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Abstract    Retinal images play an essential role in the early diagnosis of ophthalmic diseases. Automatic segmentation

of retinal vessels in color fundus images is challenging due to the morphological differences between the retinal vessels and

the low-contrast background. At the same time, automated models struggle to capture representative and discriminative

retinal vascular features. To fully utilize the structural information of the retinal blood vessels, we propose a novel deep

learning network called Pre-Activated Convolution Residual and Triple Attention Mechanism Network (PCRTAM-Net).

PCRTAM-Net uses the pre-activated dropout convolution residual method to improve the feature learning ability of the

network. In addition, the residual atrous convolution spatial pyramid is integrated into both ends of the network encoder

to extract multiscale information and improve blood vessel information flow. A triple attention mechanism is proposed to

extract the structural information between vessel contexts and to learn long-range feature dependencies. We evaluate the

proposed  PCRTAM-Net  on  four  publicly  available  datasets,  DRIVE,  CHASE_DB1,  STARE,  and  HRF.  Our  model

achieves state-of-the-art performance of 97.10%, 97.70%, 97.68%, and 97.14% for ACC and 83.05%, 82.26%, 84.64%, and

81.16% for F1, respectively.
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 1    Introduction

There are certain numbers of capillaries in the hu-

man  retina,  and  their  morphological  changes  are

closely related to different ophthalmic diseases. These

morphological changes are the associated symptoms of

a variety of other cardio vessels diseases, such as dia-

betes,  hypertension,  and  arteriosclerosis[1].  The  reti-

nal  fundus image is  an important tool  for  doctors  to

diagnose various ophthalmic diseases and other relat-

ed  diseases.  However,  due  to  the  complex  nature  of

the retinal blood vessels and the lack of quality imag-
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ing of the blood vessels, the efficiency of manual diag-

nosis is relatively low, and subjective[2]. Therefore, au-

tomatic  segmentation  of  retinal  fundus  blood  vessels

has  good  research  significance  and  clinical  value.

However,  retinal  image  segmentation  is  still  a  chal-

lenging  task  due  to  several  constraints.  Firstly,  the

nature and size of the blood vessels in retinal images

vary greatly. For example, blood vessels in fundus im-

ages usually vary between 1 pixel and 20 pixels. Sec-

ondly, a retinal vessel tree has many closely connect-

ed tiny blood vessels,  which are generally difficult  to

be separated from other non-vessel structures. Third-

ly, factors such as noise during retinal image acquisi-

tion and exudates produced by lesions make the seg-

mentation task a difficult  process.  Facing these chal-

lenges,  researchers  have  put  in  a  lot  of  effort[3] to

overcome these issues. The initial research approach[4]

is  to  segment  retinal  vessels  using  hand-crafted  fea-

tures.  Traditional  image  processing  using  hand-craft-

ed  features  techniques  lacks  the  ability  to  represent

the  complex  semantics  of  the  retinal  blood  vessels.

Consequently, in relatively large datasets with multi-

ple  complex  scenarios,  these  techniques  are  liable  to

perform poorly. In recent years, deep convolution neu-

ral  network  (DNNs)[5] have  achieved  remarkable  re-

sults in medical image segmentation tasks. These net-

works have become very popular and useful in medi-

cal  image  segmentation  problems.  U-Net[6] and  its

various variants have been improved from a full con-

volution network for semantic segmentation, to a net-

work  that  further  improves  retinal  vessel  segmenta-

tion performance. These variants are based on a sym-

metric  encoder-decoder  structure,  where  convolution

layers  and  down-sampling  layers  are  continuously

stacked  to  obtain  retinal  vessel  features.  Although

these U-Net variants achieve good performance,  they

are  insufficient  for  the  fundus  image  segmentation

challenge.  Ideally,  due  to  factors  such  as  noise,  low

resolution,  and  poor  contrast,  the  general  U-shaped

variant structure cannot stably segment all the blood

vessel  features.  In  addition,  there  is  a  lack  of  multi-

scale  information from the retinal  images  of  complex

blood vessels.  It is very challenging to develop a sin-

gle  vessel  structure  model  suitable  for  robust  extrac-

tion  of  multi-source  vessel  images  under  interference

factors.  To  overcome  the  above  limitations  and  fur-

ther  improve  the  performance  of  retinal  vessel  seg-

mentation,  we  propose  a  deep  learning  network

(PCRTAM-Net) with pre-activated convolution resid-

ual and triple attention mechanism to segment blood

vessels  from  retinal  fundus  images.  Our  network  is

based on an encoder-decoder structure and consists of

three core modules for extracting boundary blood ves-

sel  features,  multiscale  information  of  blood  vessels,

and structural information between vascular contexts,

respectively.  The  proposed  PCRTAM-Net  is  validat-

ed  on  four  publicly  available  retinal  vessel  datasets,

and  the  results  show  that  the  proposed  PCRTAM-

Net  performs  better  than  the  state-of-the-art  meth-

ods.  In  summary,  the  main  contributions  of  our  pa-

per are as follows.

1)  A  retinal  vessel  segmentation  network  with  a

pre-residual  attention  mechanism,  PCRTAM-Net,  is

proposed,  which  extracts  adequate  vessel  tree  fea-

tures  from fundus  images  with  complex  vessel  struc-

tures.

2)  A  residual  method  based  on  pre-activated

dropout  convolution  (Res-PDC)  is  proposed,  which

replaces  the  convolution  block  in  the  deep  learning

network  and  enhances  the  generalization  ability  by

discarding  random  parts  of  the  vessel  structure  so

that the information on the vessel features can be ful-

ly extracted.

3)  To  effectively  utilize  the  multiscale  informa-

tion  of  complex  blood  vessels,  Res-ACSP  is  used  at

both ends of the encoder, so that the extracted infor-

mation flow is improved. The channel and spatial at-

tention  modules  are  studied  between  the  connected

layers of the decoder, and the TAM is proposed to ef-

fectively utilize the multi-channel space for vessel fea-

ture normalization so that the background and vessel

structure can be classified more effectively.

In the remainder of this paper, Section 2 presents

the  overall  approach  to  retinal  vessel  segmentation.

Section 3 describes  our  network  in  detail. Section 4

discusses  the  experimental  results  of  our  network  on

publicly  available  datasets.  Finally,  conclusions  are

presented in Section 5.

 2    Related Work

Over  the  past  few  decades,  many  methods  have

been proposed for  retinal  vessel  segmentation in fun-

dus images. Previously, fundus images were segment-

ed  based  on  conventional  image  processing  tech-

niques,  such  as  morphological  operations[7] and

threshold segmentation[4]. These methods need modifi-

cation  for  different  situations  to  achieve  better  seg-

mentation  performance,  and  they  are  not  robust

enough  for  this  task  because  the  hand-crafted  fea-

tures  are  misled  by  lesion  regions  and  low-contrast

microvessels[8].  Compared  with  these  conventional
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methods, the deep learning-based methods[5] have bet-

ter  advantages in dealing with the specificity of  reti-

nal  blood  vessels.  Sheng et  al.[9] improved  the  detec-

tion  of  low-contrast  and narrow blood vessels  by  us-

ing  an  efficient  minimum generation  super  pixel  tree

to  detect  and  capture  global  and  local  structures  of

retinal  images,  but segmented blood vessels  have the

limitation of unsmooth boundaries. Yin et al.[10] devel-

oped  a  new  method  for  accurately  extracting  blood

vessels  in  nonfluorescent  fundus  images  using  direc-

tion-aware detectors, which can filter out background

noise  near  pathological  and  non-vascular  structures,

but  the  resulting  accuracy  of  segmenting  blood  ves-

sels is low. Dai et al.[11] developed a deep learning sys-

tem called DeepDR that can detect diabetic retinopa-

thy at different stages. Wang et al.[12] proposed a hard

attention  network  (HAnet)  that  consists  of  one  en-

coder and three decoders, while introducing an atten-

tion mechanism to enhance the features of  the blood

vessels  in  hard regions.  Sun et  al.[13] proposed a  net-

work that integrates atrous convolution modules,  en-

abling  a  larger  receptive  field  and  enhancing  the

thickness of blood vessels while improving the percep-

tion  of  details  to  a  certain  extent.  Jin et  al.[14] pro-

posed  a  deformable  convolution  network  (DUNet)  to

replace  ordinary  convolution  for  vessel  segmentation.

Mou et  al.[15] embedded  densely  dilated  convolution

blocks into a U-shaped network for retinal blood ves-

sel  detection  and  used  a  probabilistic  regularized

walker algorithm to patch the breakage in detection.

Wei et  al.[16] proposed  an  automatically  designed  ge-

netic  U-Net,  which  can  achieve  better  retinal  vessel

segmentation and solve overfitting and high computa-

tional complexity caused by many parameters. In re-

cent  years,  attention  mechanisms  have  been  applied

to the image domain and combined with convolution

neural  networks.  Fu et  al.[17] proposed  a  dual-atten-

tion  mechanism  convolution  network  (DANet)  to

solve  the  image  segmentation  task  by  capturing  rich

contextual  dependencies  based  on  a  self-attention

mechanism.  Yang et  al.[18] proposed  an  attention-

aware  multiscale  fusion  network  (AMF-Net),  which

perceives microvessels through dense convolution, and

utilizes a channel attention module to fuse multiscale

features  with  adaptive  weights.  It  utilizes  the  loca-

tion attention module, to capture the distance-spatial

relationship  of  features  to  improve  performance.  Wu

et  al.[19] proposed a multiscale channel  attention net-

work  based  on  the  encoder-decoder  structure,  which

extracts  the  multiscale  structural  information  of  the

blood vessels in the encoder part, and fused the chan-

nel  attention module  in  the  decoder  part  to  improve

the vessel segmentation in the fundus images.

However, due to the different morphology of reti-

nal  vessels,  the  low  contrast  between  retinal  vessels

and the background, and the influence of lesions and

equipment  noise,  the  state-of-the-art  methods[20] for

the  segmentation of  microvessels  still  need to  be  im-

proved.

 3    Our Method

 3.1    PCRTAM-Net

The  proposed  PCRTAM-Net  is  an  encoder-de-

coder network for retinal vessel segmentation, and the

overall architecture is shown in Fig.1. The encoder of

PCRTAM-Net consists of a residual method based on

a pre-activated dropout convolution (Res-PDC) mod-

ule,  a  residual  atrous  convolution  spatial  pyramid

(Res-ACSP)  module,  and  down-sampling.  The  de-

coder consists of dual pre-activation dropout convolu-

tion (Dual-PDC), a triple attention mechanism mod-

ule (TAM), and upsampling. Finally, 1 × 1 convolu-

tion and sigmoid operation are applied to binarize the

vessel probability map.

 3.2    Residual Method Based on

Pre-Activated Dropout Convolution

The  underlying  convolution  block  based  on  the

encoder-decoder  network  plays  an  important  role  in

segmenting  the  complex  structure  of  the  retinal  ves-

sels. In the traditional U-Net, the internal structure of

each  convolution  block  consists  of  two  base  layers

(3 × 3 convolution + rectified linear units (Relu) [21]).

Furthermore, several U-Net variants consist of  modi-

fied  convolution  blocks  such  as  in  Genetic  U-Net[16],

DenseNet[22],  and  ResNet[23].  Inspired  by  the  above

work,  we  propose  a  residual  method  based  on  Res-

PDC  to  replace  the  traditional  U-Net  convolution

method. The traditional 3 × 3 convolution layer is re-

placed by a 1 × 1 + 3 × 3 + 1 × 1 convolution layer,

pre-activation is added before the convolution, and a

dropout  layer  is  added  after  the  3  × 3  convolution

layer.  The  pre-activation  is  composed  of  batch  nor-

malization (BN)[24] and rectified linear units. The pur-

pose  of  the  pre-activation is  to  optimize  the  identity

map, and the BN pre-activation improves the regular-

ization  of  our  model.  Dropout  and  BN  in  our  Res-

PDC  convolution  block  are  used  together.  Dropout

can effectively prevent overfitting in convolution net-
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works.  Also,  the  use  of  dropout  slows  down the  net-

work  training  speed;  therefore  BN  is  introduced  to

speed up the network. To avoid the degradation prob-

lem  that  often  affects  the  model  prediction  as  the

number  of  layers  increases,  residual  connections  are

introduced to form Res-PDC, as shown in Fig.1.

 3.3    Triple Attention Mechanism

To  extract  structural  information  between  vessel

contexts,  channel  and  spatial  attention  mechanisms

are  fully  utilized  to  learn  long-range  feature  depen-

dencies.  This  paper  proposes  a  TAM,  including  a

channel  and  a  spatial  attention  module  (CSAM)[25]

and  a  dual  convolution  block  attention  module

(DCBAM). The output of the feature by the encoder

is  an  input  to  the  decoder,  and  then  to  the  CSAM

module  to  generate  channel-spatial  attention  aware

representation features. The DCBAM is used to mul-

tiply  the  attention  map  with  the  input  feature  map
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Fig.1.  Architecture of our model. (a) PCRTAM-Net. (b) Res-PDC. (c) Res-ACSP. (d) TAM. (e) Dual-PDC.
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for  adaptive  feature  optimization.  Through  the  pro-

posed  TAM in  this  work,  important  blood  vessel  in-

formation  in  the  channel  and  space  domains  and  a

large amount of information generated by continuous

pooling and convolution operations of the feature map

can be fully extracted.

 3.3.1    Channel and Spatial Attention Module

The channel and spatial attention module is com-

posed  of  two  parallel  attention  modules.  The  spatial

attention  block  (SAB)  selectively  aggregates  the  fea-

tures  of  each  space  by  weighting  the  features  of  all

spatial locations, which enables the model to capture

long-term  feature  dependencies  that  are  related  to

each other regardless of the distance. Meanwhile, the

channel attention block (CAB) enhances the contrast

of the features in different channels by using the full

space  domain  for  representation  and  normalization,

which can lead to higher discriminative power.

F ∈ RC×H×W

Ey ∈ RC×H×W

Mx ∈ RC×H×W

1) Spatial  Attention  Block.  The  difference  be-

tween the spatial attention block module and the po-

sition attention module in DANet[17] is that the latter

operates  directly  on  the  original  features,  while  the

former  operates  on  the  new  transposed  features  and

then sums. There are one 3 × 1 convolution + BN +

Relu and one 1 × 3 convolution + BN + Relu, which

are  used  to  extract  the  edge  features  of  the  vessel

structure in the horizontal  and vertical  directions re-

spectively. The low-level information is fused by skip

connections,  and  the  lost  spatial  information  is  com-

pensated. Overall, the input features  go

through 3 × 1 and 1 × 3 convolution layers, to gener-

ate  two  new  feature  maps  and

, where C represents the input feature

dimension, H and W are the height and width of the

input  image,  respectively,  and Ey and Mx represent

the  features  of  the  extracted  vessel  structures  in  the

vertical  and  horizontal  directions,  respectively.  The

extracted new feature map is then reshaped, where N
is the number of features. Therefore, the features cap-

tured  at E and M can be  applied  to  transposed ma-

trix multiplication to obtain the spatial correlation of

features,  as  shown  in  (1).  Through  SAB,  the  global

context feature map is captured, and the context fea-

tures  can  be  aggregated  according  to  the  spatial  at-

tention  map  outputted  by  SAB,  which  improves  the

accuracy of the blood vessel segmentation process. 

S(x,y) =
exp(ET

y ×Mx)∑N
x′=1 exp(E

T
y ×Mx′)

. (1)

Fx ∈ RC×H×W

F T ∈ RC×H×W

2) Channel  Attention  Block.  The  channel  atten-

tion block is obtained by applying a softmax layer on

the  channel  similarity  map  between  the  input  fea-

tures F (named  as )  and  their  trans-

posed  features  (named  as ),  and  the

process is as shown in (2). T represents the transpose

operator  in  (2).  Performing  such  operations  on  each

pixel  can  enhance  the  contrast  between  class-related

features  and  help  improve  the  expressiveness  of  fea-

tures. 

C(x,y) =
exp(Fx × F T

y )∑N
x′=1 exp(Fx′ × F T

y )
. (2)

 3.3.2    Dual Convolution Block Attention Module

The  dual  convolution  block  attention  module

(DCBAM) is  a  simple  yet  effective  attention  module

for  feed  forward  convolution  neural  networks.  Given

an  intermediate  feature  map,  DCBAM  sequentially

infers the attention map along two independent chan-

nel dimensions and space dimensions and then multi-

plies  the  inferred  attention  map  with  the  input  fea-

ture  map  for  adaptive  feature  optimization.  Because

DCBAM is a lightweight general module, the compu-

tational cost of this module can be ignored and can be

embedded  behind  the  convolution  layers  of  the  de-

coder.  The  calculation  processes  of  both  the  channel

and the spatial  attention is  shown in (3) and (4) re-

spectively. 

Mc(F ) = σ(MLP (AvgPool(F )) +MLP (MaxPool(F ))),
(3)

 

Ms(F ) = σ(f 7×7((AvgPool(F );MaxPool(F )))), (4)

σ

f7×7

where  is  the sigmoid operation, MLP is  the multi-

layer perceptron, AvgPool is the global average pool-

ing, MaxPool is the maximum pooling, and  rep-

resents a convolution kernel of size 7 × 7.

 3.4    Multiscale Vessel Feature Extraction

Atrous  convolution  helps  to  extract  the  multi-

scale features of the image. The process of atrous con-

volution operations is shown in (5). 

y(i) =
∑

k
x(i+ r × k)× w(k), (5)

where x is  the  input  feature, w is  the  filter, y is  the

output feature, and r denotes the dilation rate.

Some  recent  studies  have  shown  that  residual

atrous  spatial  pyramid  pooling[26] combines  residual

connections[23] with atrous convolution, to improve in-
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formation flow and extract  multiscale  features.  How-

ever,  a  residual  atrous  spatial  pyramid  pooling

method uses the structures of 1 × 1 convolution, 3 ×
3 convolution + BN + Relu, and 1 × 1 convolution.

The  increase  in  the  number  of  network  layers  slows

the training process of the network. To expedite net-

work  training  and  optimize  vascular  information  ex-

traction,  BN + Relu is  incorporated after  every con-

volution  operation.  Res-ACSP  is  composed  of  four

branches,  each consisting of a residual module aimed

at enhancing the information flow and a convolution

module  responsible  for  extracting  vessel  features  us-

ing atrous convolutions. The convolution module con-

sists of three convolution operations. The primary ob-

jective  of  the  first  convolution  operation  in  each

branch  is  to  reduce  the  feature  dimension  and  de-

crease  computational  complexity.  The  second  convo-

lution operation utilizes dilated convolutions with dif-

ferent dilation rates to capture multi-scale features of

thick  and  thin  blood  vessels.  The  third  convolution

operation  is  employed  to  restore  the  feature  dimen-

sion.  Finally,  the  outputs  of  the  four  branches  are

concatenated  to  obtain  enriched  vessel  features.  The

main  processes  of  multiscale  feature  extraction  are

shown in (6)–(10). Relu[21] is the rectified linear unit,

which enables  a  network to  efficiently  acquire  sparse

representations. BN[24] refers to Batch Normalization,

which  is  a  linear  transformation  layer  inserted  be-

tween the convolutional layer and the activation func-

tion layer. Conv represents a convolutional operation. 

C1 = Relu(BN(Conv
(n
2

)
(x))), (6)

 

C2 = Relu(BN(Conv
(n
2
, Di

)
(C1))), (7)

 

C3 = Relu(BN(Conv(n)(C2))), (8)
 

yj = C3 + x, (9)
 

y = Relu(BN (Conv(n)(cat(y1,y2,y3,y4)))), (10)

where x represents  the  input  feature, cat represents

the  feature  concatenation, Di represents  the  dilation

rate, and i ∈{2, 4, 8, 12}. C1, C2, and C3 correspond

to  the  convolution  process  in  each  branch, yj repre-

sents the output feature of each branch, and j ∈{1, 2,

3,  4},  and y represents  the  total  output  feature  of

Res-ACSP.

 3.5    Loss Function

In  this  work,  we  use  the  binary  cross-entropy

(BCE)  loss  as  the  objective  function  for  network

training to directly evaluate the distance between ex-

pert  annotations  and  the  predictions.  The  BCE  loss

function is mathematically expressed in (11). 

Loss(BCE) =− 1

N

∑N

i=1
gi × log(pi)+

(1− gi)× log(1− pi), (11)

where g is the ground truth, p is the model prediction,

N is  the  total  number  of  samples,  and i is  the i-th
sample.

 4    Experiment and Analysis

 4.1    Datasets

Experiments are conducted on four publicly avail-

able  datasets,  namely  DRIVE[7],  STARE[4],

CHASE_DB1[27],  and HRF[28],  as  detailed in Table 1.

The  DRIVE,  CHASE_DB1,  and  STARE  datasets

contain  annotations  from  two  experts,  with  the  first

expert's annotations typically used. The HRF dataset,

on  the  other  hand,  only  includes  annotations  from a

single expert. The DRIVE and CHASE_DB1 datasets

consist of 40 and 28 images, respectively, with 20 im-

ages  used  for  training  and  the  rest  for  testing.  The

STARE  dataset  includes  20  images,  and  the  leave-

one-out method is employed to split the dataset. The

HRF dataset is divided into three categories, healthy,

diabetic  retinopathy,  and  glaucoma,  each  containing

15  images.  The  first  10  images  of  each  category  are

used for training, while the rest were used for testing.

 
 

Table  1.   Descriptions of Datasets

Dataset Quantity Training-Testing
Split

Resolution

DRIVE[7] 40 20/20 565 × 584

CHASE_DB1[27] 28 20/8 999 × 960

STARE[4] 20 Leave one out 700 × 605

HRF[28] 45 30/15 3 504 × 2 336

 4.2    Data Preprocessing

Due  to  data  insufficiency,  it  is  necessary  to  in-

crease the number of samples to prevent over-fitting.

Furthermore,  the  datasets  consist  of  different  image

sizes, and we set the patch sizes of DRIVE 512 × 512,

CHASE_DB1 960 × 960, and STARE 592 × 592.

Each image is rotated at an interval of 10 degrees

and  then  mirrored.  Also,  each  image  is  moved  ran-

domly  between  20  pixels  and 50  pixels  towards  each

of  the  four  corners.  Finally,  four  corners  of  each  im-
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age are clipped. We also enhance the contrast, bright-

ness,  chroma,  and  saturation  of  the  image  to  reduce

the interference of external noise factors. Through the

above data enhancement method, the data capacity is

increased,  the  network  generalization  ability  is  en-

hanced,  and  the  over-fitting  problem  is  prevented.

The enhanced image is shown in Fig.2.
 

 
Fig.2.  Grayscale image after data augmentation.

 4.3    Evaluation Metrics

We  use  the  accuracy  (ACC),  sensitivity  (SE),

specificity  (SP), F1-score  (F1)  and  area  under  curve

(AUC) to evaluate the proposed PCRTAM-Net. 

ACC =
TP + TN

TP + FP + TN + FN
,

 

SE =
TP

TP + FN
,

 

SP =
TN

TN + FP
,

 

F1 =
2× TP

2× TP + FN + FP
,

where TP, FN, TN,  and FP represent  true  positive,

false  negative,  true  negative,  and  false  positive,  re-

spectively.

The  AUC  measures  the  segmentation  perfor-

mance based on recall and precision. For the calcula-

tion  of  metrics,  the  area  of  interest  is  the  whole  im-

age  including  the  fundus  area  and  the  black  back-

ground.

 4.4    Experimental Setup

The  implementation  of  our  proposed  PCRTAM-

Net is based on the PyTorch platform and trained on

NVIDIA  RTX3090  GPU.  We  use  the  Adam  algo-

rithm  with  an  initial  learning  rate  of 0.000 1 as  the

optimization method, and the learning rate decays to

0 after 600 epochs. In the experiments, the batch size

is set to 4.

 4.5    Ablation Studies

To demonstrate  the  effectiveness  of  our  proposed

PCRTAM-Net, ablation experiments are performed to

verify the effectiveness of each component. The visu-

al results and statistical comparison of different com-

ponents are shown in Fig.3 and Table 2. The order is

the  same  with  that  in Table 2.  As  described  in Sec-

tion 3,  TAM  consists  of  three  components:  one

CSAM[25] and two CBAMs[29]. We further experiment

and  verify  the  effectiveness  of  the  attention  mecha-

nism  in  the  feature  extraction  process.  In  this  abla-

tion  experiment,  we  adopt  a  U-shaped  network  con-

sisting of encoders and feature decoders of five residu-

al blocks as the backbone of our proposed network.

 4.5.1    Ablation Study of Res-PDC Module

We replace the traditional convolution block with

the  Res-PDC  module  (referred  to  as  “ backbone  +

Res-PDC”) and apply “backbone + Res-PDC” to the

DRIVE dataset.  As shown in Fig.3,  three samples of

blood  vessel  segmentation  results  indicate  that  our

Res-PDC  module  can  effectively  segment  various

blood  vessels  and  improve  the  performance  of  the

backbone  network.  As  shown  in Table 2,  compared

with “backbone” ,  “backbone + Res-PDC”  improves

ACC,  SE, F1,  and  AUC  from  96.81%,  78.73%,

81.17%, and 98.31% to 97.00%, 77.67%, 81.85%, and

98.65%, respectively. This indicates the importance of

the Res-PDC convolution block as a key factor in im-

proving  the  accuracy  of  the  vessel  segmentation  net-

work.

 4.5.2    Ablation Study of TAM Module

We  investigate  the  effectiveness  of  TAM.  As

shown in Table 2, compared with “backbone”, “back-

bone + TAM”  improves ACC, SE, F1,  and AUC to

96.99%, 78.32%, 81.90%, and 98.55% respectively, in-

dicating that the triple attention mechanism is effec-

tive.  Compared  with  “backbone+TAM” ,  “backbone

+CSAM” has lower ACC, SE, and F1, indicating that

the channel  and spatial  attention in  the  decoder  can

effectively  extract  features.  Our  experimental  results

demonstrate  the  importance  of  CBAM  in  the  pro-

posed TAM module.

 4.5.3    Ablation Study of Res-ACSP Module

To  extract  multiscale  vessel  information  and  im-
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prove information flow, the Res-ACSP module is also

added  to  our  network.  As  shown  in Fig.3,  it  can  be

observed  that  our  model  obtains  finer  segmentation

results  due  to  the  Res-ACSP  module.  As  shown  in

Table 2,  when  Res-ACSP  is  added  to  backbone,  the

F1 value of  the model  increases  by 0.85%. From the

visualization results and statistical analysis of the ab-

lation experiment, it can be seen that the three mod-

ules proposed by us, Res-PDC, TAM and Res-ACSP,

can  better  segment  the  microvessels.  In  addition,  we

combine the ROC curve to further evaluate the abili-

ty  of  each  component  to  improve  the  network,  as

shown in Fig.4.

 4.6    Performance  Comparison  with  Other

Methods

We  compare  our  method  with  several  recently

published  state-of-the-art  methods.  The  overview  of

the  state-of-the-art  methods  and  their  corresponding

performance  metrics  on  DRIVE,  CHASE_DB1,  and

STARE datasets is shown in Table 3.

 4.7    Performance Comparison of Four U-Net

Variants

Under  the  same  experimental  parameters  and

training  methods,  we  run  the  publicly  provided  net-

work  codes  of  U-Net,  CE-Net,  DUNet[14],  and  PCR-

TAM-Net on the DRIVE and CHASE_DB1 datasets.

We  compare  the  four  models  on  the  ACC,  SE, F1,

and AUC metrics, and the results are shown in Table

4 and Table 5.  More  importantly,  we  evaluate  the

model  using the  ROC curve,  as  shown in Fig.5.  The

closer  the  ROC curve  is  to  the  upper  left  boundary,

the more accurate the model is.

Table  2.   Performance Comparison of Ablation Studies on DRIVE[7]

Method ACC SE SP F1 AUC

Backbone 0.968 1 0.787 3 0.985 8 0.811 7 0.983 1

Backbone + Res-PDC 0.970 0 0.776 7 0.988 8 0.818 5 0.986 5

Backbone + Res-ACSP 0.969 2 0.806 5 0.985 0 0.820 2 0.984 2

Backbone + CSAM[25] 0.969 3 0.786 0 0.987 0 0.816 6 0.984 7

Backbone + Single CBAM[29] 0.968 2 0.779 5 0.986 5 0.810 3 0.983 0

Backbone + Double CBAM[29] 0.968 7 0.770 6 0.987 9 0.810 7 0.981 7

Backbone + CSAM[25] + Single CBAM[29] 0.969 4 0.779 9 0.987 8 0.810 7 0.983 0

Backbone + TAM 0.969 9 0.783 2 0.988 0 0.819 0 0.985 5

Backbone + Res-PDC + Res-ACSP 0.970 6 0.803 0 0.986 9 0.826 1 0.986 9

Backbone + Res-PDC + TAM 0.970 6 0.811 8 0.986 0 0.827 7 0.988 1

Backbone + Res-ACSP + TAM 0.970 3 0.784 5 0.988 3 0.821 5 0.987 2

Backbone + Res-PDC+ Res-ACSP + TAM 0.971 0 0.815 8 0.986 1 0.830 5 0.988 0

(b)(a) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) 

Fig.3.  Visualized segmentation results for ablation experiments on DRIVE[7]. (a) Original image. (b) Magnified image. (c) Ground truth.
(d) Backbone. (e) Backbone + Res-PDC. (f) Backbone + Res-ACSP. (g) Backbone + CSAM. (h) Backbone + Single CBAM. (i) Back-
bone + Double CBAM. (j) Backbone + CSAM + Single CBAM. (k) Backbone + TAM. (l) Backbone + Res-PDC + Res-ACSP.
(m) Backbone + Res-PDC + TAM. (n) Backbone + Res-ACSP + TAM. (o) PCRTAM-Net.
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These  results  show  that  among  the  four  models,

the PCRTAM-Net curve is  the most complete,  while

the U-Net curve is the lowest. In addition, the results

in Table 4 and Table 5 also show that PCRTAM-Net

obtains the largest area under the ROC curve (AUC).

To  further  observe  the  segmentation  results  of  these

four models, the probability maps of the blood vessel

segmentation in fundus images are shown in Fig.6 and

Fig.7,  where  PCRTAM-Net  produces  better  vessel

segmentation  results.  The  microvessels  and  occluded

vessels lost in the U-Net, CE-Net, and DUNet are de-

tected.

Fig.8 shows a locally enlarged view of the same lo-

cation of  the visual  segmentation results  for the four

models, from which multiple micorvessels can be seen

connected to each other in an intricate manner.  Due

to  the  complex  nature  of  the  blood  vessels,  U-Net,

CE-Net,  and  DUNet  can  only  extract  rough  blood

vessel  information  due  to  the  limitations  of  the  net-

works. For the tiny blood vessels, U-Net, CE-Net, and

DUNet show limitations in processing details. Howev-

er,  PCRTAM-Net  achieves  satisfactory  segmentation

results at these tiny vessels. The experimental results

show that among the four models, PCRTAM-Net seg-

ments  better  the  vessel  tree  structure  which  is  diffi-

cult  for  the  other  segmentation  algorithms  to  accu-

rately segment the complex structure.

 4.8    Performance of Our Method on

High-Resolution Datasets

To  validate  the  performance  of  our  method  on

High-Resolution  Fundus  (HRF)  images,  we  crop  the

HRF[28] dataset into patches of size 960 × 960. Table

6 summarizes the comparison results of the proposed

method and the methods on HRF. For the division of

training and testing images, we take the same view as

Soomro et al.[37]. As shown in Table 6, the overall per-

Table  3.   Performance Comparison on Three Datasets

Method
DRIVE[7] CHASE_DB1[27] STARE[4]

ACC SE F1 AUC ACC SE F1 AUC ACC SE F1 AUC

FR-CRF[8] - 0.789 7 0.785 7 - - 0.727 7 0.733 2 - - 0.768 0 0.764 4 -

HAnet[12] 0.958 1 0.799 1 0.829 3 0.982 3 0.967 0 0.823 9 0.819 1 0.987 1 0.967 3 0.818 6 0.837 9 0.988 7

CIEU-Net[13] 0.967 1 0.793 3 0.822 7 0.977 8 0.975 1 0.798 8 0.807 3 0.968 8 0.971 4 0.827 3 - 0.823 0

DUNet[14] 0.956 6 0.796 3 - 0.980 2 - - - - 0.964 1 0.759 5 - 0.983 2

DDNet[15] 0.960 7 0.813 2 - - - - - - 0.969 8 0.839 8 - -

MD-Net[26] 0.967 6 0.806 5 - - 0.973 1 0.750 4 - - 0.973 2 0.829 0 - -

SCS-Net[20] 0.969 7 0.828 9 - 0.983 7 0.974 4 0.836 5 - 0.986 7 0.973 6 0.820 7 - 0.987 7

SID2Net[30] 0.952 0 - 0.816 3 0.975 4 - - - - 0.962 0 - 0.823 3 0.982 4

NFN+[31] 0.958 2 0.799 6 - 0.983 0 - - - - 0.967 2 0.796 3 - 0.987 5

Khan et al.[32] 0.961 0 0.812 5 - - 0.957 8 0.801 2 - - 0.958 6 0.807 8 - -

Li et al.[33] 0.952 7 0.756 9 - 0.973 8 0.958 1 0.750 7 - 0.971 6 0.962 8 0.772 6 - 0.987 9

Wu et al.[34] 0.956 7 0.784 4 - 0.980 7 0.963 7 0.753 8 - 0.982 5 - - - -

MPC-EM[35] 0.957 4 0.808 3 - 0.982 2 0.965 4 0.813 8 - 0.985 0 0.969 5 0.816 2 - 0.989 8

CRAUNet[36] 0.958 6 0.795 4 0.830 2 0.983 0 0.965 9 0.825 9 0.815 6 0.986 4 - - - -

PCRTAM-Net 0.971 0 0.815 8 0.830 5 0.988 0 0.977 0 0.847 3 0.822 6 0.991 4 0.976 8 0.857 1 0.846 4 0.990 5
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Fig.4.   Comparison of  ROC curve for  ablation experiments  on
DRIVE.
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formance of  our method is  higher than that of  exist-

ing  methods.  Through  the  experimental  results,  we

observe  that  our  method  achieves  the  best  perfor-

mance on the HRF dataset,  and thus PCRTAM-Net

is  suitable  for  the  segmentation  of  blood  vessels  in

high-resolution  fundus  images. Fig.9 shows  the  seg-

mentation results on the HRF dataset.

 4.9    Generalization  Ability  Verification

Based on Cross-Training Evaluation

To further investigate the generalization ability of

the proposed model, we perform a cross-training pro-

cess on the STARE and DRIVE datasets. We use the

cross-training  process,  which  refers  to  the  evaluation

Table  4.   Comparison of Performance on DRIVE[7]

Method ACC SE F1 AUC

U-Net 0.966 5 0.769 8 0.799 9 0.980 6

CE-Net 0.967 9 0.784 0 0.809 8 0.982 5

DUNet 0.968 1 0.784 1 0.810 7 0.981 6

PCRTAM-Net 0.971 0 0.815 8 0.830 5 0.988 0

Table  5.   Comparison of Performance on CHASE_DB1[27]

Method ACC SE F1 AUC

U-Net 0.971 5 0.735 7 0.764 4 0.981 1

CE-Net 0.973 8 0.722 6 0.776 2 0.987 2

DUNet 0.975 2 0.826 4 0.807 3 0.989 8

PCRTAM-Net 0.977 0 0.847 3 0.822 6 0.991 4

(b)(a) (c) (d) (e) 

Fig.6.   Comparison  of  probability  maps  on  DRIVE.  (a)  Origi-
nal  image.  (b)  U-Net.  (c)  CE-Net.  (d)  DUNet.  (e)  PCRTAM-
Net.
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Fig.5.  ROC curves of different models. (a) DRIVE dataset. (b) CHASE_DB1 dataset.

(b)(a) (c) (d) (e) 

Fig.7.   Comparison  of  probability  maps  on  CHASE_DB1.  (a)
Original  image.  (b)  U-Net.  (c)  CE-Net.  (d)  DUNet.  (e)  PCR-
TAM-Net.
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method  of  testing  pre-trained  models  on  unseen
datasets.  Without  fine-tuning,  we  apply  the  PCR-
TAM-Net  trained  on  one  dataset  to  the  other
datasets  and  evaluated  it.  To  facilitate  the  training
and testing operation, the original images are cropped
to a dimension of 512 × 512 pixels. Table 7 and Ta-
ble 8 present  the  performance  of  several  existing
methods  and our  PCRTAM-Net.  Our PCRTAM-Net
achieves better ACC, SE, F1, and AUC metrics com-
pared  with  other  models  on  the  testing  DRIVE
dataset.  Since  our  model  is  trained  on  the  STARE
dataset,  there  are  more  thick  blood  vessels  in  the
STARE  dataset,  while  there  were  more  microvessels
in  the  DRIVE  dataset,  which  lead  to  the  phe-
nomenon  of  blood  vessel  rupture  when  our  model  is
tested  on  the  DRIVE  dataset. Our  PCRTAM-Net
achieves better ACC, F1, and AUC metrics and also
reaches suboptimal performance in the testing on the
dataset.  Since  the  DRIVE  dataset  mainly  contains
microvessels  and  the  STARE  is  relatively  complex,
the  test  performance  is  slightly  lower.  Our  proposed
PCRTAM-Net  has  a  good  generalization  ability  for
blood  vessel  segmentation  in  fundus  images. Fig.10
shows  the  segmentation  results  on  the  DRIVE  and
STARE datasets.

 4.10    Computation Complexity

In  order  to  make  a  fair  comparison  and  exclude

the  influence  of  different  platforms,  we  compare  the

number of model parameters, as shown in Table 9.

Table   6.   Performance  Comparison  with  Other  Methods  on
HRF[28]

Method ACC SE F1 AUC

FR-CRF[8] - 0.787 4 0.715 8 -

HAnet[12] 0.965 4 0.780 3 0.807 4 0.983 7

DUNet[14] 0.965 1 0.746 4 - 0.983 1

SCS-Net[20] 0.968 7 0.811 4 - 0.984 2

MPC-EM[35] 0.963 1 0.778 2 - 0.984 3

PCRTAM-Net 0.971 4 0.798 1 0.811 6 0.987 1
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Fig.8.   Comparison  of  visualization  results  on  DRIVE  and
CHASE_DB1. (a) Original image. (b) Ground truth. (c) U-Net.
(d) CE-Net. (e) DUNet. (f) PCRTAM-Net
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Fig.9.  Probability maps of three types of retinal images on HRF. (a) Image. (b) Ground truth. (c) Probability map. (d) 0/1 map.
(e) Difference map.
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We select U-Net, CE-Net, and DUNet for compar-

ison.  As  it  can be  seen from Table 9,  PCRTAM-Net

has  16.42×106 parameters,  and  is  12.58×106 fewer

than  CE-Net.  PCRTAM-Net  has  the  highest  perfor-

mance  scores  in  ACC,  SE, F1,  and  AUC  compared

with other existing methods.

 4.11    Limitations

When  the  contrast  between  blood  vessels  and

background is extremely low, our model finds it diffi-

cult to segment blood vessels fully. In addition, for ar-

eas that are too noisy, our method may produce some

false  positives.  In  future  work,  we  will  focus  on  fur-

ther studying and enhancing the model to achieve ac-

curate  identification  of  microvessels,  particularly  in

challenging scenarios with low contrast between blood

vessels and the background, as well as severe noise in-

terference.

 5    Conclusions

This paper proposed a novel retinal vessel segmen-

tation network termed PCRTAM-Net, which address-

es the low performance of retinal vessel segmentation.

PCRTAM-Net consists of three main parts, Res-PDC,

Res-ACSP,  and  TAM.  The  Res-PDC  method  ex-

tracts more feature information by replacing the tra-

ditional convolution method. At the both ends of the

encoder,  the  Res-ACSP  method  is  used  to  extract

multiscale information and improve information flow.

In the decoder, the features are adaptively optimized

by effectively utilizing the channel and spatial atten-

tion through TAM. Our proposed method achieved an

improvement  in  the  ACC  index  of  0.13%,  0.19%,

0.32%,  and  0.27%  on  the  DRIVE,  CHASE_DB1,

STARE,  and  HRF  datasets  respectively,  compared

with the  optimal  method[20].  The proposed model  re-

quires further research in terms of its performance in

microvessel segmentation and model lightweight.
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