

High Performance MPI over the Slingshot Interconnect

Kawthar Shafie Khorassani, Chen-Chun Chen, Bharath Ramesh, Aamir Shafi
Hari Subramoni, Member, ACM, IEEE, and Dhabaleswar K. Panda, Fellow, IEEE, Member, ACM

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, U.S.A.

E-mail: shafiekhorassani.1@osu.edu; chen.10252@osu.edu; ramesh.113@osu.edu; shafi.16@osu.edu; subramoni.1@osu.edu
panda@cse.ohio-state.edu

Received October 16, 2022; accepted January 5, 2023.

Abstract The Slingshot interconnect designed by HPE/Cray is becoming more relevant in high-performance comput-

ing with its deployment on the upcoming exascale systems. In particular, it is the interconnect empowering the first exas-

cale and highest-ranked supercomputer in the world, Frontier. It offers various features such as adaptive routing, conges-

tion control, and isolated workloads. The deployment of newer interconnects sparks interest related to performance, scala-

bility, and any potential bottlenecks as they are critical elements contributing to the scalability across nodes on these sys-

tems. In this paper, we delve into the challenges the Slingshot interconnect poses with current state-of-the-art MPI (mes-

sage passing interface) libraries. In particular, we look at the scalability performance when using Slingshot across nodes.

We present a comprehensive evaluation using various MPI and communication libraries including Cray MPICH, Open-

MPI + UCX, RCCL, and MVAPICH2 on CPUs and GPUs on the Spock system, an early access cluster deployed with

Slingshot-10, AMD MI100 GPUs and AMD Epyc Rome CPUs to emulate the Frontier system. We also evaluate prelimi-

nary CPU-based support of MPI libraries on the Slingshot-11 interconnect.

Keywords AMD GPU, interconnect technology, MPI (message passing interface), Slingshot

 1 Introduction

The Frontier Supercomputer① deployed at the

Oakridge Leadership Computing Facility (OLCF),

now leading the Top500② list of supercomputers in

the world and officially recognized as the first exas-

cale supercomputer, is empowered by the HPE Cray

Slingshot interconnect. In preparation for the vast de-

mands of exascale computing and moving to a Sling-

shot-based networking environment, it is important to

have an understanding of the interconnect with re-

spect to MPI (message passing interface) communica-

tion. MPI libraries have been heavily deployed and

used on systems with an underlying InfiniBand inter-

connect connecting nodes. They have been optimized

and extensively researched in this ecosystem. Now,

with upcoming exascale systems③ choosing to deploy

the Slingshot interconnect④ as the underlying connec-

tion between nodes, it is crucial to have an under-

standing of the interconnect technology and how it

impacts or improves the performance of communica-

tion at scale.

In this paper, we provide an analysis of the perfor-

mance of various MPI libraries on a system with pre-

Regular Paper

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday

A preliminary version of the paper was published in the Proceedings of PEARC 2022.
 This work is supported in part by the U.S. National Science Foundation under Grant Nos. 1818253, 1854828, 1931537, and
2007991, and XRAC under Grant No. NCR-130002. This research used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Con-
tract No. DE-AC05-00OR22725.

Khorassani KS, Chen CC, Ramesh B et al. High performance MPI over the Slingshot interconnect. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 38(1): 128−145 Jan. 2023. DOI: 10.1007/s11390-023-2907-5

①Frontier: ORNL's exascale supercomputer designed to deliver world-leading performance in 2021. https://www.olcf.ornl.gov/
frontier, Dec. 2022.

②TOP 500 Supercomputer sites. http://www.top500.org, Dec. 2021.
③OLCF. Spock quick-start guide. https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html, Dec. 2022.
④HPE. HPE Slingshot interconnect. https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html, Dec. 2022.
©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier
http://www.top500.org
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
http://www.top500.org
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/us/en/compute/hpc/sling shot-interconnect.html
https://www.olcf.ornl.gov
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html
http://www.openucx.org/
https://rocmdocs.amd.com
https://github.com/ROCmSoftwarePlatform/rccl
https://icl.utk.edu/files/publications/2020/icl-utk-1388-2020.pdf
https://github.com/af-ayala/heffte
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/HPE-Cray-MPI-Update-nfr-presented.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/HPE-Cray-MPI-Update-nfr-presented.pdf
https://github.com/ROCmSoftwarePlatform/rocHPCG
https://doi.org/10.1007/s11390-023-2907-5

liminary/experimental deployment of the Slingshot in-

terconnect. As this is a new area that has seldom

been researched and is going to become a critical

component of future HPC deployment, it is impor-

tant to have this kind of detailed information and

analysis that could provide a better outlook on the

needs for optimizations and enhancements on upcom-

ing systems deployed with Slingshot networking. This

drives future research and innovations while also pro-

viding scalable and competitive options in this ecosys-

tem that compare or improve upon existing innova-

tions in the current interconnect technology realms.

 1.1 Motivation

Many of the top supercomputers utilize Infini-

Band networking, with the deployment of the Mel-

lanox InfiniBand interconnect to connect nodes across

the network. This area has been heavily evaluated

and analyzed over the years with various MPI li-

braries utilizing GPU-aware and CPU-based commu-

nication to scale out performance onto multiple nodes.

This understanding of the limitations and advantages

of the interconnect technology drove future directions

in research over the years related to communication

optimization and performance analysis. With the de-

ployment of the Slingshot interconnect, it is just as

important to develop an understanding of the advan-

tages and features the interconnect introduces in or-

der to motivate future approaches in the communica-

tion realm.

The underlying interconnect technology is a criti-

cal component in achieving high performance, low la-

tency and high throughput, at scale on next-genera-

tion exascale systems. This drives the motivation to

have a detailed analysis and understanding of the ex-

isting MPI libraries and the performance they are

able to demonstrate at certain scales, various configu-

rations, and for different communication operations.

Through this work, we demonstrate a need for a thor-

ough evaluation of communication over the newer

Slingshot interconnect and its ecosystem in prepara-

tion for exascale systems in order to achieve the scala-

bility and efficiency that is promised by the next gen-

eration of supercomputing.

 1.2 Key Insights and Contributions

The performance of GPU-aware approaches to

communication provided by the state-of-the-art com-

munication libraries on the Slingshot interconnect

have yet to be explored. There is a lack of thorough

evaluation and analysis of performance comparing the

different communication operations and detailing the

demands for MPI at the application layer on a sys-

tem with Slingshot interconnects. Additionally, the

systems used in this study include AMD MI100 and

AMD MI250X GPUs, which are also a snapshot of

the type of system and ecosystem we can expect for

the next-generation exascale systems. Through this

work, we make the following contributions.

• Comprehensive evaluation of CPU-based com-

munication using various communication libraries, in-

cluding OpenMPI + UCX, MVAPICH2-X, and Cray

MPICH on the Spock system with the Slingshot-10

interconnect, and AMD EPYC Rome CPUs for point-

to-point and collective benchmarks.

• Comprehensive evaluation of GPU-aware com-

munication using various communication libraries, in-

cluding OpenMPI + UCX, MVAPICH2-GDR, Cray

MPICH, and RCCL on the Spock system with the

Slingshot-10 interconnect, AMD MI100 GPUs, and

AMD EPYC Rome CPUs for point-to-point and col-

lective benchmarks.

• Evaluation of preliminary CPU-based communi-

cation on the Slingshot-11 interconnect with MVA-

PICH2-3.0a and CrayMPICH on a system emulating

the Frontier system with Slingshot-11 networking.

• Application-level evaluation using state-of-the-

art communication libraries for rocHPCG and for the

HeFFTe application using the rocfft backend for

AMD GPUs and the fftw backend for CPUs.

• Delving into various challenges that the current

Slingshot-10 interconnect brings about in terms of

communication performance and what challenges to

consider for future deployment of MPI libraries on

systems with the upcoming Slingshot-11 interconnect

such as support for the underlying Cray Fabric and

adapter, in preparation for new exascale systems such

as Frontier.

 2 Background

This paper is an extended version of [1]. In [1], we

presented our early experiences with Slingshot-10 and

MPI libraries with a focus on GPU-aware MPI. In

this paper, we have made the following enhancements:

1) We add CPU-based experiments and evalua-

tions of MPI libraries including MVAPICH2-X, Open-

MPI, and Cray MPICH on the Spock system using

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 129

OSU-Microbenchmarks. We evaluated intra-node and

inter-node point-to-point performance on CPUs over

the Slingshot-10 interconnect and between AMD

Epyc Rome CPUs. We evaluated collectives perfor-

mance on up to 512 CPUs (8 nodes, 64 PPN) for re-

duce, allreduce, gather, allgather, broadcast, and all-

toall. These are detailed in Subsection 3.3.

2) We evaluate heFFTe using the fftw backend

for CPU-based communication using MVAPICH2-X

and OpenMPI on up to 512 CPUs on the Spock Sys-

tem for a problem size up to 5123 with alltoall and

alltoallv 3.7.

3) We add and evaluate the performance of MPI

libraries over the Slingshot-11 interconnect and

present a new system with Slingshot-11 networking

used in our evaluations. No other work has been done

on Slingshot-11 networking with MPI. This work de-

tails preliminary MPI support over the Slingshot-11

interconnect and demonstrates performance at the

benchmark level and challenges to consider for future

MPI deployment over upcoming exascale systems

with Slingshot-11 networking. These are detailed fur-

ther in Subsection 3.5 and Subsection 3.6.

 2.1 State-of-the-Art Interconnect

Technologies

Achieving high performance for complex HPC

workloads that benefit from high levels of parallelism

requires efficient and scalable network interconnects.

Modern interconnects such as InfiniBand, RoCE, Om-

ni-Path, and so on, were introduced into the market

to address communication bottlenecks by achieving

low latency and high throughput between nodes. In

recent years, InfiniBand and high-speed Ethernet rep-

resent the gold standard for high-performance net-

work interconnects. For instance, Summit@ORNL

(ranked 4th on the June 2022 Top500 list⑤), uses Du-

al-rail Mellanox EDR InfiniBand as the underlying in-

terconnect. Approximately 35% of supercomputers in

the Top500 utilize InfiniBand networking (including

Sierra@LLNL, Selene@NVIDIA, etc.), and about 48%

deploy Gigabit Ethernet networking (including Perl-

mutter@NERSC, Polaris@ANL, etc.). The adoption

rates for interconnects in upcoming exascale systems

are rapidly changing due to the increased number of

choices and evolving interconnect standards.

 2.2 Slingshot Interconnect

HPE Slingshot⑥ is a high-performance network

designed by HPE Cray for upcoming exascale-era sys-

tems, and is based on Ethernet. It provides flexibility

and capabilities to enable users to run a wide mix of

workflows. The switches support a high-radix and up

to 12.8 Tb/s bandwidth. While the latency of Ether-

net networks is slightly worse when compared to In-

finiBand systems in general, Ethernet networks claim

the advantage of wider adoption across application

domains. HPE Slingshot delivers low latency and high

throughput for HPC workloads, and minimizes the

number of switch hops in large networks (for instance,

by employing the use of the Dragonfly[2] topology).

The interconnect features adaptive routing tech-

niques to help maintain the balanced traffic flows

through fine-grained optimization. HPE Slingshot al-

so introduces a fully automatic and hardware-imple-

mented congestion control mechanism to minimize the

impact of congestion when multiple workloads run at

the same time. It is currently empowering the first of-

ficial exascale supercomputer in the world,

Frontier@OLCF, and in the work to be deployed on

future exascale supercomputers as well, such as El

Capitan@LLNL.

 2.3 State-of-the-Art Communication Libraries

The Message Passing Interface (MPI) is a multi-

processing paradigm that enables communication

among processes on parallel architectures. The com-

munication primitives can be categorized as one-sided,

point-to-point, and collective operations. One-sided

communication indicates the use of only one process

to move data to a remote process (without the re-

mote process's involvement). Hence, it is also re-

ferred to as remote memory access (RMA). It decou-

ples the process synchronization during data transfer.

MPI_Put, MPI_Get, and MPI_Accumulate are well-

known one-sided communication operations. The MPI

standard also supports expressing point-to-point com-

munication operations using two-sided semantics us-

ing MPI_Send, MPI_Recv, MPI_Isend, and

MPI_Irecv. Collective communication operations de-

fined by the MPI standard provide convenient ab-

stractions for multiple processes/threads to efficiently

communicate with one another. These operations can

130 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑤TOP 500 Supercomputer sites. http://www.top500.org, Dec. 2021.
⑥HPE. HPE Slingshot Interconnect. https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html, Dec. 2022.

involve computing operations (in reduction collec-

tives such as MPI_Allreduce and MPI_Reduce) or

just communication to represent common patterns

such as a broadcast, scatter, gather, and others.

Aside from the MPI interface, there are other

communication libraries that use and expose a differ-

ent underlying API to transfer messages. For exam-

ple, the NVIDIA Collective Communication Library

(NCCL), provides optimized communication primi-

tives for GPU-to-GPU communication within as well

as across the node for NVIDIA GPUs. ROCm Com-

munication Collectives Library (RCCL) is the com-

munication library based on NCCL for AMD GPUs,

providing primitives that enable GPU-to-GPU com-

munication on AMD ROCm supported systems, simi-

lar to what NCCL achieves on systems with NVIDIA

GPUs.

 2.4 Limitations of State-of-the-Art

Approaches

Existing MPI libraries provide support for vari-

ous network features such as Omni-Path, RoCE, In-

finiBand, and so on. The growth in the deployment of

the Slingshot interconnect across upcoming systems

adds the Slingshot interconnect to the growing list of

features that MPI libraries will need to add function-

ality and optimizations for. HPE/Cray has designed

the Slingshot interconnect in such a way to be ether-

net compatible in order to provide ease of interoper-

ability with existing systems. This enables a direct

connection between the switches for Slingshot and

ethernet networks and storage devices⑦. It also pro-

vides support for features such as adaptive routing,

congestion control, and isolated workloads. These fea-

tures provide several challenges and possibilities to

explore and enhance state-of-the-art communication

libraries. The limitations of current state-of-the-art

approaches will be made more clear with the deploy-

ment of Slingshot-11. Current accessibility and de-

ployment on early access Slingshot systems provide

an ecosystem with Slingshot-10 interconnection

amongst nodes. The second generation of Slingshot,

Slingshot-11, is deployed over a Slingshot fabric and

adapter, while the current deployment of Slingshot-10

is running over a Slingshot network with a Mellanox

InfiniBand adapter. This second-generation deploy-

ment introduces additional challenges for communica-

tion libraries to develop functionality over the under-

lying adapter and fabrics. In Subsection 3.6, we

present a preliminary evaluation of MPI libraries with

support for Slingshot-11 on CPUs.

 3 Evaluation and Analysis

In this section, we provide details of the Spock

system (Fig.1) used for the experiments and evalua-

tions and the software environment on this system.

We also provide additional details specific to the MPI

and communication libraries used in the evaluation.

We include a detailed analysis of communication per-

formance using various MPI libraries at the bench-

mark and application layers.

 3.1 Spock—System and Software Details

The performance evaluation is done on the Spock

system deployed at the Oakridge Leadership Comput-

ing Facility (OLCF)⑧. This is an early access system

provided in preparation for the exascale system, Fron-

tier. This preparation for the deployment of exascale

systems allows for experiments and evaluations to be

done in order to develop an understanding of what to

expect in terms of communication library perfor-

mance on the upcoming exascale systems, and the

challenges in relation to communication on a system

with Slingshot interconnects and the latest AMD

GPUs.

The Spock cluster consists of 64-core AMD EPYC

7662 Rome CPUs, and four AMD MI100 GPUs with

32 GB HBM2 per node. The GPUs are connected

within a node via Infinity Fabric and connected to

the CPU via PCIe Gen4. The nodes are connected via

the Slingshot-10 interconnect, providing 12.5 GB/s

bandwidth across nodes. The latest version of ROCm

deployed on the system is ROCm 5.0.2. This informa-

tion is detailed in the Spock compute node presented

in Fig.1. More details of the communication libraries

and software stack versions used on this system for

this evaluation are provided in Table 1[1].

 3.1.1 MPI Libraries

Table 2[1] details the various MPI libraries used

and configuration details specific to each of the li-

braries. The MVAPICH2-GDR library v2.3.7 was

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 131

⑦HPE. HPE Slingshot interconnect. https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html, Dec. 2022.
⑧OLCF. Oakridge National Laboratory: Leadership Computing Facility. https://www.olcf.ornl.gov, Dec. 2022.

used for the evaluations done on GPUs (MVAPICH2-

GDR optimized for GPU-aware communication). This

library provides downloadable options from the site or

through the user forum in order to execute on the sys-

tem. Specific configuration was not required here. The

MVAPICH2-GDR installation is linked to ROCm

5.0.2, the latest version of ROCm on the Spock sys-

tem. OpenMPI version 4.1.4 and UCX version 1.12.1,

the latest versions of the stack were used in the per-

formance evaluation. The configuration details of

UCX to link with ROCm and enable optimizations

and the details for linking OpenMPI to this UCX in-

stallation are demonstrated in the table.

Cray MPICH 8.1.14 is the MPI library deployed

on the Spock system by default. It requires a load of

the existing module, adding ROCm into the path, and

loading an additional module to detect the architec-

ture. These modules are detailed in Table 2. Finally,

the ROCm Collectives Communication Library (RC-

CL) was used as well in the evaluation of GPU-aware

communication.

Physical CPU Core ID (hw Thread ID, hw Thread ID)

PCle Gen4

Infinity Fabric

Slingshot-10

(32+32 GB/s)

(46+46 GB/s)

(12.5+12.5 GB/s)

Out to Network

NVMe SSD
(3.2 TB)

NVMe SSD
(3.2 TB)

256 GB
(DDR4)

(2
0
5
 G

B
/
s)

NIC

MI100 GPU

32 GB HBM2
(1.2 TB/s)

MI100 GPU

32 GB HBM2
(1.2 TB/s)

MI100 GPU

32 GB HBM2
(1.2 TB/s)

MI100 GPU

32 GB HBM2
(1.2 TB/s)

Fig.1. Spock compute node details⑨. hw: Hardware.

Table 1. System Details and Usage[1]

Software Version Cite

MPI & communication
libraries

Open MPI 4.1.4 [3]

UCX 1.12.1 ⑩

Cray MPICH 8.1.14 [4]

RCCL 5.0.2 ⑪

MVAPICH2-GDR 2.3.7 [5]

MVAPICH2-X 2.3 [5]

MVAPICH2 3.0a [5]

Platform ROCm 5.0.2 ⑫

benchmarks & OSU Micro-Benchmarks 5.9 [6]

applications heFFTe 2.0 ⑬

132 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑨OLCF. Spock quick-start guide. https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html, Dec. 2022.
⑩Unified communication x. http://www.openucx.org/, Dec. 2021.
⑪Rocm communication collectives library (rccl). https://github.com/ROCmSoftwarePlatform/rccl, Dec. 2021.
⑫Radeon open compute (rocm) platform. https://rocmdocs.amd.com, Dec. 2021.
⑬Highly efficient fft for exascale (heFFTe) library. https://github.com/af-ayala/heffte, Dec. 2021.

 3.2 OSU Micro-Benchmarks

To compare the performance of various communi-

cation operations on the Spock cluster using different

MPI libraries, we utilize the OSU Micro-Benchmarks

(OMB) suite version 5.9. It reports intra- and inter-

node point-to-point latency and bandwidth, and the

performance of MPI collective operations at different

message sizes.

 3.3 Micro-Benchmark Evaluation on CPUs

We first provide a detailed performance evalua-

tion on CPUs for intra-node and inter-node point-to-

point communication and for collectives communica-

tion on up to four nodes (due to the Spock system be-

ing an early access cluster, there are user limitations

that instill a maximum allocation of four nodes).

 3.3.1 Intra-Node Point-to-Point

µ µ

µ

In Fig.2 we present an evaluation of intra-node

point-to-point benchmark-level performance compar-

ing MVAPICH2-X, OpenMPI + UCX, and Cray

MPICH on AMD Epyc Rome CPUs. The evaluation

was done between two CPUs within one node using

the point-to-point benchmarking tests provided by

the OSU-Microbenchmarks suite for latency (osu_l-
atency), bandwidth (osu_bw), and bi-directional band-

width (osu_bibw). In Fig.2(a), for small message intra-

node latency, MVAPICH2-X, Cray MPICH, and

OpenMPI + UCX achieve 0.22 s, 0.31 s, and 0.36

s latency, respectively. Each of the libraries achieves

their peak unidirectional bandwidth at a message size

0

2

4

6

8

10

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-X 2.3
OpenMPI 4.1.4 + UCX 1.12.1
Cray MPICH 8.1.14

(b)

0.0

0.5

1.0

1.5

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-X 2.3
OpenMPI 4.1.4 + UCX 1.12.1
Cray MPICH 8.1.14

(a)

0

10

20

30

40

50

60

70

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

(c)

0

50

100

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

(d)

MVAPICH2-X 2.3
OpenMPI 4.1.4 + UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-X 2.3
OpenMPI 4.1.4 + UCX 1.12.1
Cray MPICH 8.1.14

Fig.2. Intra-node point-to-point performance on AMD Epyc Rome CPUs on the Spock system. (a) Small message point-to-point la-
tency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional bandwidth.

Table 2. MPI Libraries Configuration and Installation Details[1]

Communication & Library Configuration & Installation Detail

MVAPICH2-GDR 2.3.7 MVAPICH2-GDR 2.3.7 + ROCm 5.0.2 for GPUs

MVAPICH2-X 2.3 MVAPICH2-X 2.3 + XPMEM

MVAPICH2 3.0a --with-device=ch4:ofi --with-libfabric=<path-to-libfabric>
OpenMPI 4.1.4 + UCX 1.12.1 UCX: --with-rocm=<path-to-rocm> --without-knem --without-cuda --enable-optimizations

OpenMPI: --with-ucx=<path-to-ucx> --without-verbs
Run: -x UCX_RNDV_THRESH=128

Cray MPICH 8.1.14 module load craype-accel-amd-gfx908
module load cray-mpich/8.1.14
Run: MPICH_GPU_SUPPORT_ENABLED=1

RCCL 5.0.2 CXX=<path-to-rocm>/bin/hipcc

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 133

of 128 KB as demonstrated in Fig.2(c) with MVA-

PICH2-X achieving approximately 39 GB/s, Open-

MPI + UCX at 37 GB/s, and Cray MPICH at 42

GB/s. The high bandwidth numbers can be attribut-

ed to the usage of XPMEM, and cooperative proto-

cols[7] for the message exchange between processes.

XPMEM enables a process to map the memory of an-

other process into its virtual address space, thereby

achieving direct load-store access in user-space. This

outperforms kernel-based copy mechanisms such as

cross memory attach (CMA). Co-operative ren-

dezvous protocols employ the use of both sender and

receiver CPU DMA engines to perform data transfers

between two processes, effectively doubling the peak

bandwidth that can be achieved by one CPU.

 3.3.2 Inter-Node Point-to-Point

In Fig.3 we present an evaluation of inter-node

point-to-point benchmark-level performance compar-

ing MVAPICH2-X, OpenMPI + UCX, and Cray

MPICH on AMD Epyc Rome CPUs. The evaluation

is done between two CPUs on different nodes con-

nected by the Slingshot interconnect for latency

(osu_latency), bandwidth (osu_bw), and bi-direction-

al bandwidth (osu_bibw). This configuration over the

Slingshot-10 interconnect provides a 12.5 GB/s node

injection bandwidth. All of the MPI libraries perform

close to peak achievable bandwidth over the Sling-

shot interconnect as shown in Fig.3(c), where MVA-

PICH2-X, OpenMPI + UCX, and Cray MPICH all

achieve approximately 12.2 GB/s bandwidth at 1

MB. For bi-directional bandwidth in Fig.3(d), all

three libraries reach approximately 24 GB/s bi-direc-

tional bandwidth peak at 1 MB.

 3.3.3 Collective Operations

µ

µ µ

We evaluate various collective operations includ-

ing MPI_Reduce and MPI_Allreduce (Fig.4),

MPI_Gather and MPI_Allgather (Fig.5), and

MPI_Bcast and MPI_Alltoall (Fig.6) using the OSU

Micro-Benchmarks suite. Various tests are included

here, specific to each MPI operation. The perfor-

mance evaluation demonstrates a comparison among

the three different MPI libraries (MVAPICH2-X,

OpenMPI + UCX, and Cray MPICH) on 512 AMD

Rome CPUs (eight nodes, 64 CPUs per node). For

small messages, MPI_Reduce, MVAPICH2-X, Open-

MPI + UCX, and Cray MPICH achieve 0.8 s, 2.05

s, and 1.95 s latency at 4 B, respectively. Large

message MPI_Allreduce performance is depicted in

0

1

2

3

4

5

6

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0

20

40

60

80

100

120

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0

10

20

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

0

20

40

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-X 2.3
OpenMPI 4.1.4 + UCX 1.12.1

Cray MPICH 8.1.14

MVAPICH2-X 2.3
OpenMPI 4.1.4 + UCX 1.12.1

Cray MPICH 8.1.14

(b)(a)

(c) (d)

MVAPICH2-X 2.3

OpenMPI 4.1.4 + UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-X 2.3

OpenMPI 4.1.4 + UCX 1.12.1
Cray MPICH 8.1.14

Fig.3. Inter-node point-to-point performance on AMD Epyc Rome CPUs on the Spock system over Slingshot-10. (a) Small message
point-to-point latency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional
bandwidth.

134 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

Fig.4(d), MVAPICH2-X achieves 1.25 ms latency,

while OpenMPI + UCX achieves 4.46 ms, and Cray

MPICH demonstrates 2.92 ms latency. We see simi-

lar alltoall performance between Cray MPICH and

Open MPI + UCX in Figs.6(c) and 6(d).

 3.4 Micro-Benchmark Evaluation on GPUs

In this subsection, we delve into the GPU-based

evaluation utilizing GPU-aware MPI and communica-

tion libraries. We evaluate the point-to-point perfor-

0.80

2.05

1.95

0

5

10

15

20

25

30

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0.90

1.60

2.01

0.0

0.5

1.0

1.5

2.0

2.5

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

7.76

23.37

9.96

0

10

20

30

40

50

60

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

1.25

4.46

2.92

0

1

2

3

4

5

8K 16K 32K 64K 128K 256K 512K 1M
L
a
te

n
c
y
 (

m
s)

Message Size (byte)

MVAPICH2-X 2.3

OpenMPI 4.1.4+UCX 1.12.1

Cray MPICH 8.1.14

MVAPICH2-X 2.3

OpenMPI 4.1.4+UCX 1.12.1

Cray MPICH 8.1.14

MVAPICH2-X 2.3

OpenMPI 4.1.4+UCX 1.12.1

Cray MPICH 8.1.14

MVAPICH2-X 2.3

OpenMPI 4.1.4+UCX 1.12.1

Cray MPICH 8.1.14

(b)(a)

(c) (d)
Fig.4. Performance of MPI collective MPI_Reduce and MPI_Allreduce operations on CPUs (512 CPUs—8 nodes & 64 PPN). (a)
REDUCE— small message sizes. (b) REDUCE— large message sizes. (c) ALLREDUCE— small message sizes. (d) ALLREDUCE—
large message sizes.

1.13

2.41
1.89

0

5

10

15

20

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-X 2.3
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

2.64

5.05

4.12

0

1

2

3

4

5

6

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

18.82 us
22.28 us

24.23 us

0

1

2

3

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

262.73

531.60

620.23

0

200

400

600

800

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

(b)(a)

(c) (d)

MVAPICH2-X 2.3
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-X 2.3
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-X 2.3
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

Fig.5. Performance of MPI collective MPI_Gather and MPI_Allgather operations on CPUs (512 CPUs—8 nodes & 64 PPN). (a)
GATHER—small message sizes. (b) GATHER—large message sizes. (c) ALLGATHER—small message sizes. (d) ALLGATHER—
large message sizes.

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 135

mance of the communication between two GPUs

within the same node on the same socket, and two

GPUs across nodes connected by the Slingshot-10 in-

terconnect over the network. We also evaluate the

performance of collective communication on the Spock

system on up to 64 GPUs (16 nodes with four GPUs

per node).

 3.4.1 Intra-Node Point-to-Point

In Fig.7[1], we present an evaluation of intra-node

point-to-point benchmark-level performance compar-

ing MVAPICH2-GDR, OpenMPI + UCX, and Cray

MPICH on AMD MI100 GPUs. The evaluation is

done between two GPUs within one node for latency

4.71

2.33

4.08

0

2

4

6

8

10

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-X 2.3

OpenMPI 4.1.4 + UCX 1.12.1

Cray MPICH 8.1.14

169.05

283.10

229.32

0

50

100

150

200

250

300

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0.061

0.063

0.071

0

2

4

6

8

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

1 372.00

1 126.10

1 125.70

0.0

0.5

1.0

1.5

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

MVAPICH2-X 2.3

OpenMPI 4.1.4 + UCX 1.12.1

Cray MPICH 8.1.14

MVAPICH2-X 2.3

OpenMPI 4.1.4 + UCX 1.12.1

Cray MPICH 8.1.14

MVAPICH2-X 2.3

OpenMPI 4.1.4 + UCX 1.12.1

Cray MPICH 8.1.14

103

(b)(a)

(c) (d)
Fig.6. Performance of MPI collective MPI_Bcast and MPI_Alltoall operations on CPUs (512 CPUs—8 nodes & 64 PPN). (a) BCA-
ST—small message sizes. (b) BCAST— large message sizes. (c) ALLTOALL—small message sizes. (d) ALLTOALL— large message
sizes.

0

5

10

15

20

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0

20

40

60

80

100

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0

50

100

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

0

100

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

(b)(a)

(c) (d)
Fig.7. Intra-node point-to-point performance on GPUs on the Spock system over Infinity Fabric[1]. (a) Small message point-to-point
latency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional bandwidth.

136 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

µ µ

µ

(osu_latency), bandwidth (osu_bw), and bi-direction-

al bandwidth (osu_bibw). For small message latency

shown in Fig.7(a), MVAPICH2-GDR, OpenMPI +

UCX, and Cray MPICH achieve 2.01 s, 3.79 s, and

2.44 s latency, respectively. This configuration in-

volves two AMD MI100 GPUs within the same node,

on the same socket, connected by Infinity Fabric. The

trends in performance for intra-node communication

between GPUs here reflect on protocols typically used

for this configuration within MPI libraries such as: a

GPU memory copy that utilizes the LargeBar feature

of AMD GPUs and the ROCm driver for small mes-

sage sizes, and ROCm IPC for larger message sizes[8].

The Infinity Fabric connection provides (46 + 46

GB/s) peak bandwidth. In Fig.7(c), MVAPICH2-

GDR achieves a peak bandwidth at 1 MB of 52 GB/s,

OpenMPI + UCX achieves 30 GB/s, and Cray

MPICH achieves 88 GB/s.

 3.4.2 Inter-Node Point-to-Point

In Fig.8[1] we present an evaluation of inter-node

point-to-point benchmark-level performance compar-

ing MVAPICH2-GDR, OpenMPI + UCX, and Cray

MPICH on AMD MI100 GPUs. The evaluation is

done between two GPUs on two different nodes con-

nected by the Slingshot-10 interconnect for latency

(osu_latency), bandwidth (osu_bw), and bi-direction-

al bandwidth (osu_bibw). In Fig.8(a) and Fig.8(b), we

µ µ µ

µ

see that MVAPICH2-GDR and Cray MPICH achieve

3.73 s and 3.8 s latency at 4 B and 115.94 s and

154.09 s at 1 MB, respectively. For small and medi-

um message ranges, the performance here can be at-

tributed to the use of the same underlying protocol

with a GPU memory copy that utilizes the LargeBar

feature of AMD GPUs and the ROCm driver that is

discussed in Subsection 3.4.1. For larger message

sizes, the MPI libraries rely on CPU-based staging

mechanisms and GPU-Direct approaches to achieve

near peak bandwidth performance. With this configu-

ration over the Slingshot-10 interconnect, and 12.5

GB/s peak achievable bandwidth, MVAPICH2-GDR

has peak uni-directional bandwidth performance at 32

KB with 11 GB/s performance, OpenMPI + UCX at

1 MB with 9.8 GB/s and Cray MPICH with 9.2 GB/s

performance. In particular, we see lower bandwidth

and bi-directional bandwidth for Cray MPICH in the

message range between 8 KB and 512 KB as demon-

strated in Figs.8(c) and 8(d).

 3.4.3 Collective Operations

We evaluate various collective operations includ-

ing MPI_Reduce and MPI_Allreduce (Fig.9),

MPI_Gather and MPI_Allgather (Fig.10), and

MPI_Bcast and MPI_Alltoall (Fig.11) using the

OSU Micro-Benchmarks suite. Various tests are in-

cluded here specific to each MPI operation. The per-

0

10

20

30

40

50

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0

50

100

150

200

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0

10

20

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

0

20

40

8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14

(b)(a)

(c) (d)
Fig.8. Inter-node point-to-point performance on GPUs on the Spock system over Slingshot-10[1]. (a) Small message point-to-point la-
tency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional bandwidth.

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 137

formance evaluation demonstrates a comparison be-

tween four different communication libraries (MVA-

PICH2-GDR, OpenMPI + UCX, Cray MPICH, and

RCCL) on 64 AMD MI100 GPUs (16 nodes, 4 GPUs

per node). In Figs.9–11[1], one particular trend we no-

ticed is that RCCL performance is typically not opti-

mal for smaller message sizes between 4 B and 4 KB,

but RCCL performs well for large message allgather,

and alltoall. For large message allreduce latency per-

formance, MVAPICH2-GDR achieves 1.4 ms, Open-

MPI + UCX achieves 160 ms, Cray MPICH demon-

strates 1.8 ms, while RCCL performs at 1.5 ms. In

3.12

0

100

200

300

400

500

600

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

1.90

0

20

40

60

80

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

0.02

0

1

2

3

4

5

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

0

20

40

60

80

100

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

(b)(a)

(c) (d)

73.96

0.04

47.46

0.03

4.95

0.42

5.00

496.5

3.98

35.04

90.24

9.88

5.70

Fig.10. Performance of MPI collectives MPI_Gather and MPI_Allgather operations on 64 GPUs (64 GPUs—16 nodes & 4 PPN)[1].
(a) GATHER—small message sizes. (b) GATHER— large message sizes. (c) ALLGATHER—small message sizes. (d) ALLGATH-
ER—large message sizes.

3.31

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0.92

63.01

5.89

52.94

7.91

0.76

194.5

0

10

20

30

40

50

60

70

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

0.01

0.0

0.5

1.0

1.5

2.0

2.5

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

0

50

100

150

200

8K 16K 32K 64K 128K 256K 512K 1M
L
a
te

n
c
y
 (

m
s)

Message Size (byte)

(b)(a)

(c) (d)

0.05

0.41
0.02

2.12

161.00

1.58

1.81

Fig.9. Performance of MPI collectives MPI_Reduce and MPI_Allreduce operations on 64 GPUs (64 GPUs—16 nodes & 4 PPN)[1].
(a) REDUCE—small message sizes. (b) REDUCE—large message sizes. (c) ALLREDUCE—small message sizes. (d) ALLREDUCE—
large message sizes.

138 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

µ µ

µ µ

Fig.11(a), we demonstrate small message broadcast

performance for each of the libraries with MVA-

PICH2-GDR at 8.1 s, OpenMPI + UCX at 12.39 s,

Cray MPICH at 12.06 s, and RCCL with 174.7 s

at 4 bytes.

µ

µ µ

µ

We demonstrate the importance of efficient all-

toall collective operation performance in Subsection

3.7 with the HeFFTe application which is heavily re-

liant on MPI_Alltoall or MPI_Alltoallv communica-

tion. In Fig.11(c), we evaluate the performance of

small message GPU-aware alltoall performance for

MVAPICH2-GDR at 27.09 s, OpenMPI + UCX at

182.42 s, Cray MPICH at 40.21 s, and RCCL at

909.4 s at 4 bytes.

Overall, the performance discrepancies presented

here for different libraries can be a result of various

components including, but not limited to: protocol

changes, lack of tuning specific to a system or archi-

tecture, or underutilization of interconnect/link band-

width. Through this evaluation, we highlight various

areas that need to be optimized or accounted for in

terms of communication performance. The difference

between the peak achievable performance for MPI li-

braries compared to the available link bandwidth

(provided by Infinity Fabric between GPUs and the

Slingshot-10 network between nodes) demonstrates

the importance of link utilization to take advantage of

the vast performance made possible by these intercon-

nects.

 3.5 Slingshot-11 Networking System—
System and Software Details

We utilize a system that emulates the Frontier

system with Slingshot-11 networking to evaluate

Slingshot-11 support of MPI libraries on CPUs. In

these experiments, we evaluate MVAPICH2-3.0a with

added support for the Slingshot-11 fabric and

adapter, configured with the appropriate parameters

demonstrated in Table 2[1].

 3.6 Slingshot-11 Interconnect Evaluation

µ

µ

In Fig.12, we evaluate intra-node point-to-point

performance between two AMD CPUs on the same

node using MVAPICH2-3.0a and Cray MPICH 8.1.18

(the latest version of the library available on the sys-

tem). Within a node, we demonstrate approximately

38 GB/s peak bandwidth and 0.53 s minimum laten-

cy with MVAPICH2-3.0a and 18 GB/s peak band-

width and 0.46 s latency with Cray MPICH. The

vast difference in peak achievable bandwidth be-

tween the two libraries can be attributed to the use of

XPMEM (cross-partition memory) in MVAPICH2-X

for large message sizes, allowing mapping the memo-

ry of one process into another process' virtual ad-

dress space.

In Fig.13, we evaluate inter-node point-to-point

performance between two AMD CPUs on different

0.03

0

2

4

6

8

10

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

0

20

40

60

80

100

120

8K 16K 32K 64K 128K 256K 512K 1M
L
a
te

n
c
y
 (

m
s)

Message Size (byte)

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

0.76

0.0

0.2

0.4

0.6

0.8

1.0

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
c
y
 (

m
s)

Message Size (byte)

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1
Cray MPICH 8.1.14
RCCL 5.0.2

(b)(a)

(c) (d)

0.18
0.04

0.91

174.7

8.1

12.39

12.06

0.75
0.77

0.67

41.26

102.89

27.12

22.52

Fig.11. Performance of MPI collectives MPI_Bcast and MPI_Alltoall operations on 64 GPUs (64 GPUs—16 nodes & 4 PPN)[1]. (a) B-
CAST—small message sizes. (b) BCAST—large message sizes. (c) ALLTOALL—small message sizes. (d) ALLTOALL—large mes-
sage sizes.

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 139

µ

nodes over the Slingshot-11 network. Both libraries

demonstrated here provide similar minimum latency

at approximately 2.2 s, and peak bandwidth of

around 24 GB/s. A factor to be addressed by MPI li-

braries that is revealed through this evaluation is not-

ed in the performance of bi-directional bandwidth

across the network. While in Fig.12(d), we see that

the peak achievable bi-directional bandwidth for in-

tra-node communication is close to double the uni-di-

rectional bandwidth presented in Fig.12(c), and this is

not the case for inter-node performance over Sling-

shot-11. In Fig.13(d), the peak bi-directional band-

width is approximately 28.5 GB/s compared with a

peak unidirectional peak bandwidth of 24 GB/s. In

0.53

0.46
0.0

0.5

1.0

1.5

2.0

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

129

241

0

50

100

150

200

250

300

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

0

20

40

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

0

50

100

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
B

a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

(b)(a)

(c) (d)
Fig.12. Intra-node point-to-point performance on CPUs on a system with Slingshot-11 networking across nodes. (a) Small message
point-to-point latency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional
bandwidth.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

4 8 16 32 64 128 256 512 1K 2K 4K

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

0

50

100

150

200

250

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

L
a
te

n
c
y
 (
m
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

0

10

20

30

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

0

20

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
a
n
d
w

id
th

 (
G

B
/
s)

Message Size (byte)

MVAPICH2-3.0a Cray MPICH 8.1.18

(b)(a)

(c) (d)
Fig.13. Inter-node point-to-point performance on CPUs on a system with Slingshot-11 networking across nodes. (a) Small message
point-to-point latency. (b) Large message point-to-point latency. (c) Large message bandwidth. (d) Large message bi-directional
bandwidth.

140 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

order to fully utilize the high bandwidth made possi-

ble through the Slingshot-11 interconnect, this perfor-

mance discrepancy is one of the areas where perfor-

mance can be addressed at the MPI layer to get clos-

er to the peak ideal bandwidth.

 3.7 Application-Level Evaluation

In this subsection, we evaluate the various MPI li-

braries at the application level. We use the heFFTe

(highly efficient FFTs for Exascale)⑭ application de-

tailed below to demonstrate GPU-aware and CPU-

based MPI libraries' performance. In this case, the

datatype required by heFFTe is not supported by

RCCL and therefore RCCL is not included in the

evaluation below. Due to compilation issues at the ap-

plication layer with Cray MPICH and cmake, Cray

MPICH is also emitted from this evaluation. We use

the rocHPCG application as well to compare the

GPU-aware MPI libraries.

 3.7.1 heFFTe

The heFFTe application is a highly efficient Fast

Fourier transform (FFT) library for exascale systems.

It uses GPU-aware MPI for communication and is

provided as an open-source application. It provides

the GPU kernel implementation with efficient scala-

bility on large-scale clusters for 2-D and 3-D FFT li-

braries. Based on FFTMPI and SWFFT libraries, it

presents so-called pencil-to-pencil methodology to

compute 3-D FFT.

5123

We evaluate the performance of the heFFTe ap-

plication as a measure of GFlops/s with different

problem sizes. The application can be run with either

an alltoall-based or alltoallv-based problem. When

running heFFTe on GPUs using GPU-aware MPI li-

braries, we utilize the rocFFT backend provided for

the heFFTe benchmarks with support for ROCm. We

demonstrate the performance of heFFTe on GPUs in

Figs.14(c) and 14(d) for alltoall with 65 GFlops/s and

alltoallv with 187 GFlops/s using MVAPICH2-GDR

for a problem size of . This is in contrast to 3.17

GFlops/s and 3.28 GFlops with OpenMPI + UCX for

alltoall and alltoallv, respectively, for the same prob-

lem size.

5123

2563

We utilize the fftw backend provided by heFFTe

to run with CPU-based MPI libraries and demon-

strate an evaluation using MVAPICH2-X and Open-

MPI on the Spock system on 512 CPUs in Fig.15.

With an alltoall problem and problem size, we

see 12.99 GFlops/s and 12.92 GFlops/s with MVA-

PICH2-X and OpenMPI, respectively. With an all-

toallv problem and problem size, we demon-

strate 146 GFlops/s and 131 GFlops/s with MVA-

PICH2-X and OpenMPI, respectively.

3.71

14.73
48.71

141.10 187.24

1.16
1.98 2.51 2.92 3.28

1

100

323 643 1283 2563 5123

G
F
lo

p
s/

s

Problem Size

3.82

14.50

61.13 65.00

1.02
1.90 2.43 2.82 3.17

1

100

323 643 1283 2563 5123

G
F
lo

p
s/

s

Problem Size

3.65
13.21

40.15

135.93 130.58

0.62 0.94 1.15 1.33 1.47
0

100

200

323 643 1283 2563 5123

G
F
lo

p
s/

s

Problem Size

3.99
16.03

48.88

65.69 68.62

0.59 0.94 1.14 1.30 1.46
0

20

40

60

80

323 643 1283 2563 5123

G
F
lo

p
s/

s

Problem Size

(b)(a)

(c) (d)

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1

MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4+UCX 1.12.1

37.63

Fig.14. Performance of the heFFTe application using the rocfft backend for different problem sizes on 16 GPUs (4 nodes, 4 GPUs
per node), and 32 GPUs (8 nodes, 4 GPUs per node)[1]. Two different communication methods are shown including MPI_Alltoall [-
a2a] ((c)) and MPI_Alltoallv [-a2av] ((d)) using various MPI libraries including MVAPICH2-GDR, and OpenMPI + UCX. (a)
heFFTe—16 GPUs (alltoall). (b) heFFTe—16 GPUs (alltoallv). (c) heFFTe—32 GPUs (alltoall). (d) heFFTe—32 GPUs (alltoallv).

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 141

⑭https://icl.utk.edu/files/publications/2020/icl-utk-1388-2020.pdf, Jan. 2023.

 3.7.2 rocHPCG

rocHPCG⑮ is a ROCm runtime benchmark based

on the High-Performance Conjugate Gradients

(HPCG) application for AMD GPUs. The HPCG

benchmark is used as a metric for the Top500 sys-

tems since it simulates the computational and data-

access patterns of a variety of scientific applications,

and communication patterns, including MPI point-to-

point and collective operations and OpenMP sup-

ports. rocHPCG consists of different sub-operation

metrics, including global dot product (DDOT), vec-

tor update (WAXPBY), sparse matrix-vector multi-

plication (SpMV), multigrid preconditioner (MG),

etc. We demonstrate the performance of each phase

separately in the evaluation done in Fig.16 compar-

ing MVAPICH2-GDR with OpenMPI + UCX.

 4 Related Work

De Sensi et al.[9] proposed early research investi-

gating Slingshot for large-scale computing systems.

They described Slingshot as the next-generation large-

scale system and summarized the key features as the

following: high-radix Ethernet switches, adaptive

routing, congestion control, and QoS management.

They evaluated the system performance using Sling-

shot with both individual and concurrent workloads

to close the real HPC system usage. They found less

congestion on Slingshot and the control algorithm is

effective for most HPC and data center applications.

Also, a lower impact on performance from allocation

policies was reported. Furthermore, Slingshot guaran-

tees the bandwidth for jobs in different traffic classes.

The details of HPE Cray MPI are described in

OLCF⑯, including the latest implementation

overview, HPE Cray MPI tuning and placement,

GPU support, and its GPU-NIC asynchronous fea-

tures. It also delves into the current support status

with AMD and NVIDIA GPUs, including intra-node

IPC and inter-node RDMA. Moreover, it introduces

the GPU-NIC Async proposals, which decouples

0

5

10

15

323 643 1283 2563 5123

G
F
lo

p
s/

s

Problem Size

MVAPICH2-X 2.3

OpenMPI 4.1.4+UCX 1.12.1

0

50

100

150

200

323 643 1283 2563 5123

G
F
lo

p
s/

s

Problem Size

MVAPICH2-X 2.3
OpenMPI 4.1.4+UCX 1.12.1

(b)(a)
Fig.15. Performance of heFFTe application using the fftw backend for different problem sizes on 512 CPUs (8 nodes, 64 cores per
node). Two different communication methods are shown including MPI_Alltoall [-a2a] ((a)) and MPI_Alltoallv [-a2av] ((b)) using
various MPI libraries including MVAPICH2-X, and OpenMPI + UCX. (a) heFFTe—512 CPUs (alltoall). (b) heFFTe—512 CPUs
(alltoallv).

0.73

0.57

1.97

1.37

1.33

1.25

0.71 0.55

2.02

1.38 1.34 1.27

0

1

2

3

4

5

T
F
lo

p
s/

s

Operation

MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4+UCX 1.12.1

0.38

0.29

0.97

0.69

0.68

0.66

0.38
0.29

1.00

0.71 0.70 0.68

0

1

2

DDOT
WAXPBY SpMV MG Total Final DDOT

WAXPBY SpMV MG Total Final

T
F
lo

p
s/

s

Operation

(b)(a)

MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4+UCX 1.12.1

Fig.16. Performance of rocHPCG on 8 GPUs and 16 GPUs[1]. (a) rocHPCG—8 GPUs (2 nodes, 4 PPN). (b) rocHPCG—16 GPUs
(4 nodes, 4 PPN).

142 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

⑮rocHPCG. https://github.com/ROCmSoftwarePlatform/rocHPCG, Dec. 2021.
⑯OLCF. HPE Cray MPI– Spock Workshop, 2021. https://www.olcf.ornl.gov/wp-content/uploads/2021/04/HPE-Cray-MPI-

Update-nfr-presented.pdf, Dec. 2022.

CPU-GPU control and data paths to reduce the

CPU-GPU synchronization frequency and overheads.

Melesse Vergara et al.[10] elaborated on their expe-

rience of porting the current kernels of main applica-

tions to a novel platform with AMD GPUs and

HPE/Cray programming environment. They ported

GENASIS, Minisweep, and Sparkler to the HIP-based

kernel and compared the performance. The experi-

ence of porting applications from CUDA-based to

HIP-based kernel proved that the porting procedure is

easy, but there could be limitations, such as Open-

MP support. In addition, additional tuning is re-

quired for fully utilizing the computing power on

AMD GPUs. This work provides good examples for

users to further port other kernel applications using

HIP on AMD GPUs. Khorassani et al.[8] proposed an

early research and designed a ROCm-aware MPI Li-

brary for the upcoming exascale systems, such as

Frontier and El Capitan. They focused on Radeon

Open Compute (ROCm) platform that adopts AMD

GPUs. They utilized the ROCm features such as

PeerDirect, ROCm-IPC, and large-BAR mapped

memory to design a ROCm-aware MPI. An abstract

communication layer with CUDA or ROCm backend

allowed portability for the MPI runtime.

 5 Conclusions

Next-generation exascale systems, and the first ex-

ascale and leading supercomputer in the world, Fron-

tier, are equipped with nodes connected by the HPE

Cray Slingshot interconnect. This interconnect tech-

nology is relatively new in the High-Performance

Computing realm and is seldom evaluated at the com-

munication layer. In this work, we delved into a com-

prehensive CPU-based and GPU-aware evaluation

and analysis of various state-of-the-art MPI libraries

including MVAPICH2, OpenMPI+UCX, Cray

MPICH, and RCCL on a system, Spock, equipped

with the Slingshot-10 interconnect to connect nodes

over the network and with AMD MI100 GPUs and

AMD Epyc Rome CPUs. We demonstrated the per-

formance of various point-to-point communication op-

erations for latency and bandwidth and various collec-

tive operations on AMD Rome CPUs and GPU-aware

communication on AMD MI100 GPUs. The Slingshot-

10 interconnect provides a 12.5 GB/s node injection

bandwidth. MVAPICH2-X, OpenMPI+UCX, and

Cray MPICH all achieve approximately 12.2 GB/s

bandwidth at 1 MB for point-to-point operations be-

tween 2 CPUs across nodes. For inter-node GPU-

aware communication with two GPUs across two

nodes, MVAPICH2-GDR has peak uni-directional

bandwidth performance at 32 KB with 11 GB/s per-

formance, OpenMPI + UCX at 1 MB with 9.8 GB/s

and Cray MPICH with 9.2 GB/s performance.

µ

5123

We then demonstrated preliminary support of

MPI libraries over the Slingshot-11 interconnect, with

both MVAPICH2-3.0a and Cray MPICH providing

minimum latency at approximately 2.2 s, and the

peak bandwidth of around 24 GB/s. We also extend-

ed this evaluation using the heFFTe library and

rocHPCG, demonstrating GPU-aware performance of

heFFTe with alltoall, achieving 65 GFlops/s with

MVAPICH2-GDR in contrast to 3.17 GFlops/s for

OpenMPI + UCX for a problem size of .

In the future, we plan to extend this evaluation to

cover additional applications with high demand for ef-

ficient communication performance, evaluate at a

larger scale on a larger number of nodes based on sys-

tem access, and ensure that state-of-the-art MPI and

communication libraries provide the functionality,

support, and efficiency that is to be expected with the

growing demand and the roll-out of Slingshot-11 net-

working.

Acknowledgements We would like to thank Dr.

Sameer Shende (University of Oregon) and Dr. Olga

Pearce (Lawrence Livermore National Laboratory) for

providing access to the HPC systems used in the pa-

per. We would also like to thank Nat Shineman for

his development work on the MVAPICH project to

provide basic support and features over the underly-

ing interconnect with MVAPICH.

References

 Khorassani K S, Chen C C, Ramesh B, Shafi A, Subra-

moni H, Panda D. High performance MPI over the Sling-

shot interconnect: Early experiences. In Proc. the 2022

Practice and Experience in Advanced Research Comput-

ing, Jul. 2022. DOI: 10.1145/3491418.3530773.

[1]

 Kim J, Dally W J, Scott S, Abts D. Technology-driven,

highly-scalable dragonfly topology. In Proc. the 2008 In-

ternational Symposium on Computer Architecture, Jun.

2008, pp.77–88. DOI: 10.1109/ISCA.2008.19.

[2]

 Gabriel E, Fagg G E, Bosilca G, Angskun T, Dongarra J

J, Squyres J M, Sahay V, Kambadur P, Barrett B, Lums-

daine A, Castain R H, Daniel D J, Graham R L, Woodall

T S. Open MPI: Goals, concept, and design of a next gen-

eration MPI implementation. In Proc. the 11th European

PVM/MPI Users’ Group Meeting on Recent Advances in

Parallel Virtual Machine and Message Passing Interface,

[3]

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 143

http://dx.doi.org/10.1145/3491418.3530773
http://dx.doi.org/10.1109/ISCA.2008.19

Sept. 2004, pp.97–104. DOI: 10.1007/978-3-540-30218-

6_19.
 Thakur R, Rabenseifner R, Gropp W. Optimization of

collective communication operations in MPICH. Interna-

tional Journal of High Performance Computing Applica-

tions, 2005, 19(1): 49–66. DOI: 10.1177/1094342005051521.

[4]

 Panda D K, Subramoni H, Chu C H, Bayatpour M. The

MVAPICH project: Transforming research into high-per-

formance MPI library for HPC community. Journal of

Computational Science, 2021, 52: 101208. DOI: 10.1016/

j.jocs.2020.101208.

[5]

 Bureddy D, Wang H, Venkatesh A, Potluri S, Panda D

K. OMB-GPU: A micro-benchmark suite for evaluating

MPI libraries on GPU clusters. In Proc. the 19th Euro-

pean Conference on Recent Advances in the Message

Passing Interface, Sept. 2012, pp.110–120. DOI: 10.1007/

978-3-642-33518-1_16.

[6]

 Chakraborty S, Bayatpour M, Hashmi J, Subramoni H,

Panda D K. Cooperative rendezvous protocols for im-

proved performance and overlap. In Proc. the 2018 Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, Nov. 2018, pp.361–373.

DOI: 10.1109/SC.2018.00031.

[7]

 Khorassani K S, Hashmi J, Chu C H, Chen C C, Subra-

moni H, Panda D K. Designing a ROCm-aware MPI li-

brary for AMD GPUs: Early experiences. In Proc. the

36th International Conference on High Performance Com-

puting, Jun. 24–Jul. 2, 2021, pp.118–136. DOI: 10.1007/9

78-3-030-78713-4_7.

[8]

 De Sensi D, Di Girolamo S, McMahon K H, Roweth D,

Hoefler T. An in-depth analysis of the Slingshot intercon-

nect. In Proc. the 2020 International Conference for High

Performance Computing, Networking, Storage and Analy-

sis, Nov. 2020. DOI: 10.1109/SC41405.2020.00039.

[9]

 Melesse Vergara V G, Budiardja R D, Joubert W. Early

experiences evaluating the HPE/Cray ecosystem for AMD

GPUs. U.S. Department of Energy, 2021. https://cug.org/

proceedings/cug2021_proceedings/includes/files/pap108s2-

file2.pdf, Jan. 2023.

[10]

Kawthar Shafie Khorassani is a

Ph.D. student in the Department of

Computer Science and Engineering at

The Ohio State University, Columbus.

She got her Bachelor’s degree in math-

ematics and computer science at

Wayne State University in Detroit,

MI. She currently works in the Network Based Comput-

ing Laboratory on the MVAPICH2-GDR project. Her

research interests lie in high-performance computing

(HPC), and in GPU communication and computation.

Chen-Chun Chen is a Ph.D. stu-

dent in the Department of Computer

Science and Engineering at The Ohio

State University, Columbus. He cur-

rently works on the MVAPICH2-GDR

project. His research interests include

high-performance computing (HPC)

and GPU communication. He is a member of the Net-

work Based Computing Laboratory (NBCL).

Bharath Ramesh is a Ph.D. stu-

dent in the Department of Computer

Science and Engineering at The Ohio

State University, Columbus. His re-

search interests include high-perfor-

mance computing, architecture-aware

communication, network/hardware-

based offloading, and topology-aware collective algo-

rithms. He is a graduate research associate in the Net-

work-Based Computing Laboratory (NBCL), working on

the MVAPICH2 (High-Performance MPI over Infini-

Band, iWARP, and RoCE) library.

Aamir Shafi is currently a research

scientist at The Ohio State University,

Columbus, where he is involved in the

High-Performance Big Data and Deep

Learning projects. Dr. Shafi was a Ful-

bright Visiting Scholar at MIT where

he worked on the award-winning Cilk

technology. His research interests include architecting

robust communication libraries and tools for HPC sys-

tems with emphasis on machine and deep learning appli-

cations. More details about Dr. Shafi are available from

https://people.engineering.osu.edu/people/shafi.16.

144 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1177/1094342005051521
http://dx.doi.org/10.1016/j.jocs.2020.101208
http://dx.doi.org/10.1016/j.jocs.2020.101208
http://dx.doi.org/10.1007/978-3-642-33518-1_16
http://dx.doi.org/10.1007/978-3-642-33518-1_16
http://dx.doi.org/10.1007/978-3-642-33518-1_16
http://dx.doi.org/10.1109/SC.2018.00031
http://dx.doi.org/10.1007/978-3-030-78713-4_7
http://dx.doi.org/10.1007/978-3-030-78713-4_7
http://dx.doi.org/10.1007/978-3-030-78713-4_7
http://dx.doi.org/10.1109/SC41405.2020.00039
https://cug.org/proceedings/cug2021_proceedings/includes/files/pap108s2-file2.pdf
https://cug.org/proceedings/cug2021_proceedings/includes/files/pap108s2-file2.pdf
https://cug.org/proceedings/cug2021_proceedings/includes/files/pap108s2-file2.pdf
https://cug.org/proceedings/cug2021_proceedings/includes/files/pap108s2-file2.pdf
https://people.engineering.osu.edu/people/shafi.16
https://people.engineering.osu.edu/people/shafi.16
https://people.engineering.osu.edu/people/shafi.16

Hari Subramoni is an assistant pro-

fessor in the Department of Computer

Science and Engineering at The Ohio

State University, Columbus. His cur-

rent research interests include high-

performance interconnects and proto-

cols, parallel computer architecture,

network-based computing, exascale computing, network

topology aware computing, QoS, poweraware LAN-

WAN communication, fault tolerance, virtualization,

deep learning, big data, and cloud computing. He has

published over 120 papers in international journals and

conferences related to these research areas. Recently, Dr.

Subramoni is doing research and working on the design

and development of MVAPICH2, MVAPICH2-GDR,

and MVAPICH2-X software packages. He is a member

of ACM and IEEE. More details about Dr. Subramoni

are available from: https://web.cse.ohio-state.edu/~sub-

ramoni.1/.

Dhabaleswar K. Panda is a profes-

sor of computer science and engineer-

ing and University Distinguished

Scholar at The Ohio State University,

Columbus. His research interests in-

clude parallel computer architecture,

high-performance networking, exas-

cale computing, Big Data, Deep Learning, programming

models, accelerators, high-performance file systems and

storage, virtualization, and cloud computing. He has

published over 500 papers in major journals and interna-

tional conferences related to these research areas. Dr.

Panda and his research group members have been do-

ing extensive research on modern networking technolo-

gies including InfiniBand, High-Speed Ethernet, RDMA

over Converged Enhanced Ethernet (RoCE), OmniPath,

and EFA. Dr. Panda and his team have been actively

working on high-performance MPI and PGAS libraries

(http://mvapich.cse.ohio-state.edu), and Deep Learning

libraries (http://hidl.cse.ohio-state.edu), and Big Data

libraries (http://hibd.cse.ohio-state.edu). Dr. Panda

serves as the director of the NSF-funded ICICLE AI In-

stitute (icicle.ai). More details are available at

http://www.cse.ohio-state.edu/~panda.

Kawthar Shafie Khorassani et al.: High Performance MPI over the Slingshot Interconnect 145

https://web.cse.ohio-state.edu/~subramoni.1/
https://web.cse.ohio-state.edu/~subramoni.1/
https://web.cse.ohio-state.edu/~subramoni.1/
http://mvapich.cse.ohio-state.edu
http://hidl.cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
http://www.cse.ohio-state.edu/~panda

	1 Introduction
	1.1 Motivation
	1.2 Key Insights and Contributions

	2 Background
	2.1 State-of-the-Art Interconnect Technologies
	2.2 Slingshot Interconnect
	2.3 State-of-the-Art Communication Libraries
	2.4 Limitations of State-of-the-Art Approaches

	3 Evaluation and Analysis
	3.1 Spock—System and Software Details
	3.1.1 MPI Libraries

	3.2 OSU Micro-Benchmarks
	3.3 Micro-Benchmark Evaluation on CPUs
	3.3.1 Intra-Node Point-to-Point
	3.3.2 Inter-Node Point-to-Point
	3.3.3 Collective Operations

	3.4 Micro-Benchmark Evaluation on GPUs
	3.4.1 Intra-Node Point-to-Point
	3.4.2 Inter-Node Point-to-Point
	3.4.3 Collective Operations

	3.5 Slingshot-11 Networking System—System and Software Details
	3.6 Slingshot-11 Interconnect Evaluation
	3.7 Application-Level Evaluation
	3.7.1 heFFTe
	3.7.2 rocHPCG

	4 Related Work
	5 Conclusions
	References

