when a test instance contains missing values, we

do not include them in Table 2 and the missing test

case in Table 3.

nPer = 1 dH/dW = 3

We use NRS as our classifier for all methods

above in our experiments. Following the settings in

[21], we build NRS by one depthwise convolution lay-

er and two FC layers with batch normalization

(BN)[25]. We set , and only set

nMul

M = 10 H = 20

1.0× 10−4

different for these datasets following the sug-

gestions in [21], as shown in Table 1. For RSS, we

have two extra hyperparameters and we set the num-

ber of bins and the test ensemble size

in all experiments unless otherwise specified. We split

10% of the training data for validation to determine

the total epochs separately for each dataset. All meth-

ods are trained under the same setting: NRS is

trained for 20 epochs–50 epochs, using Adam[26] as the

optimizer and initializing the learning rate to

.

k

To further validate the choice of the NRS archi-

tecture and confirm the effectiveness of our method,

we also compare RSS with other classification algo-

rithms, e.g., logistic regression, MLP and random

forests[18] using -NN, mean and MICE imputation in

Subsection 4.5. All our experiments were conducted

by using PyTorch on Tesla M40 GPUs and we make

our code publicly available③.

0 040 80 120 160
Feature Value

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

F
re

q
u
e
n
c
y

(a)

40 60 80 100
Feature Value

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

F
re

q
u
e
n
c
y

(b)

0.0 2.5 5.0 7.5
Feature Value

0.0

0.1

0.2

0.3

0.4

0.5

F
re

q
u
e
n
c
y

(c)

0 15 30 45 60
Feature Value

0.0

0.2

0.4

0.6

0.8

F
re

q
u
e
n
c
y

(d)

0 4 8 12
Feature Value

0.0

0.1

0.2

0.3

0.4

F
re

q
u
e
n
c
y

(e)

0 4 8 12
Feature Value

0.00

0.05

0.10

0.15

0.20

0.25
F
re

q
u
e
n
c
y

(f)

0 4 8 12
Feature Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
re

q
u
e
n
c
y

(g)

0 4 8 12
Feature Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
re

q
u
e
n
c
y

(h)

0 25 50 75 100

Feature Value

0.00

0.05

0.10

0.15

0.20

0.25

F
re

q
u
e
n
c
y

(i)

0 25 50 75 100

Feature Value

0.0

0.1

0.2

0.3

0.4

0.5

F
re

q
u
e
n
c
y

(j)

0 25 50 75 100

Feature Value

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

F
re

q
u
e
n
c
y

(k)

0 25 50 75 100

Feature Value

0.0

0.1

0.2

0.3

0.4

0.5

F
re

q
u
e
n
c
y

(l)

Fig.2. Visualization of histogram distributions. We plot the first four features on three complete datasets and we plot the histogram
distribution of each feature. The horizontal axis represents the specific value of each feature and the vertical axis shows how often
each different value occurs. (a)–(d) Feature 1–4 histogram distribution on HTRU2. (e)–(h) Feature 1–4 histogram distribution on let-
ter. (i)–(l) Feature 1–4 histogram distribution on pendigits.

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 479

③https://github.com/CupidJay/RSS-Missing-Data, Mar. 2024.

https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data

4.2 Results on Classification Performance

t

Table 2 shows the average and standard devia-
tion of classification accuracy on the first six incom-
plete datasets containing natural missing values. Ta-
ble 3 shows the results on the last seven complete
datasets with four levels of missing values. To com-
pare the classification performance, paired -test at
95% confidence interval is used to compare the classi-
fication achieved by RSS and the other methods in
Table 2 and Table 3.

t
Table 2 shows that RSS achieves significantly bet-

ter classification accuracy (under paired -tests) than
the other methods on kidney, horse, pima and bands,
where the first three have relatively high level of
missing values. However, there is no significant differ-
ence between RSS and the other methods on mammo-
graphics and hepatitis, where the level of missing val-
ues is low.

Table 3 shows that RSS achieves the highest accu-
racy for most of the times in both the missing test

and full test situations with the datasets containing
artificial missing values. As can be seen, our RSS
method significantly outperforms the other methods
in Table 3, since the win/tie/lose counts show that
our RSS wins for most times and seldom loses. It
demonstrates the effectiveness of RSS across datasets
with various dimensionalities and sizes, and under dif-
ferent levels of missing values. Also, RSS has a larger
edge over the other methods along with the increase
of the portion of missing values, which indicates that
our method is effective to cope with datasets contain-
ing numerous missing values.

k
It is clear from the results that RSS is generally

better than simple imputation methods (mean and -
NN), matrix completion methods (Softimpute and
AFASMC), and a model-based method (GMM),
which shows that our method reflects better uncer-
tainty and gets more reliable estimations than these
methods. Furthermore, RSS also gets better perfor-
mance than the Multiple-Imputation method (MICE),
which indicates that the inherent random subspace

Table 3. Accuracy (%) on the Last Seven Complete Datasets

Dataset PMV Full Test Accuracy (%) Missing Test Accuracy (%)

(%) RSS Mean k-NN[10] MICE[2] Softimpute[23] AFASMC[24] RSS Mean k-NN[10] MICE[2]

chess-krkp 20 98.8±0.4 98.5±0.6 98.6±0.5● 99.2±0.4○ 99.2±0.4○ 99.1±0.2○ 95.9±0.7 94.8±1.0● 95.3±0.6● 97.2±0.4○
40 97.4±0.6 96.8±0.6● 95.7±0.7● 97.4±0.6 97.8±0.4 98.1±0.3○ 88.3±1.0 86.8±0.8● 86.0±1.2● 90.9±0.9○
60 96.0±0.8 93.6±1.0● 91.0±1.2● 93.6±1.6● 94.6±0.5● 93.5±1.3● 80.6±0.9 77.5±1.3● 72.5±1.0● 80.5±0.8

70 94.2±1.0 90.9±2.1● 86.6±1.9● 89.0±1.6● 92.7±1.2● 89.6±1.8● 75.3±1.2 71.5±1.1● 66.1±1.8● 72.7±1.3●
chess-krkopt 20 67.2±0.6 60.4±0.6● 57.7±0.8● 63.6±0.7● 62.5±0.7● 62.8±0.8● 47.7±0.7 43.8±0.7● 40.3±0.5● 47.1±0.5

40 56.3±0.6 46.0±1.0● 41.1±0.8● 48.2±1.1● 48.5±0.7● 48.8±1.0● 32.4±0.6 28.3±0.6● 24.2±0.5● 28.7±0.6●
60 46.9±0.9 35.4±0.8● 32.1±1.0● 36.1±1.6● 37.3±1.0● 37.2±0.9● 23.7±0.6 19.9±0.6● 17.9±0.6● 19.7±0.6●
70 42.1±1.1 30.1±1.2● 26.1±0.8● 31.3±1.5● 31.4±1.3● 30.9±1.9● 21.0±0.6 17.3±0.5● 15.7±0.5● 17.6±0.3●

letter 20 95.5±0.3 94.3±0.4● 95.4±0.3 94.6±0.4● 94.8±0.4● 93.9±1.2● 84.6±0.5 81.0±0.5● 87.4±0.5○ 83.1±0.7●
40 91.7±0.6 88.6±0.4● 87.2±0.6● 88.2±0.6● 89.9±0.4● 85.8±0.7● 68.8±0.5 62.3±0.4● 51.1±1.0● 61.8±0.9●
60 84.7±0.8 76.7±0.9● 69.5±0.9● 78.4±1.1● 78.7±1.2● 66.4±2.6● 48.1±0.4 41.4±0.6● 26.3±0.7● 40.7±0.6●
70 78.6±0.4 68.5±1.1● 56.6±1.7● 66.7±1.8● 66.0±1.6● 50.8±3.4● 35.8±0.7 30.7±0.8● 18.6±0.4● 29.6±0.6●

HTRU2 20 97.9±0.2 97.8±0.2 97.9±0.1 97.8±0.2 97.9±0.2 97.9±0.1 97.7±0.1 97.5±0.2● 97.4±0.2● 97.6±0.2

40 97.5±0.2 97.5±0.2 97.5±0.2 97.4±0.3● 97.5±0.3 97.4±0.3● 97.1±0.2 97.1±0.2 96.6±0.2● 97.1±0.2
60 97.5±0.1 97.3±0.2● 97.3±0.3● 97.3±0.3● 97.3±0.2● 97.4±0.2 96.6±0.2 96.0±0.3● 95.3±0.3● 96.2±0.2●
70 97.3±0.3 97.1±0.5● 97.2±0.3● 96.9±0.3● 97.1±0.3● 97.2±0.2● 95.5±0.3 95.2±0.3● 94.7±0.3● 95.1±0.2●

yeast 20 59.6±1.9 58.0±1.8● 58.6±1.6 59.4±1.4 59.7±1.7 58.2±2.0● 52.7±1.9 53.0±2.6 51.1±1.7● 54.7±1.9
40 57.5±3.0 56.2±2.6● 56.4±3.0 56.9±3.3 57.2±3.1 56.7±3.0 46.9±2.6 45.7±2.6 43.3±2.2● 46.5±2.1

60 55.2±2.3 53.9±1.9 51.7±2.5● 52.4±2.7● 48.1±2.7● 54.2±2.0 40.8±2.7 40.3±1.9 36.6±1.9● 40.2±2.2

70 55.5±1.4 51.9±2.8● 49.6±2.9● 51.0±4.1● 45.0±1.8● 51.8±1.8● 39.2±1.6 37.7±2.0 34.4±1.8● 37.9±1.9

segment 20 95.8±0.8 95.1±1.3● 96.6±0.8○ 96.1±0.7 95.8±0.6 96.4±1.0○ 93.5±1.0 89.3±0.8● 94.1±0.8 93.8±0.6

40 93.9±1.1 91.9±1.1● 94.5±1.0 93.8±0.8 94.2±1.3 94.8±1.4 87.2±1.4 81.9±1.7● 79.8±1.5● 86.2±1.7

60 92.0±1.7 87.6±3.6● 85.8±2.8● 89.7±2.1● 91.1±1.4 91.6±1.4 76.0±1.4 71.1±1.2● 53.6±2.3● 75.0±2.6

70 89.3±3.1 85.5±2.9● 81.4±2.3● 84.6±3.1● 83.0±2.9● 87.5±1.7● 66.2±1.4 63.6±1.9● 44.6±1.7● 64.7±3.1

pendigits 20 99.3±0.1 99.1±0.2● 99.2±0.1● 99.3±0.1 99.3±0.1 98.9±0.1● 96.4±0.2 95.6±0.2● 97.9±0.3○ 97.2±0.3○
40 98.9±0.2 98.6±0.2● 98.4±0.2● 98.8±0.3 98.6±0.2● 97.5±0.5● 89.7±0.5 87.3±0.6● 81.6±0.7● 90.7±0.3○
60 97.7±0.4 97.3±0.4● 94.5±1.2● 96.9±0.8● 96.8±0.6● 93.3±1.0● 76.1±0.9 73.1±0.9● 59.7±0.9● 74.7±1.0●
70 96.1±0.9 95.9±0.7 90.7±1.2● 94.3±0.9● 94.5±0.7● 86.9±2.2● 65.0±0.8 62.6±0.9● 49.7±0.9● 61.7±1.2●

Win/Tie/Lose 0/28/0 23/5/0 21/6/1 19/8/1 18/9/1 19/6/3 0/28/0 23/5/0 25/1/2 12/12/4

Note: We report the average accuracy and standard deviation of 10 trails. ●/○ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-test at 95% significance level).

480 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

method together with the dynamic training and en-

semble testing strategy is effective. We will further

study the effectiveness of each component in RSS

through ablation studies and the sensitivity of hyper-

parameters in hyperparameter studies in Subsection

4.3 and Subsection 4.4. The accuracy curves of differ-

ent methods on different datasets during training are

shown in Fig.3. We can see that our RSS converges

well and the injected randomness during training does

not affect the convergence stability of RSS.

k

We also carefully study the running speed of RSS,

simple imputation methods (mean and -NN) and the

multiple-imputation method (MICE) in Subsection

4.6. The results show that RSS greatly saves the

training costs when compared with MICE, especially

when the feature dimensionality is high.

4.3 Ablation Studies

In this subsection, we conduct ablation studies on

the three components in RSS on three datasets, i.e.,

chess-krkp, HTRU-2, and letter.

1) Dynamic Training (DR). RSS resamples miss-

ing values dynamically at each epoch. For compar-

isons, we also study the static strategy where we only

sample at the first epoch and then fix them during

training.

2) Ensemble Testing (ET). RSS runs the model

multiple times and ensembles the results to get the fi-

nal prediction, and we also ablate this strategy.

3) NRS Architecture. The above two strategies

are not limited to NRS and can also be applied to

other architectures, e.g., MLP. We also conduct ex-

periments for MLP to further investigate our algo-

rithm. In this experiment, we adopt a typical MLP

with two ReLU hidden layers and we also use batch-

normalization for fair comparisons.

The experimental results are shown in Table 4

and we can have the following observations.

1) Both strategies DR and ET are effective in

RSS. From the vanilla baseline case 1, by using ei-

ther DR (case 2) or ET (case 3), we can get higher

accuracy on all the three datasets consistently. Final-

ly, by combining both strategies (case 4), we achieve

the best performance on all these datasets.

2) The above two strategies are generalizable. No-

tice that when we use MLP as our classifier, we are

operating only on the original space and we can com-

pare the performance of histogram random sampling

to fill in the vacant values instead of multiple sub-

spaces. Case 6 directly uses histogram random sam-

pling to fill in the missing values in the original fea-

ture vector while case 5 serves as the baseline. As can

be seen, histogram random sampling (our DR strate-

gy) also works when filling in the original feature

space. We also achieve the highest accuracies for

MLP when combining both strategies on chess-krkp

and letter. It indicates that our strategies can also be

applied into other architectures.

3) NRS serves as a strong baseline classifier. NRS

achieves better performance than MLP consistently

under all settings on all datasets. As introduced be-

fore, we use NRS as our classifier for all comparison

methods and we now show that NRS serves as a

0 10 20 30 40 50
Epoch

92

94

96

98

100

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

RSS (Ours)
Mean
-NN

RSS (Ours)
Mean
-NN

RSS (Ours)
Mean
-NN

RSS (Ours)
Mean
-NN

RSS (Ours)
Mean
-NN

RSS (Ours)
Mean
-NN

(a)

0 5 10 15 20 25 30
Epoch

40

45

50

55

60

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

(b)

0 20 40 60 80 100
Epoch

60

70

80

90

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

(c)

0 10 20 30 40 50
Epoch

(d)

0 5 10 15 20 25 30
Epoch

(e)

0 20 40 60 80 100
Epoch

(f)

85.0

87.5

90.0

92.5

95.0

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

20

30

40

50

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

50

60

70

80

90

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

Fig.3. Full test accuracy curve on chess-krkp, yeast and segment under different PMVs. (a) PMV=40% on chess-krkp. (b) PMV=
40% on yeast. (c) PMV=40% on segment. (d) PMV=70% on chess-krkp. (e) PMV=70% on yeast. (f) PMV=70% on segment.

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 481

strong baseline classifier.

4) The inherent random subspace method is cru-

cial in our algorithm. By comparing case 4 with case

1 and case 8 with case 5, the NRS architecture has

more improvements than MLP when combined with

the DR and ET strategies, especially on HTRU2. It

indicates that the inherent random subspace method

allows us to use multiple values to estimate one miss-

ing feature in different random subspaces, which pro-

vides us more robust and accurate estimations.

In short, the DR and ET strategies are effective

for both NRS and MLP. Combining these two strate-

gies with NRS has more improvements than MLP and

finally achieves the best performance on all these

three datasets, which explains again why we adopt

NRS in this paper.

4.4 Hyperparameters Studies

H nMul

M

In this subsection, we study the sensitivity of hy-

perparameters in RSS, namely, the test ensemble size

, the depth expansion rate , and the number

of bins in the histogram distribution. The experi-

mental results are shown in Table 5 and for better il-

lustration we plot the corresponding figures on

HTRU2 in Fig.4.

H H

H

H

Ensemble Size . Here we vary and keep oth-

er settings the same as before. Table 5 and Fig.4(a)

show that when grows, the accuracy also gets high-

er, which indicates that we can get more accurate

predictions by enlarging the ensemble size in our ET

strategy. It is also worth mentioning that in contrast

to other ensemble strategies, e.g., MICE, the model

size in our RSS remains unchanged as we increase ,

which saves a lot of computing and storage overhead.

nMul nMul

nMul

nMul

Expansion Rate . Here we vary and

other settings remain unchanged. The results in Ta-

ble 5 and Fig.4(b) show that when grows, the

average accuracy increases and the standard devia-

tion becomes smaller. It indicates that as

grows, more random subspaces and base learners are

integrated into our model; hence the estimation gets

more robust and accurate and the performance be-

comes better.

M

M

M M

M

Number of Bins . As known in density estima-

tion methods, the value of in the histogram distri-

bution plays an important role and we also study the

sensitivity of here. We only vary and the other

settings remain unchanged. As can be seen, the opti-

mal value of varies on different datasets, e.g., the

Table 4. Ablation Studies Using Different Strategies at Different Levels of Missing Values

Case Model Scheme Missing Test Accuracy (%)

DR ET chess-krkp HTRU2 letter

20% 40% 60% 70% 20% 40% 60% 70% 20% 40% 60% 70%

1 NRS × × 92.9±0.6 83.4±1.0 73.7±1.2 68.2±1.3 96.6±0.2 95.5±0.3 94.0±0.3 93.2±0.3 73.1±1.2 48.9±1.0 27.7±0.7 18.6±0.3

2 NRS ✓ × 94.3±0.5 87.0±1.0 78.4±1.0 73.4±1.6 97.3±0.1 96.9±0.2 95.7±0.2 94.8±0.2 82.9±0.6 66.1±0.5 44.9±0.4 33.1±0.6

3 NRS × ✓ 94.4±0.5 87.4±0.7 78.9±1.0 74.1±1.6 97.0±0.2 96.3±0.2 95.0±0.3 94.0±0.3 78.3±0.9 58.3±2.3 37.9±1.3 27.4±0.6

4 NRS ✓ ✓ 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7
5 MLP × × 88.3±1.0 77.6±1.7 66.3±1.1 59.8±1.7 96.9±0.2 95.9±0.2 93.7±0.2 92.5±0.3 63.5±0.9 37.4±0.7 18.1±0.5 11.7±0.4

6 MLP ✓ × 89.7±0.8 80.9±1.3 70.5±1.5 65.9±1.0 96.9±0.1 95.9±0.2 93.8±0.3 92.5±0.3 68.8±0.5 45.0±0.5 24.9±0.4 17.3±0.5

7 MLP × ✓ 92.2±0.5 84.7±0.9 74.7±1.3 68.5±1.8 97.2±0.1 96.5±0.3 94.4±0.3 93.2±0.3 77.0±0.6 55.3±0.5 31.8±0.6 21.3±0.6

8 MLP ✓ ✓ 93.7±0.3 87.3±0.5 78.0±1.0 73.5±1.6 97.2±0.1 96.4±0.2 94.5±0.3 93.1±0.4 80.1±0.5 60.4±0.6 37.8±0.6 27.6±0.7

Table 5. Hyperparameters Studies at Different Levels of Missing Values

Hyper-
Parameter

Missing Test Accuracy (%)

chess-krkp HTRU2 letter

20% 40% 60% 70% 20% 40% 60% 70% 20% 40% 60% 70%

H 1 95.3±0.5 87.0±1.0 78.4±1.0 73.4±1.6 97.3±0.1 96.9±0.2 95.7±0.2 94.8±0.2 82.9±0.6 66.1±0.5 44.9±0.4 33.1±0.6

5 95.8±0.7 87.9±1.0 80.2±0.9 75.1±1.4 97.4±0.1 96.9±0.2 95.8±0.3 94.9±0.2 84.3±0.6 68.5±0.4 47.2±0.4 35.4±0.7

10 95.9±0.7 88.1±0.9 80.6±0.8 75.4±1.2 97.4±0.1 97.0±0.2 96.3±0.3 95.0±0.2 84.5±0.5 68.6±0.5 47.8±0.3 35.7±0.7

20 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7
nMul 1 93.4±1.0 86.2±1.4 78.3±1.7 73.4±1.2 96.9±0.3 95.8±0.2 94.6±0.3 93.2±0.5 76.9±1.0 56.0±1.0 35.0±0.8 24.9±0.6

5 94.8±1.0 88.7±1.0 81.3±1.0 76.0±1.2 97.3±0.2 96.3±0.2 95.2±0.3 94.1±0.2 81.9±0.7 63.9±0.3 41.8±0.8 30.5±0.4

10 95.7±0.8 88.6±1.1 81.4±1.1 76.3±1.4 97.3±0.1 96.5±0.2 95.4±0.4 94.4±0.2 83.4±0.7 66.1±0.5 44.0±0.8 32.4±0.6

20 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.4±0.1 96.6±0.3 95.6±0.2 94.6±0.2 83.9±0.5 67.7±0.7 46.3±0.9 34.1±0.7
M 5 95.6±0.7 88.0±1.1 79.7±0.7 74.8±1.2 97.4±0.2 96.7±0.3 95.7±0.2 94.8±0.3 84.7±0.6 68.7±0.3 47.9±0.8 35.9±0.7

10 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7

50 95.9±1.0 88.4±1.0 80.9±1.1 76.0±1.2 97.3±0.1 96.5±0.2 95.4±0.4 94.4±0.2 84.5±0.6 68.8±0.6 47.8±0.7 36.1±0.6

482 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

M = 10
M = 50

M

M

case of achieves the highest accuracy on
HTRU2 while the case of performs the best
on chess-krkp. As mentioned before, we directly set

 to 10 for all datasets in this paper and it indicates
that we can get better performance by choosing more
appropriate on each dataset.

4.5 Comparisons Among Different Classifiers

In Subsections 4.2–4.4, we use NRS as classifier

k

for our RSS as well as other comparative imputation

methods and we train them under the same setting.

To further validate the effectiveness of our RSS, we

also compare RSS with other classification algorithms:

logistic regression (LR), MLP, and random forests

(RF), using mean, -NN and MICE imputation, re-

spectively. As in Subsection 4.2, we report both the

full test accuracy and missing test accuracy in Table

6 and Table 7, respectively. From Table 6 and Table

1 5 10 20

Ensemble Size

94.5

95.0

95.5

96.0

96.5

97.0

97.5

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

PMV=20% PMV=40% PMV=60% PMV=70%

(a)

1 5 10 20

Expansion Rate

93

94

95

96

97

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

(b)

5 10 50

Number of Bins

94.5

95.0

95.5

96.0

96.5

97.0

97.5

T
e
st

 A
c
c
u
ra

c
y
 (

%
)

(c)

H nMul M
H nMul M

Fig.4. Hyperparameters studies of , , and on HTRU2. We plot the average accuracy and standard deviation of 10 trails
at each point. (a) Ensemble size . (b) Expansion rate . (c) Number of bins .

Table 6. Full Test Accuracy (%) of Different Classifiers

Dataset PMV RSS LR MLP RF

(%) Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2]

chess-krkp 20 98.8±0.4 95.4±0.7● 95.5±0.8● 95.9±0.6● 98.6±0.5 98.6±0.4 99.1±0.3○ 97.6±0.5● 98.5±0.4● 98.0±0.7●
40 97.4±0.6 94.4±0.6● 94.4±0.7● 94.9±0.6● 97.1±0.5 96.1±1.0● 97.9±0.7 95.7±1.1● 97.0±0.8 96.5±0.7●
60 96.0±0.8 93.6±1.0● 91.7±1.1● 93.9±1.2● 95.2±0.8● 91.7±0.9● 94.9±0.8● 95.0±1.0● 95.0±1.1● 95.0±1.0●
70 94.2±1.0 92.8±1.1● 89.9±1.5● 92.7±1.2● 93.0±1.2● 88.5±2.6● 91.3±1.5● 94.6±0.7 93.3±1.5● 94.5±0.6

chess-krkopt 20 67.2±0.6 31.8±0.5● 31.8±0.4● 31.7±0.4● 58.3±0.8● 56.8±0.8● 60.6±0.9● 57.6±0.6● 56.1±0.6● 60.5±0.8●
40 56.3±0.6 30.8±0.4● 30.5±0.6● 31.1±0.4● 47.6±0.8● 43.5±0.6● 48.3±1.0● 48.3±0.7● 46.3±0.8● 50.2±0.7●
60 46.9±0.9 30.0±0.6● 28.7±0.8● 29.9±0.5● 38.6±0.9● 33.8±1.0● 38.2±1.0● 40.6±0.8● 37.6±0.9● 40.5±0.9●
70 42.1±1.1 29.8±0.5● 27.6±0.7● 29.4±0.7● 33.1±0.8● 28.2±0.8● 33.7±1.5● 36.6±0.6● 33.2±0.6● 36.1±0.8●

letter 20 95.5±0.3 70.7±0.4● 75.5±0.4● 73.6±0.4● 93.2±0.5● 94.8±0.3● 94.0±0.5● 93.4±0.3● 94.6±0.4● 93.6±0.4●
40 91.7±0.6 64.2±0.5● 66.9±0.6● 67.5±1.4● 86.7±0.6● 86.6±0.7● 87.5±0.7● 89.1±0.5● 88.3±0.6● 88.6±0.6●
60 84.7±0.8 58.4±0.5● 57.9±1.4● 61.5±1.7● 75.9±1.5● 71.5±0.9● 77.6±1.0● 81.6±0.6● 77.5±1.1● 80.5±0.8●
70 78.6±0.4 55.1±0.7● 53.4±1.1● 55.1±2.1● 68.2±0.8● 59.4±1.0● 66.5±2.5● 75.8±0.9● 70.4±1.0● 73.7±1.2●

HTRU2 20 97.9±0.2 97.7±0.1 97.7±0.2 97.9±0.2 97.8±0.2 97.8±0.2 97.8±0.1 97.9±0.1 97.9±0.2 98.0±0.1
40 97.5±0.2 97.3±0.2 97.3±0.2 97.5±0.2 97.4±0.2 97.5±0.2 97.5±0.3 97.7±0.2 97.7±0.2 97.7±0.2
60 97.5±0.1 96.3±0.2● 97.3±0.2● 97.5±0.4 97.4±0.2 97.4±0.2 97.3±0.3 97.8±0.1○ 97.6±0.1 97.8±0.1○
70 97.3±0.3 95.2±0.6● 97.1±0.2 96.5±1.9● 97.2±0.4 97.3±0.2 97.1±0.3 97.7±0.2○ 97.3±0.3 97.5±0.2

yeast 20 59.6±1.9 54.8±1.2● 53.8±1.2● 54.6±1.0● 58.6±1.8 58.3±1.5 59.4±1.9 60.0±2.6 59.0±1.8 60.4±2.0
40 57.5±3.0 53.0±2.7● 51.0±2.8● 50.9±2.7● 57.3±2.6 56.4±3.1 56.6±3.1 57.3±1.7 54.9±2.0● 57.1±2.1

60 55.2±2.3 47.9±1.6● 45.3±3.1● 46.1±1.1● 54.3±2.3 52.6±2.1● 52.7±1.4● 53.9±1.6 50.0±3.0● 52.5±2.4●
70 55.5±1.4 48.6±1.7● 45.9±2.7● 45.7±1.3● 53.7±1.5● 52.0±1.5● 52.1±3.5● 52.9±2.4● 50.4±2.0● 49.8±3.3●

segment 20 95.8±0.8 89.2±1.2● 91.6±1.0● 90.3±1.1● 93.8±1.1● 95.8±0.7 94.8±0.9● 96.5±0.9○ 97.2±0.8○ 96.5±0.7○
40 93.9±1.1 85.4±1.0● 89.9±1.4● 89.4±1.2● 90.9±2.3● 93.8±1.4 93.3±1.0 95.5±1.0○ 96.0±0.8○ 95.1±1.0○
60 92.0±1.7 79.9±1.6● 81.8±1.9● 87.4±1.9● 85.5±3.8● 86.1±2.2● 89.7±1.8● 93.9±1.0○ 92.5±0.7 92.8±1.3

70 89.3±3.1 78.2±1.2● 80.3±1.6● 83.3±2.4● 78.5±4.2● 83.2±1.4● 85.0±2.3● 92.5±1.0○ 90.0±1.5 90.8±2.2

pendigits 20 99.3±0.1 88.4±0.5● 93.5±0.3● 92.9±0.4● 99.1±0.2● 99.3±0.1 99.2±0.2 98.6±0.2● 98.9±0.1● 98.8±0.2●
40 98.9±0.2 84.7±0.7● 86.8±0.5● 90.0±0.6● 98.5±0.3● 98.6±0.2● 98.7±0.2 97.8±0.2● 98.0±0.2● 98.2±0.2●
60 97.7±0.4 83.0±0.5● 83.1±0.5● 84.9±1.4● 96.8±0.6● 96.3±0.4● 96.9±0.5● 95.5±0.5● 94.2±0.8● 96.4±0.4●
70 96.1±0.9 81.9±0.6● 81.5±0.9● 82.2±1.0● 95.8±0.7 93.2±0.8● 94.5±0.9● 93.4±0.8● 91.5±0.7● 93.0±0.7●

Win/Tie/Lose 0/28/0 26/2/0 25/3/0 25/3/0 18/10/0 18/10/0 17/10/1 16/6/6 18/8/2 17/8/3

Note: We report the average accuracy and standard deviation of 10 trails. ●/○ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-test at 95% significance level).

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 483

7 we can have the following conclusions.

1) There is no best classification algorithm in all

cases. For example, MLP achieves higher accuracies

than RF on chess-krkp when using the same imputa-

tion method but performs worse on letter.

k

PMV = 20%

2) There is no best imputation algorithm in all

cases. For example, -NN imputation performs the

best among the three imputation methods on letter,

segment, pendigits under low missing levels

() but achieves the lowest accuracy

when the missing level increases. Also, we can see

that when using the same classification algorithm,

mean imputation sometimes performs better than

MICE and sometimes performs worse, depending on

the specific dataset and the level of the missing rate.

3) Overall, our RSS method significantly outper-

forms the other methods, since the win/tie/lose

counts show that our RSS wins for most times and

seldom loses and it further demonstrates the effective-

ness of our method in these comparisons.

4.6 Speed Comparisons

k

In this subsection, we compare the running speed

of our RSS with other imputation methods: mean, -

NN and MICE. Notice that the feature dimensionali-

ty has a great influence on the running speed of dif-

ferent methods. Hence, we evaluate different methods

on one low-dimensional dataset yeast (8-dimensional)

as well as two more datasets with higher dimensional-

ities: dna (180-dimensional) and protein (357-dimen-

sional). We also take the influence of the proportion

of missing values (PMV) into considerations and we

set PMV to 20% and 60% for each dataset. All the

other training settings remain the same as before. For

the training/inference time, we count the total run-

ning time, which equals the sum of preprocessing time

(imputation time) and the network running time (net-

work total training/inference time). We report the av-

erage training/inference time and average accuracy of

10 trails in Table 8 (for accuracy, we also report the

Table 7. Missing Test Accuracy (%) of Different Classifiers

Dataset PMV RSS LR MLP RF

(%) Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2]

chess-krkp 20 95.9±0.7 90.8±0.6● 92.6±0.7● 94.1±0.7● 94.1±0.7● 95.2±0.5● 97.2±0.5○ 95.0±0.5● 95.6±0.5 96.5±0.8○
40 88.3±1.0 85.7±0.7● 85.8±0.8● 88.7±1.0 87.3±0.8● 86.9±0.7● 91.3±0.7○ 89.3±0.9○ 88.8±0.6 90.7±1.0○
60 80.6±0.9 78.5±0.8● 73.9±1.3● 80.2±1.0● 78.8±1.0● 73.1±1.0● 81.5±0.8 81.3±1.1 77.2±1.0● 82.0±1.0○
70 75.3±1.2 75.3±1.2 69.8±1.6● 75.3±1.0 73.5±1.3● 68.3±1.7● 74.3±0.7● 75.8±1.0 71.3±2.3● 76.2±0.8

chess-krkopt 20 47.7±0.7 28.1±0.5● 27.5±0.4● 28.8±0.4● 43.2±0.6● 40.4±0.7● 46.2±0.6● 43.7±0.5● 41.2±0.6● 47.0±0.7●
40 32.4±0.6 24.9±0.5● 23.2±0.5● 25.0±0.5● 29.6±0.6● 25.3±0.7● 29.9±0.6● 31.2±0.7● 26.5±0.5● 31.8±0.8●
60 23.7±0.6 21.8±0.6● 20.4±0.5● 21.7±0.5● 21.6±0.2● 19.2±0.6● 21.7±0.5● 22.8±0.4● 18.6±0.4● 23.1±0.2●
70 21.0±0.6 20.4±0.3● 18.9±0.4● 20.2±0.4● 19.1±0.5● 16.7±0.4● 18.7±0.8● 19.0±0.3● 16.2±0.4● 19.8±0.5●

letter 20 84.6±0.5 55.8±0.6● 70.5±0.8● 62.1±0.7● 78.9±0.6● 86.5±0.6○ 82.4±0.8● 84.4±0.4 87.8±0.6○ 83.9±0.6●
40 68.8±0.5 42.4±0.5● 41.0±0.6● 46.8±0.6● 60.8±0.6● 51.5±0.8● 61.5±0.7● 68.5±0.5 58.6±0.6● 65.5±0.7●
60 48.1±0.4 29.5±0.5● 23.6±0.8● 31.4±0.5● 40.3±0.5● 27.6±0.7● 40.7±0.7● 47.4±0.5● 35.6±0.4● 44.6±1.0●
70 35.8±0.7 22.9±0.3● 17.7±0.5● 23.3±0.5● 30.3±0.5● 19.7±0.5● 30.0±0.4● 34.5±0.6● 26.8±0.5● 32.7±0.7●

HTRU2 20 97.7±0.1 97.3±0.2● 97.2±0.2● 97.6±0.1 97.4±0.1● 97.4±0.1● 97.7±0.2 97.7±0.2 97.6±0.2 97.8±0.1
40 97.1±0.2 96.8±0.2● 96.6±0.2● 97.0±0.2 97.0±0.2 96.6±0.2● 97.1±0.2 97.4±0.2○ 96.9±0.2● 97.2±0.2

60 96.6±0.2 95.5±0.3● 95.2±0.2● 95.9±0.2● 96.0±0.3● 95.4±0.3● 96.1±0.2● 96.2±0.3● 95.5±0.3● 96.1±0.2●
70 95.5±0.3 94.6±0.2● 94.6±0.3● 94.7±0.2● 94.7±0.3● 94.7±0.2● 95.1±0.2● 95.2±0.2● 94.8±0.2● 95.0±0.1●

yeast 20 52.7±1.9 50.1±1.7● 48.8±1.9● 50.2±2.2● 52.6±2.0 51.6±1.8 53.9±1.8 53.1±1.5 51.2±0.9● 54.2±2.6
40 46.9±2.6 43.6±2.5● 41.0±1.8● 42.3±1.9● 47.2±2.1 44.1±1.6● 45.7±1.8 45.6±1.8● 43.5±2.2● 45.3±2.1●
60 40.8±2.7 37.4±1.8● 35.1±1.6● 38.2±1.5● 40.4±2.2 36.4±2.3● 40.7±1.7 37.7±1.6● 35.8±2.6● 37.7±1.1●
70 39.2±1.6 36.2±2.0● 34.2±3.0● 36.1±2.0● 39.1±1.0 35.9±2.8● 38.0±1.9● 33.7±2.2● 34.0±1.1● 35.0±1.3●

segment 20 93.5±1.0 82.6±1.7● 89.9±1.1● 87.3±1.0● 87.5±0.7● 93.7±1.0 92.1±0.7● 93.5±0.6 95.1±1.0○ 94.3±0.6○
40 87.2±1.4 74.8±1.2● 76.6±1.5● 80.9±1.5● 80.6±2.2● 79.6±2.2● 85.6±1.3● 89.8±1.1○ 85.1±1.4● 89.2±1.0○
60 76.0±1.4 63.2±1.1● 49.8±2.3● 69.1±1.9● 70.5±2.2● 54.9±2.6● 74.4±1.5● 82.0±1.7○ 65.0±1.9● 78.3±1.4○
70 66.2±1.4 56.4±2.0● 43.1±1.6● 59.8±2.9● 62.6±1.7● 46.5±1.7● 64.6±2.1● 73.8±1.0○ 56.3±1.9● 69.6±1.9○

pendigits 20 96.4±0.2 81.2±0.3● 91.9±0.6● 87.4±0.4● 95.0±0.4● 97.7±0.3○ 97.1±0.3○ 95.9±0.4● 97.5±0.3○ 96.8±0.2○
40 89.7±0.5 71.4±0.5● 70.4±0.7● 77.8±0.7● 87.4±0.6● 80.9±0.5● 90.8±0.5○ 89.4±0.4● 81.7±0.6● 89.2±0.5●
60 76.1±0.9 59.2±0.6● 51.5±0.8● 63.4±0.9● 72.5±0.5● 58.4±0.6● 74.9±1.2● 75.0±0.6● 60.8±0.9● 74.0±0.8●
70 65.0±0.8 51.0±0.8● 43.5±1.2● 52.4±1.1● 61.1±0.8 47.9±0.7● 61.9±1.2● 64.3±0.9● 51.0±0.8● 61.6±0.7●

Win/Tie/Lose 0/28/0 27/1/0 28/0/0 24/4/0 22/6/0 24/2/2 18/6/4 16/7/5 22/3/3 16/4/8

Note: We report the average accuracy and standard deviation of 10 trails. ●/○ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-test at 95% significance level).

484 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

standard deviation).

From Table 8 we can get the following observa-

tions.

k

1) The multiple-imputation method (MICE)

achieves better performance than single-imputation

methods (mean and -NN). However, the computing

resources are too expensive for mice, especially in the

training process. For example, on the 357-dimension-

al dataset protein, MICE takes about one day to fin-

ish the imputation process and it indicates that it is

not practical for many real-world applications with

even higher dimensionalities. In contrast, single-impu-

tation methods are efficient for training and inference

but they are not accurate enough.

2) Our method RSS has higher accuracies but a

slower running speed than single-imputation methods.

When compared with MICE, our method RSS has

higher accuracies in most cases. More importantly,

the training cost has been reduced a lot in contrast to

MICE, especially on the relatively high dimensional

datasets dna and protein.

k

3) With the increase of feature dimensionality, the

training time for -NN, MICE and RSS also increas-

es. However, the training overhead of mice increases

the most as the dimensionality increases among these

methods, which corresponds to the previous time

complexity analysis in Subsection 3.4.

4) In short, RSS has both higher accuracy and ef-

ficiency than the multiple-imputation method

(MICE). Furthermore, the current implementation of

RSS has not been carefully optimized and thus it has

the potential to be further accelerated.

5 Conclusions

In this paper, we proposed a random subspace

sampling method RSS for classification with missing

data. RSS enables us to use multiple values for each

missing feature in different random subspaces to re-

flect better uncertainty, which is very effective in

dealing with a large proportion of missing values. We

showed that RSS is robust to different levels of miss-

ing data and is more efficient than multiple imputa-

tion methods such as MICE[2]. We conducted experi-

ments on both incomplete and complete datasets un-

der different levels of missing values. Experimental re-

sults showed that RSS achieves superior performance

than other comparison methods and the advantage

will become larger with the increase of the missing

rate. In the future, we will further investigate our

method from a theoretical perspective.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 García-Laencina P J, Sancho-Gómez J L, Figueiras-Vidal

A R. Pattern classification with missing data: A review.

Neural Computing and Applications, 2010, 19(2): 263–

282. DOI: 10.1007/s00521-009-0295-6.

[1]

 White I R, Royston P, Wood A M. Multiple imputation

using chained equations: Issues and guidance for practice.

Statistics in Medicine, 2011, 30(4): 377–399. DOI: 10.1002/

sim.4067.

[2]

 Farhangfar A, Kurgan L A, Pedrycz W. A novel frame-

work for imputation of missing values in databases. IEEE

Trans. Systems, Man, and Cybernetics—Part A: Systems

and Humans, 2007, 37(5): 692–709. DOI: 10.1109/TSM-

CA.2007.902631.

[3]

 Juszczak P, Duin R P W. Combining one-class classifiers

to classify missing data. In Proc. the 5th International

Workshop on Multiple Classifier Systems, Jun. 2004, pp.92–

101. DOI: 10.1007/978-3-540-25966-4_9.

[4]

 Krause S, Polikar R. An ensemble of classifiers approach

for the missing feature problem. In Proc. the 2003 Inter-

[5]

Table 8. Speed Comparisons Between RSS and Other Methods

Dataset PMV (%) Method Train (s) Infer (s) Acc. (%)

yeast 20 RSS 69.15 0.83 52.7±1.9

Mean 6.09 0.01 53.0±2.6

k-NN[10] 7.27 0.54 51.1±1.7

MICE[2] 6.16 0.02 54.7±1.9
60 RSS 99.19 1.21 40.8±2.7

Mean 7.11 0.01 40.3±1.9

k-NN[10] 7.66 0.65 36.6±1.9

MICE[2] 6.74 0.03 40.2±2.2

dna 20 RSS 260.47 6.92 89.2±0.9
Mean 3.98 0.02 88.2±0.7

k-NN[10] 6.37 2.05 88.2±0.9

MICE[2] 13 973.27 21.88 89.1±0.8

60 RSS 1 061.29 29.24 75.8±0.8
Mean 3.73 0.02 73.7±1.1

k-NN[10] 69.50 1.40 69.5±1.4

MICE[2] 18 343.63 36.47 75.6±1.3

protein 20 RSS 2 474.18 107.89 63.9±0.4
Mean 14.13 0.34 62.5±0.4

k-NN[10] 347.47 150.88 61.4±0.7

MICE[2] 39 754.31 24.67 62.3±0.5

60 RSS 3 954.64 170.98 56.1±0.6
Mean 12.08 0.29 53.9±0.5

k-NN[10] 491.53 210.66 48.3±0.5

MICE[2] 82 562.93 118.68 55.7±0.6

Note: ‘‘Train (s)’’ and ‘‘Infer (s)’’ denote the average training
and inference time on each dataset in seconds. ‘‘Acc. (%)’’
denotes the average accuracy of 10 trails.

Yun-Hao Cao et al.: Random Subspace Sampling for Classification with Missing Data 485

https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1007/s00521-009-0295-6
https://doi.org/10.1002/sim.4067
https://doi.org/10.1002/sim.4067
https://doi.org/10.1109/TSMCA.2007.902631
https://doi.org/10.1109/TSMCA.2007.902631
https://doi.org/10.1109/TSMCA.2007.902631
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9
https://doi.org/10.1007/978-3-540-25966-4_9

national Joint Conference on Neural Networks, Jul. 2003,

pp.553–558. DOI: 10.1109/IJCNN.2003.1223406.

 Polikar R, DePasquale J, Syed Mohammed H, Brown G,

Kuncheva L I. Learn++. MF: A random subspace ap-

proach for the missing feature problem. Pattern Recogni-

tion, 2010, 43(11): 3817–3832. DOI: 10.1016/j.patcog.

2010.05.028.

[6]

 Ghahramani Z, Jordan M I. Supervised learning from in-

complete data via an EM approach. In Proc. the 6th In-

ternational Conference on Neural Information Processing

Systems, Nov. 1993, pp.120–127.

[7]

 Ahmad S, Tresp V. Some solutions to the missing feature

problem in vision. In Proc. the 5th International Confer-

ence on Neural Information Processing Systems, Nov.

1992, pp.393–400.

[8]

 Salzberg S L. Bookreview: C4.5: Programs for machine

learning by J. Ross Quinlan. Morgan Kaufmann Publish-

ers, Inc., 1993. Machine Learning, 1994, 16(3): 235–240.
DOI: 10.1007/BF00993309.

[9]

 Batista G E, Monard M C. A study of k-nearest neigh-

bour as an imputation method. Hybrid Intelligent Sys-

tems, 2002, 87(48): 251–260. DOI: 10.1109/METRIC.

2004.1357895.

[10]

 Schafer J L. Analysis of Incomplete Multivariate Data

(1st edition). CRC Press, 1997. DOI: 10.1201/978036780

3025.

[11]

 Zhao Y X, Udell M. Missing value imputation for mixed

data via Gaussian copula. In Proc. the 26th ACM

SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, Aug. 2020, pp.636–646. DOI: 10.

1145/3394486.3403106.

[12]

 Rubin D B. Multiple Imputation for Nonresponse in Sur-

veys (1st edition). John Wiley & Sons, Inc., 2004.

[13]

 Houari R, Bounceur A, Tari A K, Kecha M T. Handling

missing data problems with sampling methods. In Proc.

the 2014 International Conference on Advanced Network-

ing Distributed Systems and Applications, Jun. 2014,

pp.99–104. DOI: 10.1109/INDS.2014.25.

[14]

 Stekhoven D J, Bühlmann P. MissForest—Non-paramet-

ric missing value imputation for mixed-type data. Bioin-

formatics, 2012, 28(1): 112–118. DOI: 10.1093/bioinfor-

matics/btr597.

[15]

 Zhou Z H. Ensemble Methods: Foundations and Algo-

rithms (1st edition). CRC Press, 2012. DOI: 10.1201/

b12207.

[16]

 Ho T K. The random subspace method for constructing

decision forests. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, 1998, 20(8): 832–844. DOI: 10.1109/34.

709601.

[17]

 Breiman L. Random forests. Machine Learning, 2001,

45(1): 5–32. DOI: 10.1023/A:1010933404324.

[18]

 Sharpe P K, Solly R J. Dealing with missing values in

neural network-based diagnostic systems. Neural Comput-

ing & Applications, 1995, 3(2): 73–77. DOI: 10.1007/BF

01421959.

[19]

 Jiang K, Chen H X, Yuan S M. Classification for incom-[20]

plete data using classifier ensembles. In Proc. the 2005 In-

ternational Conference on Neural Networks and Brain,

Apr. 2005, pp.559–563. DOI: 10.1109/ICNNB.2005.1614675.

 Cao Y H, Wu J X, Wang H C, Lasenby J. Neural ran-

dom subspace. Pattern Recognition, 2021, 112: Article

No. 107801. DOI: 10.1016/j.patcog.2020.107801.

[21]

 Little R J A, Rubin D B. Statistical Analysis with Miss-

ing Data (3rd edition). John Wiley & Sons, Inc., 2019.

[22]

 Mazumder R, Hastie T, Tibshirani R. Spectral regulariza-

tion algorithms for learning large incomplete matrices.

The Journal of Machine Learning Research, 2010, 11(80):

2287–2322.

[23]

 Huang S J, Xu M, Xie M K, Sugiyama M, Niu G, Chen S

C. Active feature acquisition with supervised matrix com-

pletion. In Proc. the 24th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

Jul. 2018, pp.1571–1579. DOI: 10.1145/3219819.3220084.

[24]

 Ioffe S, Szegedy C. Batch normalization: Accelerating

deep network training by reducing internal covariate

shift. In Proc. the 32nd International Conference on Ma-

chine Learning, Jul. 2015, pp.448–456.

[25]

 Kingma D P, Ba J. Adam: A method for stochastic opti-

mization. In Proc. the 3rd International Conference on

Learning Representations, May 2015.

[26]

Yun-Hao Cao is currently a Ph.D.

candidate in the Department of Com-

puter Science and Technology in Nan-

jing University, Nanjing. He received

his B.S. degree in computer science

and technology from Nanjing Universi-

ty, Nanjing, in 2018. His research in-

terests are computer vision and machine learning.

Jian-Xin Wu is currently a profes-

sor in the School of Artificial Intelli-

gence at Nanjing University, Nanjing,

and is associated with the State Key

Laboratory for Novel Software Tech-

nology, Nanjing. He received his B.S.

and M.S. degrees from Nanjing Uni-

versity, Nanjing, in 1999 and 2002 respectively, and his

Ph.D. degree from the Georgia Institute of Technology,

Atlanta, in 2009, all in computer science. He has served

as a senior area chair for CVPR, ICCV, ECCV, AAAI

and IJCAI, and as an associate editor for the IEEE

Transactions on Pattern Analysis and Machine Intelli-

gence. His research interests are computer vision and

machine learning.

486 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1109/IJCNN.2003.1223406
https://doi.org/10.1016/j.patcog.2010.05.028
https://doi.org/10.1016/j.patcog.2010.05.028
https://doi.org/10.1007/BF00993309
https://doi.org/10.1007/BF00993309
https://doi.org/10.1007/BF00993309
https://doi.org/10.1109/METRIC.2004.1357895
https://doi.org/10.1109/METRIC.2004.1357895
https://doi.org/10.1201/9780367803025
https://doi.org/10.1201/9780367803025
https://doi.org/10.1145/3394486.3403106
https://doi.org/10.1145/3394486.3403106
https://doi.org/10.1109/INDS.2014.25
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1201/b12207
https://doi.org/10.1201/b12207
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF01421959
https://doi.org/10.1007/BF01421959
https://doi.org/10.1109/ICNNB.2005.1614675
https://doi.org/10.1016/j.patcog.2020.107801
https://doi.org/10.1145/3219819.3220084

	1 Introduction
	2 Related Work
	2.1 Traditional Methods for Missing Data
	2.2 Ensemble Methods for Missing Data

	3 Random Subspace Sampling
	3.1 NRS Recap
	3.2 Proposed Method
	3.3 Analysis About Feature Interactions
	3.4 Analysis About Time Complexity

	4 Experimental Results
	4.1 Experimental Settings
	4.1.1 Datasets
	4.1.2 Implementation Details

	4.2 Results on Classification Performance
	4.3 Ablation Studies
	4.4 Hyperparameters Studies
	4.5 Comparisons Among Different Classifiers
	4.6 Speed Comparisons

	5 Conclusions
	Conflict of Interest
	References

