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Abstract    Many  real-world  datasets  suffer  from  the  unavoidable  issue  of  missing  values,  and  therefore  classification

with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors. In this

paper, we propose a random subspace sampling method, RSS, by sampling missing items from the corresponding feature

histogram distributions  in  random subspaces,  which  is  effective  and efficient  at  different  levels  of  missing  data.  Unlike

most established approaches, RSS does not train on fixed imputed datasets. Instead, we design a dynamic training strate-

gy where the filled values change dynamically by resampling during training. Moreover, thanks to the sampling strategy,

we design an ensemble testing strategy where we combine the results of multiple runs of a single model, which is more effi-

cient and resource-saving than previous ensemble methods. Finally, we combine these two strategies with the random sub-

space method, which makes our estimations more robust and accurate. The effectiveness of the proposed RSS method is

well validated by experimental studies.

Keywords    missing data, random subspace, neural network, ensemble learning

  

1    Introduction

Classification  is  one  of  the  most  important  tasks

in  machine  learning  and  data  mining.  Many  algo-

rithms have been proposed to deal with classification

problems,  but the majority of  them require complete

data  and  cannot  be  directly  applied  to  data  with

missing  values.  Even  for  algorithms  that  can  cope

with incomplete data, missing values can often result

in large classification errors[1].  Unfortunately,  missing

values are a common issue in numerous real-world ap-

plications.  For  example,  45%  of  the  datasets  in  the

UCI machine learning repository①, which is one of the

most  popular  benchmark  databases,  contain  missing

values.

The  simplest  approach  for  dealing  with  missing

values  is  to  ignore  those  instances  with  missing  at-

tributes.  Commonly  referred  to  as  the  removal  ap-

proaches,  such  techniques  are  clearly  suboptimal

when  a  large  portion  of  the  data  has  missing  at-

tributes,  and  of  course  infeasible,  if  each  instance  is

missing  at  least  one  or  more  features.  A  more  prag-

matic  approach  commonly  used  to  accommodate

missing data is to use imputation methods to substi-

tute  missing  values  with  plausible  values.  For  exam-

ple, mean imputation replaces all missing values in a

feature by the average of existing values in the same

feature. Imputation can provide complete data which

can then be used by any classification algorithm. Sin-

gle-imputation methods such as mean imputation are

often  efficient  but  they  are  not  accurate  enough.  In

contrast, multiple-imputation methods such as [2] cre-

ate multiple imputed datasets to reflect better the un-

certainty  in  incomplete  data.  They  are  usually  more

accurate  but  computationally  expensive[3].  It  remains

a  challenge  to  determine  how  to  combine  classifica-

tion algorithms and imputation in a way that is both

effective and efficient.

With the rapid development of ensemble learning,

there have also been ensemble methods for classifica-

tion  with  missing  data[4].  For  example,  Krause  and

Polikar[5] trained an ensemble  of  base  classifiers  with
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random  subsets  of  features  to  classify  with  missing

data.  These  methods  build  multiple  classifiers  in  the

training process and then applicable classifiers are se-

lected to classify each incomplete instance during in-

ference. However, existing ensemble methods for clas-

sification with missing data often cannot work well on

datasets with numerous missing values[6]. More impor-

tantly,  they  cannot  guarantee  to  classify  all  incom-

plete  instances.  Hence,  how  to  develop  an  ensemble

method that is effective even when the data contains

many missing values is still a challenge.

In this paper, we take a step towards designing an

efficient  and  effective  method  at  different  levels  of

missing data,  by combining the advantages of  multi-

ple-imputation  and  ensemble  learning.  We  propose

the  Random  Subspace  Sampling  (RSS)  method  for

classification  with  missing  data,  which  first  con-

structs different random subspaces and corresponding

base  learners.  Then,  for  each  missing  item  in  each

random subspace, we directly sample from the corre-

sponding feature histogram distribution to fill in. Dur-

ing  the  training  stage,  we  design  a  dynamic  training

strategy  where  we  resample  and  probabilisitically

change the filled value for each missing item. During

the  inference  stage,  thanks  to  our  sampling strategy,

we design an ensemble testing strategy where we com-

bine  the  results  of  multiple  runs  of  a  single  model,

which  is  efficient  and  effective.  In  contrast  to  multi-

ple-imputation methods which need iterative steps to

impute,  ours  is  more  efficient  by  sampling  directly.

Moreover,  the  dynamic  training  strategy  distinguish-

es our method from most established approaches that

train on fixed data after imputation.

Experimental  results  validate  the  effectiveness  of

RSS. We achieve superior performance on six incom-

plete  datasets  with  inherent  missing  values  and  nine

complete  datasets  at  four  levels  of  artificially  intro-

duced missing values. Furthermore, we carefully study

the  impact  of  each  component  in  RSS through abla-

tion studies and the sensitivity of hyperparameters. 

2    Related Work

This section discusses related work, including tra-

ditional  and ensemble methods for classification with

missing data. 

2.1    Traditional Methods for Missing Data

There  are  four  major  approaches  to  addressing

classification  with  missing  data:  the  removal  ap-

proach, the model-based approach, the machine learn-

ing approach, and the imputation approach[1]. The re-

moval  approach  simply  deletes  all  instances  contain-

ing  missing  values,  which  is  limited  to  datasets  with

only a few missing values in the training data and no

missing values during inference. The model-based ap-

proach  generates  a  data  distribution  model  from the

input data.  One of  the most used approaches in this

category  is  the  mixture  models  trained  with  the  ex-

pectation-maximization  (EM)  algorithm.  Ghahra-

mani  and  Jordan  trained  Gaussian  mixture  models

(GMM)  on  incomplete  data  using  the  EM

algorithm[7].  Ahmad  and  Tresp[8] proposed  Bayesian

techniques  for  estimating  class  probabilities  from  in-

complete  data  using  neural  networks.  Although  this

approach  can  classify  both  complete  and  incomplete

instances,  it  requires  making  assumptions  about  the

joint  distribution  of  all  features  in  the  model[1].  The

machine  learning  approach  makes  classifiers  that  are

able  to  directly  classify  incomplete  datasets,  e.g.,

C4.5[9].  However,  this  approach  usually  suffers  from

limited classification accuracies.

k

L

L

The most-used approach to classification with in-

complete data is to use imputation methods to trans-

form incomplete data into complete data before build-

ing a classifier in the training process or classifying a

new  incomplete  instance  in  the  application  process.

This  approach  has  the  advantage  that  the  imputed

complete data can be used by any classification algo-

rithm.  Single-imputation  methods  such  as  mean  and

-NN imputation[10] provide a simple missing data im-

putation but under-represent the variability in the da-

ta[11].  Zhao  and  Udell[12] developed  an  approximate

EM algorithm to estimate copula parameters from in-

complete mixed data. Instead of filling in a single val-

ue  for  each  missing  one,  multiple-imputation

methods[2, 13–15] impute the missing values for  times

to produce  complete datasets using an appropriate

model  that  incorporates  random  variation.  Multiple-

imputation  methods  have  become  more  and  more

popular  because  they  reflect  better  uncertainty  and

often  yield  better  performance.  However,  they  are

computationally  very  expensive.  Despite  sharing  the

similarity  that  our  method also  uses  multiple  plausi-

ble values for each missing item to reflect better un-

certainty,  our  method  differs  from  multiple-imputa-

tion methods in at least three aspects. 1) We directly

sample from the estimated histogram distribution for

missing values, which is far more efficient than the it-
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erative  steps  in  multiple-imputation  methods.  2)  By

using the ensemble testing strategy, we can ensemble

multiple  predictions  without  the  need  to  generate

multiple  datasets  and  train  multiple  models.  3)  We

adopt  a  novel  dynamic  training  strategy  where  the

imputed  values  dynamically  change  during  training

and  it  distinguishes  our  method  from  previous  ap-

proaches[2, 10–15]. 

2.2    Ensemble Methods for Missing Data

Ensemble learning is a powerful learning paradigm

which constructs a set of base classifiers for classifica-

tion and it has become the choice for many industrial

applications  and  data  science  projects[16].  The  Ran-

dom  Subspace  Method  (RSM),  which  was  originally

proposed  by  Ho[17],  is  the  pillar  of  many  ensemble

methods,  e.g.,  random  forests[18].  In  RSM,  classifiers

are  trained  by  using  different  random subsets  of  the

features, allowing classifiers to err in different sub-do-

mains of the feature space.

Ensemble  methods,  especially  RSM,  have  also

been used for classification with missing data. One of

the  earliest  studies  using  ensembles  for  classification

appeared  in  [19],  where  four  neural  networks  were

built to address classification with a thyroid database

consisting of two incomplete features. Krause and Po-

likar[5] trained  an  ensemble  of  base  classifiers  with

random  subsets  of  features  to  classify  with  missing

data. In [20], the incomplete dataset is divided into a

group of complete sub-datasets, which is then used as

the  training  sets  for  neural  networks.  In  these  ap-

proaches,  when  an  incomplete  instance  needs  to  be

classified, only those classifiers trained with those fea-

tures  that  are  available  in  the  instance  are  used  to

classify the instance. Although these methods are able

to  cope  with  incomplete  data  to  some  extent,  they

usually  do  not  obtain  good  accuracy  when  datasets

contain a large number of missing values. The under-

lying  reason  is  that  the  complete  sub-datasets  often

only have a small number of instances for base classi-

fiers  to  train  on  when  the  datasets  include  a  large

number  of  missing  values.  Moreover,  they  cannot

guarantee  to  classify  all  incomplete  instances,  espe-

cially  when  data  contains  many  missing  values.  In

contrast,  our method differs  as  follows.  1)  We devel-

op our method from NRS[21], which implements RSM

in  the  context  of  neural  networks  and  enables  our

method to enjoy the benefits of both ensemble learn-

ing  and  representation  learning.  2)  All  instances  are

used in the training of each base classifier, which en-

sures that we make full use of all information. 3) Our

method can classify all incomplete instances well even

when the dataset contains many missing values. 

3    Random Subspace Sampling

In this section, we propose the Random Subspace

Sampling (RSS) method. Recently, Cao et al.[21] have

proposed  a  neural  random  subspace  method  NRS,

which  implements  the  random  subspace  idea  in  the

context  of  neural  networks  and has  achieved impres-

sive results on various tasks. In this paper, we devel-

op our method based on NRS. First, we introduce the

notation used in this paper. We then revisit the NRS

method and introduce our RSS method.

D = {(x(i), y(i))|i = 1, . . . , n}
x(i) ∈ Rd

y(i) ∈ {1, . . . , K} n

d

K x(i)

d (x(i)
1 ,

x(i)
2 , . . . , x(i)

d ) x(i)
j

j ?

Let  denote a dataset,

where  each  represents  an  input  instance

with  its  associated  label ,  is  the

number of instances,  is the number of features, and

 is the number of classes. Each instance  is rep-

resented  by  a -dimensional  feature  vector 

,  where  is either a valid value of the

-th  feature,  or  the  value “ ’’,  which  means  that  its

value is unknown (a missing value). 

3.1    NRS Recap

nMul

dH/dW

nPer d

x

q = dH × dW × nMul

x d q

X ∈ RdH×dW×C C = nMul × d X

X = {Xc|c = 1, . . . , C}
Xc g = dH × dW

C

C

X S

Sc (c = 1, . . . , C)

c Xc

NRS  has  three  hyper-parameters,  namely,  the

depth expansion rate , the height/width expan-

sion  rate ,  and  the  number  of  channels  per

group in the group convolution . For a -dimen-

sional  feature  vector ,  NRS  first  generates

 randomly  permuted  vectors

from , each of which is -dimensional. Then, these 

feature  vectors  are  arranged  into  an  order-3  tensor

,  where .  includes  a

set of 2D feature maps . Each

feature  map  consists  of  features,

which  are  randomly  selected  from  the  original  fea-

tures, that is, it is a random subspace. Hence,  fea-

ture maps correspond to  random subspaces. Then,

a  depthwise  group  convolution  plus  the  subsequent

ReLU non-linearity is acted upon  to get , where

each   represents  the  output  for  the

-th random subspace : 

Sc = f

(∑
i

∑
j

Xc(i, j)W c(i, j)

)
, (1)

f(·) W cwhere  denotes the ReLU function and each 
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(c = 1, . . . , C) c

{Sc|c = 1, . . . , C}

 denotes the weights of the -th depth-

wise convolution filter. Finally, a fully-connected lay-

er  and  a  softmax layer  are  used  to  combine  all  base

classifiers’ outputs  for classification: 

ŷk =
C∑

c=1

Scw
FC
ck , (2)

wFC C ×K

dH/dW = 3

nPer = 1

where  denotes the weight matrix (of size )

of the fully-connected layer. We set  and

 as done in [21] in this paper.

In  short,  NRS  implements  the  random  subspace

idea in neural networks both efficiently and effective-

ly. Hence, we develop our algorithm on the basis of it

and will further study the impact of the selected NRS

architecture. 

3.2    Proposed Method

Now,  we  introduce  our  random  subspace  sam-

pling algorithm, which mainly contains three steps.

1) Estimating  Histogram  Distribution.  First,  we

estimate  the  histogram  distribution  individually  at

each  feature  dimension,  which  will  be  introduced

next.

2) Constructing  Random  Subspaces.  Then,  we

construct random subspaces following NRS.

3) Sampling  for  Missing  Features.  To  handle  the

missing  data  problem,  we  sample  from  the  corre-

sponding histogram distribution for each missing item

individually  in  each  random subspace  and  substitute

it with the sampled value.

xj

xj ∈ [a, b] pj(x)

[a, b]

[a, b]

M

Histogram  Distribution.  We  calculate  the  his-

togram  distribution  for  each  feature  individually  in

the training set and we disregard all missing values at

this  feature  dimension  when  counting.  Each  feature

 can  be  either  a  categorical  or  a  continuous  vari-

able  and  the  histogram  can  handle  both  situations

well.  Next  we  consider  the  continuous  situation  and

assume that , and thus  is non-zero on-

ly within .  The histogram is to partition the set

 into  several  bins  and  use  the  count  of  features

falling  into  the  bin  as  a  density  estimate.  When  we

have  bins, this yields a partition: 

B1 =

[
a, a+

b− a

M

)
, . . . ,

BM =

[
a+

(M − 1)(b− a)

M
, b

]
.

x ∈ BlThen,  for  a  given  point ,  the  density  estimate

from the histogram will be 

p̂j(x) =
M

n(b− a)

n∑
i=1

I(x(i)
j ∈ Bl) ,

I(·)

x x ∈ Bl

where  is the indicator function. Note that a miss-

ing  value  does  not  belong  to  any  bin.  Then,  for  any

given point , the probability of  is 

P (x ∈ Bl) =

∫
Bl

p̂j(x)dx =
1

n

n∑
i=1

I(x(i)
j ∈ Bl) .

Bl

j j = 1, 2, . . . , d

We use  the  average  value  of  the  endpoints  in 

as  a  representative;  hence  we  define  the  histogram

distribution of the -th feature ( ) as 

P hist
j

(
x = a+

(2l − 1)(b− a)

2M

)
=

1

n

n∑
i=1

I(x(i)
j ∈ Bl) ,

(3)

l = 1, 2, . . . ,Mwhere .

P hist
j

Proposition 1.  is  a  valid  probability  distribu-
tion. ∫

x
phistj (x)dx =

∑n

i=1

∑M

l=1
I(x(i)

j ∈ Bl)/n = 1

P hist
j (x) ⩾ 0

Proof. 
and obviously we have . □

P hist
j (x)

j

We use the histogram distribution  ((3)) to

sample  the -th  feature  if  it  is  missing  in  the  subse-

quent training and inference processes.

C

X1, . . . ,XC Xc (c = 1, . . . , C)

g C g

xj ∈ Xc

P hist
j

Random  Subspace  Sampling.  Then,  we  construct

random  subspaces  following  the  steps  in  NRS,  as

shown  in Fig.1.  We  have  random  subspaces

 in  total,  where  each  

contains  features (  and  are defined as defined in

Subsection 3.1). Then for each feature , if it is

missing,  then  we  sample  from the  corresponding  his-

togram  distribution  and  substitute  the  missing

item with the sampled value. Notice that one feature

will  appear  multiple  times  in  all  random  subspaces

and we independently resample for each missing item

to impute every time it appears (thus can have differ-

ent  sampled  values).  The  pseudo  code  of  RSS  is

shown in Algorithm 1.

During  training,  we  design  a  dynamic  training

strategy  where  we  resample  all  missing  items  at  the

start of each epoch. In other words, we are changing

filled values for missing items dynamically, which dis-

tinguishes our algorithm from other imputation-based

methods[2, 13–15].

H ŷ

During  inference,  notice  that  our  algorithm  will

generate different outputs if we run it multiple times

for  the  same  test  instance,  which  is  due  to  the  ran-

dom sampling method for missing values. More specif-

ically,  we  resample  the  missing  values  and  run  the

model  for  times  and  in  each  time  we  generate 
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according to  (2),  as  shown in Algorithm 1.  However,

this  is  not  a  disadvantage  but  a  benefit,  because  we

can  run  the  single  model  multiple  times  and  ensem-

ble these predictions.  Compared with other ensemble

techniques  which  require  training  multiple  models  to

ensemble, e.g., multiple-imputation methods, ours us-

es a single model by running it multiple times, which

is  far  more  resource-efficient.  We  will  further  study

the  impact  of  our  training  and  inference  strategy  in

ablation studies.

        
Algorithm 1. Random Subspace Sampling

Dtr = {(x(i), y(i))|i = 1, . . . , n} Dte = {(x(i)|i = n+ 1, . . . , n+m} f(·; θ)Input: training dataset , test dataset , network ,

  the total number of bins M, total training epochs T, test ensemble size H;

Ŷte = {ŷ(i)|i = n+ 1, . . . , n+m}Output: predicted labels  on the test dataset;

P hist
j (j = 1, . . . , d) Dtr M1: Estimate histogram distributions   on  using  bins in (3);

▷2:  Training process:

t = 1, . . . , T3: for  do

i = 1, . . . , n4:   for  do

x(i) {Xc|c = 1, . . . , C}5:   Concatenate and reshape random permutations of  and get 2D feature maps ;

c = 1, . . . , C6:   for  do

x
(i)
j ∈ Xc x

(i)
j == ?7:   if  and “ ” then

P hist
j Xc8:   Sample from  and substitute the missing position in  with the sampled value;

9:   end if

10:   end for

f(·; θ)11:   Train the network  as normal;

12:   end for

13: end for

▷14:  Inference process:

i = n+ 1, . . . , n+m15: for  do

h = 1, . . . , H16:   for  do

ŷ
(i)
h = (ŷ

(i)
h,1, . . . , ŷ

(i)
h,K) = f(x(i); θ)17:   Sample for missing items as before and get the network output , as calculated in (2);

18:   end for

ŷ(i) = argmaxk
∑H

h=1 ŷ
(i)
h,k

19:   Ensemble predictions ;

20: end for

Ŷte = {ŷ(i)|i = n, . . . , n+m}21: return .
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For better illustration, we set  to 1 and hence  and . ‘‘ ’’ denotes the convolution operator.
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Notice  that  the  training  and  inference  strategies

above  are  not  limited  to  NRS  and  can  also  be  ap-

plied into other architectures, e.g., multi-layer percep-

trons (MLP). In ablation studies, we show that 1) the

two  strategies  are  effective  in  both  NRS  and  MLP,

and 2) the inherent random subspace method is  cru-

cial in our RSS since it produces larger improvements

than in MLP and consequently the highest accuracies

when combining with the above two strategies. 

3.3    Analysis About Feature Interactions

XC

XC

x5 x1 x3 x4

Notice  that  when  filling  the  missing  values  using

histogram random sampling,  we  are  only  considering

individual  features  without  considering  the  interac-

tions between features. Most of the time the random-

ly  generated  values  are  not  applicable  to  the  sample

and now we discuss about how our method inherent-

ly utilizes feature interactions and filter out inappro-

priate  values.  Here  we  use  the  example  in Fig.1 and

specifically we use the last  subspace  for  illustra-

tion. As shown in Fig.1,  includes one missing fea-

ture  and  three  known  features ,  and .

Hence, according to (1), we have: 

SC = f
(
W C

1 x3 +W C
2 x1 +W C

3 x5 +W C
4 x4

)
,

W C(i, j) W C
2i+j

W C
3 > 0

SC

f(·)

where  we abbreviate  as  in  this  case.

Without  loss  of  generality,  we  assume .  We

can notice that  is activated after the ReLU func-

tion  if and only if 

x5 > − 1

W C
3

(W C
1 x3 +W C

2 x1 +W C
4 x4) ,

W C
3 < 0

x5 x1 x3 x4

f

where “>” becomes “<” if .  In  other  words,

we inherently utilize interactions between missing fea-

ture  and known features ,  and  by a linear

combination and the non-linearity in .

W C

x5 SC

SC = 0

We update these weights  during training and

inappropriate fill-in values  will deactivate , i.e.,

.  With  more  such  random  subspaces,  ad-

justable  weights  and  non-linearities,  we  can  further

explore  the  interactions  between  features.  During  in-

ference,  we  can  filter  out  incorrect  fill-in  values

through multiple sampling, thanks to such feature in-

teractions. 

3.4    Analysis About Time Complexity

Now  we  analyze  the  time  complexity  of  our

method  as  well  as  other  comparison  methods.  As

n

m

d T

ttrain
tpre

tnet
ttest

mentioned before, the dataset contains  training in-

stances  and  test  instances,  where  each  instance

contains  features.  We  train  all  networks  for 

epochs.  Notice  that  the  total  training  time  con-

tains  two parts,  i.e.,  the  pre-processing  time  and

the network training time . Also, we denote the to-

tal test time as .

O(n)

tpre = O(nd)

tnet = O(nT ) ttrain = tpre + tnet = O(nd+ nT )

ttest = O(m)

Mean  Imputation.  Now  the  imputation  time  for

each  missing  feature  is  (calculating  the  mean

value)  and  the  total  pre-processing  time  is

.  The  network  training  time  is

 and .  The

test time is .

k k

O(nd)

tpre = O(n2d)

ttrain = O(n2d+ nT )

ttest = O(mnd)

-NN Imputation.  For  the -NN imputation,  the

imputation time for each instance is  (calculat-

ing  the  distance  for  one  instance)  and  the  total  pre-

processing  time  is  (calculating  the  dis-

tance  matrix).  Hence,  the  total  training  time  is

.  During  the  inference  stage,  we

need  to  calculate  the  distance  from  the  entire  train-

ing set for each instance; hence the total test time is

.

O(n2d)

tpre = O(n2d2)

ttrain = O(n2d2 + nT )

O(md2)

MICE  Imputation.  Each  feature  is  modeled  as  a

regression  function  of  other  features.  Hence  for  each

feature, the pre-processing time is  (solving the

regression) and the total time is . Hence,

the  total  training  time  is .  Dur-

ing  the  inference  stage,  each  feature  is  calculated  by

using other features; hence the test time is .

tpre = O(nd)

tnet = O(nT + dnT )

ttrain = O(ndT )

ttest = O(md)

RSS. We only need to calculate the histogram dis-

tribution  for  each  feature  during  the  pre-processing;

hence . We need to sample for each miss-

ing  feature  during  the  training  and  hence  our  train-

ing cost is . Hence, the total train-

ing  time  is .  We  also  need  sampling

during  the  inference  stage  and  the  test  time  is

.

We  will  also  empirically  compare  the  running

speed of each method in Subsection 4.6. 

4    Experimental Results

In  this  section,  we  experimentally  investigate  the

proposed method. First, we introduce the experimen-

tal  settings  and  then  we  evaluate  our  method  on  15

datasets. Then, we conduct ablation studies to inves-

tigate the impact of each component in RSS and also

conduct experiments to study the sensitivity of hyper-

parameters in RSS. Finally, we carefully compare the

performance of RSS with various combinations of dif-
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ferent classifiers and imputation methods and also the

running speed of RSS with other imputation methods. 

4.1    Experimental Settings
 

4.1.1    Datasets

Fifteen datasets, summarized in Table 1, are used

in  the  experiments.  These  are  taken  from  the  UCI

repository  of  Machine  Learning  Databases②.  Each

dataset is presented in one row in Table 1, including

the  number  of  instances,  the  number  of  feature  di-

mensions,  the  number  of  classes,  and  the  proportion

of missing values (PMV). The first six datasets suffer

from  missing  values  in  a “natural” way  and  the  re-

sults on these datasets are shown in Table 2. In these

datasets,  we do not know any information related to

the randomness of missing values, and thus we make

the assumption that  missing values  in  these  datasets

are distributed in a missing at random (MAR) way[22].

Fig.2 shows  the  histogram  distributions  of  the  first

four features on HTRU2, letter, and pendigits. As can

be seen, different features have different distributions

(which may be Gaussian, Uniform, bimodal, etc.) and

histograms are a suitable way to describe these vari-

ous distributions.

In  order  to  test  the  performance  of  the  proposed

method  with  datasets  containing  different  levels  of

missing  values,  the  Missing  Completely  at  Random

(MCAR)  mechanism  is  utilized  to  introduce  missing

values into the last nine complete datasets. Four dif-

ferent  levels  of  missing  values,  20%,  40%,  60%,  and

70%,  were  used  to  introduce  missing  values  into  the

datasets. For each complete dataset and each level of

the four missing levels, we randomly separate the set

into two subsets, one with 70% examples for training,

and the other one with 30% examples for test. We re-

peat the random partition 10 times and report the av-

erage results.

×

Considering  the  small  number  of  samples  in  the

first six incomplete datasets, we run 10 times in each

partition and therefore 100 (=10 10) results are ob-

tained  for  each  of  these  datasets.  For  the  last  seven

complete datasets, we report both the full test accura-

cy (where we use the complete test set) and the miss-

ing test accuracy (where we use the artificially creat-

ed missing test set as in training) in Table 3. We on-

ly report missing test accuracy in ablation studies and

hyperparameter studies. 

4.1.2    Implementation Details

The proposed RSS algorithm is compared with the

following methods.

1) Mean:  missing  features  were  replaced  with

mean values of those features computed for all train-

ing samples.

k

k

k = 5

2) -NN:  missing  features  were  replaced  with

mean  values  of  those  features  from  the  nearest

training samples (we set ).

3) MICE[2]:  missing  attributes  were  iteratively

filled  using  Multiple-Imputation  by  Chained  Equa-

tion  (MICE),  where  several  imputations  are  drawn

from the  conditional  distribution  of  data  by  Markov

chain Monte Carlo techniques; we train five different

models  on five imputed datasets  generated by MICE

and combine their results.

4) GMM[7]:  missing  features  were  replaced  with

 

Table  1.    Dataset Statistics and Hyper-Parameter Settings

Dataset Statistics nMul

#Instances #Dim #Classes PMV (%)

mammographics 961 5 2 3.37 100

hepatitis 155 19 2 5.67 100

kidney disease 400 24 2 10.54 50

horse 368 22 2 23.80 50

pima 768 8 2 12.24 100

bands 539 19 2 5.38 100

dna 3 186 180 3 0.00 5

protein 24 387 357 3 0.00 2

chess-krkp 3 196 36 2 0.00 20

chess-krkopt 28 056 6 18 0.00 50

letter 20 000 16 10 0.00 100

HTRU2 17 898 9 2 0.00 100

yeast 1 484 8 14 0.00 100

segment 2 310 19 7 0.00 50

pendigits 10 992 10 16 0.00 50

Note: ‘‘#Instances’’ denotes  the  number  of  instances  in  the
dataset, ‘‘#Dim’’ denotes  the  number  of  feature  dimensions,
and ‘‘#Classes’’ denotes the number of classes.

 

Table  2.    Accuracy (%) on the First Six Incomplete Datasets

Dataset RSS Mean k-NN[10] MICE[2] GMM[7]

mammo. ±82.2 1.7 ±81.6 1.9 ±81.9 1.4 ±82.4 1.7 ±82.1 1.7

hepatitis ±82.3 5.1 ±82.1 5.6 ±82.0 4.9 ±81.9 5.1 ±81.6 6.0

kidney ±97.3 1.4 ±96.9 1.5 ±95.6 1.7● ±95.9 1.4● ±96.1 1.8●
horse ±82.3 3.5 ±80.3 3.2● ±80.6 3.5● ±80.8 3.6● ±78.9 3.5●
pima ±75.7 2.3 ±74.3 2.8● ±75.6 2.6 ±75.6 2.6 ±74.1 2.5●
bands ±70.4 2.7 ±68.4 3.2● ±68.3 3.0● ±68.5 3.1● ±68.0 3.3●
Note:  We report  the  average  accuracy and standard deviation
of  100  trails.  ●/○ indicates  that  our  RSS  is  significantly
better/worse  than  the  corresponding  method  (pairwise t-tests
at 95% significance level). mammo.: mammographics.

478 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

 

②http://archive.ics.uci.edu/ml, Mar. 2024.

http://archive.ics.uci.edu/ml


values  sampled  from  Gaussian  Mixture  models

(GMM)  estimated  from  incomplete  data  using  the

EM algorithm.

5) Softimpute[23]: missing features were replaced by

matrix  completion  by  iterative  soft  thresholding  of

SVD decompositions.

6) AFASMC[24]: missing features were replaced by

active feature acquisition with supervised matrix com-

pletion.

Since  the  last  two  matrix  completion  methods

treat  the  training  matrix  as  a  whole  to  complete

based  on  low-rank  assumptions  and  cannot  be  ap-

plied when a test instance contains missing values, we

do not  include them in Table 2 and the missing test

case in Table 3.

nPer = 1 dH/dW = 3

We  use  NRS  as  our  classifier  for  all  methods

above  in  our  experiments.  Following  the  settings  in

[21], we build NRS by one depthwise convolution lay-

er  and  two  FC  layers  with  batch  normalization

(BN)[25].  We set ,  and only set

nMul

M = 10 H = 20

1.0× 10−4

different  for  these  datasets  following  the  sug-

gestions  in  [21],  as  shown  in Table 1.  For  RSS,  we

have two extra hyperparameters and we set the num-

ber of bins  and the test ensemble size 

in all experiments unless otherwise specified. We split

10% of  the  training  data  for  validation  to  determine

the total epochs separately for each dataset. All meth-

ods  are  trained  under  the  same  setting:  NRS  is

trained for 20 epochs–50 epochs, using Adam[26] as the

optimizer  and  initializing  the  learning  rate  to

.

k

To further  validate  the  choice  of  the  NRS archi-

tecture  and  confirm  the  effectiveness  of  our  method,

we  also  compare  RSS  with  other  classification  algo-

rithms,  e.g.,  logistic  regression,  MLP  and  random

forests[18] using -NN, mean and MICE imputation in

Subsection 4.5.  All  our  experiments  were  conducted

by using PyTorch on Tesla M40 GPUs and we make

our code publicly available③.
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Fig.2.  Visualization of histogram distributions. We plot the first four features on three complete datasets and we plot the histogram
distribution of each feature. The horizontal axis represents the specific value of each feature and the vertical axis shows how often
each different value occurs. (a)–(d) Feature 1–4 histogram distribution on HTRU2. (e)–(h) Feature 1–4 histogram distribution on let-
ter. (i)–(l) Feature 1–4 histogram distribution on pendigits.
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③https://github.com/CupidJay/RSS-Missing-Data, Mar. 2024.

https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data
https://github.com/CupidJay/RSS-Missing-Data


4.2    Results on Classification Performance

t

Table 2 shows  the  average  and  standard  devia-
tion  of  classification  accuracy  on  the  first  six  incom-
plete  datasets  containing  natural  missing  values. Ta-
ble 3 shows  the  results  on  the  last  seven  complete
datasets  with  four  levels  of  missing  values.  To  com-
pare  the  classification  performance,  paired -test  at
95% confidence interval is used to compare the classi-
fication  achieved  by  RSS  and  the  other  methods  in
Table 2 and Table 3.

t
Table 2 shows that RSS achieves significantly bet-

ter classification accuracy (under paired -tests) than
the other methods on kidney, horse, pima and bands,
where  the  first  three  have  relatively  high  level  of
missing values. However, there is no significant differ-
ence between RSS and the other methods on mammo-
graphics and hepatitis, where the level of missing val-
ues is low.

Table 3 shows that RSS achieves the highest accu-
racy  for  most  of  the  times  in  both  the  missing  test

and  full  test  situations  with  the  datasets  containing
artificial  missing  values.  As  can  be  seen,  our  RSS
method  significantly  outperforms  the  other  methods
in Table 3,  since  the  win/tie/lose  counts  show  that
our  RSS  wins  for  most  times  and  seldom  loses.  It
demonstrates the effectiveness of RSS across datasets
with various dimensionalities and sizes, and under dif-
ferent levels of missing values. Also, RSS has a larger
edge  over  the  other  methods  along with the  increase
of the portion of missing values, which indicates that
our method is effective to cope with datasets contain-
ing numerous missing values.

k
It  is  clear  from the  results  that  RSS  is  generally

better than simple imputation methods (mean and -
NN),  matrix  completion  methods  (Softimpute  and
AFASMC),  and  a  model-based  method  (GMM),
which  shows  that  our  method  reflects  better  uncer-
tainty  and  gets  more  reliable  estimations  than  these
methods.  Furthermore,  RSS  also  gets  better  perfor-
mance than the Multiple-Imputation method (MICE),
which  indicates  that  the  inherent  random  subspace

 

Table  3.    Accuracy (%) on the Last Seven Complete Datasets

Dataset PMV Full Test Accuracy (%) Missing Test Accuracy (%)

(%) RSS Mean k-NN[10] MICE[2] Softimpute[23] AFASMC[24] RSS Mean k-NN[10] MICE[2]

chess-krkp 20 98.8±0.4 98.5±0.6 98.6±0.5● 99.2±0.4○ 99.2±0.4○ 99.1±0.2○ 95.9±0.7 94.8±1.0● 95.3±0.6● 97.2±0.4○
40 97.4±0.6 96.8±0.6● 95.7±0.7● 97.4±0.6 97.8±0.4 98.1±0.3○ 88.3±1.0 86.8±0.8● 86.0±1.2● 90.9±0.9○
60 96.0±0.8 93.6±1.0● 91.0±1.2● 93.6±1.6● 94.6±0.5● 93.5±1.3● 80.6±0.9 77.5±1.3● 72.5±1.0● 80.5±0.8

70 94.2±1.0 90.9±2.1● 86.6±1.9● 89.0±1.6● 92.7±1.2● 89.6±1.8● 75.3±1.2 71.5±1.1● 66.1±1.8● 72.7±1.3●
chess-krkopt 20 67.2±0.6 60.4±0.6● 57.7±0.8● 63.6±0.7● 62.5±0.7● 62.8±0.8● 47.7±0.7 43.8±0.7● 40.3±0.5● 47.1±0.5

40 56.3±0.6 46.0±1.0● 41.1±0.8● 48.2±1.1● 48.5±0.7● 48.8±1.0● 32.4±0.6 28.3±0.6● 24.2±0.5● 28.7±0.6●
60 46.9±0.9 35.4±0.8● 32.1±1.0● 36.1±1.6● 37.3±1.0● 37.2±0.9● 23.7±0.6 19.9±0.6● 17.9±0.6● 19.7±0.6●
70 42.1±1.1 30.1±1.2● 26.1±0.8● 31.3±1.5● 31.4±1.3● 30.9±1.9● 21.0±0.6 17.3±0.5● 15.7±0.5● 17.6±0.3●

letter 20 95.5±0.3 94.3±0.4● 95.4±0.3 94.6±0.4● 94.8±0.4● 93.9±1.2● 84.6±0.5 81.0±0.5● 87.4±0.5○ 83.1±0.7●
40 91.7±0.6 88.6±0.4● 87.2±0.6● 88.2±0.6● 89.9±0.4● 85.8±0.7● 68.8±0.5 62.3±0.4● 51.1±1.0● 61.8±0.9●
60 84.7±0.8 76.7±0.9● 69.5±0.9● 78.4±1.1● 78.7±1.2● 66.4±2.6● 48.1±0.4 41.4±0.6● 26.3±0.7● 40.7±0.6●
70 78.6±0.4 68.5±1.1● 56.6±1.7● 66.7±1.8● 66.0±1.6● 50.8±3.4● 35.8±0.7 30.7±0.8● 18.6±0.4● 29.6±0.6●

HTRU2 20 97.9±0.2 97.8±0.2 97.9±0.1 97.8±0.2 97.9±0.2 97.9±0.1 97.7±0.1 97.5±0.2● 97.4±0.2● 97.6±0.2

40 97.5±0.2 97.5±0.2 97.5±0.2 97.4±0.3● 97.5±0.3 97.4±0.3● 97.1±0.2 97.1±0.2 96.6±0.2● 97.1±0.2
60 97.5±0.1 97.3±0.2● 97.3±0.3● 97.3±0.3● 97.3±0.2● 97.4±0.2 96.6±0.2 96.0±0.3● 95.3±0.3● 96.2±0.2●
70 97.3±0.3 97.1±0.5● 97.2±0.3● 96.9±0.3● 97.1±0.3● 97.2±0.2● 95.5±0.3 95.2±0.3● 94.7±0.3● 95.1±0.2●

yeast 20 59.6±1.9 58.0±1.8● 58.6±1.6 59.4±1.4 59.7±1.7 58.2±2.0● 52.7±1.9 53.0±2.6 51.1±1.7● 54.7±1.9
40 57.5±3.0 56.2±2.6● 56.4±3.0 56.9±3.3 57.2±3.1 56.7±3.0 46.9±2.6 45.7±2.6 43.3±2.2● 46.5±2.1

60 55.2±2.3 53.9±1.9 51.7±2.5● 52.4±2.7● 48.1±2.7● 54.2±2.0 40.8±2.7 40.3±1.9 36.6±1.9● 40.2±2.2

70 55.5±1.4 51.9±2.8● 49.6±2.9● 51.0±4.1● 45.0±1.8● 51.8±1.8● 39.2±1.6 37.7±2.0 34.4±1.8● 37.9±1.9

segment 20 95.8±0.8 95.1±1.3● 96.6±0.8○ 96.1±0.7 95.8±0.6 96.4±1.0○ 93.5±1.0 89.3±0.8● 94.1±0.8 93.8±0.6

40 93.9±1.1 91.9±1.1● 94.5±1.0 93.8±0.8 94.2±1.3 94.8±1.4 87.2±1.4 81.9±1.7● 79.8±1.5● 86.2±1.7

60 92.0±1.7 87.6±3.6● 85.8±2.8● 89.7±2.1● 91.1±1.4 91.6±1.4 76.0±1.4 71.1±1.2● 53.6±2.3● 75.0±2.6

70 89.3±3.1 85.5±2.9● 81.4±2.3● 84.6±3.1● 83.0±2.9● 87.5±1.7● 66.2±1.4 63.6±1.9● 44.6±1.7● 64.7±3.1

pendigits 20 99.3±0.1 99.1±0.2● 99.2±0.1● 99.3±0.1 99.3±0.1 98.9±0.1● 96.4±0.2 95.6±0.2● 97.9±0.3○ 97.2±0.3○
40 98.9±0.2 98.6±0.2● 98.4±0.2● 98.8±0.3 98.6±0.2● 97.5±0.5● 89.7±0.5 87.3±0.6● 81.6±0.7● 90.7±0.3○
60 97.7±0.4 97.3±0.4● 94.5±1.2● 96.9±0.8● 96.8±0.6● 93.3±1.0● 76.1±0.9 73.1±0.9● 59.7±0.9● 74.7±1.0●
70 96.1±0.9 95.9±0.7 90.7±1.2● 94.3±0.9● 94.5±0.7● 86.9±2.2● 65.0±0.8 62.6±0.9● 49.7±0.9● 61.7±1.2●

Win/Tie/Lose 0/28/0 23/5/0 21/6/1 19/8/1 18/9/1 19/6/3 0/28/0 23/5/0 25/1/2 12/12/4

Note: We report the average accuracy and standard deviation of 10 trails. ●/○ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-test at 95% significance level).
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method  together  with  the  dynamic  training  and  en-

semble  testing  strategy  is  effective.  We  will  further

study  the  effectiveness  of  each  component  in  RSS

through ablation studies and the sensitivity of hyper-

parameters  in  hyperparameter  studies  in Subsection

4.3 and Subsection 4.4. The accuracy curves of differ-

ent methods on different datasets during training are

shown  in Fig.3.  We  can  see  that  our  RSS  converges

well and the injected randomness during training does

not affect the convergence stability of RSS.

k

We also carefully study the running speed of RSS,

simple imputation methods (mean and -NN) and the

multiple-imputation  method  (MICE)  in Subsection

4.6.  The  results  show  that  RSS  greatly  saves  the

training  costs  when  compared  with  MICE,  especially

when the feature dimensionality is high. 

4.3    Ablation Studies

In this subsection, we conduct ablation studies on

the  three  components  in  RSS  on  three  datasets,  i.e.,

chess-krkp, HTRU-2, and letter.

1) Dynamic  Training (DR).  RSS  resamples  miss-

ing  values  dynamically  at  each  epoch.  For  compar-

isons, we also study the static strategy where we only

sample  at  the  first  epoch  and  then  fix  them  during

training.

2) Ensemble  Testing (ET).  RSS  runs  the  model

multiple times and ensembles the results to get the fi-

nal prediction, and we also ablate this strategy.

3) NRS  Architecture.  The  above  two  strategies

are  not  limited  to  NRS  and  can  also  be  applied  to

other  architectures,  e.g.,  MLP.  We  also  conduct  ex-

periments  for  MLP  to  further  investigate  our  algo-

rithm.  In  this  experiment,  we  adopt  a  typical  MLP

with two ReLU hidden layers and we also use batch-

normalization for fair comparisons.

The  experimental  results  are  shown  in Table 4

and we can have the following observations.

1)  Both  strategies  DR  and  ET  are  effective  in

RSS.  From  the  vanilla  baseline  case  1,  by  using  ei-

ther  DR (case  2)  or  ET (case  3),  we  can  get  higher

accuracy on all the three datasets consistently. Final-

ly, by combining both strategies (case 4), we achieve

the best performance on all these datasets.

2) The above two strategies are generalizable. No-

tice  that  when we  use  MLP as  our  classifier,  we  are

operating only on the original space and we can com-

pare  the  performance  of  histogram random sampling

to  fill  in  the  vacant  values  instead  of  multiple  sub-

spaces.  Case  6  directly  uses  histogram  random  sam-

pling to fill  in  the missing values  in the original  fea-

ture vector while case 5 serves as the baseline. As can

be seen, histogram random sampling (our DR strate-

gy)  also  works  when  filling  in  the  original  feature

space.  We  also  achieve  the  highest  accuracies  for

MLP  when  combining  both  strategies  on  chess-krkp

and letter. It indicates that our strategies can also be

applied into other architectures.

3) NRS serves as a strong baseline classifier. NRS

achieves  better  performance  than  MLP  consistently

under  all  settings  on  all  datasets.  As  introduced  be-

fore,  we  use  NRS as  our  classifier  for  all  comparison

methods  and  we  now  show  that  NRS  serves  as  a
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Fig.3.  Full test accuracy curve on chess-krkp, yeast and segment under different PMVs. (a) PMV=40% on chess-krkp. (b) PMV=
40% on yeast. (c) PMV=40% on segment. (d) PMV=70% on chess-krkp. (e) PMV=70% on yeast. (f) PMV=70% on segment.
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strong baseline classifier.

4)  The  inherent  random subspace  method is  cru-

cial in our algorithm. By comparing case 4 with case

1  and  case  8  with  case  5,  the  NRS  architecture  has

more  improvements  than  MLP  when  combined  with

the  DR  and  ET  strategies,  especially  on  HTRU2.  It

indicates  that  the  inherent  random subspace  method

allows us to use multiple values to estimate one miss-

ing feature in different random subspaces, which pro-

vides us more robust and accurate estimations.

In  short,  the  DR  and  ET  strategies  are  effective

for both NRS and MLP. Combining these two strate-

gies with NRS has more improvements than MLP and

finally  achieves  the  best  performance  on  all  these

three  datasets,  which  explains  again  why  we  adopt

NRS in this paper. 

4.4    Hyperparameters Studies

H nMul

M

In this subsection, we study the sensitivity of hy-

perparameters in RSS, namely, the test ensemble size

,  the depth expansion rate ,  and the number

of bins  in the histogram distribution. The experi-

mental results are shown in Table 5 and for better il-

lustration  we  plot  the  corresponding  figures  on

HTRU2 in Fig.4.

H H

H

H

Ensemble Size . Here we vary  and keep oth-

er  settings  the  same  as  before. Table 5 and Fig.4(a)

show that when  grows, the accuracy also gets high-

er,  which  indicates  that  we  can  get  more  accurate

predictions by enlarging the ensemble size in our ET

strategy. It is also worth mentioning that in contrast

to  other  ensemble  strategies,  e.g.,  MICE,  the  model

size in our RSS remains unchanged as we increase ,

which saves a lot of computing and storage overhead.

nMul nMul

nMul

nMul

Expansion  Rate .  Here  we  vary  and

other  settings  remain  unchanged.  The  results  in Ta-

ble 5 and Fig.4(b) show that when  grows,  the

average  accuracy  increases  and  the  standard  devia-

tion  becomes  smaller.  It  indicates  that  as 

grows,  more random subspaces and base learners  are

integrated  into  our  model;  hence  the  estimation  gets

more  robust  and  accurate  and  the  performance  be-

comes better.

M

M

M M

M

Number of Bins .  As known in density estima-

tion methods, the value of  in the histogram distri-

bution plays an important role and we also study the

sensitivity of  here. We only vary  and the other

settings remain unchanged. As can be seen, the opti-

mal value of  varies on different datasets, e.g., the

 

Table  4.    Ablation Studies Using Different Strategies at Different Levels of Missing Values

Case Model Scheme Missing Test Accuracy (%)

DR ET chess-krkp HTRU2 letter

20% 40% 60% 70% 20% 40% 60% 70% 20% 40% 60% 70%

1 NRS × × 92.9±0.6 83.4±1.0 73.7±1.2 68.2±1.3 96.6±0.2 95.5±0.3 94.0±0.3 93.2±0.3 73.1±1.2 48.9±1.0 27.7±0.7 18.6±0.3

2 NRS ✓ × 94.3±0.5 87.0±1.0 78.4±1.0 73.4±1.6 97.3±0.1 96.9±0.2 95.7±0.2 94.8±0.2 82.9±0.6 66.1±0.5 44.9±0.4 33.1±0.6

3 NRS × ✓ 94.4±0.5 87.4±0.7 78.9±1.0 74.1±1.6 97.0±0.2 96.3±0.2 95.0±0.3 94.0±0.3 78.3±0.9 58.3±2.3 37.9±1.3 27.4±0.6

4 NRS ✓ ✓ 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7
5 MLP × × 88.3±1.0 77.6±1.7 66.3±1.1 59.8±1.7 96.9±0.2 95.9±0.2 93.7±0.2 92.5±0.3 63.5±0.9 37.4±0.7 18.1±0.5 11.7±0.4

6 MLP ✓ × 89.7±0.8 80.9±1.3 70.5±1.5 65.9±1.0 96.9±0.1 95.9±0.2 93.8±0.3 92.5±0.3 68.8±0.5 45.0±0.5 24.9±0.4 17.3±0.5

7 MLP × ✓ 92.2±0.5 84.7±0.9 74.7±1.3 68.5±1.8 97.2±0.1 96.5±0.3 94.4±0.3 93.2±0.3 77.0±0.6 55.3±0.5 31.8±0.6 21.3±0.6

8 MLP ✓ ✓ 93.7±0.3 87.3±0.5 78.0±1.0 73.5±1.6 97.2±0.1 96.4±0.2 94.5±0.3 93.1±0.4 80.1±0.5 60.4±0.6 37.8±0.6 27.6±0.7

 

Table  5.    Hyperparameters Studies at Different Levels of Missing Values

Hyper-
Parameter

Missing Test Accuracy (%)

chess-krkp HTRU2 letter

20% 40% 60% 70% 20% 40% 60% 70% 20% 40% 60% 70%

H 1 95.3±0.5 87.0±1.0 78.4±1.0 73.4±1.6 97.3±0.1 96.9±0.2 95.7±0.2 94.8±0.2 82.9±0.6 66.1±0.5 44.9±0.4 33.1±0.6

5 95.8±0.7 87.9±1.0 80.2±0.9 75.1±1.4 97.4±0.1 96.9±0.2 95.8±0.3 94.9±0.2 84.3±0.6 68.5±0.4 47.2±0.4 35.4±0.7

10 95.9±0.7 88.1±0.9 80.6±0.8 75.4±1.2 97.4±0.1 97.0±0.2 96.3±0.3 95.0±0.2 84.5±0.5 68.6±0.5 47.8±0.3 35.7±0.7

20 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7
nMul 1 93.4±1.0 86.2±1.4 78.3±1.7 73.4±1.2 96.9±0.3 95.8±0.2 94.6±0.3 93.2±0.5 76.9±1.0 56.0±1.0 35.0±0.8 24.9±0.6

5 94.8±1.0 88.7±1.0 81.3±1.0 76.0±1.2 97.3±0.2 96.3±0.2 95.2±0.3 94.1±0.2 81.9±0.7 63.9±0.3 41.8±0.8 30.5±0.4

10 95.7±0.8 88.6±1.1 81.4±1.1 76.3±1.4 97.3±0.1 96.5±0.2 95.4±0.4 94.4±0.2 83.4±0.7 66.1±0.5 44.0±0.8 32.4±0.6

20 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.4±0.1 96.6±0.3 95.6±0.2 94.6±0.2 83.9±0.5 67.7±0.7 46.3±0.9 34.1±0.7
M 5 95.6±0.7 88.0±1.1 79.7±0.7 74.8±1.2 97.4±0.2 96.7±0.3 95.7±0.2 94.8±0.3 84.7±0.6 68.7±0.3 47.9±0.8 35.9±0.7

10 95.9±0.7 88.3±1.0 80.6±0.9 75.3±1.2 97.7±0.1 97.1±0.2 96.6±0.2 95.5±0.3 84.6±0.5 68.8±0.5 48.1±0.4 35.8±0.7

50 95.9±1.0 88.4±1.0 80.9±1.1 76.0±1.2 97.3±0.1 96.5±0.2 95.4±0.4 94.4±0.2 84.5±0.6 68.8±0.6 47.8±0.7 36.1±0.6
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M = 10
M = 50

M

M

case  of  achieves  the  highest  accuracy  on
HTRU2 while  the  case  of  performs  the  best
on  chess-krkp.  As  mentioned  before,  we  directly  set

 to 10 for all datasets in this paper and it indicates
that we can get better performance by choosing more
appropriate  on each dataset. 

4.5    Comparisons Among Different Classifiers

In Subsections 4.2–4.4,  we  use  NRS  as  classifier

k

for our RSS as well as other comparative imputation

methods  and  we  train  them under  the  same  setting.

To  further  validate  the  effectiveness  of  our  RSS,  we

also compare RSS with other classification algorithms:

logistic  regression  (LR),  MLP,  and  random  forests

(RF),  using  mean, -NN  and  MICE  imputation,  re-

spectively.  As  in Subsection 4.2,  we  report  both  the

full  test accuracy and missing test accuracy in Table

6 and Table 7, respectively. From Table 6 and Table
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Fig.4.  Hyperparameters studies of , , and  on HTRU2. We plot the average accuracy and standard deviation of 10 trails
at each point. (a) Ensemble size . (b) Expansion rate . (c) Number of bins .

 

Table  6.    Full Test Accuracy (%) of Different Classifiers

Dataset PMV RSS LR MLP RF

(%) Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2]

chess-krkp 20 98.8±0.4 95.4±0.7● 95.5±0.8● 95.9±0.6● 98.6±0.5 98.6±0.4 99.1±0.3○ 97.6±0.5● 98.5±0.4● 98.0±0.7●
40 97.4±0.6 94.4±0.6● 94.4±0.7● 94.9±0.6● 97.1±0.5 96.1±1.0● 97.9±0.7 95.7±1.1● 97.0±0.8 96.5±0.7●
60 96.0±0.8 93.6±1.0● 91.7±1.1● 93.9±1.2● 95.2±0.8● 91.7±0.9● 94.9±0.8● 95.0±1.0● 95.0±1.1● 95.0±1.0●
70 94.2±1.0 92.8±1.1● 89.9±1.5● 92.7±1.2● 93.0±1.2● 88.5±2.6● 91.3±1.5● 94.6±0.7 93.3±1.5● 94.5±0.6

chess-krkopt 20 67.2±0.6 31.8±0.5● 31.8±0.4● 31.7±0.4● 58.3±0.8● 56.8±0.8● 60.6±0.9● 57.6±0.6● 56.1±0.6● 60.5±0.8●
40 56.3±0.6 30.8±0.4● 30.5±0.6● 31.1±0.4● 47.6±0.8● 43.5±0.6● 48.3±1.0● 48.3±0.7● 46.3±0.8● 50.2±0.7●
60 46.9±0.9 30.0±0.6● 28.7±0.8● 29.9±0.5● 38.6±0.9● 33.8±1.0● 38.2±1.0● 40.6±0.8● 37.6±0.9● 40.5±0.9●
70 42.1±1.1 29.8±0.5● 27.6±0.7● 29.4±0.7● 33.1±0.8● 28.2±0.8● 33.7±1.5● 36.6±0.6● 33.2±0.6● 36.1±0.8●

letter 20 95.5±0.3 70.7±0.4● 75.5±0.4● 73.6±0.4● 93.2±0.5● 94.8±0.3● 94.0±0.5● 93.4±0.3● 94.6±0.4● 93.6±0.4●
40 91.7±0.6 64.2±0.5● 66.9±0.6● 67.5±1.4● 86.7±0.6● 86.6±0.7● 87.5±0.7● 89.1±0.5● 88.3±0.6● 88.6±0.6●
60 84.7±0.8 58.4±0.5● 57.9±1.4● 61.5±1.7● 75.9±1.5● 71.5±0.9● 77.6±1.0● 81.6±0.6● 77.5±1.1● 80.5±0.8●
70 78.6±0.4 55.1±0.7● 53.4±1.1● 55.1±2.1● 68.2±0.8● 59.4±1.0● 66.5±2.5● 75.8±0.9● 70.4±1.0● 73.7±1.2●

HTRU2 20 97.9±0.2 97.7±0.1 97.7±0.2 97.9±0.2 97.8±0.2 97.8±0.2 97.8±0.1 97.9±0.1 97.9±0.2 98.0±0.1
40 97.5±0.2 97.3±0.2 97.3±0.2 97.5±0.2 97.4±0.2 97.5±0.2 97.5±0.3 97.7±0.2 97.7±0.2 97.7±0.2
60 97.5±0.1 96.3±0.2● 97.3±0.2● 97.5±0.4 97.4±0.2 97.4±0.2 97.3±0.3 97.8±0.1○ 97.6±0.1 97.8±0.1○
70 97.3±0.3 95.2±0.6● 97.1±0.2 96.5±1.9● 97.2±0.4 97.3±0.2 97.1±0.3 97.7±0.2○ 97.3±0.3 97.5±0.2

yeast 20 59.6±1.9 54.8±1.2● 53.8±1.2● 54.6±1.0● 58.6±1.8 58.3±1.5 59.4±1.9 60.0±2.6 59.0±1.8 60.4±2.0
40 57.5±3.0 53.0±2.7● 51.0±2.8● 50.9±2.7● 57.3±2.6 56.4±3.1 56.6±3.1 57.3±1.7 54.9±2.0● 57.1±2.1

60 55.2±2.3 47.9±1.6● 45.3±3.1● 46.1±1.1● 54.3±2.3 52.6±2.1● 52.7±1.4● 53.9±1.6 50.0±3.0● 52.5±2.4●
70 55.5±1.4 48.6±1.7● 45.9±2.7● 45.7±1.3● 53.7±1.5● 52.0±1.5● 52.1±3.5● 52.9±2.4● 50.4±2.0● 49.8±3.3●

segment 20 95.8±0.8 89.2±1.2● 91.6±1.0● 90.3±1.1● 93.8±1.1● 95.8±0.7 94.8±0.9● 96.5±0.9○ 97.2±0.8○ 96.5±0.7○
40 93.9±1.1 85.4±1.0● 89.9±1.4● 89.4±1.2● 90.9±2.3● 93.8±1.4 93.3±1.0 95.5±1.0○ 96.0±0.8○ 95.1±1.0○
60 92.0±1.7 79.9±1.6● 81.8±1.9● 87.4±1.9● 85.5±3.8● 86.1±2.2● 89.7±1.8● 93.9±1.0○ 92.5±0.7 92.8±1.3

70 89.3±3.1 78.2±1.2● 80.3±1.6● 83.3±2.4● 78.5±4.2● 83.2±1.4● 85.0±2.3● 92.5±1.0○ 90.0±1.5 90.8±2.2

pendigits 20 99.3±0.1 88.4±0.5● 93.5±0.3● 92.9±0.4● 99.1±0.2● 99.3±0.1 99.2±0.2 98.6±0.2● 98.9±0.1● 98.8±0.2●
40 98.9±0.2 84.7±0.7● 86.8±0.5● 90.0±0.6● 98.5±0.3● 98.6±0.2● 98.7±0.2 97.8±0.2● 98.0±0.2● 98.2±0.2●
60 97.7±0.4 83.0±0.5● 83.1±0.5● 84.9±1.4● 96.8±0.6● 96.3±0.4● 96.9±0.5● 95.5±0.5● 94.2±0.8● 96.4±0.4●
70 96.1±0.9 81.9±0.6● 81.5±0.9● 82.2±1.0● 95.8±0.7 93.2±0.8● 94.5±0.9● 93.4±0.8● 91.5±0.7● 93.0±0.7●

Win/Tie/Lose 0/28/0 26/2/0 25/3/0 25/3/0 18/10/0 18/10/0 17/10/1 16/6/6 18/8/2 17/8/3

Note: We report the average accuracy and standard deviation of 10 trails. ●/○ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-test at 95% significance level).
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7 we can have the following conclusions.

1)  There  is  no  best  classification  algorithm in  all

cases.  For  example,  MLP  achieves  higher  accuracies

than RF on chess-krkp when using the same imputa-

tion method but performs worse on letter.

k

PMV = 20%

2)  There  is  no  best  imputation  algorithm  in  all

cases.  For  example, -NN  imputation  performs  the

best  among  the  three  imputation  methods  on  letter,

segment,  pendigits  under  low  missing  levels

( )  but  achieves  the  lowest  accuracy

when  the  missing  level  increases.  Also,  we  can  see

that  when  using  the  same  classification  algorithm,

mean  imputation  sometimes  performs  better  than

MICE  and  sometimes  performs  worse,  depending  on

the specific dataset and the level of the missing rate.

3)  Overall,  our  RSS  method  significantly  outper-

forms  the  other  methods,  since  the  win/tie/lose

counts  show  that  our  RSS  wins  for  most  times  and

seldom loses and it further demonstrates the effective-

ness of our method in these comparisons. 

4.6    Speed Comparisons

k

In this subsection, we compare the running speed

of our RSS with other imputation methods: mean, -

NN and MICE. Notice that the feature dimensionali-

ty has a great influence on the running speed of  dif-

ferent methods. Hence, we evaluate different methods

on one low-dimensional dataset yeast (8-dimensional)

as well as two more datasets with higher dimensional-

ities:  dna  (180-dimensional)  and  protein  (357-dimen-

sional).  We also  take  the  influence  of  the  proportion

of  missing  values  (PMV)  into  considerations  and  we

set  PMV to  20%  and  60%  for  each  dataset.  All  the

other training settings remain the same as before. For

the  training/inference  time,  we  count  the  total  run-

ning time, which equals the sum of preprocessing time

(imputation time) and the network running time (net-

work total training/inference time). We report the av-

erage training/inference time and average accuracy of

10 trails  in Table 8 (for accuracy, we also report the

 

Table  7.    Missing Test Accuracy (%) of Different Classifiers

Dataset PMV RSS LR MLP RF

(%) Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2] Mean k-NN[10] MICE[2]

chess-krkp 20 95.9±0.7 90.8±0.6● 92.6±0.7● 94.1±0.7● 94.1±0.7● 95.2±0.5● 97.2±0.5○ 95.0±0.5● 95.6±0.5 96.5±0.8○
40 88.3±1.0 85.7±0.7● 85.8±0.8● 88.7±1.0 87.3±0.8● 86.9±0.7● 91.3±0.7○ 89.3±0.9○ 88.8±0.6 90.7±1.0○
60 80.6±0.9 78.5±0.8● 73.9±1.3● 80.2±1.0● 78.8±1.0● 73.1±1.0● 81.5±0.8 81.3±1.1 77.2±1.0● 82.0±1.0○
70 75.3±1.2 75.3±1.2 69.8±1.6● 75.3±1.0 73.5±1.3● 68.3±1.7● 74.3±0.7● 75.8±1.0 71.3±2.3● 76.2±0.8

chess-krkopt 20 47.7±0.7 28.1±0.5● 27.5±0.4● 28.8±0.4● 43.2±0.6● 40.4±0.7● 46.2±0.6● 43.7±0.5● 41.2±0.6● 47.0±0.7●
40 32.4±0.6 24.9±0.5● 23.2±0.5● 25.0±0.5● 29.6±0.6● 25.3±0.7● 29.9±0.6● 31.2±0.7● 26.5±0.5● 31.8±0.8●
60 23.7±0.6 21.8±0.6● 20.4±0.5● 21.7±0.5● 21.6±0.2● 19.2±0.6● 21.7±0.5● 22.8±0.4● 18.6±0.4● 23.1±0.2●
70 21.0±0.6 20.4±0.3● 18.9±0.4● 20.2±0.4● 19.1±0.5● 16.7±0.4● 18.7±0.8● 19.0±0.3● 16.2±0.4● 19.8±0.5●

letter 20 84.6±0.5 55.8±0.6● 70.5±0.8● 62.1±0.7● 78.9±0.6● 86.5±0.6○ 82.4±0.8● 84.4±0.4 87.8±0.6○ 83.9±0.6●
40 68.8±0.5 42.4±0.5● 41.0±0.6● 46.8±0.6● 60.8±0.6● 51.5±0.8● 61.5±0.7● 68.5±0.5 58.6±0.6● 65.5±0.7●
60 48.1±0.4 29.5±0.5● 23.6±0.8● 31.4±0.5● 40.3±0.5● 27.6±0.7● 40.7±0.7● 47.4±0.5● 35.6±0.4● 44.6±1.0●
70 35.8±0.7 22.9±0.3● 17.7±0.5● 23.3±0.5● 30.3±0.5● 19.7±0.5● 30.0±0.4● 34.5±0.6● 26.8±0.5● 32.7±0.7●

HTRU2 20 97.7±0.1 97.3±0.2● 97.2±0.2● 97.6±0.1 97.4±0.1● 97.4±0.1● 97.7±0.2 97.7±0.2 97.6±0.2 97.8±0.1
40 97.1±0.2 96.8±0.2● 96.6±0.2● 97.0±0.2 97.0±0.2 96.6±0.2● 97.1±0.2 97.4±0.2○ 96.9±0.2● 97.2±0.2

60 96.6±0.2 95.5±0.3● 95.2±0.2● 95.9±0.2● 96.0±0.3● 95.4±0.3● 96.1±0.2● 96.2±0.3● 95.5±0.3● 96.1±0.2●
70 95.5±0.3 94.6±0.2● 94.6±0.3● 94.7±0.2● 94.7±0.3● 94.7±0.2● 95.1±0.2● 95.2±0.2● 94.8±0.2● 95.0±0.1●

yeast 20 52.7±1.9 50.1±1.7● 48.8±1.9● 50.2±2.2● 52.6±2.0 51.6±1.8 53.9±1.8 53.1±1.5 51.2±0.9● 54.2±2.6
40 46.9±2.6 43.6±2.5● 41.0±1.8● 42.3±1.9● 47.2±2.1 44.1±1.6● 45.7±1.8 45.6±1.8● 43.5±2.2● 45.3±2.1●
60 40.8±2.7 37.4±1.8● 35.1±1.6● 38.2±1.5● 40.4±2.2 36.4±2.3● 40.7±1.7 37.7±1.6● 35.8±2.6● 37.7±1.1●
70 39.2±1.6 36.2±2.0● 34.2±3.0● 36.1±2.0● 39.1±1.0 35.9±2.8● 38.0±1.9● 33.7±2.2● 34.0±1.1● 35.0±1.3●

segment 20 93.5±1.0 82.6±1.7● 89.9±1.1● 87.3±1.0● 87.5±0.7● 93.7±1.0 92.1±0.7● 93.5±0.6 95.1±1.0○ 94.3±0.6○
40 87.2±1.4 74.8±1.2● 76.6±1.5● 80.9±1.5● 80.6±2.2● 79.6±2.2● 85.6±1.3● 89.8±1.1○ 85.1±1.4● 89.2±1.0○
60 76.0±1.4 63.2±1.1● 49.8±2.3● 69.1±1.9● 70.5±2.2● 54.9±2.6● 74.4±1.5● 82.0±1.7○ 65.0±1.9● 78.3±1.4○
70 66.2±1.4 56.4±2.0● 43.1±1.6● 59.8±2.9● 62.6±1.7● 46.5±1.7● 64.6±2.1● 73.8±1.0○ 56.3±1.9● 69.6±1.9○

pendigits 20 96.4±0.2 81.2±0.3● 91.9±0.6● 87.4±0.4● 95.0±0.4● 97.7±0.3○ 97.1±0.3○ 95.9±0.4● 97.5±0.3○ 96.8±0.2○
40 89.7±0.5 71.4±0.5● 70.4±0.7● 77.8±0.7● 87.4±0.6● 80.9±0.5● 90.8±0.5○ 89.4±0.4● 81.7±0.6● 89.2±0.5●
60 76.1±0.9 59.2±0.6● 51.5±0.8● 63.4±0.9● 72.5±0.5● 58.4±0.6● 74.9±1.2● 75.0±0.6● 60.8±0.9● 74.0±0.8●
70 65.0±0.8 51.0±0.8● 43.5±1.2● 52.4±1.1● 61.1±0.8 47.9±0.7● 61.9±1.2● 64.3±0.9● 51.0±0.8● 61.6±0.7●

Win/Tie/Lose 0/28/0 27/1/0 28/0/0 24/4/0 22/6/0 24/2/2 18/6/4 16/7/5 22/3/3 16/4/8

Note: We report the average accuracy and standard deviation of 10 trails. ●/○ indicates that our RSS is significantly better/worse
than the corresponding method (pairwise t-test at 95% significance level).
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standard deviation).

From Table 8 we  can  get  the  following  observa-

tions.

k

1)  The  multiple-imputation  method  (MICE)

achieves  better  performance  than  single-imputation

methods (mean and -NN).  However,  the computing

resources are too expensive for mice, especially in the

training process.  For example,  on the 357-dimension-

al dataset protein, MICE takes about one day to fin-

ish the imputation process  and it  indicates  that  it  is

not  practical  for  many  real-world  applications  with

even higher dimensionalities. In contrast, single-impu-

tation methods are efficient for training and inference

but they are not accurate enough.

2)  Our  method  RSS  has  higher  accuracies  but  a

slower running speed than single-imputation methods.

When  compared  with  MICE,  our  method  RSS  has

higher  accuracies  in  most  cases.  More  importantly,

the training cost has been reduced a lot in contrast to

MICE,  especially  on  the  relatively  high  dimensional

datasets dna and protein.

k

3) With the increase of feature dimensionality, the

training time for -NN, MICE and RSS also increas-

es.  However,  the  training  overhead  of  mice  increases

the most as the dimensionality increases among these

methods,  which  corresponds  to  the  previous  time

complexity analysis in Subsection 3.4.

4) In short, RSS has both higher accuracy and ef-

ficiency  than  the  multiple-imputation  method

(MICE). Furthermore, the current implementation of

RSS has not been carefully optimized and thus it has

the potential to be further accelerated. 

5    Conclusions

In  this  paper,  we  proposed  a  random  subspace

sampling  method  RSS  for  classification  with  missing

data.  RSS enables us to use multiple values for each

missing  feature  in  different  random  subspaces  to  re-

flect  better  uncertainty,  which  is  very  effective  in

dealing with a large proportion of missing values. We

showed that RSS is robust to different levels of miss-

ing  data  and is  more  efficient  than multiple  imputa-

tion methods such as MICE[2].  We conducted experi-

ments on both incomplete and complete datasets un-

der different levels of missing values. Experimental re-

sults showed that RSS achieves superior performance

than  other  comparison  methods  and  the  advantage

will  become  larger  with  the  increase  of  the  missing

rate.  In  the  future,  we  will  further  investigate  our

method from a theoretical perspective. 
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