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Abstract    Machine learning techniques have become ubiquitous both in industry and academic applications. Increasing

model sizes and training data volumes necessitate fast and efficient distributed training approaches. Collective communica-

tions greatly simplify inter- and intra-node data transfer and are an essential part of the distributed training process as in-

formation such as gradients must be shared between processing nodes. In this paper, we survey the current state-of-the-art

collective communication libraries (namely xCCL, including NCCL, oneCCL, RCCL, MSCCL, ACCL, and Gloo), with a

focus on the industry-led ones  for  deep learning workloads.  We investigate  the design features  of  these  xCCLs,  discuss

their use cases in the industry deep learning workloads, compare their performance with industry-made benchmarks (i.e.,

NCCL Tests and PARAM), and discuss key take-aways and interesting observations. We believe our survey sheds light on

potential research directions of future designs for xCCLs.
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 1    Introduction

Designing  high-performance  communication  sub-

systems is one of the most challenging tasks essential

to achieving scalable parallel computing goals[1] as the

communication performance can directly influence the

execution efficiency of large-scale distributed software.

Collectives  are  a  form  of  organized  communication

that  has  become  ubiquitous  in  parallel  computing,

distributed computing, and high-performance comput-

ing (HPC) applications. Collective communication op-

erations,  such  as  Broadcast  and  All-Reduce,  can  ag-

gregate  and  disseminate  data  to  multiple  processes

while  in  practice  retaining  a  relatively  simple  API

(Application  Programming  Interface).  Collectives  ab-

stract  away  much  of  the  complexity  of  managing

communication;  however,  it  is  critical  that  both  the

collective  communication  implementation  and  pro-

gramming model chosen are well architected, well de-

signed, and optimized for the particular intended ap-

plication.

Having existed for almost 30 years, Message Pass-

ing  Interface  (MPI)① is  one  of  the  most  widely-used

programming models for large-scale scientific applica-

tions  that  involve  collective  communication.  Due  to

its  high  speed  and  portability,  MPI  has  become  the

model favored in the academic community. There are

various  implementations  of  the  MPI  programming

model,  such  as  MPICH②,  MVAPICH③,  and  Open
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MPI④.  Despite  the age of  MPI and the development

of new collective communication models and libraries,

few have been able to compete with MPI in terms of

popularity  and  generality.  Some  examples  of  newer

non-MPI  libraries  are  OpenSHMEM  (Open-source

Symmetric  Hierarchical  MEMory)⑤,  UCX  (Unified

Communication  X)⑥,  and  UCC  (Unified  Collective

Communication)⑦. Fig.1 shows  an  overview  of  the

classic collective communication libraries, modern col-

lective  communication  libraries,  as  well  as  related

communication hardware and interconnects.

In  recent  years,  machine  learning  (ML),  especial-

ly  deep  learning  (DL),  has  become an  extremely  hot

topic, and there have been numerous advancements in

many  scientific  fields  such  as  computer  vision  and

natural  language  processing.  With  continuously  in-

creasing data volume and model sizes, methods for re-

ducing  training  and  inference  time  have  themselves

become  important  research  topics.  For  example,  the

GPT-3[2] (Generative  Pre-trained  Transformer  3)

model  contains  approximately  175  billion  parameters

and may take multiple days (or more) to train on ad-

vanced  GPU-based  clusters.  Long  training  times  are

often  considered  blockers  for  the  practical  deploy-

ment  of  such  models.  The  case  is  similarly  severe

when  considering  industry-level  large-scale  ML/DL

models  such  as  deep  learning  recommendation  mod-

els (DLRM)[3]. Therefore, it is necessary to accelerate

these  processes  with effective  use  of  parallel  comput-

ing, and collectives have the potential to significantly

influence  the  performance  and  scalability.  Under  the

influence of ML/DL, optimizations on some collective

routines  are  heavily  investigated[4, 5].  This  evolution

also  applies  to  related  communication  hardware  and

interconnects.  For  example,  the  traditional  Remote

Direct  Memory  Access  (RDMA)  communication

mechanism has been widely used in many areas such

as HPC, big data[6–10], key-value store[11–14], and high-

performance  cloud  computing  workloads[15– 17].  With

the advance of ML, there is an increasing demand for

RDMA and GPUDirect RDMA (GDR)[18, 19]. The in-

terconnect  speed  requirements  can  reach  400  Gbps
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Fig.1.  Overview of collective communication evolution. (a) Classic HPC scenarios. (b) Emerging deep learning scenarios.
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per port[20].

However,  while  MPI  has  enjoyed  success  in  the

academic world, it is not widely adopted in the indus-

try.  Instead,  many  industry-leading  companies  like

NVIDIA and Microsoft have developed their own col-

lective  communication  libraries  for  deep  learning  ap-

plications.  Most  notably,  the  NVIDIA  Collective

Communications  Library  (NCCL)⑧,  first  released  by

NVIDIA  in  2015,  has  gained  enough  traction  to  in-

spire  other  companies  to  develop  and  deploy  similar

collective  libraries  such  as  AMD's  ROCm  Collective

Communication  Library  (RCCL)⑨ and  parts  of

Gloo⑩. In this paper, we refer to such collective com-

munication  libraries  as  xCCL.  The  evolution  from

MPI-dominated  collectives  for  classic  HPC  scenarios

to emerging hardware-accelerated collectives for  deep

learning scenarios is shown in Fig.1.

This momentum has motivated us to pose several

research questions. 1) What makes the contemporary

xCCL libraries  more  attractive  than  classic  MPI  de-

signs? 2) What are the performance characteristics of

each  collective  communication  library?  3)  How  are

these  xCCL  libraries  designed?  Are  there  shared  de-

sign patterns, and if so, why?

To answer these questions, we survey the current

state-of-the-art  collective  communication  libraries

(i.e.,  xCCL),  with a focus on those developed for  in-

dustry  deep  learning  workloads.  We  investigate  the

features  of  these  xCCLs,  compare  their  performance

with experiments, and discuss key takeaways and in-

teresting observations.

The rest of this paper is organized as follows. Sec-

tion 2 introduces  widely  used  collective  communica-

tion  routines. Section 3 and Section 4 describe  the

popular physical network topologies and collective al-

gorithms. In Section 5, we present the impact of col-

lectives on machine learning training as well as some

case  studies  from  industry.  In Section 6,  we  survey

representative industry-developed collective communi-

cation  libraries  and  introduce  their  features.  In Sec-

tion 7,  we  select  several  libraries  and  run  experi-

ments to benchmark them. We show a comparison of

their  performance  characteristics. Section 8 will  dis-

cuss  some  of  our  observations  and  insights.  Lastly,

Section 9 discusses some related work and Section 10

concludes this paper.

The  main  contributions  of  this  paper  are  as  fol-

lows.

● Summarizing  and  studying  the  collective  com-

munication  operations,  network  topologies,  and  algo-

rithms  that  underpin  contemporary  distributed  deep

learning training.

● Discussing  industry  collective  communication

solutions  through  case  studies  and  a  detailed  exami-

nation of collective communication libraries.

● Comparing  the  performance  of  current  collec-

tive  communication  libraries  using  industry-made

benchmarks.

 2    Collective Communication Routines

Collective communication operations are an essen-

tial  tool  used  in  many  high-performance  computing

applications  to  move  and  process  data  within  multi-

process systems. Though there are many named rou-

tines  as  listed in Table 1,  some are  especially  impor-

tant  for  machine  learning  applications.  Programmers

can  use  individual  or  combinations  of  collective  rou-

tines  to  build  distributed  training  strategies.  In  this

section, we will review routines that are implemented

in contemporary collective communication libraries. A

high-level  review  of  collective  algorithms  is  included

in Section 4.

 2.1    Broadcast

The  Broadcast  collective  operation  describes  a

process  whereby  the  root  node  distributes  the  same

data to all nodes within the system. After the Broad-

cast  operation  is  complete,  every  node  will  hold  the

same data. Broadcast is one of the two most common

collectives  in  DL  training  applications  (along  with

All-Reduce;  see Subsection 2.6)  and  can  be  used  for

tasks such as sending training data to all processes.

p0 p1 p2 p3 p0

D t1
p0 p1 p2 p3

Example.  Consider  a  system  with  four  processes

(as  in Fig.2(a)): , , ,  and .  Process  holds

data . After the Broadcast collective runs ( ), pro-

cesses , , , and  will all hold data D.

 2.2    All-Gather

The All-Gather collective operation results in each

node receiving data from all nodes within the system.
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Essentially,  All-Gather  can  be  described  as  all  pro-

cesses performing a Broadcast operation with their re-

spective data or as all nodes performing a Gather op-

eration.  Note  that  this  is  not  necessarily  how  All-

Gather is actually implemented.

p0 p1 p2 p0
D0 p1 D1 p2

Example. Consider  a  system with  three  processes

(as in Fig.2(b)): , , and . Process  holds data

, process  holds data , and process  holds da-

D2 p0 p1
p2 D0 D1 D2

ta .  After  All-Gather  completes,  processes , ,

and  will all hold data , data , and data .

 2.3    Scatter

Unlike  Broadcast,  in  which  one  node  sends  the

same data  to  every  other  process,  the  Scatter  collec-

tive  operation  involves  a  single  process  transmitting

Table  1.   Summary of Collective Support Within Libraries

Collective Discussed in MPI Function Implemented in

NCCL MSCCL Gloo oneCCL ACCL

Barrier Not discussed MPI_BARRIER No No† Yes Yes Unknown

Broadcast Subsection 2.1 MPI_BCAST Yes No† Yes Yes Yes

Reduce Subsection 2.5 MPI_REDUCE Yes No† Yes Yes Unknown

Gather Not discussed MPI_GATHER No No† Yes‡ No Unknown

Scatter Subsection 2.3 MPI_SCATTER No No† Yes‡ No Unknown

All-Gather Subsection 2.2 MPI_ALLGATHER Yes No† Yes‡ Yes Yes

All-to-All Subsection 2.4 MPI_ALLTOALL No Yes No Yes Unknown

All-Reduce Subsection 2.6 MPI_ALLREDUCE Yes Yes Yes Yes Yes

Reduce-Scatter Subsection 2.7 MPI_REDUCE_SCATTER Yes No† Yes Yes Yes

Scan Not discussed MPI_SCAN No No† No No Unknown

Note: MSCCL is unique because it allows programmers to implement their own collective routines and algorithms. †: algorithm not
provided but can be implemented using DSL or called via NCCL API; ‡: algorithm not supported on all accelerator types.
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Fig.2.   Overview of  collective  operations.  (a)  Broadcast. (b)  All-Gather.  (c)  Scatter. (d)  All-to-All. (e)  Reduce. (f)  All-Reduce. (g)
Reduce-Scatter.
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n n

different  data  to  the  other  processes  based  on  some

splitting pattern or rule. By the traditional definition

of Scatter, the rule is that the input data are divided

into  pieces  where  is  the  number  of  processes  in

the system. Each piece is then sent to its correspond-

ing process[21].

p0 p1 p2 p0
vd = (D0, D1, D2) D0 D1 D2

vd

D0 D1 D2 D0

p0 D1 p1 D2

p2

Example. Consider  a  system with  three  processes

(as in Fig.2(c)): , ,  and . Process  holds data

vector  where , , and  are da-

ta.  When  Scatter  is  run,  vector  is  divided  into

component  pieces , ,  and .  Data  remains

on ,  is sent to process , and  is sent to pro-

cess . There is a clear benefit to using Scatter over

Broadcast  when  dividing  work  among  processes  as

each  process  will  not  waste  memory  holding  data  it

does  not  need.  Network  bandwidth  can  also  be  con-

served  by  avoiding  unnecessary  data  transfer  opera-

tions[21].

 2.4    All-to-All(v)

All-to-Allv (note the addition of ``v'') is like stan-

dard  All-to-All,  except  that  participating  processes

are  not  restricted  to  sending  uniform  data  sizes  and

can  instead  send  messages  with  variable  sizes.  The

general  All-to-All  operation  itself  is  where  each  pro-

cess  sends data to each of  the other processes in the

system.  The  resulting  data  layout  is  effectively  a

transpose  of  the  layout  present  before  the  operation.

The  All-to-All  collective  is  vital  if  high-performance

switching  between  data  and  model  parallelism  in  a

deep learning training process is required because this

switch can be described as a transpose.

p0 p1 p2
Ai Bi Ci i

p0 A0 A1 A2

p1 B0 B1 B2

p2 C0 C1 C2

Example. Consider a system where there are three

processes (as in Fig.2(d)): , , and . Each process

holds unique data , , and  where  corresponds

to the process number. After the All-to-All collective

completes,  process  will  hold  data , ,  and ;

process  will hold data , , and ; and process

 will hold data , , and .

 2.5    Reduce

The Reduce collective refers to a process in which

a single node receives data from each node in the sys-

tem and applies some operation on those data, result-

ing in a single output. Note that this operation can be

anything,  provided  it  is  associative.  This  allows  the

operation to be performed in parallel while maintain-

ing the correctness and determinism of the program.

Example. Consider  a  system with  three  processes

p0 p1 p2 p0 D0 p1
D1 p2 D2

p0
p1 p2

f(D0, D1, D2) = Dρ p0
Dρ

p0
Dρ

Dρ

Dρ

(as in Fig.2(e)): , , and . Process  holds , 

holds ,  and  holds .  When the  Reduce  collec-

tive  is  performed,  data  from  process ,  data  from

process , and data from process  will be combined

to  produce  result .  If  is  set  as

the destination process, then result  will be sent to

. Note that the Reduce collective does not itself dis-

tribute result  to the other processes.  Instead, one

must  either  broadcast  result  as  shown in Subsec-

tion 2.1 or use the All-Reduce collective operation as

explained in Subsection 2.6.  If  the result  must be

broken  up  before  being  distributed  to  the  other  pro-

cesses,  either the Scatter operation can be used after

Reduce, or the Reduce-Scatter operation can be used

in  place  of  both  (as  explained  in Subsection 2.3 and

Subsection 2.7 respectively).

 2.6    All-Reduce

At  a  high  level,  All-Reduce  collective  can  be  de-

scribed  as  a  Reduce  step  followed  by  a  Broadcast

step.  After  the  operation  completes,  all  processes  in

the  system will  hold  the  result  of  the  Reduce  opera-

tion.  All-Reduce  is  used  extensively  in  data-parallel

distributed  deep  learning  training  tasks  to  compute

and  communicate  gradients  during  the  backpropaga-

tion step.

p0 p1 p2 p0 D0 p1
D1 p2 D2

p0
p1 p2

f(D0, D1, D2) = Dρ

Dρ p0 p1
p2

Dρ

Example. Consider  a  system with  three  processes

(as in Fig.2(f)): , , and . Process  holds , 

holds , and  holds . When the All-Reduce col-

lective  operation  is  performed,  data  from process ,

data from process , and data from process  will be

combined  to  produce  result .  The

result  is then sent to each of the processes , ,

and .  All-Reduce  implementations  are  tuned  for

higher performance than running Reduce and Broad-

cast sequentially, even if both approaches result in all

processes holding .

 2.7    Reduce-Scatter

n

As  the  name  implies,  the  Reduce-Scatter  collec-

tive  is  best  described  as  the  combination  of  the  Re-

duce operation and the Scatter operation in the given

order.  This  definition,  however,  is  not  fully  descrip-

tive  as  it  is  the  result  of  the  Reduce  operation  that

must  be  divided  into  pieces  so  that  it  can  be  dis-

tributed to the processes in the system[21].

p0 p1 p2
D0 D1 D2

Example. In  a  system  with  three  processes  as

shown (as in Fig.2(g)): , , and  where each pro-

cess holds corresponding data , , and , the Re-
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vρ Dρ0
Dρ1

Dρ2

p0 p1 p2

duce  portion  of  Reduce-Scatter  produces  an  output

.  The  components  of  the  result , ,  and 

are scattered (e.g.,  via the Scatter  collective)  to pro-

cesses , , and  respectively.

 3    Network Topologies for Collectives

In  MPI,  the  Communicator  construct  is  an  ab-

straction  that  hides  the  complexity  of  lower-level

communication  between  processes.  This  makes  pro-

gramming much more convenient. However, the phys-

ical network topology (i.e., not just the virtual topolo-

gy  associated  with  MPI  Communicators)  chosen  can

heavily  impact  the performance of  collective  commu-

nications. This is true for traditional collective appli-

cations and there are many studies focused on design-

ing  network  topology-aware  collective  algorithms  to

best  take  advantage  of  different  network  architec-

tures[22].  The  network  topology  is  especially  impor-

tant  when  considering  hardware  accelerated  collec-

tives because poor architecture decisions have the po-

tential to wipe out the performance gains realized by

using  accelerator-specific  communications  in  commu-

nication-bound applications[23].

 3.1    Hypercube

2k k

The  hypercube  network  topology[24] consists  of  a

set  of  nodes  connected  in  a  multi-dimensional  cube

pattern  (hypercube).  Increasing  the  number  of  nodes

in  the  system will  increase  the  dimensionality  of  the

hypercube. Complete hypercubes must contain exact-

ly  nodes, where  is the hypercube dimensionality.

As  a  comparison,  incomplete  hypercubes  can  have

any number of nodes[25]. The simplest hypercube net-

work  is  two  nodes  connected  by  a  single  link  and  is

described as a 1D (one-dimensional) hypercube. A 2D

hypercube  is  four  nodes  connected  in  a  square  pat-

tern. Fig.3 shows an example of a 4D hypercube con-

taining 16 nodes and is, as a consequence, complete.

While  hypercube  topologies  may not  be  deployed

as frequently as other topologies in high-performance

computing  (HPC)  applications  in  favor  of  architec-

tures such as Fat-Tree (see Subsection 3.4) and Drag-

onfly+ (see Subsection 3.5), it serves as an important

reference  that  other  more  recent  topologies  can  be

compared against.  Hypercube topologies are resistant

to node failures due to their high connectivity; howev-

er, the same high connectivity can result in scaling is-

sues  and  higher  complexity  for  networks  with  larger

numbers of nodes[25]. They are also unique in that in-

complete  hypercube  topologies  can  exhibit  different

performance  characteristics  than  complete  hypercube

topologies[24, 25].

 3.2    Ring

A ring topology[26] is a configuration where all the

members  are  connected  in  a  conceptually  circular

fashion.  Hence,  each  member  has  two  connections:

one to each of its immediate neighbors. To communi-

cate, packets of data are transmitted from one device

to the next until  reaching the destination.  There are

two  transfer  modes:  the  unidirectional  ring  network,

in which packets of data travel in only one direction,

and  the  bidirectional  ring  network,  in  which  packets

may travel in either direction.

The ring topology has three advantages.  First,  in

both transmission modes of the ring topology, all da-

ta  flow  in  only  one  direction,  thus  reducing  packet

collisions.  Second,  devices  can  be  added  easily  with-

out affecting the transmission speed. Finally, there is

no  need  for  a  central  server  to  coordinate  network

connectivity. At the same time, the ring topology pos-

sesses notable disadvantages. First, in the worst case,

data  transmitted  through  the  network  must  pass

through  all  devices,  which  makes  data  transmission

less flexible. Second, the entire topology will be affect-

ed  if  one  machine  experiences  a  failure.  Also,  the

channel  utilization  of  the  ring  topology  is  inefficient

for short packets,  and bandwidth fragmentation may

occur.

 3.3    Torus

A torus topology[27] is a generalization of the ring

topology to higher dimensions, where the ring topolo-
























 
Fig.3.   Example  of  a  complete  hypercube  network  topology
with 16 nodes. Vertices represent physical nodes and edges rep-
resent physical network connections.

Adam Weingram et al.: xCCL: A Survey of Industry-Led Collective Communication Libraries for Deep Learning 171



−x,+x

m

n

−x,+x,−y,+y

N

gy is viewed as a one-dimensional (1D) torus. In a 1D

torus, as mentioned in Subsection 3.2, each member is

connected  to  its  two  neighbors.  The  communication

can occur bidirectionally ( ). In a 2D torus con-

figuration,  there  are  two  dimensions  consisting  of 

rows and  columns. Each member in the topology is

connected  to  its  four  immediate  neighbors  and  com-

munication  can  occur  in  four  directions

( ).  Similarly,  for  an ND  torus  topolo-

gy where  is the number of dimensions, each mem-

ber in the topology is connected to its 2N neighbors.

Communication  is  possible  in  2N directions  as  each

member node will have two neighbors in each dimen-

sion.  Some  examples  of  torus  topologies  of  different

dimensions are shown in Fig.4 (1D) and Fig.5 (2D).

 

 

n0 n1 n4

Fig.4.   Example  of  the  ring  network  topology.  Vertices  repre-
sent physical nodes and edges represent physical network con-
nections. Node  is connected to node  and node  (for two
total connections).
 

 

 
Fig.5.  Example of a 2D Torus network topology. Vertices rep-
resent  physical  nodes  and  edges  represent  physical  network
connections.  Node n0 is  connected to  nodes n1, n4, n5,  and n20

for a total of four connections. In this case N = 2 dimensions,
therefore, each node will have exactly 2N = 2 × 2 = 4 physical
connections. If this particular topology were to be visualized in
three-dimensional space, it would resemble a ``donut'' or ``ring
torus'' shape.

One advantage of the torus topology is that it sig-

nificantly  decreases  the  topology  diameter  and  re-

duces the cost to add new members. All one must do

is to add additional links[28]⑪. The torus topology can

also provide higher bandwidth and lower latency than

some  other  network  topologies  while  still  achieving

high scalability. This is because the torus topology is

homogeneous  and  member  nodes  can  communicate

with one another via multiple routes[29]. For the same

reason, it is also able to consume less power[29]⑪.

The  torus  topology  also  has  certain  limitations.

First,  as  dimensionality  increases,  the  number  of

physical  network  connections  necessarily  increases.

This  means  that  wiring  becomes  more  complex  and

deployment  cost  grows[29].  Second,  as  new  member

nodes are added to a given dimension, it will  require

more  energy  and  take  longer  to  communicate  within

the  dimension  as  each  message  must  travel  through

more  nodes[29, 30].  To  address  this  problem,  a  modi-

fied  version  of  torus  topology,  called  folded-torus

topology, was developed[31].

 3.4    Fat-Tree

The fat-tree topology[32] is one of the most widely

used topologies for efficient data communication. Un-

like  traditional  tree  structures  in  computer  science,

the  fat-tree  topology  resembles  the  trees  in  the  real

world.  In  a  traditional  tree  topology,  all  branches

have  the  same  thickness  (bandwidth)  whereas  in  a

fat-tree topology,  the communication bandwidth gets

larger, i.e., the fat-tree gets fatter, as one moves clos-

er to the root. An illustration of a fat-tree topology is

given in Fig.6.

In  the  fat-tree  topology,  only  the  leaves  are  used

for  computation  and  all  the  other  nodes  are  strictly

for  communication.  For  example,  when  a  leaf  node

wants  to  communicate  with  another  leaf  node,  data

will  flow  up  the  hierarchy  recursively  until  a  shared

ancestor  with  the  second  leaf  node  is  found.  Data

then flow back down the hierarchy to the second leaf

node.

There are numerous advantages to use the fat-tree

topology.  First,  the  average  distance  between  nodes

grows logarithmically since it is a tree structure in na-

ture⑫.  In  addition,  it  has  also  been  proved  that  fat-

trees  are  recursively  scalable  and  partitionable  with

multiple well designed routing algorithms[33, 34].  Some

other  advantages  of  the  fat-tree  topology  include  its

symmetry, regularity, and high connectivity[35], which
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is attributable to its tree structure.

One  disadvantage  is  the  bandwidth  requirement

for the branches connected to the root[36]. This band-

width  requirement  will  get  higher  and  higher  when

the fat-tree grows bigger, leading to a challenge in im-

plementation.  Another  disadvantage  is  that  due  to

the the structure of the fat-tree topology, it is neces-

sary  to  traverse  all  nodes  between  two  leaf  nodes

when communicating data.  In this  case,  load balanc-

ing and scheduling becomes another challenge[37].

 3.5    Dragonfly and Dragonfly+

p

a

h

k

k = a× (p+ h) a p h

Another commonly used topology is the dragonfly

topology[38], which is a hierarchical structure made up

of multiple levels (i.e., routers and groups). An exam-

ple  of  the  dragonfly  topology  is  shown  in Fig.7.  At

the lowest level, each router is connected to multiple

( ) terminals. Above this level is the group, which is

a collection of routers (  routers) which have connec-

tions  to  routers  in  the  same  group  (local  channels)

and  connections  to  routers  in  the  other  groups  (

global  channels).  In  a  dragonfly  topology,  there  will

be many groups. All routers within a group work as a

“virtual router” that has a very high radix ( ). This

radix is  equal  to the number of  routers  in the group

multiplying  the  number  of  connections  each  router

has ( ). All the numbers , , and  can

be  adjusted  in  accordance  with  the  deployment  re-

quirements.

Modularity is one of the advantages that the drag-

onfly topology can provide[39].  Because the designs of

intra-group  connections  and  inter-group  connections

are decoupled, the wiring within a group does not af-

fect  the  number  of  groups  in  the  topology.  In  addi-

tion, this modular design also leads to the high scala-

bility of the topology[38, 39]. The dragonfly topology is

able to scale to a high number of nodes by simply in-

creasing the effective radix, while still keeping a rela-

tively low number of hops[38].

At  the  same  time,  this  high  number  of  connec-

tions  also  leads  to  a  high construction cost  for  drag-

onfly  topologies[39].  Also,  these  various  connections

can bring the topology a high path diversity, causing

a  low network  utilization  and  throughput  under  cer-

tain  traffic  patterns[40].  To  address  this  problem,  an

extended  version  called  dragonfly+  has  been  intro-

duced in recent years[41].  In the dragonfly+ topology,

routers  inside  the  group are  connected  in  a  Clos-like

topology[32].  It  also  shows  higher  scalability  and  bet-

ter router utilization[41].







Root Switch

Level 2 Switch

Level 3 Switch Level 3 Switch Level 3 Switch Level 3 Switch

Level 2 Switch

 
β0 > β1 > β2

n0, ..., n15

Fig.6.  Visualization of a fat-tree network topology. Bandwidth is represented by link line thickness, and follows . Nodes
 perform computation, while switches handle communication only.

 
Fig.7.  Example of a dragonfly network topology. In this case,
all boxes represent routers that nodes (not shown) are connect-
ed to.
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 4    Collective Communication Algorithms

Though  the  collective  routines  are  presented  to

the  programmer  through  a  clean  API,  the  collective

communication  library  must  implement  algorithms

that  perform  the  actual  intra-node  and  inter-node

communications.

 4.1    Classic Collective Communication

Algorithms

In  recent  years,  new  advancements  have  been

made  in  the  development  of  collective  communica-

tion  algorithms. Table 2 briefly  overviews  the  repre-

sentative state-of-the-art collective communication al-

Table  2.   Classic and xCCL's Collective Communication Algorithms

Category Collective Algorithm Description on Suitability
(e.g., Message Size, Number of Processes)

Classic All-to-All Bruck[42] Short (e.g., < 32 B)

Isend-Irecv[43] Medium (e.g., 32 B to 32 KB)

Pairwise-Exchange[44]
2nLong (  processes)

All-Gather Ring[43]
2nLong, medium (not  processes)

Recursive-Doubling[43]
2nShort, medium (  processes)

Bruck[42]
2nShort (not  processes)

Broadcast Binomial Tree[45] Short (e.g., < 32 B)

Van de Geijn[46, 47] Long (e.g., > 32 KB)

Reduce-Scatter Recursive-Halving[44] Short (commutative reduction)

Recursive-Doubling[43] Short (not commutative reduction)

Pairwise-Exchange[43] ⩾
⩾
Long (e.g.,  512 KB for commutative,
 512 B for noncommutative)

Binomial Tree and Linear
Scatterv[43]

Medium

Reduce Binomial Tree[45] ⩽Short (e.g.,  2 KB)

Rabenseifner’s[48] Long (e.g., > 2 KB)

All-Reduce Recursive-Doubling[44] Short, long (user-defined reduction)

Rabenseifner’s[48] Long (predefined reduction)

Ring[44] Small or medium numbers of processes

Reduce/All-Reduce Vector Halving and Distance
Doubling[48] 2nLong (vectors and  processes)

Binary Blocks[48]
2nNot  processes

xCCL NCCL All-Reduce Double Binary Trees⑬ Short, medium

Ring⑭ Long

MSCCL All-Reduce⑮ Ring Medium (e.g., 32 KB to 3 MB)

All-Pairs Short and medium (e.g., 1 KB to 2 MB)

Hierarchical Short or long (e.g., < 64 MB or > 1 GB)

All-to-All⑮ Two-Step Long (e.g., > 2 MB)

Gloo All-Reduce⑯ Ring Long

Ring-Chunked Long

Halving-Doubling 2n processes

BCube Short

Reduce-Scatter⑯ Halving-Doubling 2n processes

Broadcast⑯ Pairwise-Exchange 2nLong (  processes)

ACCL All-Reduce[49] Hybrid Medium, long (e.g., > 16 KB)

Note: ``not 2n processes'' means the number of processes is not 2n.
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⑬Massively scale your deep learning training with NCCL 2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-
training-nccl-2-4/, Jan. 2023.

⑭NCCL:  Accelerated  multi-GPU  collective  communications. https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf,
Jan. 2023.

⑮MSCCL: Microsoft collective communication library. https://github.com/microsoft/msccl, Jan. 2023.
⑯Collective communications library with various primitives for multi-machine training. https://github.com/facebookincubator/

gloo, Jan. 2023.

https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://github.com/microsoft/msccl
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo


gorithms  and  their  features.  In  these  algorithms:  the

Ring, Binomial Tree, Recursive-Doubling, and Recur-

sive-Halving  algorithms  are  the  most  widely  used  in

HPC workloads.  Hence,  we  will  focus  on  these  algo-

rithms in particular.

α− β

α+ nβ

αuni + nβuni

α

β n

p

γ

To estimate the latency and bandwidth of collec-

tive communication algorithms, we use the  cost

model[50]. The time taken by the bidirectional commu-

nication  between  processes  is  and  the  unidi-

rectional  communication  is [51].  In  this

function,  is the latency (startup time) per message,

 is  the  transfer  time  per  byte,  is  the  number  of

transferred bytes, and  is the number of processes in

the  communication.  In  the  case  of  reduction  opera-

tions,  is the computation cost per byte for one pro-

cess.

 4.1.1    Ring

p

p− 1

n

n/p

TAll-Gather
ring = (p− 1)α+ ((p− 1)/p)nβ

The  Ring  algorithm  is  traditionally  utilized  for

All-Gather. The implementation of All-Gather in this

method is  that  data are  transferred around a virtual

ring  of  processes.  First,  each process  sends  its  chunk

of  data  to  the  following  process  in  the  ring  and  re-

ceives the chunk of data from the previous process in

the  ring.  From  the  second  step,  each  process  sends

the data it  received from the previous process in the

first step to the following process. If  is the number

of  processes,  it  takes  steps  to  complete  the  en-

tire algorithm. If  is the total amount of data to be

gathered  on  each  process,  then  at  every  step,  each

process  sends  and  receives  amounts  of  data.

Therefore,  the  time  taken  by  this  algorithm  is
[43].

TAll-Reduce
ring =2(p− 1)α+2nβ+nγ−(1/p)(2nβ+nγ)

The  Ring  algorithm  is  also  used  for  All-Reduce.

There  are  two  phases  in  All-Reduce:  Reduce-Scatter

and  All-Gather.  The  Ring  algorithm  can  be  applied

for  All-Gather,  and the Reduce-Scatter  phase can be

performed in the Pairwise-Exchange algorithm. When

the number of processes is not a power of 2, this algo-

rithm  performs  well  in  bandwidth  utilization.  Still,

the  latency  of  this  algorithm  grows  linearly  as  the

number  of  processes  increases.  Therefore,  this  algo-

rithm is  only  suitable  for  small  or  medium processes

or  large  vectors.  For  All-Reduce,  the  time  taken  is
[44].

 4.1.2    Binomial Tree

The  Binomial  Tree  algorithm  is  commonly  used

(root+ (p/2))

lg p
n

T Broadcast
tree = (lg p)(α+

nβ)

for  Broadcast  in  MPICH.  First  of  all,  process

 receives  data  from  the  root.  From  the

second  step,  this  process  and  the  root  act  as  new

roots in their respective subtrees. This algorithm will

run recursively and takes a total of  steps. In this

algorithm, each process communicates  bytes of da-

ta at any step. Therefore, the time taken by this algo-

rithm  to  perform  Broadcast  is 
[43].  This  algorithm performs well  when communi-

cating  short  messages  because  of  the  logarithmic  la-

tency term. As a result, the Binomial Tree algorithm

can  be  a  good  choice  when  working  with  short  mes-

sages (e.g., < 12 KB) or when the number of process-

es is less than 8.

lg p
n

TReduce
tree = (lg p)(α+ nβ + nγ)

lg p

⩽

The  Binomial  Tree  algorithm  can  also  efficiently

implement  Reduce.  The  Binomial  Tree  algorithm

takes  steps to complete the process, and the am-

ount of data is  at each step. In general, the time taken

by  this  algorithm  is [43].

Owing to the  steps, the Binomial Tree algorithm

performs  Reduce  efficiently  for  short  messages.  For

Reduce, the Binomial Tree algorithm is used for short

messages  (e.g.,  2  KB)  when  the  reduction  opera-

tion is predefined. Because the user-defined reduction

operations may pass or break up derived datatypes to

do the complex Reduce-Scatter, the Binomial Tree al-

gorithm is used for all message sizes when the reduc-

tion operations are  user-defined.  When executing the

All-Reduce process, the algorithm first does a Reduce

to rank 0 and then performs a Broadcast.

 4.1.3    Recursive-Doubling

lg p
n/p

2n/p

(2lg(p−1)n)/p

TAll-Gather
rec-dbl = lg pα+ ((p− 1)/p)nβ

Recursive-Doubling  is  an  efficient  algorithm  for

All-Gather.  In  the  first  step,  each  process  sends  and

receives  data  from its  neighbors.  In  the  second  step,

each process sends and receives data from the process

that is two processes away from it. In the third step,

the  process  exchanges  data  from  the  process  that  is

four  processes  away from it,  and so  on.  In  this  way,

when the number of processes is a power of 2, all da-

ta communication can be completed in  steps. The

amount of  data exchanged by each process  is  in

the first step,  in the second step, and so on. In

the  last  step,  the  amount  of  data  is .  In

general,  the  total  time  taken  by  this  algorithm  is
[43].  Due  to  the  com-

munication's  mathematical  features,  Recursive-Dou-

bling  works  very  well  for  situations  where  the  num-
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ber of processes is a power of 2, but it does not work

well when the number of processes is not a power of 2.

(n− (n/p))

(n− (2n/p)) (n− (4n/p))

TReduce-Scatter
rec-dbl = lg pα+ (lg p− ((p− 1)/p))nβ + (lg p−

((p− 1/p))nγ

The Recursive-Doubling algorithm can be used in

Reduce-Scatter, similar to the one used in All-Gather.

However,  more  data  are  communicated  in  Reduce-

Scatter than in All-Gather. In step 1 of Reduce-Scat-

ter, the data needed for their result in each process is

not exchanged, and the amount of data exchanged by

each  process  is ;  in  step  2,  the  data  re-

quired by themselves and by the processes communi-

cated in the previous step in each process are not ex-

changed, and the amount of data exchanged by each

process  is ;  in  step  3,  it  is ;

and so on. Therefore, the time taken by this algorithm

is 
[43].  This  algorithm  works  well  for  con-

cise messages (e.g., < 32 B).

TAll-Reduce
rec-dbl = lg pα+ n lg pβ+

n lg pγ

The  Recursive-Doubling  algorithm  can  also  per-

form  All-Reduce  similarly  to  how  it  performs  All-

Gather,  except  that  each  communication  step  of  the

Recursive-Doubling algorithm also involves a local re-

duction.  The  Recursive-Doubling  algorithm  performs

well for short messages and long messages with user-

defined reduction operations.  The time taken by this

algorithm for All-Reduce is 
[44].

 4.1.4    Recursive-Halving

p/2

p/4

Similar  to  applying  the  Recursive-Doubling  algo-

rithm  for  All-Gather,  the  Recursive-Halving  algo-

rithm  can  be  used  to  perform  Reduce-Scatter.  First,

processes  at  a  distance  of  away  exchange  data

with  each  other.  Each  process  performs  both  the

sending  and  receiving  operations.  All  processes  need

the sent data in the other half, and all processes need

the received data in its half. The reduction operation

is performed on the received data. The reduction can

be made because the procedure is  commutative.  Sec-

ond, processes at a distance of  away exchange da-

ta  with  each  other:  each  process  performs  both  the

sending  and  receiving  operations.  All  processes  need

the sent data in the other half of the current subtree,

and all processes require the received data in its half

of the current subtree. The reduction operation is per-

lg p p

TReduce-Scatter
rec-half = lg pα+

((p− 1)/p)nβ + ((p− 1)/p)nγ

formed  on  the  received  data.  This  procedure  is  per-

formed recursively, halving the data communicated at

each step. The total number of steps of this process is

. Therefore, if  is a power of 2, the time taken by

this  algorithm  is  given  by 
[44].

 4.2    xCCL Collective Communication

Algorithms

In  practice,  xCCL  will  select  algorithms  to  per-

form  collectives  based  on  conditions  such  as  system

configuration,  network  topology,  and  invocation  cir-

cumstances  to  improve  the  performance[52].  Next,  we

introduce these algorithms used by xCCL.

 4.2.1    NCCL

Ring. The  Ring  algorithm is  used  for  All-Reduce

in  NCCL to  move  data  across  all  GPUs⑰.  The  data

are split into multiple chunks and transferred one by

one  during  the  operation.  This  pipeline  modality  re-

duces the idle time the GPU spends waiting for data.

However,  the  latency  of  the  Ring  algorithm  for  All-

Reduce  increases  with  the  number  of  GPU  devices.

Since NCCL is implemented with CUDA, one CUDA

thread block is allocated to one ring direction in this

library.

Double  Binary  Trees. Since  the  latency  of  the

Ring algorithm increases with the number of GPUs, it

is not suitable for communication among a large num-

ber of GPUs. The Double Binary Tree algorithm was

proposed to solve this problem because of its logarith-

mic  latency⑱.  Based  on  the  architecture  of  a  binary

tree, the leaves of one binary tree can be used as the

nodes  of  another.  Almost  every  rank is  connected  to

two  parents  and  two  children  ranks,  except  for  the

root  ranks.  Compared  with  the  Ring  algorithm,  the

latency  of  Double  Binary  Trees  is  more  negligible  in

the NCCL test on various large machines.

 4.2.2    MSCCL

Ring. MSCCL  implements  Ring  for  All-Reduce,
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Reduce-Scatter,  and  All-Gather⑲.  MSCCL  allocates

multiple channels to one logical ring. In this way, dif-

ferent point-to-point connections can be implemented

between  the  same  pairs  of  GPUs.  The  protocol  for

scheduling  a  logical  ring  onto  one  channel  varies  ac-

cording to the message size. This strategy enables the

logical  ring's  distribution  across  channels  and  effi-

ciently overlaps point-to-point operations.

2n− 2

All-Pairs. In MSCCL, three different types (input,

output, and scratch) of GPU buffers are available for

chunks of data. Because the Ring algorithm is unsuit-

able for small message sizes, MSCCL implements All-

Pairs for All-Reduce when the message size is small⑲.

The  Ring  algorithm  proceeds  in  two  steps:  rank  re-

ceives  the  chunk  of  data  from  every  rank  and  per-

forms computation operations, and then the chunks of

the  result  data  are  broadcast  to  every  other  rank.

Compared  with  steps  in  the  Ring  algorithm,

only  two  communication  steps  are  used  in  the  All-

Pairs  algorithm, which makes the latency of  the All-

Pairs algorithm lower.

Hierarchical. Different  algorithms  can  be  applied

to perform All-Reduce according to the input configu-

rations.  Besides  the  above-mentioned  algorithms,  Hi-

erarchical is another possible one in MSCCL⑲. There

are  four  communication  steps  in  this  algorithm.  The

first step is to perform Reduce-Scatter within a node,

the  second  step  is  to  perform  Reduce-Scatter  across

nodes,  the third step is  to perform All-Gather across

nodes,  and  the  final  step  is  to  perform  All-Gather

within a node.

Two-Step. The traditional All-to-All algorithm on-

ly implements one communication step, but the num-

ber of small  chunks transferred across nodes is large.

In MSCCL, a two-step All-to-All  algorithm is  imple-

mented with aggregated cross-node communication to

reduce the cost⑲.

 4.2.3    Gloo

Ring. In Gloo, the Ring algorithm is implemented

the same as mentioned in Subsection 4.1.1⑳.

Ring-Chunked. Based  on  the  Ring  algorithm,  the

Ring-Chunked  algorithm  divides  the  buffer  into

chunks so that each process can reduce a chunk into a

local result while it is transmitting another chunk⑳.

Halving-Doubling. The  design  of  Halving-Dou-

bling in Gloo is similar to that of the All-Reduce Re-

cursive Halving and Doubling algorithms⑳. The Halv-

ing-Doubling  algorithm  uses  the  distance  to  decide

the communication pair between processes. For exam-

ple, each process sends and receives data buffers: from

the  process  next  to  it  when  the  communication  dis-

tance is 1; from the process that is one process away

from  it  when  the  distance  is  2.  The  algorithm  con-

sists of two phases. 1) The distance doubling the Re-

duce-Scatter operation phase. At the result, each pro-

cess  holds  part  of  the  reduction  results.  2)  The  dis-

tance halving All-Gather operation phase.  At the re-

sult, all processes receive the rest parts of the reduc-

tion results from other processes.

Pairwise-Exchange. The  Pairwise-Exchange  algo-

rithm is a simplified Halving-Doubling algorithm⑳. In

each step, the nodes are partitioned into pairs and the

message  size  in  the  communication  between  pairs  is

the  same.  Pairwise-Exchange  is  used  for  benchmark-

ing purposes in Gloo.

BCube. The Ring algorithm organizes the commu-

nication  structure  of  processes  one  by  one  as  a  ring.

Halving-Doubling  uses  the  distance  to  manage  the

communication of processes. Different from the above

algorithms, the BCube algorithm divides the process-

es  into  groups⑳.  Firstly,  it  performs  Reduce-Scatter

among  processes  within  the  group  and  All-Reduce

among  the  corresponding  processes  from  different

groups.  Secondly,  each  group  performs  All-Gather

within the group so that every process receives the re-

duction results in the end.

 4.2.4    ACCL

Hybrid. ACCL  uses  a  hybrid  All-Reduce  algo-

rithm  to  maximize  bandwidth  utilization[49].  Hybrid

All-Reduce  decouples  the  All-Reduce  operation  into

several  micro-operations,  eliminating  the  meaningless

micro-operations.  This  hybrid  algorithm  proceeds  in

three  steps.  In  step  1,  the  intra-node  Reduce-Scatter

is performed based on the Ring algorithm; in step 2,

the  inter-node  All-Reduce  is  performed  based  on  the

Halving-Doubling algorithm; in step 3, the intra-node

All-Gather is performed based on the Ring algorithm.

 5    Collectives and Deep Learning

Machine  learning  techniques  are  increasingly  be-

ing adopted both in industry and in research to solve
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problems  not  easily  handled  by  traditional  methods.

Machine  learning  can  be  seen  in  precision  systems,

automation,  cancer  detection,  self  driving,  and more.

It is well known that hardware accelerators have con-

tributed massively to the advancement of  inter-disci-

plinary machine learning applications.

The adaptation of GPUs for general purpose com-

puting,  often  referred  to  as  general  purpose  GPUs

(GPGPUs), has allowed training to be conducted in a

parallel  fashion,  drastically  reducing  the  time  re-

quired  to  achieve  acceptable  results  when  compared

with the CPU[53]㉑–㉕.  Data volumes—and more imp-

ortantly, model sizes—continue to increase, creating a

need for distributed training solutions, including those

that  integrate  tightly  with  hardware  accelerators.

There are many ways to parallelize the training pro-

cess, and the collective communication paradigm pro-

vides the requisite flexibility to implement these solu-

tions while remaining conceptually simple.

With the advent of large models, parallelizing the

training  process  becomes  a  necessity.  Using  NCCL

with  TensorFlow,  researchers  from  Uber  found  that

VGG-16 training can be sped up by a significant 30%

when  leveraging  RDMA  networking[53].  Collectives

demonstrate a considerable speed-up in training time

that  very  large  networks  can  achieve.  Using  256

GPUs  for  distributed  training,  Meta  trained  a

ResNet-50 model within one hour with a 90% scaling

efficiency from an initial 8 GPUs[54].

Machine learning using collectives is an area of ac-

tive  research.  Multiple  industry  applications  have

been proposed and implemented into daily  workflow.

In the following Subsections 5.1–5.4, we observe some

representative use cases  for  Meta,  Google,  Uber,  and

Amazon.

 5.1    Case Study with Meta Workloads

A recommendation  model  is  a  kind  of  ML work-

loads that aims to provide personalized recommenda-

tions  to  users.  Such  models  are  deployed  often  in  e-

commerce,  social  media,  and  advertising  settings.  In

2020,  Meta  introduced  its  production-scale  DNN-

based  RMCs  (recommendation  model  classes)[55].

These RMCs all exhibit computation and communica-

tion  intensive  characteristics.  Additionally,  since  the

purpose  of  RMCs  is  to  provide  recommendation  to

users, the ability to achieve a short inference time is a

critical metric to evaluate their performance.

For all the requirements mentioned above, the col-

lective plays an important role,  as it  can directly in-

fluence  the  communication  time  during  the  training

and inference  stages.  To improve  the  performance  of

these  production-scale  recommendation models,  Meta

developed a software-hardware co-design, named Neo,

which  integrates  their  collective-related  optimizati-

ons[56].  The  implementation  of  Neo  is  closely  related

to PyTorch[57], a widely-used machine learning frame-

work originally created by Meta. The kernel fusion in-

troduced in Neo is open sourced as part of the Meta

General  Matrix  Multiplication  (FBGEMM)  library

which serves as a matrix processesing backend for Py-

Torch[58].

Neo  is  built  for  efficient  and  scalable  DLRM

(Deep Learning Recommendation Model) training uti-

lizing three key techniques. The first one is 4D paral-

lelism  that  combines  table-wise  parallelism,  row-wise

parallelism,  column-wise  parallelism,  and  data  paral-

lelism.  It  is  aimed  at  reducing  workload  imbalance

among  GPUs  to  minimize  the  costs  of  conducting

communication.  Second,  the  hybrid  kernel  fusion

technique fuses the parameter update and the embed-

ding computation into a same CUDA kernel. Third, a

new  hardware  platform  called  ZionEX  was  intro-

duced. ZionEX is co-designed with the 4D parallelism

technique and also optimizes the inter-node communi-

cation for distributed training.

Image  recognition  networks  that  utilize  residual

learning  have  become  extremely  popular  since  their

introduction in 2016 due to the fact that they enable

much  deeper  neural  network  architectures[59].  Ima-

geNet, a database of labeled image data is a popular

dataset  used to train,  test,  and evaluate  network ar-

chitectures and training systems[60]. Meta was able to

train a ResNet50 model on ImageNet in one hour on a

distributed training system[54].

32

8 256

In  order  to  achieve  this  level  of  performance,  all

components  of  the  training  system  must  be  consid-

ered.  Their  deployment  consisted  of  nodes  each

with  GPUs for a total of  GPUs[54].  Nodes each
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had  20  Gbit  network  cards  and  GPUs  were  directly

connected  using  NVIDIA  NVLink.  Collective  opera-

tions were used both locally within nodes to compute

local  reductions  and  to  communicate  gradients  be-

tween  nodes.  Local  and  inter-node  communications

used NCCL (see Subsection 6.1) while collectives were

performed  using  Gloo  (see Subsection 6.5)[54].  At-

tempting  to  train  with  many  GPUs  can  cause  com-

munication and aggregation costs to increase to unac-

ceptable  levels.  To  mitigate  these  issues,  CPU  and

GPU resources  were  balanced  by  splitting  communi-

cation between them using the buffer size and manu-

ally  selecting  the  most  performant  collective  algo-

rithms for both the specific workload being tested and

the network topology[54].

 5.2    Case Study with Google Workloads

81

DistBelief[61] is a framework for parallel  distribut-

ed  training  of  DNN models  developed  by  Google  re-

searchers. In their paper, Dean et al.[61] observed that

very large DNN models can benefit greatly when they

are  trained  using  many machines  organized  in  a  dis-

tributed training system. Their largest model with 1.7

billion parameters sees a speedup greater than 12x on

 machines.

Google's TensorFlow[62] is the most popular frame-

work for deep learning applications and the successor

to  DistBelief.  TensorFlow's  flexibility  makes  it  wide-

ly applicable to many ML problems and countless re-

searchers  have  utilized  the  framework.  It  provides

tools for deploying on GPU clusters, enabling the dis-

tributed training of  very large models[62].  This allows

users with large-scale models to train more efficiently

and significantly reduce computation time. As indus-

try  data  volume  and  velocity  both  become  larger,

quickly  training  models  with  enormous  parameter

sizes increases model training productivity.

Awan et  al.  evaluated  the  designs  and  perfor-

mance  of  TensorFlow for  training multiple  DNNs on

distributed/HPC systems  using  different  communica-

tion  libraries[63].  In  their  paper,  they  showed  that

MPI-based  communication  solutions  for  TensorFlow

achieve 71% scaling efficiency scaling up to 64 GPUs.

In  a  recent  study[64],  the  authors  designed  a  bench-

mark  suite  to  characterize  TensorFlow's  communica-

tion  patterns  and  performance.  Biswas et  al.  devel-

oped an RDMA-based gRPC that can adjust commu-

nication  mechanisms  dynamically  for  TensorFlow-

based deep learning training workloads[65].

There is ongoing work to increase the scaling effi-

ciency  and  communication  efficiency  of  distributed

training in TensorFlow, which is highly desired by the

DNN  community.  Google's  researchers  and  develop-

ers continue to update the communication subsystem

designs in TensorFlow to work with NCCL and other

optimized  communication  backends.  For  example,  a

communication  library  called  NCCL  Fast  Socket㉖

was proposed by Google to optimize NCCL collective

communication performance for distributed ML train-

ing on Google Cloud.

 5.3    Case Study with Uber Workloads

Uber has utilized machine learning in multiple di-

verse  applications  (e.g.,  UberEATS,  Marketplace

Forecasting, Customer Support, Ride Check, Estimat-

ed  Times  of  Arrival,  One-Click  Chat,  and  Self-Driv-

ing  Cars).  Specifically,  Uber's  Michelangelo㉗ ma-

chine  learning  platform  runs  several  models  for

UberEATS. Search ranking, search autocomplete, and

restaurant rankings are all examples of use case mod-

els  that  UberEATS utilizes  from Michelangelo.  With

the scale of Uber's models increasing, distributing the

training  process  is  a  practical  necessity.  Using

Michelangelo's  Data  Science  Workbench  (DSW),

large-scale  distributed  training  and  deployment  of

deep learning models on GPU clusters is well support-

ed㉗,  even for data scientists and developers with lit-

tle  systems  knowledge.  Users  can  easily  distribute

their training processes with DSW and use Michelan-

gelo's hyperparameter searching algorithms.

ring-allreduce

As  Uber  started  using  deep  learning  models  for

self-driving cars, the dataflow grew exponentially and

required distributed training across an extensive set of

GPU  machines.  Michelangelo's  Horovod㉗ was  intro-

duced  to  enable  much  faster  training  and  research

progress  by  implementing  collective  communications

between  GPUs  in  TensorFlow.  In  their  paper[53],

Sergeev  and  Del  Balso   replaced  Baidu's

 implementation with NCCL for com-

munication  in  Horovod.  The  authors  found  that  a

model with a large number of parameters (e.g., VGG-

16) saw a 30% speedup, and that other models (e.g.,

Inception  V3  and  ResNet-101)  exceeded  90%  scaling

efficiency  when  scaling  to  128  GPUs.  The  default
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TensorFlow distributed implementation was found to

waste about half  of  GPU resources when training on

the  same  128  GPUs,  while  Horovod  is  able  to  reach

the  88%  efficiency  mark.  Though  after  Horovod's

work,  TensorFlow  has  added  support  for  NCCL2.

Horovod  greatly  simplifies  the  distributed  training

process for users and supports multiple popular com-

munication  libraries  (e.g.,  MPI,  NVIDIA's  NCCL,

Meta's  Gloo,  Intel's  MLSL,  and  IBM's  DDL)[66].

Horovod's  GitHub  also  provides  model  examples  for

Keras,  MXNet,  PyTorch,  Spark,  TensorFlow,  and

more, making it very simple to start working quickly

with various models.

 5.4    Case Study with Amazon Workloads

20

Amazon  Web  Services  (AWS)  provides  develop-

ers  with  a  wide  variety  of  cloud-based  tools.  Dis-

tributed training is an important tool for building ca-

pable  large  models,  especially  if  models  are  large

enough that training must be split across multiple de-

vices  (model  parallelism).  However,  capable  systems

can be difficult and expensive to deploy. As a result,

many  companies  look  for  hosted  solutions.  Network

architectures  and  speeds  available  on  public  clouds

are  often  very  different  than  those  of  dedicated  ML

training clusters where bandwidths are more heteroge-

neous.  On  such  cloud-based  systems,  intra-node  and

inter-node  bandwidth  can  differ  by  a  factor  of  or

more,  meaning  assumptions  about  the  cost  of  using

collectives  may  not  longer  be  correct[67].  Attempting

to perform collective operations that involve all ranks

can be very expensive.

To  help  make  model-parallel  training  faster  on

cloud systems,  researchers  at  Amazon have proposed

a system called MiCS[67], which reduces the impact of

highly-heterogeneous  network  architectures  on  train-

ing performance. The key idea is to reduce the num-

ber  of  participants  in  collective  communications  and

by extension reduce the data volume of the communi-

cations that take place over lower-bandwidth connec-

tions. This is possible even when model sizes surpass

on-node device memory requirements by using a hier-

archical  communication  strategy  and  breaking  com-

munication  up  into  stages.  First,  devices  perform an

inter-node  All-Gather  operation  with  devices  of  the

same respective relative rank on the other nodes. Sec-

ond, nodes perform an intra-node All-Gather to com-

plete  the  communication[67].  Additionally,  MiCS

makes use of a ``2-hop'' gradient synchronization pro-

cess  rather  than  the  standard  gradient  aggregation

process.  This  step  is  usually  very  expensive  because

its cost increases with a higher number of devices. De-

vices  are  split  into  small  groups  that  span  across

nodes.  Gradient  partitioning  and  synchronization  is

first  performed  within  the  small  groups  and  then

globally,  reducing  total  traffic.  When  compared  with

the  existing  training  optimizer  ZeRO[68],  MiCS  was

2.98x  faster[67].  MiCS  was  also  shown  to  have

achieved  99.4% scaling  efficiency  in  a  cloud  environ-

ment[67].

 6    Industry Solutions—xCCL

The  rise  in  the  popularity  of  distributed  deep

learning  training  has  contributed  to  growing  interest

in  fast,  efficient,  and  portable  collective  implementa-

tions.  A  summary  of  industry  collective  communica-

tion libraries is shown in Table 3.

 6.1    NVIDIA NCCL

NVIDIA  Collective  Communication  Library㉘ is

currently  the  most  popular  GPU-accelerated  collec-

tive  communication  library.  It  implements  collective

operations for multiple GPUs across multiple nodes as

well  as  specific  point-to-point  communication  primi-

tives.  NCCL officially  supports  NVIDIA GPUs  only,

though  there  have  been  efforts  to  port  it  to  AMD

graphics  cards  in  the  form  of  the  ROCm  Collective

Table  3.   Summary Comparison of Collective Communication Libraries

CCL Accelerator License P2P Differentiation

NCCL NVIDIA GPU Open (MIT) Yes Industry standard for GPU-based collectives

Gloo GPU Open (BSD) No Combined CPU/GPU DL workloads

MSCCL GPU Open (MIT) Yes DSL for custom collective algorithms

Intel oneCCL Intel CPU, GPU, FPGA Open (Apache 2.0) Yes Support for heterogeneous accelerators

ROCm AMD GPU Open (MIT) Yes AMD GPU support

ACCL GPU Proprietary N/A Hybrid algorithms
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Communication  Library  (RCCL)㉙ (see Subsection

6.4).

NCCL's  programming  model  is  very  similar  to

MPI  Collectives㉚.  However,  NCCL is  geared  toward

providing  fast  communication  of  messages  among

GPUs in dense multi-GPU systems, while MPI focus-

es  on  efficient  communication  across  thousands  of

nodes in a cluster.

 6.1.1    Architecture

NCCL  aims  to  perform  communication  among

GPUs using the CUDA, as shown in Fig.8(a). In NC-

CL collective communications, the communicators are

created  using  CUDA  before  launching  any  collective

algorithm  design.  After  the  collective  algorithm  is

launched using point-to-point primitives, the point-to-

point  operation  will  be  effectively  enqueued  to  the

given stream.

NCCL uses  rings  to  move  data  across  all  GPUs,

and therefore data are divided into chunks among all

ranks in the communicator to obtain reasonably good

bandwidth  while  lowering  the  latency.  NCCL  per-

forms  intra-node  communication  through  PCIe,

NVLink㉛,  and  GPUDirect㉜.  Inter-node  communica-

tion  in  NCCL  is  via  GDR.  NCCL's  CUDA  kernels

can  copy  data  stored  in  the  global  memory  of  one

GPU to another GPU by using GDR and GPUDirect.

 6.1.2    NCCL API

In a similar fashion to NVIDIA's CUDA㉝, NCCL

was designed to  be  easy  to  program.  Because  NCCL

provides a C API, programmers can use NCCL with-

in  existing  C  projects  or  even  use  C  bindings  in  a

high-level language like Python.

ncclCommInitRank()
ncclCommInitRankConfig() ncclCommInitAll()

ncclAllReduce()
ncclBroadcast()

ncclSend()
ncclRecv()

NCCL can be initiated with the ,

, or  fun-

ction. Each gives the programmer different options for

configuring ranks and communications. A communica-

tor is  required to perform any communication opera-

tion.  Individual  collective  operations  can  be  run  us-

ing the correspondingly named API calls.  All-Reduce

can  be  run  using  the  function,

Broadcast can be run using the  func-

tion,  and  so  on.  Programmers  familiar  with  MPI

should  feel  comfortable  with  the  NCCL  API.  NCCL

also  supports  point-to-point  communications  in  the

form  of  (sending  data  to  a  specific  rank)

and  (receiving data from a specific rank).

 6.1.3    Framework Support

Because  deep  neural  networks  training  is  becom-

ing  too  large  to  be  performed  on  a  single  compute

node,  some state-of-the-art  deep learning  frameworks

like  TensorFlow[62],  Caffe[69],  PyTorch[57],  CNTK[70],

and  MXNet[71] have  complimented  distributed  train-
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Fig.8.  Overview of different architectures of xCCL from industry solutions. (a) NCCL. (b) ROCm. (c) Gloo. (d) MSCCL.
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ing on multiple  nodes  by using NCCL. These  frame-

works  use  NCCL  to  perform  collective  communica-

tion among all the available GPUs.

Horovod[53] enables faster, easier distributed train-

ing  in  TensorFlow  by  employing  efficient  inter-GPU

communication with NCCL.

 6.1.4    Supported Features

0 n− 1 n

Communicator. NCCL  assigns  a  unique  rank  be-

tween  and  to each of the  CUDA devices in

a communicator. Each communicator object associat-

ed  with  a  fixed  rank  and  CUDA device  in  the  same

NCCL  communicator  will  be  used  to  launch  collec-

tive communications.

Stream. Point-to-point  primitives  and  collective

communication  implementation  perform  communica-

tion  and computation in  a  single  CUDA kernel.  The

entire message in each communication step is divided

into  smaller  chunks  for  fast  synchronization.  By

scheduling  the  operation  in  separate  CUDA streams,

the NCCL call may return before the process is com-

plete.

Topology. Based  on  the  interconnect  network,

NCCL chooses from a set of topologies which include

ring- and tree-based approaches.

Protocols. There  are  three  protocols  when NCCL

sends data: ``low latency, 8 bytes atomic store (LL)'',

``low  latency,  128  bytes  atomic  store  (LL128)'',  and

Simple㉞.  The  bandwidth  and  the  latency  of  these

protocols  are  different  because  of  the  type  of  inter-

node synchronization.

 6.1.5    Example: Distributed Training with NCCL

Data-parallel distributed deep learning training on

many  GPUs  is  one  of  the  more  compelling  use-cases

for  collective  communications.  As  mentioned  in Sub-

section 6.1.3,  NCCL is  used by many machine  learn-

ing  frameworks  as  a  distributed  training  backend.

Here  we  will  examine  how  collectives  fit  into  the

training  process  and how NCCL's  API  makes  imple-

menting distributed training strategies simple.

ncclSend()

In  a  data-parallel  training  arrangement,  each  de-

vice  (GPU in  the  case  of  NCCL)  holds  a  full  model

locally. The training data are split and distributed to

each during each training step. NCCL's point-to-point

communication  can  be  used  here.  Once  the  data  are

broken  up,  a  root  process  can  send  data  using  the

 function. Though NCCL does not provide

ncclSend() for

ncclRecv()

ncclAllReduce()

it  directly,  the  programmer  can  emulate  the  Scatter

collective  by  placing  in  a  loop  where

the index corresponds to the target device rank. Once

each  device  finishes  receiving  data  using  the

 function, it can then run the forward pass

and  compute  local  gradients.  These  local  gradients

can be combined using an All-Reduce collective oper-

ation, or,  in NCCL. After the All-Re-

duce  completes,  each  device  will  hold  the  updated

gradients.

 6.1.6    Practical Workloads and Applications

In  ResNet-101's  distributed  training,  the  Tensor-

Flow  modified  to  use  NCCL  is  compared  with  the

regular distributed TensorFlow[53]. The training using

NCCL was about twice as fast as standard distribut-

ed  TensorFlow training.  When running  a  distributed

training  job  for  VGG-16,  NCCL  leveraging  RDMA

networks  provides  a  30%  improvement  over  NCCL

using TCP networks.

 6.2    Intel oneCCL

Intel  oneAPI  Collective  Communications  Library

(oneCCL) is a collective communication library creat-

ed with the intention of developing a single standard

API  that  is  compatible  with  multiple  different  types

of  hardware  accelerators,  ranging  from  CPUs  to

GPUs  to  FPGAs,  in  a  way  that  makes  accelerating

deep learning training workloads easy. It is part of In-

tel's  larger  ``oneAPI''  project  which  incorporates  a

deep neural  network library and a C++ standard li-

brary for accelerators, among others. The library sup-

ports Intel products such as Core CPUs, Xeon CPUs,

Xeon Phi, and Intel graphics cards.

 6.2.1    Architecture

Intel oneCCL is built on top of existing lower-lev-

el  middleware  and  thus  has  support  for  InfiniBand,

Ethernet, and other interconnects. More specifically it

is  built  upon,  Intel's  own  customized  MPICH-sup-

porting  MPI  library  (i.e.,  Intel  MPI  Library)  and

libfrabric,  an  open-source  set  of  libraries  for  fabrics.

Low-level  inter-node  and  inter-device  communication

is handled by these libraries for portability and inter-

connect support. However, oneCCL still provides a di-

rect access to hardware (level 0) for performance criti-

cal computation and on-device communication.
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There are three key abstractions present in oneC-

CL  that  the  application  programmer  interacts  with.

The  first  is  the  Communicator.  Similar  to  other  col-

lective  communication  libraries  such  as  MPI,  oneC-

CL  uses  communicators  for  inter-rank  communica-

tion  and  they  are  used  to  define  which  resources

should  participate  in  a  given  communication  opera-

tion.  However,  in  oneCCL,  host  communication  and

device (e.g., GPU) communication requires the use of

separate  communicators.  Ranks  in  oneCCL  can  con-

tain either CPUs or devices depending on the type of

the  communicator  being  considered.  The  second  key

abstraction  is  the  Stream  object,  instances  of  which

are  used  to  pass  execution  context  to  communicator

objects.  Streams also contain the collective operation

execution order. The third is the collective communi-

cations,  the  specifics  of  which  are  explained  in Sec-

tion 4 and Subsection 6.2.2.

 6.2.2    Routines

Intel  oneCCL  currently  has  support  for  the  All-

Gather(v),  All-Reduce,  All-to-All(v),  Barrier,  Broad-

cast,  Reduce,  and  Reduce-Scatter  collective  opera-

tions.  These  operations  can  be  run  asynchronously,

and  the  status  of  operations  can  be  tracked  using

event  objects  returned when operations  are  run.  The

programmer is also given some control over operation

scheduling via priority fields.

 6.2.3    Framework Support

Known  previously  as  torch_ccl,  PyTorch  has  im-

plemented bindings  for  Intel  oneCCL. Code to inter-

act  with oneCCL is  written in Python alongside any

PyTorch  code,  making  oneCCL  easily  accessible  to

machine learning researchers who have Python-based

workflows. A set of profiling tools is included to help

programmers  debug  problems  or  improve  the  perfor-

mance oft their software.

There  is  also  a  oneCCL  integration  available  for

Horovod. Unlike with PyTorch, Horovod does not ex-

pose any oneCCL details directly to the programmer.

Instead, Horovod is configured to use oneCCL for col-

lective communication using environment variables.

 6.3    Alibaba ACCL

Alibaba  Collective  Communication  Library  (AC-

CL)  is  another  collectives  library  that  takes  advan-

tage  of  the  fact  that  many  deployments  will  have

multiple  types  of  fabrics  available,  utilize  multi-rail

networks, and will likely experience performance limi-

tations primarily as a result of communication cost[49].

By  focusing  on  support  for  heterogeneous  intercon-

nects, ACCL can outperform other collective commu-

nications  libraries  given  that  certain  conditions  are

met[49]. ACCL can be used with both Tensorflow and

Horovod,  though  it  is  not  open  source,  which  limits

its use outside of Alibaba's cloud products.

Alibaba  provides  their  Apsara  AI  Accelerator

(AIACC)  AI  acceleration  infrastructure  as  part  of

their cloud service. A recent study by Alibaba Group

and Univesity of Leeds researchers found that AIACC

outperformed Horovod and BytePS for  certain  train-

ing  workloads[72].  Like  ACCL,  AIACC  is  currently

proprietary.

 6.3.1    Hybrid Algorithms

One  important  feature  of  ACCL  is  its  ability  to

use  hybrid  collective  algorithms.  Hybrid  algorithms

are  sets  of  standard  collective  algorithms  that  are

combined  in  an  effort  to  maximize  network  utiliza-

tion  and  therefore  increase  overall  communication

performance.  Choices  about  which  algorithms  to  use

for any given situation are made by the system using

a  model  of  the  physical  network  derived  from

probing[49].

 6.4    AMD RCCL

The AMD ROCm Communication Collectives Li-

brary (RCCL) is an AMD port of NCCL for commu-

nications  used  within  single  and  multi-process  appli-

cations  running  on  AMD  and  NVIDIA  GPUs.  The

aim of RCCL is to allow developers to run programs

on both NVIDIA and AMD GPUs without rewriting

the  code.  RCCL  is  a  component  of  AMD  ROCm㉟

open  software  stack㊱ and  is  running  on  the  system

with HIPify㊲ which can convert CUDA code to HIP

(Heterogeneous-Computing  Interface  for  Portability)
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code automatically. RCCL supports data transfers lo-

cally over PCIe and xGMI interconnects, and over the

network through InfiniBand Verbs and TCP/IP sock-

ets.  In  a  similar  fashion  to  NCCL,  RCCL  supports

GPU-to-GPU direct communication operations.

 6.4.1    Architecture

RCCL  includes  the  same  collective  routines  as

NCCL. The algorithms used in RCCL collectives are

similar to those found in NCCL, and as such are im-

plemented  based  on  the  ring  and  tree  algorithms.

Fig.8(b) shows how the CUDA code can be convert-

ed  to  run  the  application  on  AMD  and  NVIDIA

GPUs:  the  CUDA  code,  for  example,  the  NCCL  li-

brary itself, is converted into the HPI code by HIPify.

The HPI code can then run on NVIDIA GPUs when

compiled  with  the  NVCC  compiler  and  can  run  on

AMD GPU when compiled with HCC.

 6.4.2    Supported Features and Workloads

Starting  from  PyTorch  1.8  release,  the  ROCm

software stack—which includes the RCCL library—is

provided so  that  developers  and researchers  may use

PyTorch with AMD GPUs. RCCL was integrated in-

to Tensorflow in v1.15. In both PyTorch and Tensor-

flow, AMD GPUs can be used for deep learning work-

loads such as training and inference.

Because it uses the same API as NCCL, RCCL al-

so supports features such as communicator and topol-

ogy.  The  stream  feature  in  RCCL  is  different  from

the  stream  feature  found  in  NCCL  and  uses  a  HIP

stream  instead  of  a  CUDA  stream.  The  multi-GPU

communication in RCCL is supported by MPI. In ad-

dition, RCCL integrates NPKit㊳, which is a profiling

framework,  to  the  communication  routines  so  that

RCCL can  give  a  profiling  fine-grained  trace  on  col-

lective routines.

 6.5    Meta Gloo

Meta's Gloo㊴ is a communication library for deep

learning  workloads  which  run  on  multiple  machines.

Its  architecture  is  shown  in Fig.8(c).  Gloo  supports

both  point-to-point  communications  and  collective

communications on CPUs, as well as All-Reduce, All-

Gather, and Broadcast when used on GPUs.

 6.5.1    Architecture

Gloo supports multi-GPU communication over in-

terconnects such as PCIe and NVLink. Gloo supports

different data transport methods for inter- and intra-

node data communication, for example, TCP, RoCE,

and IB for CPU-to-CPU transport and GPUDirect for

GPU-to-GPU transport.

 6.5.2    Supported Features and Workloads

torch.distributed
Gloo is provided by PyTorch as a communication

backend  in  the  package.  PyTorch

recommends  that  users  choose  Gloo  mainly  for  dis-

tributed training on CPU and as  the  fallback option

for  distributed  training  on  GPU.  Users  can  enable

Gloo as the part of components of Horovod in Tensor-

Flow, MXNet[71], and Keras㊵.

Gloo uses two methods to coordinate the commu-

nications channels for CPU data transport:  MPI and

a custom rendezvous process㊴. Using MPI is straight-

forward.  The  MPI processes  take  control  of  the  con-

nection channels across the devices and the MPI com-

municator is bound to the GPU context. Another way

to  manage  the  communication  across  multiple  ma-

chines  is  with  Gloo's  rendezvous  channel  setup  pro-

cess.  Rendezvous  uses  a  central  key-value  store  sys-

tem accessible to all processes to store the Gloo con-

texts.  Every  process  has  a  set  of  keys  for  its  peers.

When  a  process  wants  to  send  messages  to  another

process, it uses the key-value store system to get the

information such as the corresponding IP address and

port as the value.

Gloo is used as a part of the Multi-GPU commu-

nication coordination controller  in Horovod,  and also

serves as an alternative method to manage communi-

cation and coordination among processes in Horovod.

For  each  cross-node  All-Reduce  collective  opera-

tion,  there are three phases that happen in order:  1)

every  process  performs  a  local  reduction  if  a  process

holds more than one buffer; 2) the All-Reduce collec-

tive is performed across processes; 3) like the reverse

of  step  1,  every  process  broadcasts  the  reduction  re-

sults  to  its  buffers.  Gloo provides  multiple  algorithm
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designs for phase 2 including the Ring, Ring-chunked,

Halving-Doubling,  and  BCube  algorithms.  More  in-

depth design details are covered in Subsection 4.1.1.

 6.6    Microsoft MSCCL

The  Microsoft  Azure  team  proposed  the  Mi-

crosoft Collective Communication Library (MSCCL)㊶

to  make  creating  and  executing  custom  collective

communication  algorithms  much  easier.  MSCCL  is

made  up  of  three  components:  GC3[73],  TACCL[74],

and SCCL[75].  GC3 provides  a  data-oriented domain-

specific  language  (DSL)  and  a  corresponding  compil-

er  to  simplify  GPU  communication  programming.

TACCL  is  dedicated  to  automatically  generating  al-

gorithms by guiding a  synthesizer.  SCCL synthesizes

collective  communication  algorithms  tailored  to  the

hardware  topology.  With  the  three  components,  cus-

tom  collective  communication  algorithms  can  be  im-

plemented efficiently and flexibly in MSCCL.

 6.6.1    Architecture

For  a  given  collective  communication  algorithm

and  physical  topology,  MSCCL can  explore  different

implementations  and  optimizations  with  high-level

specifications.  MSCCL  enables  generating  efficient

custom  communication  algorithms  with  a  chunk-ori-

ented program, as shown in Fig.8(d).  The chunk-ori-

ented program specifies the chunk routine from source

to  destination.  To  specify  chunk  routing  through

GPUs,  a  DSL  is  used  in  GC3  and  communication

sketch is used in TACCL. After the program is creat-

ed,  it  can  be  traced  into  a  chunk-directed  acyclic

graph  (DAG).  Then  the  instruction  DAG  (distinct

from  the  chunk  DAG)  is  created  by  expanding  the

chunk  operations  into  instruction  operations.  After

that,  the  instruction  DAG  is  scheduled  after  being

compiled  into  an  intermediate  representation  (IR).

After  the  IR  is  generated,  the  MSCCL runtime  exe-

cutes  it  efficiently,  since  MSCCL  runtime  inherits

NCCL's  capability  to  set  point-to-point  links  over

various interconnects such as NVLink and PCIe.

 6.6.2    Framework Support

Because MSCCL's API is compatible with NCCL,

it  is  convenient to integrate the MSCCL runtime in-

to  state-of-the-art  deep  learning  frameworks  such  as

PyTorch  by  swapping  out  the  NCCL  backend  with

the MSCCL backend.

 6.6.3    MSCCL Runtime

MSCCL  DSL. The  DSL  is  a  chunk-oriented

dataflow language  that  can  be  used  to  write  an  effi-

cient  communication  kernel.  The  programmer  speci-

fies  how chunks  are  routed  across  GPUs in  this  lan-

guage.

MSCCL Runtime. IR is the executable file gener-

ated by MSCCL's compiler. It can be executed by the

MSCCL runtime.  The  MSCCL runtime  extends  NC-

CL and uses NCCL’s point-to-point send and receive

functionality  and  is  backward  compatible  with

NCCL's API.

MSCCL  Compiler. The  MSCCL  compiler  traces

the program to record the chunk dependencies in the

chunk  DAG.  The  compiler  then  performs  a  series  of

optimizations and schedules the resulting chunk DAG

to  thread  blocks  specified  in  the  IR.  The  MSCCL

DSL allows users to guide the compiler into optimiz-

ing and scheduling the program.

Optimization. It  is  important  to  optimize  the

schedules  of  the program to improve performance.  A

set  of  scheduling  directives  is  used  to  optimize  the

trade-off  for  parallelization  when  scheduling  instruc-

tions to multiple thread blocks. There are several as-

pects. 1) Multiple connections may exist in the same

pair of GPUs and are labeled as channels to help dis-

tinguish  different  connections.  The  most  efficient

channel  can then be allocated for a particular opera-

tion.  2)  A  transfer  can  be  broken  up  into  multiple

smaller transfers to improve execution parallelism. 3)

When  multiple  contiguous  chunks  are  sent  from  one

GPU to another, aggregating these chunks in a single

transfer can reduce the latency.

 6.6.4    Practical Workloads and Applications

MSCCL㊶ has been used for inference with a pub-

lic-facing language model on 8x A100 GPUs; the oper-

ations  of  the  GPU  have  been  accelerated  by

1.22x–1.29x, depending on the input batch size. MSC-

CL has also been used to train a sizeable Mixture-of-

Experts  model  on  256x  A100  GPUs,  providing

1.10x– 1.89x  speed-up  depending  on  the  Mixture-of-

Experts model architecture.
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 7    Experimental Comparison of

Implementations

 7.1    Experimental Setup

In this subsection, we run experiments on the SD-

SC Expanse㊷ cluster  to  compare  the  performance  of

different collective communication libraries. The hard-

ware  details  of  Expanse  are  shown  in Table 4.  Tak-

ing  into  account  availability  and  fairness,  we  select

PARAM㊸ from  Meta,  NCCL Tests㊹ from  NVIDIA,

and  OSU  MPI  Micro-Benchmarks  (OMB)[76] as

benchmarks.  We  choose  NCCL,  Gloo,  MSCCL,  and

CUDA-aware MPI by MPICH㊺㊻ and UCX as the li-

braries  of  interest  in  our  performance  comparison.

PARAM  communication  benchmarks  are  PyTorch-

based  collective  benchmarks  while  NCCL  Tests  are

CUDA-based  collective  benchmarks.  We  use  Python

3.7,  PyTorch  1.13,  CUDA 11.6,  NCCL 2.14.3,  MSC-

CL  0.7.3,  MPICH v4.0.2,  and  UCX v1.13.1.  We  use

16  GPUs  across  four  nodes  at  most  in  our  experi-

ments. The rest of this section is organized as follows.

We first  benchmark NCCL and MSCCL with NCCL

Tests, and CUDA-aware MPI with OMB. Though we

use  two  different  benchmarks  to  make  the  compari-

son, we keep the message size and collective routines

consistent.  We  benchmark  NCCL  and  Gloo  with

PARAM.  In  the  experiments,  all  numbers  are  taken

three  times.  We  pick  up  the  stable  number  and

present  the  average  number  as  the  result  shown  be-

low.
  

Table  4.   SDSC Expanse Details

Specification SDSC Expanse

GPU 4x NVIDIA V100 SMX2 (32 GB, 34.4
TFlop/s) per node

CPU 40-Core Xeon Gold 6248 2.5 GHz (384 GB
DDR4 DRAM)

Interconnects HDR InfiniBand, NVLINK 2

Topology Hybrid Fat-Tree
 

 7.2    NCCL Tests Benchmark with NCCL

and MSCCL, and OMB with

CUDA-Aware MPI

The NCCL Tests benchmark can be used to com-

pare the latency of NCCL and MSCCL. This test in-

cludes four collectives: All-Reduce, All-Gather, All-to-

All, and Broadcast. OMB can be used to compare the

CUDA-aware  MPI  library  with  xCCL  for  the  same

collective routines as NCCL Tests. MSCCL is built on

NCCL, and the runtime of MSCCL is an extension of

NCCL.  Based  on  the  configuration,  the  runtime  of

MSCCL dynamically selects the efficient optimized al-

gorithms or NCCL's built-in algorithms. For this rea-

son, most tests have similar latency results for NCCL

and MSCCL.

The latency of the All-Reduce collective with NC-

CL,  MSCCL,  and  CUDA-aware  MPI  for  different

message  sizes  is  shown in Fig.9(a).  MSCCL can  effi-

ciently explore different algorithms, and uses the All-

Pairs,  Hierarchical,  and  Two-Step  All-Reduce  algo-

rithms  to  support  algorithmic  optimizations  for  All-

Reduce. These algorithms are described with more de-

tails in Subsection 4.2.2. In most instances, the laten-

cy of MSCCL is slightly lower than that of NCCL for

both  small  and  large  message  sizes.  In  general,  the

All-Reduce latency of NCCL is about 1.07 times that

of MSCCL. Because MSCCL is built on top of NCCL,

NCCL and MSCCL show similar performance at dif-

ferent numbers of GPUs. For both MSCCL and NC-

CL, the latency numbers for two-node tests are about

three  times  those  of  single-node  tests.  The  latency

numbers of four-node tests are four times those of sin-

gle-node tests.  CUDA-aware MPI always has a high-

er  latency  than  NCCL  and  MSCCL.  For  example,

CUDA-aware  MPI  latency  is  2x– 4x  slower  than  the

one  of  NCCL and  MSCCL when  the  message  size  is

smaller  than  2  MB.  When the  message  size  is  larger

than 2 MB, the CUDA-aware MPI latency is 4x–40x

slower than the one of NCCL and MSCCL. The rea-

son behind is that NCCL and MSCCL are optimized

based on NVIDIA GPU directly on both the program-

ming language and the algorithms.

The latency of the All-Gather collective with NC-

CL and MSCCL for  different  message  sizes  is  shown

in Fig.9(b).  MSCCL and NCCL use  NCCL's  built-in

algorithms  to  support  the  All-Gather  collective  com-

munication, and the results of MSCCL are almost the

same as those of NCCL. It can be observed that the

latency  of  All-Gather  is  lower  than  that  of  All-Re-

duce.  This  is  because  All-Gather  is  equivalent  to  a
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Gather followed by a Broadcast, while All-Reduce can

be formed by combining a reduction and a Broadcast.

For small  message sizes,  the trend of  tests for differ-

ent numbers of  GPUs is  almost the same. When the

message size gets larger, the latency results of 2 and 4

nodes  are  close.  When  the  message  size  is  smaller

than 1.5 KB, CUDA-aware MPI can achieve lower la-

tency than NCCL and MSCCL. For example, the la-

tency of CUDA-aware MPI is 0.7x that of NCCL and

MSCCL when  running  on  16  GPUs.  When  the  mes-

sage  size  becomes  large,  the  latency  of  MPI  can  be

40x  greater  than  that  of  NCCL  and  MSCCL  when

running  with  16  GPUs.  CUDA-aware  MPI  provides

several  algorithms  and  changes  them  automatically

based on several aspects, for example, the number of

nodes  and the  message  size.  Therefore,  CUDA-aware

MPI can achieve lower latency than NCCL and MSC-

CL for small message sizes.

The  All-to-All  routine  is  the  third  collective  we

compare  among  NCCL,  MSCCL,  and  CUDA-aware

MPI,  and  the  latency  for  different  message  sizes  is

shown in Fig.9(c). We see that the overall latency re-

sults  of  NCCL and MSCCL among all  message  sizes

are similar because MSCCL also uses the built-in al-

gorithms of NCCL. Compared with the first two col-

lectives,  All-to-All's  latency  measurements  are  the

largest  when  the  message  size  is  large.  The  behavior

of CUDA-aware MPI is similar for All-Gather as dis-

cussed  above:  the  latency  is  lower  than that  of  both

NCCL and MSCCL when the message size is smaller

than 6 KB, and higher than that of both NCCL and

MSCCL when the message size is large. For example,

when  the  message  size  is  24  MB,  CUDA-aware  MPI

latency  is  98x  slower  than  the  ones  of  NCCL  and

MSCCL.

NCCL and MSCCL use the built-in algorithms of

NCCL in Broadcast, and the latency results for differ-

ent  message  sizes  are  shown  in Fig.9(d).  When  the

message size is small,  the latency results scale to the

number of nodes. However, when the message size be-
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comes larger, the latency results for the 2-node and 4-

node  tests  no  longer  increase  linearly  because  inter-

node communication becomes the bottleneck. In some

cases,  the  latency  differences  between  xCCL  (NCCL

and MSCCL) and CUDA-aware MPI are not so large.

When the message size is  smaller  than 512 KB, CU-

DA-aware  MPI  latency  is  0.2x– 0.5x  of  NCCL  and

MSCCL latency. When the message size is larger than

8  MB,  CUDA-aware  MPI  latency  is  2x– 5x  slower

than NCCL and MSCCL latency.

Overall,  CUDA-aware  MPI  has  higher  latency

than  NCCL  and  MSCCL  when  the  message  size  is

larger  than  1  MB.  It  may  have  lower  latency  than

NCCL and MSCCL when the message size is smaller

than  1.5  KB  for  All-Gather  and  All-to-All,  and  512

KB for Broadcast.

 7.3    PARAM  Benchmark  with  NCCL  and

Gloo

In this subsection, we benchmark NCCL and Gloo

as  the  communication  backend  with  PARAM  in

terms of latency for three collectives: All-Reduce, All-

Gather, and Broadcast. PARAM uses PyTorch as the

backend engine and therefore PARAM can better re-

flect  the  performance  or  overhead  of  PyTorch  with

deep  learning  workloads.  Not  surprisingly,  the  laten-

cy  of  NCCL  is  lower  than  that  of  Gloo  for  all  mes-

sage  sizes  and  collectives.  The  reason  behind  is  that

NCCL is involved in Gloo's procedure on performing

collectives  and  they  share  some  design  concepts  like

communicator,  as  described  in Subsection 6.5.  Also,

Gloo  performs  the  collective  operations  on  CPUs,

which is  different from NCCL that performs the col-

lectives on GPUs. This is another reason why Gloo's

performance is slower than NCCL's.

Fig.10(a) shows the latency of the All-Reduce col-

lective  with  NCCL  and  Gloo  for  different  message

sizes.  On  average,  the  All-Reduce  latency  of  Gloo  is

about 10 times to 20 times that of NCCL. In the ex-

treme  case  with  16  GPUs  and  small  message  sizes,

NCCL can be 40 times faster  than Gloo.  NCCL and

Gloo  also  show  similar  latency  performance  when

varying  the  number  of  GPUs.  For  small  message

sizes,  the  All-Reduce  latency  measured  with  2-node

tests  is  around twice  that  with 1-node tests.  The la-

tency measured with 4-node tests is around four times

that with 1-node tests. For large message sizes, the la-

tency numbers  with 8  GPUs and 16 GPUs are  simi-

lar,  while  the  latency  with  4  GPUs is  much smaller.

The  reason  could  be  that  4  GPUs  residing  in  one

node  are  connected  with  the  much  faster  NVLink,

which  means  there  is  no  inter-node  communication
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necessary for 4-GPU tests.

The latency of the All-Gather collective with NC-

CL  and  Gloo  for  different  message  sizes  is  shown  in

Fig.10(b). The overall trend of the latency of the All-

Gather  collective  is  almost  the  same  as  that  of  the

All-Reduce collective. The influence of the number of

GPUs and message size is also very similar to the pre-

vious  experiments.  In  the  small  message  range,  the

All-Gather latency of Gloo is about three times to six

times  that  of  NCCL for  different  numbers  of  GPUs.

When it goes to a large message size, Gloo is getting

slower than NCCL, where its latency becomes around

10  times  of  NCCL's  latency  on  average.  One  differ-

ence  is  that  the  latency  of  All-Gather  is  lower  than

that of All-Reduce, since All-Gather can be treated as

a  Broadcast  operation  from  all  ranks  while  All-Re-

duce can be described as a reduction and a Broadcast.

The  last  collective  we  compare  between  NCCL

and Gloo is Broadcast. The latency for different mes-

sage sizes is shown in Fig.10(c). We still see the same

trend  of  the  overall  latency  comparison  among  all

message  sizes.  The  comparison  with  different  num-

bers of GPUs still shows similar trends. One thing to

notice  is  that  the  NCCL's  latency  is  very  consistent

among  different  message  sizes  and  the  number  of

nodes, while the Gloo's latency is less stable, especial-

ly  when  the  message  size  becomes  larger.  For  exam-

ple, when running with 4 GPUs, the range of the la-

tency  for  different  messages  from  NCCL  is  around

0.03  ms  to  1  ms  but  it  is  around  0.1  ms  to  100  ms

from  Gloo.  Compared  with  the  first  two  collectives,

Broadcast's  latency  has  a  wide  range  depending  on

the message size. When the message is small, the col-

lective can finish within 1 ms because the operation is

simple.

 8    Discussion

Why Have  xCCLs  Become  More  Attractive  Than
Classic  MPI in the  Industry? We summarize  the  fol-

lowing  possible  reasons.  First,  due  to  the  popularity

of  ML/DL in  recent  years,  GPUs have  become com-

mon  in  both  industry  and  research.  Therefore,  the

community  is  interested  in  investigating  collective

communication  libraries  for  GPUs  and  specialized

hardware,  like  NVIDIA's  NCCL.  Second,  the  NCCL

itself is well-designed. In essence, NCCL can be treat-

ed as a simpler implementation of  MPI with CUDA,

which  allows  it  to  better  utilize  the  powerful  GPUs,

especially for the ML/DL workloads. NCCL is easy to

use, light-weight, and it provides high scalability and

stable  performance.  Third,  compared  with  xCCL,

classic  MPI  communication  libraries  have  not  yet

been able to make effective use of hardware accelera-

tion, making them less attractive. For example, while

many features  have  been  added to  the  MPI libraries

over  the  decades  (such  as  GPU  support),  these  nu-

merous features make the libraries increasingly bloat-

ed,  which  harms  the  performance  and  usability  of

MPI.

Which  Among  the  xCCLs  Has  the  Best  Perfor-
mance?  As  shown  and  discussed  in  the  results  from

Section 7,  NCCL  from  NVIDIA  shows  better  perfor-

mance more reliably. Beyond this, researchers are still

looking  for  opportunities  where  xCCL's  performance

can  be  further  improved.  For  example,  researchers

from  the  University  of  California,  Berkeley,  found

that  NCCL's  model  parameter  synchronization  con-

tains  high  overheads  when  performing  distributed

training and they proposed Blink[77], a set of fast col-

lectives for distributed machine learning that reduces

end-to-end  training  time  for  the  image  classification

task up to 40%. Blink does this by dynamically gener-

ating optimal communication primitives. Another ex-

ample  is  MSCCL.  MSCCL aims  to  look  for  the  best

communication  patterns  or  algorithms  instead  of  di-

rectly  using  the  traditional  collective  communication

algorithms. In [74], an abstraction called communica-

tion  sketch  is  introduced.  After  obtaining  important

information,  such as  hardware topology,  the  commu-

nication sketch will guide the synthesizer to find bet-

ter algorithms to perform a certain collective. Both of

these  studies  and  our  survey  work  shed  light  on  po-

tential directions of future designs for xCCLs.

What Are the Common and Distinct Design Con-
siderations  in  Each  xCCL?  From the  collective  com-

munication routine perspective,  we can observe some

similarities.  xCCLs  are  evolving  the  classic  MPI  im-

plementations into their ML versions. Among all col-

lective  routines  shown  in Table 1,  two  routines,  All-

Reduce  and  Broadcast,  are  supported  by  all  xCCLs.

Both  collectives  are  useful  and  commonly  ultilized

communication patterns in ML/DL applications.  An-

other reason is that many xCCLs are designed based

on  NCCL  and/or  use  NCCL  as  the  backend.  Al-

though they share some design considerations for sup-

ported routines, the xCCLs have diverse feature sup-

ports, which are shown in Table 3. For example, dif-

ferent xCCLs may adopt different open source licens-

es or choose to be proprietary. In terms of supported
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accelerators,  NCCL  is  the  industry  defacto  standard

for  GPU-accelerated  collectives,  ROCm  is  aimed  to

provide  support  for  AMD  GPUs,  and  Intel  oneCCL

can support heterogeneous accelerators.

Will  Current-Generation  Networks  Become  the
Bottleneck for xCCLs? From Blink[77], it is noted that

communication bottlenecks between GPUs cannot be

fully  mitigated,  for  reasons  such  as  differing  server

configurations and GPU job scheduling. The network-

ing protocol can also affect scaling efficiency as TCP

networking  will  not  significantly  increase  perfor-

mance  compared  with  RDMA  (over  90%  scaling)

when  running  Inception  V3  and  ResNet-101  models

on  Uber's  Horovod.  In  [78],  researchers  argued  that

the  network  speed  itself  is  not  the  bottleneck,  but

choosing how to utilize fast network speeds more effi-

ciently is. The network speed is one important factor

which influences the performance of xCCLs, while the

real-world xCCL design is  another one.  The trend of

xCCLs is to adopt even faster networks. In the case of

ZionEX[56] from Meta, a single node accommodates 8

GPUs  and  each  GPU  has  a  dedicated  200  Gbps

RoCE  NIC.  In  the  case  of  ACCL[49] from  Alibaba,

each  node  contains  four  Mellanox  CX-5  (MT27800)

100 Gbps NICs. These real-world deployments in the

industry clearly show that network speed and the ap-

propriate  software-hardware  co-designs  are  playing

significant roles in modern deep learning applications.

 9    Related Work

In our survey, we provide an in-depth overview of

multiple collective communication methods with a fo-

cus  on  industrial  led  collective  communication  solu-

tions. Different from our survey, many other existing

surveys focus more on computations, optimization, or

tuning.

Many  existing  surveys  contribute  extensive

overviews within collectives and tuning of parameters

or  optimizations.  A  survey  of  collectives  provides  an

in-depth  analysis  into  existing  and  state-of-the-art

methods  for  optimization  and  tuning[79].  A  paper  on

the  implementation  of  collective  communication  on

distributed-memory  reviews  best  practices,  analyzes

existing algorithms,  and implements  tunable  libraries

for  users[80].  A  paper  on  the  performance  analysis  of

MPI collective operations observes and improves col-

lective  communication[81] and  researchers  from  Uni-

versity of Tennessee created automatically tuned col-

lective  communications  using  matrix  operations  and

Fast Fourier Transforms[82].  These surveys are unlike

our  survey,  where  we  do  not  explicate  computation

acceleration  and  rather  focus  on  general  algorithms

and industrial designs.

Distributed machine learning work also heavily re-

lies  on  collective  communication  systems  to  reduce

training  time.  A distributed machine  learning  survey

provides an extensive overview of current methods in-

cluding techniques and a review of the available sys-

tems[83].  An  overview  of  parallel  systems  can  guide

those  who  are  unaware  of  which  system  may  suit

their  applications  best.  Recently,  Wang et  al. re-

viewed  over  200  papers  to  present  an  overview  on

large-scale  machine  learning  from  a  computational

perspective,  providing  guidance  in  this  direction[84].

The authors  gave analysis  on distributed deep learn-

ing,  diving  deep into  each component  that  builds  its

structure  while  covering  popular  implementations  in

the  community.  A  survey  on  distributed  deep  learn-

ing presents parallelism strategies for deep neural net-

works  with  analysis[85],  while  another  survey  takes  a

broader  view  and  provides  an  overview  on  scalable

deep learning systems[86]. Understanding scalability on

deep  learning  systems  is  important  for  realizing  the

amount  of  hardware  to  allocate.  A  survey  on  dis-

tributed training using TensorFlow details  the  struc-

ture  of  TensorFlow  for  collectives  and  implements  a

design faster  than Horovod-NCCL2[63].  Ouyang et  al.
provided  a  survey  on  methods  to  tackle  communica-

tion  overhead  during  distributed  deep  neural  net-

works training from an inter-disciplinary perspective[87].

The  authors  focused  on  the  structure  of  distributed

deep neural networks and computations for collective

communication,  including  architectures  and  network

protocols.  A  performance  analysis  on  multiple  dis-

tributed deep learning frameworks (i.e., Caffe-MPI[88],

CNTK[70],  MXNet[71],  and  TensorFlow[62])  on  three

convolutional neural network models (i.e., AlexNet[89],

GoogleNet[90] and  ResNet-50[91])  focuses  on  collective

communication  bottlenecks[92].  Shi et  al.[92] presented

a very vast combination of different configurations for

distributed training of Convolutional Neural Network

model that provides guidance on how to select frame-

works  and  models.  The  paper  also  reviews  Convolu-

tional Neural Network training computations.

There  are  also  other  studies  to  further  analyze

performance  factors  other  than  latency  in  collective

communication.  For  example,  Hoefler  and  Moor  re-

ported  on  tradeoffs  between  energy,  memory,  and

runtime  of  different  algorithms  for  collectives[93],  al-
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though  it  should  be  noted  that  each  application  of

collectives  will  require  its  own  specific  implementa-

tion.  It  may  not  always  be  the  case  that  the  results

can be reproduced perfectly.

 10    Conclusions

This  paper  presented  an  extensive  survey  on  in-

dustry-led  collective  communication  libraries  (xCCL)

which  are  frequently  used  in  distributed  deep  learn-

ing  training  workloads.  We  started  at  the  physical

network topology layer that underlies all communica-

tion  between  devices.  We  then  discussed  the  data

transfer  algorithms  used  in  collective  routines.  Next,

we  explored  different  industry  solutions  by  compar-

ing  their  feature  sets  and  explaining  real-world  deep

learning  application  use  cases.  We  evaluated  xCCL

performance  by  running  two  industry-made  bench-

marks (NCCL Tests and PARAM). Based on our re-

sults, we explained the performance characteristics of

evaluated xCCLs.  We also discussed why xCCLs are

gaining traction in the industry when the classic com-

munication libraries such as MPI implementations ex-

ist. We further explained how these libraries take ad-

vantage  of  hardware  accelerators  and  fast  intercon-

nects  to  support  deep  learning  training  workloads.

Through  our  tests  and  investigation,  we  have  deter-

mined  that  NCCL is  currently  the  most  mature  col-

lective  communication  library.  We  hope  that  future

efforts  will  be  made  to  explore  the  optimizations

present in NCCL and effectively apply them in other

xCCLs.
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