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Abstract    The Slingshot interconnect designed by HPE/Cray is becoming more relevant in high-performance comput-

ing with its deployment on the upcoming exascale systems. In particular, it is the interconnect empowering the first exas-

cale and highest-ranked supercomputer in the world, Frontier. It offers various features such as adaptive routing, conges-

tion control, and isolated workloads. The deployment of newer interconnects sparks interest related to performance, scala-

bility, and any potential bottlenecks as they are critical elements contributing to the scalability across nodes on these sys-

tems. In this paper, we delve into the challenges the Slingshot interconnect poses with current state-of-the-art MPI (mes-

sage passing interface) libraries. In particular, we look at the scalability performance when using Slingshot across nodes.

We present a comprehensive evaluation using various MPI and communication libraries including Cray MPICH, Open-

MPI + UCX, RCCL, and MVAPICH2 on CPUs and GPUs on the Spock system, an early access cluster deployed with

Slingshot-10, AMD MI100 GPUs and AMD Epyc Rome CPUs to emulate the Frontier system. We also evaluate prelimi-

nary CPU-based support of MPI libraries on the Slingshot-11 interconnect.
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 1    Introduction

The  Frontier  Supercomputer① deployed  at  the

Oakridge  Leadership  Computing  Facility  (OLCF),

now  leading  the  Top500② list  of  supercomputers  in

the  world  and  officially  recognized  as  the  first  exas-

cale  supercomputer,  is  empowered by the  HPE Cray

Slingshot interconnect. In preparation for the vast de-

mands of exascale computing and moving to a Sling-

shot-based networking environment, it is important to

have  an  understanding  of  the  interconnect  with  re-

spect to MPI (message passing interface) communica-

tion.  MPI  libraries  have  been  heavily  deployed  and

used on systems with an underlying InfiniBand inter-

connect connecting nodes.  They have been optimized

and  extensively  researched  in  this  ecosystem.  Now,

with upcoming exascale systems③ choosing to deploy

the Slingshot interconnect④ as the underlying connec-

tion  between  nodes,  it  is  crucial  to  have  an  under-

standing  of  the  interconnect  technology  and  how  it

impacts  or  improves  the  performance  of  communica-

tion at scale.

In this paper, we provide an analysis of the perfor-

mance of various MPI libraries on a system with pre-
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liminary/experimental deployment of the Slingshot in-

terconnect.  As  this  is  a  new  area  that  has  seldom

been  researched  and  is  going  to  become  a  critical

component  of  future  HPC  deployment,  it  is  impor-

tant  to  have  this  kind  of  detailed  information  and

analysis  that  could  provide  a  better  outlook  on  the

needs for optimizations and enhancements on upcom-

ing systems deployed with Slingshot networking. This

drives future research and innovations while also pro-

viding scalable and competitive options in this ecosys-

tem  that  compare  or  improve  upon  existing  innova-

tions in the current interconnect technology realms.

 1.1    Motivation

Many  of  the  top  supercomputers  utilize  Infini-

Band  networking,  with  the  deployment  of  the  Mel-

lanox InfiniBand interconnect to connect nodes across

the  network.  This  area  has  been  heavily  evaluated

and  analyzed  over  the  years  with  various  MPI  li-

braries  utilizing GPU-aware and CPU-based commu-

nication to scale out performance onto multiple nodes.

This understanding of the limitations and advantages

of the interconnect technology drove future directions

in  research  over  the  years  related  to  communication

optimization  and performance  analysis.  With  the  de-

ployment  of  the  Slingshot  interconnect,  it  is  just  as

important to develop an understanding of the advan-

tages  and  features  the  interconnect  introduces  in  or-

der to motivate future approaches in the communica-

tion realm.

The underlying interconnect technology is a criti-

cal component in achieving high performance, low la-

tency  and  high  throughput,  at  scale  on  next-genera-

tion  exascale  systems.  This  drives  the  motivation  to

have a detailed analysis and understanding of the ex-

isting  MPI  libraries  and  the  performance  they  are

able to demonstrate at certain scales, various configu-

rations,  and  for  different  communication  operations.

Through this work, we demonstrate a need for a thor-

ough  evaluation  of  communication  over  the  newer

Slingshot  interconnect  and  its  ecosystem  in  prepara-

tion for exascale systems in order to achieve the scala-

bility and efficiency that is promised by the next gen-

eration of supercomputing.

 1.2    Key Insights and Contributions

The  performance  of  GPU-aware  approaches  to

communication provided by the state-of-the-art  com-

munication  libraries  on  the  Slingshot  interconnect

have yet to be explored.  There is  a lack of  thorough

evaluation and analysis of performance comparing the

different  communication operations  and detailing  the

demands  for  MPI  at  the  application  layer  on  a  sys-

tem  with  Slingshot  interconnects.  Additionally,  the

systems  used  in  this  study  include  AMD MI100  and

AMD  MI250X  GPUs,  which  are  also  a  snapshot  of

the  type  of  system and ecosystem we  can  expect  for

the  next-generation  exascale  systems.  Through  this

work, we make the following contributions.

• Comprehensive  evaluation  of  CPU-based  com-

munication using various communication libraries, in-

cluding OpenMPI + UCX, MVAPICH2-X, and Cray

MPICH  on  the  Spock  system  with  the  Slingshot-10

interconnect, and AMD EPYC Rome CPUs for point-

to-point and collective benchmarks.

• Comprehensive  evaluation  of  GPU-aware  com-

munication using various communication libraries, in-

cluding  OpenMPI  +  UCX,  MVAPICH2-GDR,  Cray

MPICH,  and  RCCL  on  the  Spock  system  with  the

Slingshot-10  interconnect,  AMD  MI100  GPUs,  and

AMD EPYC Rome CPUs for point-to-point and col-

lective benchmarks.

• Evaluation of preliminary CPU-based communi-

cation  on  the  Slingshot-11  interconnect  with  MVA-

PICH2-3.0a and CrayMPICH on a system emulating

the Frontier system with Slingshot-11 networking.

• Application-level  evaluation  using  state-of-the-

art communication libraries for rocHPCG and for the

HeFFTe  application  using  the  rocfft  backend  for

AMD GPUs and the fftw backend for CPUs.

• Delving into various challenges that the current

Slingshot-10  interconnect  brings  about  in  terms  of

communication  performance  and  what  challenges  to

consider  for  future  deployment  of  MPI  libraries  on

systems with the upcoming Slingshot-11 interconnect

such  as  support  for  the  underlying  Cray  Fabric  and

adapter, in preparation for new exascale systems such

as Frontier.

 2    Background

This paper is an extended version of [1]. In [1], we

presented our early experiences with Slingshot-10 and

MPI  libraries  with  a  focus  on  GPU-aware  MPI.  In

this paper, we have made the following enhancements:

1)  We  add  CPU-based  experiments  and  evalua-

tions of MPI libraries including MVAPICH2-X, Open-

MPI,  and  Cray  MPICH  on  the  Spock  system  using
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OSU-Microbenchmarks. We evaluated intra-node and

inter-node  point-to-point  performance  on  CPUs  over

the  Slingshot-10  interconnect  and  between  AMD

Epyc  Rome  CPUs.  We  evaluated  collectives  perfor-

mance on up to 512 CPUs (8 nodes, 64 PPN) for re-

duce,  allreduce,  gather,  allgather,  broadcast,  and  all-

toall. These are detailed in Subsection 3.3.

2)  We  evaluate  heFFTe  using  the  fftw  backend

for  CPU-based  communication  using  MVAPICH2-X

and OpenMPI on up to 512 CPUs on the Spock Sys-

tem  for  a  problem  size  up  to  5123 with  alltoall  and

alltoallv 3.7.

3) We add and evaluate the performance of  MPI

libraries  over  the  Slingshot-11  interconnect  and

present  a  new  system  with  Slingshot-11  networking

used in our evaluations. No other work has been done

on Slingshot-11 networking with MPI. This work de-

tails  preliminary  MPI  support  over  the  Slingshot-11

interconnect  and  demonstrates  performance  at  the

benchmark level and challenges to consider for future

MPI  deployment  over  upcoming  exascale  systems

with Slingshot-11 networking. These are detailed fur-

ther in Subsection 3.5 and Subsection 3.6.

 2.1    State-of-the-Art Interconnect

Technologies

Achieving  high  performance  for  complex  HPC

workloads that benefit from high levels of parallelism

requires  efficient  and  scalable  network  interconnects.

Modern interconnects such as InfiniBand, RoCE, Om-

ni-Path,  and so  on,  were  introduced into  the  market

to  address  communication  bottlenecks  by  achieving

low  latency  and  high  throughput  between  nodes.  In

recent years, InfiniBand and high-speed Ethernet rep-

resent  the  gold  standard  for  high-performance  net-

work  interconnects.  For  instance,  Summit@ORNL

(ranked 4th on the June 2022 Top500 list⑤), uses Du-

al-rail Mellanox EDR InfiniBand as the underlying in-

terconnect.  Approximately 35% of supercomputers in

the  Top500  utilize  InfiniBand  networking  (including

Sierra@LLNL, Selene@NVIDIA, etc.), and about 48%

deploy  Gigabit  Ethernet  networking  (including  Perl-

mutter@NERSC,  Polaris@ANL,  etc.).  The  adoption

rates  for  interconnects  in  upcoming  exascale  systems

are  rapidly  changing due to  the increased number of

choices and evolving interconnect standards.

 2.2    Slingshot Interconnect

HPE  Slingshot⑥ is  a  high-performance  network

designed by HPE Cray for upcoming exascale-era sys-

tems, and is based on Ethernet. It provides flexibility

and capabilities to enable users to run a wide mix of

workflows. The switches support a high-radix and up

to 12.8 Tb/s bandwidth. While the latency of Ether-

net  networks  is  slightly  worse  when compared to  In-

finiBand systems in general, Ethernet networks claim

the  advantage  of  wider  adoption  across  application

domains. HPE Slingshot delivers low latency and high

throughput  for  HPC  workloads,  and  minimizes  the

number of switch hops in large networks (for instance,

by  employing  the  use  of  the  Dragonfly[2] topology).

The  interconnect  features  adaptive  routing  tech-

niques  to  help  maintain  the  balanced  traffic  flows

through fine-grained  optimization.  HPE Slingshot  al-

so  introduces  a  fully  automatic  and  hardware-imple-

mented congestion control mechanism to minimize the

impact of congestion when multiple workloads run at

the same time. It is currently empowering the first of-

ficial  exascale  supercomputer  in  the  world,

Frontier@OLCF,  and in  the  work  to  be  deployed  on

future  exascale  supercomputers  as  well,  such  as  El

Capitan@LLNL.

 2.3    State-of-the-Art Communication Libraries

The  Message  Passing  Interface  (MPI)  is  a  multi-

processing  paradigm  that  enables  communication

among  processes  on  parallel  architectures.  The  com-

munication primitives can be categorized as one-sided,

point-to-point,  and  collective  operations.  One-sided

communication  indicates  the  use  of  only  one  process

to  move  data  to  a  remote  process  (without  the  re-

mote  process's  involvement).  Hence,  it  is  also  re-

ferred to as remote memory access (RMA). It decou-

ples the process synchronization during data transfer.

MPI_Put,  MPI_Get,  and  MPI_Accumulate  are  well-

known one-sided communication operations. The MPI

standard also supports expressing point-to-point com-

munication  operations  using  two-sided  semantics  us-

ing  MPI_Send,  MPI_Recv,  MPI_Isend,  and

MPI_Irecv.  Collective  communication  operations  de-

fined  by  the  MPI  standard  provide  convenient  ab-

stractions for multiple processes/threads to efficiently

communicate with one another. These operations can
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involve  computing  operations  (in  reduction  collec-

tives  such  as  MPI_Allreduce  and  MPI_Reduce)  or

just  communication  to  represent  common  patterns

such as a broadcast, scatter, gather, and others.

Aside  from  the  MPI  interface,  there  are  other

communication libraries that use and expose a differ-

ent  underlying  API  to  transfer  messages.  For  exam-

ple,  the  NVIDIA  Collective  Communication  Library

(NCCL),  provides  optimized  communication  primi-

tives for GPU-to-GPU communication within as well

as  across  the  node  for  NVIDIA GPUs.  ROCm Com-

munication  Collectives  Library  (RCCL)  is  the  com-

munication  library  based  on  NCCL for  AMD GPUs,

providing  primitives  that  enable  GPU-to-GPU  com-

munication on AMD ROCm supported systems, simi-

lar to what NCCL achieves on systems with NVIDIA

GPUs.

 2.4    Limitations of State-of-the-Art

Approaches

Existing  MPI  libraries  provide  support  for  vari-

ous  network  features  such  as  Omni-Path,  RoCE,  In-

finiBand, and so on. The growth in the deployment of

the  Slingshot  interconnect  across  upcoming  systems

adds the Slingshot interconnect to the growing list of

features that MPI libraries will need to add function-

ality  and  optimizations  for.  HPE/Cray  has  designed

the Slingshot interconnect in such a way to be ether-

net  compatible  in  order  to  provide ease  of  interoper-

ability  with  existing  systems.  This  enables  a  direct

connection  between  the  switches  for  Slingshot  and

ethernet  networks  and  storage  devices⑦.  It  also  pro-

vides  support  for  features  such  as  adaptive  routing,

congestion control, and isolated workloads. These fea-

tures  provide  several  challenges  and  possibilities  to

explore  and  enhance  state-of-the-art  communication

libraries.  The  limitations  of  current  state-of-the-art

approaches will be made more clear with the deploy-

ment  of  Slingshot-11.  Current  accessibility  and  de-

ployment  on  early  access  Slingshot  systems  provide

an  ecosystem  with  Slingshot-10  interconnection

amongst  nodes.  The  second  generation  of  Slingshot,

Slingshot-11,  is  deployed  over  a  Slingshot  fabric  and

adapter, while the current deployment of Slingshot-10

is running over a Slingshot network with a Mellanox

InfiniBand  adapter.  This  second-generation  deploy-

ment introduces additional challenges for communica-

tion libraries to develop functionality over the under-

lying  adapter  and  fabrics.  In Subsection 3.6,  we

present a preliminary evaluation of MPI libraries with

support for Slingshot-11 on CPUs.

 3    Evaluation and Analysis

In  this  section,  we  provide  details  of  the  Spock

system  (Fig.1)  used  for  the  experiments  and  evalua-

tions  and  the  software  environment  on  this  system.

We also provide additional details specific to the MPI

and  communication  libraries  used  in  the  evaluation.

We include a detailed analysis of communication per-

formance  using  various  MPI  libraries  at  the  bench-

mark and application layers.

 3.1    Spock—System and Software Details

The performance evaluation is done on the Spock

system deployed at the Oakridge Leadership Comput-

ing Facility (OLCF)⑧. This is an early access system

provided in preparation for the exascale system, Fron-

tier.  This  preparation for the deployment of  exascale

systems allows for experiments and evaluations to be

done in order to develop an understanding of what to

expect  in  terms  of  communication  library  perfor-

mance  on  the  upcoming  exascale  systems,  and  the

challenges  in  relation  to  communication  on  a  system

with  Slingshot  interconnects  and  the  latest  AMD

GPUs.

The Spock cluster consists of 64-core AMD EPYC

7662 Rome CPUs, and four AMD MI100 GPUs with

32  GB  HBM2  per  node.  The  GPUs  are  connected

within  a  node  via  Infinity  Fabric  and  connected  to

the CPU via PCIe Gen4. The nodes are connected via

the  Slingshot-10  interconnect,  providing  12.5  GB/s

bandwidth across nodes. The latest version of ROCm

deployed on the system is ROCm 5.0.2. This informa-

tion is detailed in the Spock compute node presented

in Fig.1.  More details  of  the communication libraries

and  software  stack  versions  used  on  this  system  for

this evaluation are provided in Table 1[1].

 3.1.1    MPI Libraries

Table 2[1] details  the  various  MPI  libraries  used

and  configuration  details  specific  to  each  of  the  li-

braries.  The  MVAPICH2-GDR  library  v2.3.7  was
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used for the evaluations done on GPUs (MVAPICH2-

GDR optimized for GPU-aware communication). This

library provides downloadable options from the site or

through the user forum in order to execute on the sys-

tem. Specific configuration was not required here. The

MVAPICH2-GDR  installation  is  linked  to  ROCm

5.0.2,  the  latest  version  of  ROCm on the  Spock  sys-

tem. OpenMPI version 4.1.4 and UCX version 1.12.1,

the latest versions of the stack were used in the per-

formance  evaluation.  The  configuration  details  of

UCX  to  link  with  ROCm  and  enable  optimizations

and the details for linking OpenMPI to this UCX in-

stallation are demonstrated in the table.

Cray  MPICH 8.1.14  is  the  MPI  library  deployed

on the Spock system by default. It requires a load of

the existing module, adding ROCm into the path, and

loading  an  additional  module  to  detect  the  architec-

ture.  These  modules  are  detailed in Table 2.  Finally,

the  ROCm Collectives  Communication  Library  (RC-

CL) was used as well in the evaluation of GPU-aware

communication.

Physical CPU Core ID (hw Thread ID, hw Thread ID)

PCle Gen4

Infinity Fabric

Slingshot-10

(32+32 GB/s)

(46+46 GB/s)

(12.5+12.5 GB/s)

Out to Network

NVMe SSD
(3.2 TB)

NVMe SSD
(3.2 TB)

256 GB
(DDR4)

(2
0
5
 G

B
/
s)

NIC

MI100 GPU

32 GB HBM2
(1.2 TB/s)

MI100 GPU

32 GB HBM2
(1.2 TB/s)

MI100 GPU

32 GB HBM2
(1.2 TB/s)

MI100 GPU

32 GB HBM2
(1.2 TB/s)

 
Fig.1.  Spock compute node details⑨. hw: Hardware.

Table  1.   System Details and Usage[1]

Software Version Cite

MPI & communication
libraries

Open MPI 4.1.4 [3]

UCX 1.12.1 ⑩

Cray MPICH 8.1.14 [4]

RCCL 5.0.2 ⑪

MVAPICH2-GDR 2.3.7 [5]

MVAPICH2-X 2.3 [5]

MVAPICH2 3.0a [5]

Platform ROCm 5.0.2 ⑫

benchmarks & OSU Micro-Benchmarks 5.9 [6]

applications heFFTe 2.0 ⑬
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 3.2    OSU Micro-Benchmarks

To compare the performance of various communi-

cation operations on the Spock cluster using different

MPI libraries,  we utilize the OSU Micro-Benchmarks

(OMB)  suite  version  5.9.  It  reports  intra-  and  inter-

node  point-to-point  latency  and  bandwidth,  and  the

performance of  MPI collective operations at  different

message sizes.

 3.3    Micro-Benchmark Evaluation on CPUs

We  first  provide  a  detailed  performance  evalua-

tion on CPUs for intra-node and inter-node point-to-

point  communication  and  for  collectives  communica-

tion on up to four nodes (due to the Spock system be-

ing an early access  cluster,  there are user  limitations

that instill a maximum allocation of four nodes).

 3.3.1    Intra-Node Point-to-Point

µ µ

µ

In Fig.2 we  present  an  evaluation  of  intra-node

point-to-point  benchmark-level  performance  compar-

ing  MVAPICH2-X,  OpenMPI  +  UCX,  and  Cray

MPICH on AMD Epyc Rome CPUs.  The evaluation

was  done  between  two  CPUs  within  one  node  using

the  point-to-point  benchmarking  tests  provided  by

the  OSU-Microbenchmarks  suite  for  latency  (osu_l-
atency), bandwidth (osu_bw), and bi-directional band-

width (osu_bibw). In Fig.2(a), for small message intra-

node  latency,  MVAPICH2-X,  Cray  MPICH,  and

OpenMPI + UCX achieve 0.22 s, 0.31 s, and 0.36

s latency, respectively. Each of the libraries achieves

their peak unidirectional bandwidth at a message size
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Fig.2.  Intra-node point-to-point performance on AMD Epyc Rome CPUs on the Spock system. (a) Small message point-to-point la-
tency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional bandwidth.

Table  2.   MPI Libraries Configuration and Installation Details[1]

Communication & Library Configuration & Installation Detail

MVAPICH2-GDR 2.3.7 MVAPICH2-GDR 2.3.7 + ROCm 5.0.2 for GPUs

MVAPICH2-X 2.3 MVAPICH2-X 2.3 + XPMEM

MVAPICH2 3.0a --with-device=ch4:ofi --with-libfabric=<path-to-libfabric>
OpenMPI 4.1.4 + UCX 1.12.1 UCX: --with-rocm=<path-to-rocm> --without-knem --without-cuda --enable-optimizations

OpenMPI: --with-ucx=<path-to-ucx> --without-verbs
Run: -x UCX_RNDV_THRESH=128

Cray MPICH 8.1.14 module load craype-accel-amd-gfx908
module load cray-mpich/8.1.14
Run: MPICH_GPU_SUPPORT_ENABLED=1

RCCL 5.0.2 CXX=<path-to-rocm>/bin/hipcc
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of  128  KB  as  demonstrated  in Fig.2(c)  with  MVA-

PICH2-X  achieving  approximately  39  GB/s,  Open-

MPI  +  UCX  at  37  GB/s,  and  Cray  MPICH  at  42

GB/s. The high bandwidth numbers can be attribut-

ed  to  the  usage  of  XPMEM,  and  cooperative  proto-

cols[7] for  the  message  exchange  between  processes.

XPMEM enables a process to map the memory of an-

other  process  into  its  virtual  address  space,  thereby

achieving  direct  load-store  access  in  user-space.  This

outperforms  kernel-based  copy  mechanisms  such  as

cross  memory  attach  (CMA).  Co-operative  ren-

dezvous protocols employ the use of both sender and

receiver CPU DMA engines to perform data transfers

between  two  processes,  effectively  doubling  the  peak

bandwidth that can be achieved by one CPU.

 3.3.2    Inter-Node Point-to-Point

In Fig.3 we  present  an  evaluation  of  inter-node

point-to-point  benchmark-level  performance  compar-

ing  MVAPICH2-X,  OpenMPI  +  UCX,  and  Cray

MPICH on AMD Epyc Rome CPUs.  The evaluation

is  done  between  two  CPUs  on  different  nodes  con-

nected  by  the  Slingshot  interconnect  for  latency

(osu_latency),  bandwidth  (osu_bw),  and  bi-direction-

al bandwidth (osu_bibw). This configuration over the

Slingshot-10  interconnect  provides  a  12.5  GB/s  node

injection bandwidth. All of the MPI libraries perform

close  to  peak  achievable  bandwidth  over  the  Sling-

shot  interconnect  as  shown in Fig.3(c),  where  MVA-

PICH2-X,  OpenMPI  +  UCX,  and  Cray  MPICH  all

achieve  approximately  12.2  GB/s  bandwidth  at  1

MB.  For  bi-directional  bandwidth  in Fig.3(d),  all

three libraries reach approximately 24 GB/s bi-direc-

tional bandwidth peak at 1 MB.

 3.3.3    Collective Operations

µ

µ µ

We  evaluate  various  collective  operations  includ-

ing  MPI_Reduce  and  MPI_Allreduce  (Fig.4),

MPI_Gather  and  MPI_Allgather  (Fig.5),  and

MPI_Bcast  and  MPI_Alltoall  (Fig.6)  using  the  OSU

Micro-Benchmarks  suite.  Various  tests  are  included

here,  specific  to  each  MPI  operation.  The  perfor-

mance  evaluation  demonstrates  a  comparison  among

the  three  different  MPI  libraries  (MVAPICH2-X,

OpenMPI  + UCX,  and  Cray  MPICH)  on  512  AMD

Rome  CPUs  (eight  nodes,  64  CPUs  per  node).  For

small  messages,  MPI_Reduce,  MVAPICH2-X,  Open-

MPI + UCX, and Cray MPICH achieve 0.8 s,  2.05

s,  and  1.95 s  latency  at  4  B,  respectively.  Large

message  MPI_Allreduce  performance  is  depicted  in
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Fig.3.  Inter-node point-to-point performance on AMD Epyc Rome CPUs on the Spock system over Slingshot-10. (a) Small message
point-to-point  latency.  (b)  Large  message  point-to-point  latency.  (c)  Large  message  bandwidth.  (d)  Large  message  bi-directional
bandwidth.
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Fig.4(d),  MVAPICH2-X  achieves  1.25  ms  latency,

while  OpenMPI  + UCX achieves  4.46  ms,  and  Cray

MPICH demonstrates  2.92  ms  latency.  We  see  simi-

lar  alltoall  performance  between  Cray  MPICH  and

Open MPI + UCX in Figs.6(c) and 6(d).

 3.4    Micro-Benchmark Evaluation on GPUs

In  this  subsection,  we  delve  into  the  GPU-based

evaluation utilizing GPU-aware MPI and communica-

tion  libraries.  We  evaluate  the  point-to-point  perfor-
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Fig.4.  Performance of MPI collective MPI_Reduce and MPI_Allreduce operations on CPUs (512 CPUs—8 nodes & 64 PPN). (a)
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mance  of  the  communication  between  two  GPUs

within  the  same  node  on  the  same  socket,  and  two

GPUs across nodes connected by the Slingshot-10 in-

terconnect  over  the  network.  We  also  evaluate  the

performance of collective communication on the Spock

system on up to 64 GPUs (16 nodes with four GPUs

per node).

 3.4.1    Intra-Node Point-to-Point

In Fig.7[1], we present an evaluation of intra-node

point-to-point  benchmark-level  performance  compar-

ing  MVAPICH2-GDR,  OpenMPI  +  UCX,  and  Cray

MPICH  on  AMD  MI100  GPUs.  The  evaluation  is

done between two GPUs within one node for latency
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Fig.6.  Performance of MPI collective MPI_Bcast and MPI_Alltoall operations on CPUs (512 CPUs—8 nodes & 64 PPN). (a) BCA-
ST—small message sizes. (b) BCAST— large message sizes. (c) ALLTOALL—small message sizes. (d) ALLTOALL— large message
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Fig.7.  Intra-node point-to-point performance on GPUs on the Spock system over Infinity Fabric[1]. (a) Small message point-to-point
latency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional bandwidth.
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µ µ

µ

(osu_latency),  bandwidth  (osu_bw),  and  bi-direction-

al  bandwidth  (osu_bibw).  For  small  message  latency

shown  in Fig.7(a),  MVAPICH2-GDR,  OpenMPI  +

UCX, and Cray MPICH achieve 2.01 s, 3.79 s, and

2.44 s  latency,  respectively.  This  configuration  in-

volves two AMD MI100 GPUs within the same node,

on the same socket, connected by Infinity Fabric. The

trends  in  performance  for  intra-node  communication

between GPUs here reflect on protocols typically used

for this configuration within MPI libraries such as: a

GPU memory copy that utilizes the LargeBar feature

of AMD GPUs and the ROCm driver for small mes-

sage sizes, and ROCm IPC for larger message sizes[8].

The  Infinity  Fabric  connection  provides  (46  +  46

GB/s)  peak  bandwidth.  In Fig.7(c),  MVAPICH2-

GDR achieves a peak bandwidth at 1 MB of 52 GB/s,

OpenMPI  +  UCX  achieves  30  GB/s,  and  Cray

MPICH achieves 88 GB/s.

 3.4.2    Inter-Node Point-to-Point

In Fig.8[1] we  present  an  evaluation  of  inter-node

point-to-point  benchmark-level  performance  compar-

ing  MVAPICH2-GDR,  OpenMPI  +  UCX,  and  Cray

MPICH  on  AMD  MI100  GPUs.  The  evaluation  is

done between two GPUs on two different nodes con-

nected  by  the  Slingshot-10  interconnect  for  latency

(osu_latency),  bandwidth  (osu_bw),  and  bi-direction-

al bandwidth (osu_bibw). In Fig.8(a) and Fig.8(b), we

µ µ µ

µ

see that MVAPICH2-GDR and Cray MPICH achieve

3.73 s and 3.8 s latency at 4 B and 115.94 s and

154.09 s at 1 MB, respectively. For small and medi-

um message ranges,  the  performance here  can be at-

tributed  to  the  use  of  the  same  underlying  protocol

with a GPU memory copy that utilizes the LargeBar

feature of AMD GPUs and the ROCm driver that is

discussed  in Subsection 3.4.1.  For  larger  message

sizes,  the  MPI  libraries  rely  on  CPU-based  staging

mechanisms  and  GPU-Direct  approaches  to  achieve

near peak bandwidth performance. With this configu-

ration  over  the  Slingshot-10  interconnect,  and  12.5

GB/s  peak  achievable  bandwidth,  MVAPICH2-GDR

has peak uni-directional bandwidth performance at 32

KB with 11 GB/s performance, OpenMPI + UCX at

1 MB with 9.8 GB/s and Cray MPICH with 9.2 GB/s

performance.  In  particular,  we  see  lower  bandwidth

and bi-directional bandwidth for Cray MPICH in the

message range between 8 KB and 512 KB as demon-

strated in Figs.8(c) and 8(d).

 3.4.3    Collective Operations

We  evaluate  various  collective  operations  includ-

ing  MPI_Reduce  and  MPI_Allreduce  (Fig.9),

MPI_Gather  and  MPI_Allgather  (Fig.10),  and

MPI_Bcast  and  MPI_Alltoall  (Fig.11)  using  the

OSU Micro-Benchmarks  suite.  Various  tests  are  in-

cluded here specific to each MPI operation. The per-
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Fig.8.  Inter-node point-to-point performance on GPUs on the Spock system over Slingshot-10[1]. (a) Small message point-to-point la-
tency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional bandwidth.
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formance  evaluation  demonstrates  a  comparison  be-

tween  four  different  communication  libraries  (MVA-

PICH2-GDR,  OpenMPI  +  UCX,  Cray  MPICH,  and

RCCL) on 64 AMD MI100 GPUs (16 nodes, 4 GPUs

per node). In Figs.9–11[1], one particular trend we no-

ticed is that RCCL performance is typically not opti-

mal for smaller message sizes between 4 B and 4 KB,

but RCCL performs well  for  large message allgather,

and alltoall.  For large message allreduce latency per-

formance,  MVAPICH2-GDR  achieves  1.4  ms,  Open-

MPI + UCX achieves 160 ms,  Cray MPICH demon-

strates  1.8  ms,  while  RCCL  performs  at  1.5  ms.  In
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Fig.10.  Performance of MPI collectives MPI_Gather and MPI_Allgather operations on 64 GPUs (64 GPUs—16 nodes & 4 PPN)[1].
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ER—large message sizes.
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Fig.9.  Performance of MPI collectives MPI_Reduce and MPI_Allreduce operations on 64 GPUs (64 GPUs—16 nodes & 4 PPN)[1].
(a) REDUCE—small message sizes. (b) REDUCE—large message sizes. (c) ALLREDUCE—small message sizes. (d) ALLREDUCE—
large message sizes.
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Fig.11(a),  we  demonstrate  small  message  broadcast

performance  for  each  of  the  libraries  with  MVA-

PICH2-GDR at 8.1 s, OpenMPI + UCX at 12.39 s,

Cray  MPICH at  12.06 s,  and  RCCL with  174.7 s

at 4 bytes.

µ

µ µ

µ

We  demonstrate  the  importance  of  efficient  all-

toall  collective  operation  performance  in Subsection

3.7 with the HeFFTe application which is heavily re-

liant  on  MPI_Alltoall  or  MPI_Alltoallv  communica-

tion.  In Fig.11(c),  we  evaluate  the  performance  of

small  message  GPU-aware  alltoall  performance  for

MVAPICH2-GDR at  27.09 s,  OpenMPI + UCX at

182.42 s,  Cray  MPICH  at  40.21 s,  and  RCCL  at

909.4 s at 4 bytes.

Overall,  the  performance  discrepancies  presented

here  for  different  libraries  can  be  a  result  of  various

components  including,  but  not  limited  to:  protocol

changes,  lack of tuning specific to a system or archi-

tecture, or underutilization of interconnect/link band-

width.  Through this  evaluation,  we highlight  various

areas  that  need  to  be  optimized  or  accounted  for  in

terms  of  communication  performance.  The  difference

between the peak achievable performance for MPI li-

braries  compared  to  the  available  link  bandwidth

(provided  by  Infinity  Fabric  between  GPUs  and  the

Slingshot-10  network  between  nodes)  demonstrates

the importance of link utilization to take advantage of

the vast performance made possible by these intercon-

nects.

 3.5    Slingshot-11 Networking System—
System and Software Details

We  utilize  a  system  that  emulates  the  Frontier

system  with  Slingshot-11  networking  to  evaluate

Slingshot-11  support  of  MPI  libraries  on  CPUs.  In

these experiments, we evaluate MVAPICH2-3.0a with

added  support  for  the  Slingshot-11  fabric  and

adapter,  configured  with  the  appropriate  parameters

demonstrated in Table 2[1].

 3.6    Slingshot-11 Interconnect Evaluation

µ

µ

In Fig.12,  we  evaluate  intra-node  point-to-point

performance  between  two  AMD  CPUs  on  the  same

node using MVAPICH2-3.0a and Cray MPICH 8.1.18

(the latest version of the library available on the sys-

tem).  Within  a  node,  we  demonstrate  approximately

38 GB/s peak bandwidth and 0.53 s minimum laten-

cy  with  MVAPICH2-3.0a  and  18  GB/s  peak  band-

width  and  0.46 s  latency  with  Cray  MPICH.  The

vast  difference  in  peak  achievable  bandwidth  be-

tween the two libraries can be attributed to the use of

XPMEM (cross-partition  memory)  in  MVAPICH2-X

for large message sizes,  allowing mapping the memo-

ry  of  one  process  into  another  process'  virtual  ad-

dress space.

In Fig.13,  we  evaluate  inter-node  point-to-point

performance  between  two  AMD  CPUs  on  different
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Fig.11.  Performance of MPI collectives MPI_Bcast and MPI_Alltoall operations on 64 GPUs (64 GPUs—16 nodes & 4 PPN)[1]. (a) B-
CAST—small message sizes. (b) BCAST—large message sizes. (c) ALLTOALL—small message sizes. (d) ALLTOALL—large mes-
sage sizes.
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µ

nodes  over  the  Slingshot-11  network.  Both  libraries

demonstrated  here  provide  similar  minimum  latency

at  approximately  2.2 s,  and  peak  bandwidth  of

around 24 GB/s. A factor to be addressed by MPI li-

braries that is revealed through this evaluation is not-

ed  in  the  performance  of  bi-directional  bandwidth

across  the  network.  While  in Fig.12(d),  we  see  that

the  peak  achievable  bi-directional  bandwidth  for  in-

tra-node communication is close to double the uni-di-

rectional bandwidth presented in Fig.12(c), and this is

not  the  case  for  inter-node  performance  over  Sling-

shot-11.  In Fig.13(d),  the  peak  bi-directional  band-

width  is  approximately  28.5  GB/s  compared  with  a

peak  unidirectional  peak  bandwidth  of  24  GB/s.  In
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Fig.12.  Intra-node point-to-point performance on CPUs on a system with Slingshot-11 networking across nodes. (a) Small message
point-to-point  latency.  (b)  Large  message  point-to-point  latency.  (c)  Large  message  bandwidth.  (d)  Large  message  bi-directional
bandwidth.
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order to fully utilize the high bandwidth made possi-

ble through the Slingshot-11 interconnect, this perfor-

mance  discrepancy  is  one  of  the  areas  where  perfor-

mance can be addressed at the MPI layer to get clos-

er to the peak ideal bandwidth.

 3.7    Application-Level Evaluation

In this subsection, we evaluate the various MPI li-

braries  at  the  application  level.  We  use  the  heFFTe

(highly  efficient  FFTs for  Exascale)⑭ application de-

tailed  below  to  demonstrate  GPU-aware  and  CPU-

based  MPI  libraries'  performance.  In  this  case,  the

datatype  required  by  heFFTe  is  not  supported  by

RCCL  and  therefore  RCCL  is  not  included  in  the

evaluation below. Due to compilation issues at the ap-

plication  layer  with  Cray  MPICH  and  cmake,  Cray

MPICH is also emitted from this evaluation. We use

the  rocHPCG  application  as  well  to  compare  the

GPU-aware MPI libraries.

 3.7.1    heFFTe

The heFFTe application is a highly efficient Fast

Fourier transform (FFT) library for exascale systems.

It  uses  GPU-aware  MPI  for  communication  and  is

provided  as  an  open-source  application.  It  provides

the  GPU  kernel  implementation  with  efficient  scala-

bility on large-scale clusters for 2-D and 3-D FFT li-

braries.  Based  on  FFTMPI  and  SWFFT libraries,  it

presents  so-called  pencil-to-pencil  methodology  to

compute 3-D FFT.

5123

We evaluate  the  performance  of  the  heFFTe  ap-

plication  as  a  measure  of  GFlops/s  with  different

problem sizes. The application can be run with either

an  alltoall-based  or  alltoallv-based  problem.  When

running heFFTe on GPUs using GPU-aware MPI li-

braries,  we  utilize  the  rocFFT  backend  provided  for

the heFFTe benchmarks with support for ROCm. We

demonstrate the performance of heFFTe on GPUs in

Figs.14(c) and 14(d) for alltoall with 65 GFlops/s and

alltoallv  with  187  GFlops/s  using  MVAPICH2-GDR

for a problem size of . This is in contrast to 3.17

GFlops/s and 3.28 GFlops with OpenMPI + UCX for

alltoall and alltoallv, respectively, for the same prob-

lem size.

5123

2563

We utilize  the fftw backend provided by heFFTe

to  run  with  CPU-based  MPI  libraries  and  demon-

strate  an evaluation using MVAPICH2-X and Open-

MPI  on  the  Spock  system  on  512  CPUs  in Fig.15.

With  an  alltoall  problem  and  problem  size,  we

see  12.99  GFlops/s  and  12.92  GFlops/s  with  MVA-

PICH2-X  and  OpenMPI,  respectively.  With  an  all-

toallv  problem  and  problem  size,  we  demon-

strate  146  GFlops/s  and  131  GFlops/s  with  MVA-

PICH2-X and OpenMPI, respectively.
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Fig.14.  Performance of the heFFTe application using the rocfft backend for different problem sizes on 16 GPUs (4 nodes, 4 GPUs
per node), and 32 GPUs (8 nodes, 4 GPUs per node)[1]. Two different communication methods are shown including MPI_Alltoall [-
a2a]  ((c))  and  MPI_Alltoallv  [-a2av]  ((d))  using  various  MPI  libraries  including  MVAPICH2-GDR,  and  OpenMPI  +  UCX.  (a)
heFFTe—16 GPUs (alltoall). (b) heFFTe—16 GPUs (alltoallv).  (c) heFFTe—32 GPUs (alltoall). (d) heFFTe—32 GPUs (alltoallv).

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 141

⑭https://icl.utk.edu/files/publications/2020/icl-utk-1388-2020.pdf, Jan. 2023.



 3.7.2    rocHPCG

rocHPCG⑮ is a ROCm runtime benchmark based

on  the  High-Performance  Conjugate  Gradients

(HPCG)  application  for  AMD  GPUs.  The  HPCG

benchmark  is  used  as  a  metric  for  the  Top500  sys-

tems  since  it  simulates  the  computational  and  data-

access  patterns  of  a  variety  of  scientific  applications,

and communication patterns, including MPI point-to-

point  and  collective  operations  and  OpenMP  sup-

ports.  rocHPCG  consists  of  different  sub-operation

metrics,  including  global  dot  product  (DDOT),  vec-

tor  update  (WAXPBY),  sparse  matrix-vector  multi-

plication  (SpMV),  multigrid  preconditioner  (MG),

etc.  We  demonstrate  the  performance  of  each  phase

separately  in  the  evaluation  done  in Fig.16 compar-

ing MVAPICH2-GDR with OpenMPI + UCX.

 4    Related Work

De  Sensi et  al.[9] proposed  early  research  investi-

gating  Slingshot  for  large-scale  computing  systems.

They described Slingshot as the next-generation large-

scale system and summarized the key features as the

following:  high-radix  Ethernet  switches,  adaptive

routing,  congestion  control,  and  QoS  management.

They  evaluated  the  system  performance  using  Sling-

shot  with  both  individual  and  concurrent  workloads

to close the real HPC system usage. They found less

congestion  on  Slingshot  and  the  control  algorithm is

effective for  most HPC and data center  applications.

Also,  a  lower  impact  on performance  from allocation

policies was reported. Furthermore, Slingshot guaran-

tees the bandwidth for jobs in different traffic classes.

The  details  of  HPE  Cray  MPI  are  described  in

OLCF⑯,  including  the  latest  implementation

overview,  HPE  Cray  MPI  tuning  and  placement,

GPU  support,  and  its  GPU-NIC  asynchronous  fea-

tures.  It  also  delves  into  the  current  support  status

with  AMD and NVIDIA GPUs,  including  intra-node

IPC  and  inter-node  RDMA.  Moreover,  it  introduces

the  GPU-NIC  Async  proposals,  which  decouples
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Fig.15.  Performance of heFFTe application using the fftw backend for different problem sizes on 512 CPUs (8 nodes, 64 cores per
node).  Two different communication methods are shown including MPI_Alltoall  [-a2a]  ((a)) and MPI_Alltoallv [-a2av] ((b)) using
various MPI libraries including MVAPICH2-X, and OpenMPI + UCX. (a) heFFTe—512 CPUs (alltoall). (b) heFFTe—512 CPUs
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CPU-GPU  control  and  data  paths  to  reduce  the

CPU-GPU synchronization frequency and overheads.

Melesse Vergara et al.[10] elaborated on their expe-

rience of porting the current kernels of main applica-

tions  to  a  novel  platform  with  AMD  GPUs  and

HPE/Cray  programming  environment.  They  ported

GENASIS, Minisweep, and Sparkler to the HIP-based

kernel  and  compared  the  performance.  The  experi-

ence  of  porting  applications  from  CUDA-based  to

HIP-based kernel proved that the porting procedure is

easy,  but  there  could  be  limitations,  such  as  Open-

MP  support.  In  addition,  additional  tuning  is  re-

quired  for  fully  utilizing  the  computing  power  on

AMD  GPUs.  This  work  provides  good  examples  for

users  to  further  port  other  kernel  applications  using

HIP on AMD GPUs.  Khorassani et al.[8] proposed an

early  research and designed a  ROCm-aware  MPI Li-

brary  for  the  upcoming  exascale  systems,  such  as

Frontier  and  El  Capitan.  They  focused  on  Radeon

Open  Compute  (ROCm) platform that  adopts  AMD

GPUs.  They  utilized  the  ROCm  features  such  as

PeerDirect,  ROCm-IPC,  and  large-BAR  mapped

memory to  design a  ROCm-aware  MPI.  An abstract

communication layer with CUDA or ROCm backend

allowed portability for the MPI runtime.

 5    Conclusions

Next-generation exascale systems, and the first ex-

ascale and leading supercomputer in the world, Fron-

tier,  are equipped with nodes connected by the HPE

Cray  Slingshot  interconnect.  This  interconnect  tech-

nology  is  relatively  new  in  the  High-Performance

Computing realm and is seldom evaluated at the com-

munication layer. In this work, we delved into a com-

prehensive  CPU-based  and  GPU-aware  evaluation

and  analysis  of  various  state-of-the-art  MPI  libraries

including  MVAPICH2,  OpenMPI+UCX,  Cray

MPICH,  and  RCCL  on  a  system,  Spock,  equipped

with  the  Slingshot-10  interconnect  to  connect  nodes

over  the  network  and  with  AMD  MI100  GPUs  and

AMD Epyc  Rome  CPUs.  We  demonstrated  the  per-

formance of various point-to-point communication op-

erations for latency and bandwidth and various collec-

tive operations on AMD Rome CPUs and GPU-aware

communication on AMD MI100 GPUs. The Slingshot-

10  interconnect  provides  a  12.5  GB/s  node  injection

bandwidth.  MVAPICH2-X,  OpenMPI+UCX,  and

Cray  MPICH  all  achieve  approximately  12.2  GB/s

bandwidth at 1 MB for point-to-point operations be-

tween  2  CPUs  across  nodes.  For  inter-node  GPU-

aware  communication  with  two  GPUs  across  two

nodes,  MVAPICH2-GDR  has  peak  uni-directional

bandwidth performance at 32 KB with 11 GB/s per-

formance, OpenMPI + UCX at 1 MB with 9.8 GB/s

and Cray MPICH with 9.2 GB/s performance.

µ

5123

We  then  demonstrated  preliminary  support  of

MPI libraries over the Slingshot-11 interconnect, with

both  MVAPICH2-3.0a  and  Cray  MPICH  providing

minimum  latency  at  approximately  2.2 s,  and  the

peak bandwidth of around 24 GB/s. We also extend-

ed  this  evaluation  using  the  heFFTe  library  and

rocHPCG, demonstrating GPU-aware performance of

heFFTe  with  alltoall,  achieving  65  GFlops/s  with

MVAPICH2-GDR  in  contrast  to  3.17  GFlops/s  for

OpenMPI + UCX for a problem size of .

In the future, we plan to extend this evaluation to

cover additional applications with high demand for ef-

ficient  communication  performance,  evaluate  at  a

larger scale on a larger number of nodes based on sys-

tem access, and ensure that state-of-the-art MPI and

communication  libraries  provide  the  functionality,

support, and efficiency that is to be expected with the

growing demand and the roll-out of Slingshot-11 net-

working.
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