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Abstract    To overcome the  limitations  of  long latency and privacy concerns  from cloud computing,  edge  computing

along with distributed machine  learning such as  federated learning (FL),  has  gained much attention and popularity  in

academia and industry. Most existing work on FL over the edge mainly focuses on optimizing the training of one shared

global model in edge systems. However, with the increasing applications of FL in edge systems, there could be multiple FL

models from different applications concurrently being trained in the shared edge cloud. Such concurrent training of these

FL models can lead to edge resource competition (for both computing and network resources), and further affect the FL

training performance of each other. Therefore, in this paper, considering a multi-model FL scenario, we formulate a joint

participant selection and learning optimization problem in a shared edge cloud. This joint optimization aims to determine

FL participants and the learning schedule for each FL model such that the total training cost of all FL models in the edge

cloud  is  minimized.  We  propose  a  multi-stage  optimization  framework  by  decoupling  the  original  problem into  two  or

three  subproblems  that  can  be  solved  respectively  and  iteratively.  Extensive  evaluation  has  been  conducted  with  real-

world FL datasets and models. The results have shown that our proposed algorithms can reduce the total cost efficiently

compared with prior algorithms.
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1    Introduction

Nowadays, a massive amount of data is generated

by mobile users, Internet of Things (IoT) devices and

artificial  intelligence  applications,  providing  potential

training  datasets  for  diverse  machine  learning  (ML)

tasks.  Traditionally,  one  needs  to  upload  the  whole

dataset to the remote cloud center for centralized ma-

chine learning model training. However, it is non-triv-

ial  to  upload  a  large  amount  of  data  to  the  remote

data  center  due  to  the  limited  network  bandwidth

and data privacy concerns. Since training data is gen-

erated at the network edge, such as from smart sens-

ing  devices  and  smartphones  connected  to  the  edge,

edge  computing  coupled  with  distributed  machine

learning  is  a  natural  alternative.  Nevertheless,  train-

ing  ML  models  in  the  edge  cloud  still  faces  many

challenges.  First,  due  to  limited data  and computing

resources, a single edge device/server may not be able

to perform a high-quality ML training task alone. Sec-

ond, the computing capacity and network resources of

edge  devices/servers  are  limited  and  heterogeneous.

When  performing  ML  training  tasks,  different  edge

units may lead to various convergence speeds and per-

formances. Third, edge resources generally are shared

by many mobile users. Distributed ML training with-

in the edge cloud has to be constrained by the shared

resources  and  the  resource  competition  among  vari-
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ous users, servers, and applications.

To  tackle  the  aforementioned  challenges,  a  new

distributed machine learning paradigm has been pro-

posed,  called  federated  learning  (FL)[1–3] that  con-

ducts distributed learning at multiple clients without

sharing  raw  local  data  among  themselves.  Coupled

with edge computing, FL over edge cloud has been re-

cently studied in various settings[4–14]. In such scenar-

ios, several edge servers have been selected as partici-

pants  (either  parameter  servers  or  FL  workers),  and

collaboratively train a shared global ML model with-

out  sharing  their  local  datasets  and  decoupling  the

ability  to  do  model  training  from  the  need  to  store

data in a centralized server. More precisely, as shown

in Fig.1, in each global iteration, edge servers, worked

as  workers,  first  download  the  latest  global  model

from the  parameter  server  (PS),  and then perform a

fixed  number  of  rounds  of  local  training  based  on

their  local  data.  After  that,  edge  servers  will  upload

their local models to the parameter server which is re-

sponsible  for  aggregating  parameters  from  different

workers  and  sending  the  aggregated  global  model

back to each FL worker. Previously, the efforts of FL

over  the  edge  have  been  focused  on  the  convergence

and  adaptive  control[5, 6],  the  resource  allocation  and

model aggregation[8, 10, 11], and the communication and

energy efficiency[1, 16, 17].

In this work, we focus on a joint participant selec-

tion and learning optimization problem in multi-mod-

el FL over a shared edge cloud①. For each FL model,

we aim to find one PS and multiple FL workers and

decide  the  local  convergence  rate  for  FL  workers.

Note  that  both  worker  selection  and  learning  rate

control  have been studied in FL recently.  For  exam-

ple,  Nishio et  al.[7] studied a  client  selection problem

in  decentralized  edge  learning  where  a  set  of  mobile

clients are chosen to act as workers for FL and their

aim  is  to  maximize  the  selected  clients  under  time

constraints.  Jin et  al.[9] also studied the joint control

of  local  learning rate and edge provisioning in FL to

minimize the long-term cumulative cost. However, all

of these studies focus on the optimization of training

one  global  FL  model  instead  of  multiple  FL  models,

thus they do not consider the parameter server selec-

tion for  different FL models  and ignore the competi-

tion  of  resources  among  different  FL  models.  In  the

real  scenario,  there  might  be  multiple  FL  models

training  simultaneously  in  the  edge  cloud  (Fig.1

shows  an  example  where  two  FL  models  are  trained

with three and four participants,  respectively).  Espe-

cially  in  the  edge  computing  environment,  edge

servers can store different types of data and serve dif-

ferent  FL  models  or  tasks  for  diverse  applications.

With  heterogeneous  resources  and  capacities  at  edge

devices,  when multiple  FL models  are  trained at  the

same time, which FL model is preferentially served at
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Fig.1.  Example of multi-model FL over the edge: two FL models are trained with three and four participants (1 PS + 2 or 3 FL
workers), respectively, in a shared edge cloud[15].
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①As shown in Fig.1, we consider an edge cloud architecture where a set of edge servers are connected to each other without the
remote cloud center to form an edge network to serve the users. This kind of edge cloud model has been widely used in [18–22].



which edge server directly affects the total communi-

cation cost and computational cost of the FL training.

The  selection  of  participants  (both  the  PS  and  FL

workers)  for  each  model  will  also  affect  the  learning

convergence  speed.  Therefore,  in  this  paper,  we  for-

mulate  a  new  joint  optimization  problem  of  partici-

pant  selection  and  learning  rate  scheduling  of  multi-

model FL, where multiple FL models are trained con-

currently in an edge cloud.

Due  to  the  limitation  of  shared  computing  and

networking  resources  at  edge  servers  in  the  edge

cloud,  we aim to carefully  select  the  FL participants

for  each  FL  model  and  pick  the  appropriate  local

learning  rate  for  these  selected  FL  workers,  so  as  to

minimize  the  total  cost  of  FL  training  of  all  models

while meeting the convergence requirement from each

model. The main contributions of this work are sum-

marized as follows.

1) We formulate a new joint participant selection

and  learning  rate  scheduling  problem of  multi-model

federated  learning  in  an  edge  cloud  as  a  mixed-inte-

ger  programming  problem,  with  a  goal  to  minimize

the total FL cost while satisfying various constraints.

Note  that  by  allowing  different  FL  models  to  pick

their  own  PS,  it  can  better  handle  the  competition

among models and provide load balancing in the edge

cloud compared with the traditional FL solution with

a centralized PS for all models.

2) We decouple the original optimization problem

into  two  or  three  sub-problems  and  then  propose

three  algorithms  to  effectively  find  participants  and

the  learning  rate  for  each  FL  model,  by  iteratively

solving the sub-problems. We further consider the im-

pact  of  the  processing  order  of  FL  models  in  a  re-

source-limited and heterogeneous edge scenario.

3) We conduct extensive simulations with real FL

tasks to evaluate our proposed algorithms, and our re-

sults  confirm the  proposed  algorithms  can  effectively

reduce  the  total  FL cost  compared  with  the  existing

work[9, 23, 24].

The rest of the paper is organized as follows. Sec-

tion 2 presents  the  overview of  related work. Section

3 introduces  the  system model  and  the  preliminaries

of  federated  edge  learning. Section 4 describes  the

problem  formulation  of  new  joint  optimization,  and

Section 5 provides our proposed multi-stage optimiza-

tion  algorithms.  Evaluation  of  our  proposed  algo-

rithms is provided in Section 6. Section 7 finally con-

cludes this paper. A preliminary version of this paper

appears as [15], and this version includes newly intro-

duced greedy-based variation using a  different  model

processing order, time complexity analysis, additional

sets of experiment results,  more comprehensive relat-

ed work, and better overall presentation. 

2    Related Work

In this section, we briefly review recent studies on

federated  learning  over  edge  systems[4].  Federated

learning[5–14] has  been  emerging  as  a  new  distributed

ML paradigm over different edge systems. Current FL

frameworks can be categorized into three types based

on the learning topology used for model  aggregation:

centralized FL (CFL), hierarchical FL (HFL), and de-

centralized  FL  (DFL).  CFL  is  the  classical  FL[9]

where the parameter server (PS) and several workers

form a star architecture as shown in Fig.1[15]. Wang et
al.[6] analyzed  the  convergence  of  CFL  in  a  con-

strained edge computing system and proposed a con-

trol  algorithm that  determines  the  best  trade-off  be-

tween local update and global parameter aggregation

to  minimize  the  loss  function.  This  work  focused  on

the  convergence  and  adaptive  control  of  FL  and  did

not consider participant selection.

Nishio  and  Yonetani[7] studied  a  client  selection

problem  in  CFL  in  mobile  edge  computing.  Their

method uses an edge server in the cellular network as

the PS and selects a set of mobile clients as workers.

Their  client  selection  aims  to  maximize  the  selected

workers  while  meeting  the  time  constraints.  Jin et
al.[9] considered  a  joint  control  of  FL  and  the  edge

provisioning  problem  in  distributed  cloud-edge  net-

works  where  the  cloud  server  is  the  PS  and  active

edge  servers  are  workers.  Their  method  controls  the

status  of  edge  servers  for  training  to  minimize  the

long-term cumulative cost of FL and also satisfies the

convergence of the trained model. Li et al.[25] also con-

sidered client scheduling in FL to overcome client un-

certainties or stragglers via learning-based task repli-

cation.  While  these  studies  are  similar  to  ours,  they

focus on the optimization of one global FL model in-

stead of multiple FL models. More importantly, these

studies  do  not  consider  PS  selection  for  multiple  FL

models.

Recently,  Nguyen et  al.[14] studied  resource  shar-

ing among multiple FL services/models in edge com-

puting  where  the  user  equipment  is  used  as  an  FL

worker, and proposed a solution to optimally manage

the  resource  allocation  and  learning  parameter  con-

trol while ensuring energy consumption requirements.
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However,  their  FL  framework  is  different  from  ours.

First,  they  used  the  user  equipment  as  FL  workers,

while we use edge servers as FL workers. Second, they

did  not  consider  the  PS  selection,  since  they  used  a

single  edge  server  as  the  PS.  Third,  their  model  al-

lows  training  multiple  FL  models  at  the  same  user

equipment (while we do not allow the edge server to

act  as  workers  for  multiple  models  in  the  same time

unit), and thus their method has to manage the CPU

and bandwidth allocation on the user equipment.

Both [5] and [8] consider a client-edge-cloud hier-

archical  federated  learning  (HFL)  where  cloud  and

edge servers work as two-tier parameter servers to ag-

gregate  the  partial  models  from  mobile  clients  (i.e.,

FL  workers).  Liu et  al.[5] proved  the  convergence  of

such  an  HFL,  while  Luo et  al.[8] also  studied  a  joint

resource  allocation  and  edge  association  problem  for

device users under such an HFL framework to achieve

global  cost  minimization.  Wang et  al.[11] considered

the  cluster  structure  formation  in  HFL  where  edge

servers are clustered for model aggregation. Recently,

Wei et al.[12] also studied the participant selection for

HFL in edge clouds to minimize the learning cost. Liu

et al.[13] studied the group formation and sampling in

a group-based HFL. However, our FL framework does

not use HFL.

Meng et  al.[10] focused  on  model  training  of  DFL

using decentralized P2P methods in edge computing.

While  their  method  also  selects  FL  workers  from an

edge network,  the model  aggregation is  performed at

edge  devices  based  on  a  dynamically  formatted  P2P

topology (without PS). Therefore, it is different from

our studied problem, which mainly focuses on CFL.

There are also other studies[16, 17, 26] where energy

efficiency  and/or  wireless  communication  have/has

been taken into consideration in FL in edge systems. 

3    Federated Learning over Edge Cloud

In  this  section,  we  introduce  our  model  of  edge

cloud, and then describe the procedures and associat-

ed costs of federated learning over the edge cloud. 

3.1    Edge Cloud Model

G(V,E)

N L

V = {v1, . . . , vN}
E = {e1, . . . , eL}

vi ∈ V

We model the edge cloud as a graph , con-

sisting  of  edge  servers  and  direct  links  among

them,  as  shown  in Fig.2.  Here  and

 are the set of edge servers and the set

of  links,  respectively.  For  each  edge  server ,  it
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Fig.2.  Training process of an FL model within the edge network at different time periods. (a) At each time period, this FL model
needs to select one PS and four workers, and they perform the FL via multiple iterations of local and global updates. (b) Due to the
dynamic edge cloud environment, the model can change its participants (both PS and workers) at the next time period  to mini-
mize the total training cost of all models.
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cti f t
i

t ej ∈ E

btj t t

has a storage capacity  and a CPU frequency  at

time .  For  each  edge  link ,  it  has  a  network

bandwidth  at  time .  We  omit  from  the  above

notations when it is clear from the context.

O

zi,k ∈ {0, 1}
vi k

Si,k

k vi

Each  edge  server  holds  a  certain  distinct  dataset

collected  from  mobile  devices/users  and  can  be  used

for  local  model  training.  We  consider  types  of

datasets in the edge cloud, and use  to in-

dicate  whether  server  stores  the -th  type  of

datasets and  to represent the raw sample data of

the -th type stored at server . Note that one edge

server can hold multiple types of datasets. 

3.2    Federated Learning over Edge

W M = {m1, . . . ,mW}

mj κj + 1

κj

χj

We  consider  parallel  federated  learning  where

multiple machine learning models are trained in paral-

lel  within  the  edge  cloud.  Compared  with  the  classi-

cal FL scenario where the remote cloud works as the

parameter  server  (PS),  we  select  a  group  of  edge

servers with enough capacity as the participants (one

PS and multiple  workers)  of  FL for  each model.  We

assume that  FL models  ( )  need

to be trained at the same time. For the training task

of  each  FL  model ,  it  requests  1)  edge

servers  as  participants,  one  server  as  its  PS  and 

servers  as  its  workers,  whose  CPU  frequency  should

be  larger  than  its  required  minimal  CPU  frequency

;  2)  the  selected  workers  must  have  the  requested

mj wj,k ∈ {0, 1}
mj k

ςj

types  of  a  dataset  for ,  where  indi-

cates whether  needs the -th type of datasets; and

3)  the  achieved  global  convergence  rate  needs  to  be

larger than . Here, we assume that each model uses

a fixed number of  workers,  and one worker  can only

perform the FL training of one model at a time.

t = 1, . . . , T

τ t

W

ϑt
j

mj t mj

mj

φt
j

ϱtj

We  consider  a  series  of  consecutive  time  periods

, and each time period has an equal dura-

tion .  As  shown in Fig.2,  at  each  time ,  we  select

the FL participants for each model and then train 

models  in  parallel  through  FL,  which  consists  of  a

number of  global  iterations (let  be the number of

global iterations of  at ). For each model , each

global iteration includes four parts: 1) the selected pa-

rameter  server  initializes  the  global  model  of ;  2)

the selected workers download the global model from

the  parameter  server;  3)  each  worker  runs  the  local

updates using its holding raw dataset for  local iter-

ations  to  achieve  the  desired  local  convergence  rate

; 4) workers upload the updated model and related

gradient  to  the  parameter  server  for  the  aggregation

to  upload  the  global  model.  The  training  process  of

federated  learning  at  different  time  periods  is  shown

in Fig.2. Table 1 summarizes all notations we used in

this paper.

Next,  we  define  our  local  training  and  global  ag-

gregation  process  as  well  as  the  loss  function  during

the federated edge learning at each time period.

Loss Function.  Let  all  types  of  sample  data used
 

Table  1.    Summary of Notations

Symbol Notation

N L O W, , , Number of edge servers, edge links, datasets, and FL models respectively

vi ej, i jThe -th edge server, and the -th edge link respectively

cti f ti btj, , vi vi ej tStorage capacity of , CPU frequency of  , and the link bandwidth of link  at  respectively

Si,k zi,k, k viThe -th type data at , and its indicator respectively

t, τ, T Index, duration, and number of time periods respectively

mj κj µj χj, , , The j -th FL model, its required number of workers, model size, and CPU requirement respectively

ςj mjGlobal convergence requirement of 
wj,k ηj, k mjIndicator of the -th type data, and the downloading cost of  respectively

xti,j yti,j, ei mjPS and FL worker selection of  for  respectively
ϱtj mj tLocal convergence rates of  at the -th time period

ϑtj φt
j, mj tNumber of global iterations, and local update of  at the -th time period respectively

α β δ, , Index of global iteration, local update, and step size of local update respectively
λ γ, Parameters of loss function

Dt
j,i ψ(Dt

j,i), mj vi t Dt
j,iSample data for  at sever  at , and CPU cycles to process sample data of  respectively

ρj(vi, vk) P t
i,k

, mj vi vk vi vkCommunication cost of  from  to , and the shortest path from  to  at the t-th time period
respectively

vtps(mj) mjSelected PS of  at the t-th time period

Ccomm,t
j C init,t

j C local,t
j

C
global,t
j

, , ,
mjCommunication cost, initialization cost, local update cost, and global aggregation cost of  respectively

ϖt
j mjTotal FL cost of 
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j vi
Dt

j,i =
∪

wj,koi,k=1
Si,k

d =<qd, rd>∈ Dt
j,i qd rd

j vi
t At

j,i(p)

by the -th model and stored in edge server  be de-

fined  by .  For  each  sample  data

, where  is the input data and  is

the  output  data/label,  we  define  the  average  loss  of

data for the -th FL model on server  in time peri-

od  as : 

At
j,i(p) =

1

|Dt
j,i|

∑
d∈Dt

j,i

H(I(qd; p), rd),

H(· )
I(· ) p

where  is the loss function to measure the perfor-

mance of the training model , and  is the model

parameter.

jThen  the  average  loss  of  data  for  the -th  FL

model on all related edge servers in the t-th time peri-

od is defined as follows: 

At
j(p) =

∑
i

|Dt
j,i|

|Dt
j|
At

j,i(p),

Dt
j

j t

where  is  the  union  of  all  involved  training  sam-

ples of model  at time .

j α ∈ [1, ϑt
j]

vi

Local  Training  on  FL  Workers.  For  each  global

iteration of the -th FL model ,  the related

edge server  (FL worker) will perform the following

local update process: 

pt,αj,i = pt,α−1
j + ωt,α

j,i ,

pt,αj,i

vi pt,α−1
j

pt,0j = p
t−1,ϑt

j

j ωt,α
j,i

where  is the local model parameter on edge serv-

er  in  the  current  iteration and  is  the  aggre-

gated model downloaded from the parameter server in

the  last  iteration.  And .  is  the  local

update  from a gradient-based method,  and it  can be

calculated as follows. 

ωt,α
j,i =

φt
j∑

β=1

ωt,α,β
j,i =

φt
j∑

β=1

{ωt,α,β−1
j,i − δ∇Lt,α

j,i (ω
t,α,β−1
j,i )},

ωt,α,β
j,i j

β δ

Lt,α
j,i (· )

Lt,α
j,i (· )

where  is  the  model  parameter  for  the -th  FL

model in the -th local update and  is the step size

of  the  local  update.  Lastly,  is  the  predefined

local  update  function.  Based  on  [27],  is  de-

fined as below. 

Lt,α
j,i (ω) = At

j,i(p
t,α−1
j + ω)− {∇At

j,i(p
t,α−1
j )−

ξ1J t
j (p

t,α−1
j )}Tω +

ξ2
2
||ω||2,

J t
j (p

t,α
j ) =

∑
i

∇At
j,i(p

t,α
j )/

∑
i

yti,j,

ξ1 ξ2 J t
j (· )where  and  are  two  constant  variables.  is

the  sum  of  gradients  among  all  related  edge  servers

and this process will be performed in the global aggre-

gation step.

At
j,i(· ) λ

γ
Assume that  is -Lipschitz continuous and

-strongly convex[16, 28], then the local convergence of

the local model is represented as 

Lt,α
j,i (ω

t,φt
j

j,i )− Lt,∗
j,i ⩽ ϱtj[Lt,α

j,i (ω
t,0
j,i )− Lt,∗

j,i ], (1)

Lt,∗
j,i

ωt,0
j,i = 0

0

where  is the local optimum of the training model.

Furthermore, we can set  since the initial val-

ue can start from  for the training model.

ωt,α
j,i

∇At
j,i(p

t,α
j )

Global  Aggregation  on  Parameter  Server.  After

the  local  updates  for  all  related  FL  workers,  they

have to upload the related local model parameter 

and the related gradients  to the parameter

server for aggregation. 

pt,αj = pt,α−1
j +

∑
i

{yti,jωt,α
j,i }/

∑
i

yti,j.

jThen, the global average loss of data for the -th

model is 

Gt
j(p

t,α
j ) =

∑
i

yti,j|Dt
j,i|

|Dt
j|

At
j,i(p

t,α
j ).

Similarly,  the  global  convergence  of  the  global

model is defined as 

Gt
j(p

t,ϑt
j

j )− Gt,∗
j ⩽ ςj[Gt

j(p
t,0
j )− Gt,∗

j ], (2)

Gt,∗
jwhere  is the global optimum of the training mod-

el.

ϱtj
ςj
φt

j ϑt
j

ςj

Finally, from (1) and (2), in order to achieve the

desired  local  convergence  rate  and  global  conver-

gence rate , we need to calculate the number of lo-

cal updates  and the number of global iterations .

From  the  above  observation,  we  can  find  that  the

global  convergence rate  for  each FL model  can be

predefined  and  we  have  to  conduct  the  local  update

and global iteration to achieve required global conver-

gence  rate.  Then  we  have  the  following  relationship

between the convergence rate and the local update as

well as global iterations[9, 27]. 

ϑt
j ⩾

2λ2

γ2ξ1
ln
(
1

ςj

)
1

1− ϱtj
≜ ϑ0 ln

(
1

ςj

)
1

1− ϱtj
,

φt
j ⩾

2

(2− λδ)δγ
log2

(
1

ϱtj

)
≜ φ0 log2

(
1

ϱtj

)
,

ξ1
Lt,α

j,i (· ) λ λ γ

γ λ
γ ϑ0 φ0

ϑ0 = 2λ2/(γ2ξ1)

φ0 = 2/((2− λδ)δγ)

where  is  the  constant  variable  defined  in  function

,  is  the -Lipschitz  parameter,  and  is  the

-strongly  convex  parameter.  Both  the  values  of 

and  are determined by the loss function.  and 

are  two  constants  where  and

. 
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4    Problem:  Joint  Participant  Selection  and

Learning Optimization

In this section, we first formulate the studied joint

optimization  problem,  and  then  introduce  the  cost

models used there. 

4.1    Problem Formulation

t

mj xt
i,j yti,j
vi

j mj t

κj∑M

i=1
xt
i,j = 1

∑M

i=1
yti,j = κj ϱtj ∈ [0, 1)

mj

t ϱtj ςj
mj t

ςj mj

ϱtj xt
i,j yti,j

ϱtj
t

Under the previously introduced multi-model fed-

erated  learning  scenario,  we  consider  how  to  choose

participants for each of the models and how to sched-

ule  their  local/global  updates.  Particularly,  at  each

time period , we need to make the following partici-

pant  selection  and  learning  scheduling  decisions  for

each model . We denote  or  as the decision

whether to select edge server  as a parameter server

or an FL worker for the -th FL model  at time ,

respectively. Again, we assume that only one PS and

 workers  are  selected  for  each  model,  i.e.,

 and .  We  use  to

represent the maximal local convergence rate of  at

time . We will use  and  to control the number of

global  iterations  and  local  updates  for  at  time .

Recall  that  is  given by  as  a  requirement,  thus

only  is used for optimization. Overall, , , and

 are  the  decision  variables  of  our  optimization  in

each time period .

t

We now formulate our participant selection prob-

lem  in  multi-model  FL  where  we  need  to  select  the

parameter  server  and  workers  for  each  model  and

achieve the desired local convergence rate. The objec-

tive of our problem is to minimize the total cost of all

FL models at time  under specific constraints. 

min
W∑
j=1

ϖt
j (3)

 

s.t. xt
i,jµjκj ⩽ cti, ∀i, j, (4)

 

xt
i,jχj ⩽ f t

i , ∀i, j, (5)
 

yti,jµj ⩽ cti, ∀i, j, (6)
 

yti,jχj ⩽ f t
i , ∀i, j, (7)

 

wj,ky
t
i,jzi,k = 1, ∀i, j, k, (8)

  ∑
i

xt
i,j = 1,

∑
i

yti,j = κj, ∀j, (9)

  ∑
j

(xt
i,j + yti,j) ⩽ 1, ∀i, (10)

 

xt
i,j ∈ {0, 1}, yti,j ∈ {0, 1}, ϱtj ∈ [0, 1). (11)

ϖt
j j

t

Here,  is the total FL cost of the -th FL model in

the -th time period, which will be defined in Subsec-

tion 4.2.  Constraints  (4)  to  (7)  make  sure  that  the

κj

storage and CPU satisfy the FL model requirements.

Constraint (8) ensures that the edge server stores the

dataset  that  matches  the  FL  model.  Constraint  (9)

guarantees  the  number  of  the  parameter  server  and

FL  workers  of  each  model  is  1  and ,  respectively.

Constraint  (10)  ensures  that  each  edge  server  only

trains one FL model and can only play one role at a

time. The decision variables and their ranges are giv-

en  in  (11).  With  nonlinear  learning  cost,  this  formu-

lated  optimization  is  a  mixed-integer  nonlinear  pro-

gram (MINLP) problem challenging to solve directly. 

4.2    Cost Models

Our cost models consider four types of cost: edge

communication  cost,  local  update  cost,  global  aggre-

gation  cost,  and  PS  initialization  cost,  as  defined  in

the followings, respectively.

µj

j

mj

ρj(vi, vk)

mj

vi vk t

Edge Communication Cost. The edge communica-

tion cost mainly consists  of  the FL model  download-

ing and uploading costs. We denote by  the upload-

ed and downloaded model size for the -th FL model

.  When uploading the FL model to the parameter

server or downloading the FL model from the param-

eter server, we use the shortest path in the edge cloud

to calculate the communication cost.  Let  be

the communication cost of model  from edge serv-

er  to  at time , and it can be calculated by 

ρj(vi, vk) =
∑

el∈P t
i,k

µj

btl
,

P t
i,k

vi vk
t

where  is the shortest path connecting  to  at

time .

mjFor , the total edge communication cost is 

Ccomm,t
j = 2× ϑt

j

N∑
k=1

N∑
i=1

xt
k,j × yti,j × ρj(vi, vk).

vi vj mjHere,  and  are  a  worker  and  the  PS  of ,  re-

spectively.

ψ(· )
Dt

j,i

j vi
j

Local Update Cost. Let  be the function to de-

fine CPU cycles to process the sample data  used

by  the -th  FL  model  and  stored  in  edge  server .

Therefore  all  the  local  update  cost  for  the -th  FL

model in the t-th time period is defined as 

C local,t
j = ϑt

j × φt
j ×

N∑
i=1

yti,j ×
ψ(Dt

j,i)

f t
i

.

ψ(· )Global  Aggregation  Cost.  Similarly,  we  use 

function to define CPU cycles to process the aggrega-
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tion step for the uploaded FL model.
 

Cglobal,t
j = ϑt

j ×
N∑
i=1

xt
i,j ×

ψ(µj)

f t
i

.

t

vtps(mj) mj t

Initialization of Parameter Server. The parameter

server needs to download the FL model assigned to it

at  time  unless  it  has  been  the  parameter  server  of

the  same  FL  model  in  the  last  time  period.  Let

 be  the  PS  selected  for  model  at  time .

Then the initialization or switching cost of the param-

eter can be calculated as,
 

C init,t
j =


ηj, if t = 1 or vt−1

ps (mj) = NIL,

0, if vtps(mj) = vt−1
ps (mj),

min{ηj, ρj(vt−1
ps (mj), v

t
ps(mj))}, otherwise.

mj

ηj

If the FL model is the first time to be trained or has

not been updated at the last time period, the selected

parameter server has to download model  with cost

.  If  the  parameter  server  stays  the  same  from  the

last time period, there is no cost. Otherwise, the new

parameter server needs to either download the model

or transfer the model from the previous server.

j tNow, the total cost of the -th FL model in time 

is given by
 

ϖt
j = Ccomm,t

j + C local,t
j + Cglobal,t

j + C init,t
j .

 

5    Our Proposed Methods

In this section, we propose several multi-stage al-

gorithms to attack the challenging optimization prob-

lem. 

5.1    Three-Stage Method

Recall that the formulated problem in Subsection

4.1 is  a  mixed-integer  nonlinear  program  (MINLP),

which  is  challenging  to  solve  directly.  Now,  we  de-

compose  our  original  problem  into  three  sub-prob-

lems  and  attack  it  via  multiple  iterations  of  solving

the decomposed sub-problems, as shown in Fig.3. 

5.1.1    Three-Stage Decomposition

xt
i,j yti,j ϱtj

The main idea is based on a three-stage decompo-

sition. In each stage, we focus on solving only one of

the  decision  variables  of , ,  and  when  the

other two are fixed. We iteratively repeat these three

stages until a certain specific condition is satisfied.

Stage 1: Parameter  Server  Selection.  Given  a

worker selection and a local convergence rate, we aim
 

O
ri
g
in

a
l 
P
ro

b
le

m

Problem Decomposition

Decompose to Three
Sub-Problems (P1, P2, P3)

Decompose to Two
Sub-Problems (P4, P3)

P1, P2 and P3, Respectively

P4 and P3, Respectively

Two-Stage Optimization
Algorithm (TWSO)

Three-Stage Optimization
Algorithm (THSO)

Three-Stage
Greedy Algorithm (GRDY)

Algorithm Design

Solve:   and     in  

Solve: (  and     in  

D
e
c
is

io
n
s:

 



 



   







Stage 1: Given ,   , Solve ;
  

Stage 2: Given ,   , Solve ;
  

Stage 3: Given , , Solve  
  

Stage 1: Given   , Solve (, );
  

Stage 2: Given (, ), Solve  
  

(a)

(b)

Fig.3.  Problem decomposition and design of our proposed multi-stage algorithms. (a) The original problem is decomposed into ei-
ther two or three subproblems. (b) Three different algorithms (two three-stage ones and a two-stage one) are then proposed to solve
these sub-problems iteratively[15].
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to  find  a  parameter  server  for  each  model  to  mini-

mize the total cost, i.e., 

P1 : min
W∑
j=1

ϖt
j

s.t. (4), (5), (9), (11).

Stage 2: FL Worker Selection. We take the latest

parameter  server  selection  and  fixed  local  conver-

gence rate to select FL workers of each model to min-

imize the total cost, i.e., 

P2 : min
W∑
j=1

ϖt
j

s.t. (6)−(11).

Stage 3: Local  Convergence  Rate  Decision.  With

the latest PS and FL worker selections, we can deter-

mine  the  optimal  local  convergence  rate  in  order  to

minimize the total cost, i.e., 

P3 : min
W∑
j=1

ϖt
j

s.t. (11).
 

5.1.2    Three-Stage Algorithms

yt,0i,j

ϱt,0j

xt,1
i,j

ϱt,0j

xt,1
i,j

yt,1i,j

xt,1
i,j yt,1i,j

ϱt,1j

After  we  decompose  the  original  problem  into

three sub-problems, we can solve each sub-problem by

using  either  the  linear  programming  technique  or

greedy  heuristics.  The  basic  idea  shared  by  these

methods is as follows. First, we randomly generate FL

worker  selection  decision  and  the  local  conver-

gence rate , and then solve the optimization prob-

lem P1 to get parameter server selection decision .

Second, given the local  convergence rate  and the

latest  parameter  server  selection  decision ,  we

solve P2 to get FL worker selection decision . Last,

based  on  the  latest  and ,  we  solve  P3  to

achieve  the  desired  local  convergence  rate .  This

process  will  be  repeated  until  it  satisfies  a  specific

condition (either no further improvement of the objec-

tive  value  of  the  optimization  or  reaching  the  maxi-

mal iteration number).

Algorithm 1 in Fig.4(a) shows the three-stage op-

timization method using the linear programming tech-

nique.  Here,  we  leverage  an  optimization  solver

(PuLP)[29] to  solve  each  sub-problem  for  its  conve-

nience.

Algorithm 2 in Fig.4(b)  shows  a  three-stage

κj

greedy algorithm where greedy heuristic  methods are

used to solve the three sub-problems. 1) For stage 1,

given  a  fixed  worker  selection  and  local  convergence

rate, we select a parameter server for each model with

minimal  cost.  2)  For  stage  2,  we  calculate  the  total

cost of  each potential  edge server for each FL model

and then sort  the edge server  list  in  ascending order

of the cost. We greedily select the top  edge servers

as FL workers for each model. 3) In the last stage, we

greedily decrease the local convergence rate in a spe-

cific  threshold  to  get  the  minimal  total  cost  until  it

reaches  the  global  convergence  rate.  We  repeat  the

above steps until the ending condition is met.

Note  that  during  the  first  two  stages  of Algo-

rithm 2,  we  need  to  select  the  PS  or  workers  for  all

models  in  a  certain  order.  Obviously,  the  processing

order of each model may affect the final performance.

By  default,  we  simply  process  them  in  a  first  come

first serve mode, i.e., we first find the solution for the

model that arrives earlier. Due to the heterogeneity of

edge servers in the real edge cloud, some edge servers

may have more sufficient resources (storage and com-

puting capacity) while the others do not. In such a re-

source-limited scenario, serving the more complex FL

model  first  may  reduce  the  total  completion  cost  of

FL of all models. Therefore, we also introduce a varia-

tion greedy method in which the FL models are sort-

ed based on their model sizes and we process models

based on a larger model first in both the first and sec-

ond stages of Algorithm 2. In this variation, the more

complex FL model will  first have more chance to se-

lect more high-performance workers leading to a low-

er total cost. In our experiments (Section 6), we have

evaluated  the  impact  of  these  two  different  process-

ing  orders.  In  addition,  other  ordering  methods  can

also be applied to our proposed algorithm (Algorithm

2), such as choosing the model that requests more re-

sources first. 

5.2    Two-Stage Method

xt
i,j, y

t
i,j

ϱtj

We  can  also  combine  the  first  two  stages  since

both  are  with  integer  variables.  Then  the  optimiza-

tion  can  be  solved  via  a  two-stage  decomposition.

Here,  we separate  the  integer  variables  ( )  and

the continuous variable  into two sub-problems,  as

shown in Fig.3.

Stage 1: Parameter  Server  and Worker  Selection.

Given the last local convergence rate, we want to find

an optimal decision for selecting the parameter server

and workers, i.e., 
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P4 : min
W∑
j=1

ϖt
j

s.t. (4)−(11).

Stage 2: Local Convergence Rate Decision. This is

the  same  with  the  third  sub-problem  P3  in  three-

stage methods.

Here,  we use an optimization solver  (GEKKO)[30]

to  solve  the  sub-problem  P4  since  it  is  a  non-linear

problem  with  two  integer  variables.  For  P3,  we  still

use  the  PuLP  solver.  The  detail  of  the  two-stage

method is given by Algorithm 3 in Fig.4(c). 

5.3    Time Complexity

N

We  now  analyze  the  time  complexity  of  each  of

the  proposed  algorithms.  Here,  we  assume  that  the

time  taken  to  solve  P1,  P2,  P3,  and  P4  with 

 

Fig.4.  Proposed algorithms[15]. (a) Three-stage optimization (THSO). (b) Three-stage greedy (GRDY). (c) Two-stage optimization
(TWSO).
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W T1(N,W ) T2(N,W )

T3(N,W ) T4(N,W )

xt
i,j yti,j ϱtj

Tcost(N,W ) ϵ

servers  and  models  is , ,

,  and ,  respectively.  Given  a  deci-

sion  of , ,  and ,  we  can  calculate  the  total

learning cost with . Let  be the step length

of reducing the convergence rate in the stage 3 of Al-

gorithm 2. Then it is easy to prove the following theo-

rem regarding the time complexity of all proposed al-

gorithms.

O((T1 + T2 + T3)×max_itr)

O ((N + (1/ϵ))× Tcost ×W ×max_itr) O((T4+

T3)×max_itr)

Theorem  1. The  time  complexity  of Algorithms
1–3 is  bounded  by ,

,  and 

, respectively.

O(N × Tcost ×W )

O ((1/ϵ)× Tcost ×W )

Note that in Algorithms 2, the time complexity of

stage  1  and  stage  2  is  bounded  by 

and , respectively. 

6    Performance Evaluation

In this section, we present our experimental setup

and evaluate  the  performance  of  our  proposed meth-

ods via simulations. 

6.1    Environmental Setup

20−40

ci fi bj

O = 5

Si,k

T

Edge Cloud.  In  our  edge computing environment,

we  adopt  different  random  topologies  consisting  of

 edge  servers  where  the  distribution  of  servers

is  based  on  the  real-world  EUA-Dataset[31].  This

dataset  is  widely  used  in  edge  computing  and  con-

tains  the  geographical  locations  of  125  cellular  base

stations  in  the  Melbourne  central  business  district

area. Fig.5 illustrates one example of topology used in

our simulations. In each simulation, a certain number

of  edge  servers  are  randomly  selected  from  the

dataset.  Each edge  server  has  a  maximal  storage  ca-

pacity , CPU frequency , and link bandwidth  in

the  range  of  512  GB–1 024 GB,  2  GHz–5  GHz,  and

512  Mbps–1 024 Mbps,  respectively.  We  consider

 different  data  types  (e.g.,  image,  audio,  and

text)  where  the  size  is  in  the  range  of  1  GB–
3 GB. Each type of data has been distributed in dif-

ferent  edge  servers  and  one  edge  server  may  store

more  than  one  type  of  data.  Furthermore,  the  total

number of time periods  is set to 30.

Federated Learning Models.  To verify  the  perfor-

mance of the federated learning process, we conduct a

set of federated learning experiments. We assume that

W

κj

µj
χj

ηj

ςj = 0.001 ϑ0 = 15 φ0 = 4

there are  different FL tasks (vision, audio, text, or

data)  running  in  our  environment  simultaneously.

The number of FL workers  required by each mod-

el is in the range of 3–7. Each FL task has a specific

model  size ,  CPU  requirement ,  and  download

cost  in  the  range  of  10  MB–100  MB,  1  GHz–
3 GHz, and 1–5, respectively. The global convergence

requirement  and  the  two  constant  variables  are  set

based  on  [9]: , ,  and .  Three

classical  datasets  in  scikit-learn  1.0.2[32] are  used  to

train  linear  regression  (LR)  models:  the  California

Housing dataset, the Diabetes dataset, and randomly

generated  LR  datasets.  Each  LR  model  is  trained

with the  loss  of  Mean Square  Error  (MSE).  In  addi-

tion, we are interested in the performance of the pro-

posed  methods  in  non-convex  loss  functions.  Hence,

three different types of datasets are used for these FL

tasks:  Fashion-MNIST  (FMNIST)[33],  Speech_Com-

mands[34], and AG_NEWS[35]. Each of them is trained

with a CNN model.  We assign random data samples

of  these  three  datasets  to  clients  in  such a  way that

each  client  has  a  different  amount  of  training  and

testing  data.  The  Python  library  PyTorch  (v1.10)  is

used  to  build  the  model.  All  experiments  are  tested

on  a  Linux  workstation  including  16  CPU cores  and

512 GB of RAM, and 4x NVIDIA Tesla V100 GPUs

interconnected  with  NVlink2.  Detailed  parameters  of

both edge cloud and FL models are listed in Table 2.

Baselines and Metrics.  We compare our proposed

algorithms  (three-stage  optimization  THSO,  three-

stage  greedy  GRDY,  and  two-stage  optimization

TWSO) with four competitive methods②.

 

Fig.5.   Example  of  edge  cloud  topology  with  20  edge  servers
generated based on the real-world EUA-Dataset[31].
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②Since  our  studied  joint  optimization  is  an  MINLP problem,  it  is  challenging  to  obtain  the  optimal  solution  even  when  the
problem is in a small scale. Therefore, we focus on comparison with existing simple heuristics and participant selection methods.



• ROUND[9]. It selects the FL workers and the lo-

cal  convergence  rate  for  each  model  based  on  a  ran-

domized rounding method[9]. Since it does not consid-

er the PS selection, we use a random choice for PS at

the beginning.

• RAND.  It  randomly  generates  the  parameter

server selection, the FL worker selection decision, and

the local convergence rate under certain constraints.

• DATA[23]. It selects the FL workers based on the

fraction of  data at the servers and prefers  the server

with more data. Since it ignores the PS and local con-

vergence rate selection, we randomly determine them.

• LOCAL[24].  It  selects  its  top  workers  that  will

complete  the  local  training  first  (based  on

estimation). Again random decisions are used for the

PS and local rate.

The main metrics used for evaluation are the av-

erage total  FL learning cost  and the average accura-

cy  (or  the  average  training  loss  and  the  average  R2

score for LR) of FL models. 

6.2    Evaluation Results

Via extensive simulations, we evaluate the perfor-

mance  of  our  methods  mainly  focusing  on  their  cost

performances. 

6.2.1    Performance Comparison—Total

Learning Cost

We  first  investigate  different  algorithms  with  a

different  number  of  edge  servers  and  global  conver-

gence  rates.  We  consider  three  FL  models  for  three

different  types  of  tasks  (i.e.,  image  classification,

speech  recognition,  and  text  classification)  to  be

trained simultaneously, where each FL model has re-

quested five FL workers. Figs.6(a) and 6(b) show the

results  of  two  groups  of  simulations.  In  the  first

group, we set the number of edge servers to be from

20 to  40,  while  fixing  the  global  convergence  rate  at

0.001. In the second group, we change the global con-

vergence rate from 0.001 to 1.1 with 30 edge servers.

We have the following observations.

First, clearly for both sets of simulations, our pro-

posed three  algorithms (TWSO, THSO, and GRDY)

have  better  performance  than  the  other  four  bench-

marks in terms of average total learning cost. Having

better  performances  than ROUND (which focuses  on

worker selection and learning rate optimization) con-

firms the advance of our methods by considering the

PS selection in the joint optimization. The better per-

formances  of  our  methods  and  ROUND  compared

with  DATA  and  LOCAL  (which  only  focus  on  the

worker  selection)  show  the  advantage  of  joint  opti-

mization. In all simulations, RAND has the worst per-

formance since it does not take any optimization.

Second,  as  shown  in Fig.6(a),  the  average  total

cost  of  every  algorithm  decreases  first  and  increases

again as the number of edge servers increases. Initial-

ly, with more edge servers, all algorithms have better

chances to find a good solution to minimize the total

cost of all FL models. On the other hand, the further

larger  topology  with  more  servers  may  also  begin  to

increase the average total cost due to larger transmis-

sion costs from workers to PS.

Third, as shown in Fig.6(b), as the global conver-

gence rate increases, the average total cost decreases.

This is reasonable since the larger global convergence

rate  requests  less  local  training  or  global  update,

which leads to lower total learning costs.

 

Table  2.    Detailed Parameter Setting in Our Experiments

Parameter Value or Range

Edge cloud parameter NNumber of edge servers 20−40

vi ci's storage capacity  (GB) 512−1 024

vi fi's CPU frequency  (GHz) 2−5

ei bi's link bandwidth  (Mbps) 512−1 024

ONumber of different datasets 5

|Si,k|Each dataset size  (GB) 1−3

Federated learning parameter TNumber of time periods 30

WNumber of FL models 1−5

mj κjNumber of 's FL workers 1−7

mj µj's model size  (MB) 10−100

mj χj's CPU requirement  (GHz) 1−3

mj ηj's downloading cost 1−5

mj ςj's global convergence requirement 0.001−0.1

ϑ0 φ0Constant FL variables  and 15, 4
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Fig.6(c)  also  plots  the  detailed  costs  of  different

methods when 30 edge servers are considered, and the

global convergence rate is 0.001. It shows that the lo-

cal  cost  dominates  the  total  cost,  and  consequently,

GRDY  has  a  higher  total  cost  than  TWSO  and

THSO as seen in Fig.6(a).

We also evaluate the effects of  joint optimization

over multi-models compared with the separative opti-

mization with only a single model. In the latter case,

we still use TWSO and THSO but force them only on

a  single  FL  model  at  a  time,  and  thus  sequentially

choose  the  decision  for  each  model.  Again  we  train

three FL models when 30 edge servers are considered

and  the  global  convergence  rate  is  0.001. Fig.6(d)

shows  the  comparison  of  determining  the  choices  for

three  FL  models  jointly  or  sequentially  with  TWSO

and  THSO.  We  can  clearly  see  the  lower  total  cost

when we jointly optimize the decisions. This confirms

the  effectiveness  of  jointly  determining  the  selection

decision  for  multiple  FL  models  rather  than  sequen-

tially determining the decision for every single model. 

6.2.2    Impact of FL Model Number

Next,  we  look  into  the  impact  of  different  num-

bers of FL models. We simultaneously run one to five

FL models. The number of edge servers and the num-

ber  of  FL  workers  are  set  to  30  and  5,  respectively.

The  global  convergence  rate  is  also  set  to  0.001.  As

shown in Fig.7(a), the more FL models, the more the

average  total  learning  cost.  Our  proposed  algorithms

still  perform  better  than  the  other  four  methods.

TWSO and THSO still enjoy a little performance im-

provement against GRDY. We also plot the detail of

three  types  of  costs  (i.e.,  communication  cost,  local

cost,  and  global  cost)  in Fig.7(b), Fig.7(c),  and
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Fig.7(d)  respectively.  We  can  observe  that  the  com-

munication  cost  of  GRDY  is  similar  to  those  of

TWSO and THSO. However,  GRDY has the highest

local  cost  and  the  lowest  global  cost  compared  with

the other algorithms. That is because GRDY greedily

runs more local training so that the number of global

updates can be reduced while satisfying the expected

global convergence rate.
 

6.2.3    Impact of FL Worker Number

We  further  investigate  the  impact  of  a  different

number  of  FL  workers.  We  consider  30  edge  servers

and  train  three  FL  models  while  the  global  conver-

gence  rate  is  0.001  as  well.  Results  are  reported  in

Fig.8, which are similar to those with a different num-

ber of  FL models.  First,  the average total  cost of  all

algorithms increases as the number of FL workers in-

creases since the more FL workers, the more resource-

consuming. Second, the proposed algorithms have bet-

ter  performance  than  ROUND,  RAND,  DATA,  and

LOCAL  as  shown  in Fig.8(a).  Last,  GRDY  has  the

highest local cost while having the lower communica-

tion cost and global cost compared with other strate-

gies as shown in Figs.8(b)–8(d). 

6.2.4    Impact  of  Model  Processing  Order  in

GRDY

Remember that in GRDY (Algorithms 2) we need

to select the PS and workers for each model following

certain  processing  order  among  FL  models.  We  now

study  the  impact  of  different  processing  orders  in

GRDY. We test on two specific processing orders: the

default one with First-in-First-Serve (GRDY) and the

variation in which priority is given to the model with

a larger size (GRDY-Max). The experiments run un-
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der the edge cloud with 30 edge servers that have lim-

ited  resources  and  significant  differences.  We  run  20

different cases in each different number of  maximum

iterations,  and Fig.9 shows  the  experimental  result.

First, as the number of maximum iterations increases,

the total cost of both two greedy algorithms decreas-

es since they have more chances to find a better solu-

tion with a lower cost. However, the improvement be-

comes  smaller  when  the  maximum  iteration  further

increases. Second, under the resource-limited scenario,

GRDY-Max performs better than GRDY in almost all

cases. This result confirms the necessity and superiori-

ty  of  selecting  an  optimal  processing  order  in  differ-

ent  edge  scenarios.  In  addition,  we need to  select  an

appropriate maximum iteration to control the conver-

gence speed of our greedy algorithms. 

6.2.5    FL Training Loss and Accuracy

Fig.10 shows the training loss of our method in re-

al-world  federated  learning  experiments  over  LR

datasets. We introduce the R2 score metric to evalu-

ate the performance of LR (Linear Regression) model

(convex)  training.  The  R2  score  is  the  proportion  of
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κj

the  variance  in  the  dependent  variable  that  is  pre-

dictable from the independent variable(s). In this set

of experiments, we concurrently train three LR mod-

els with three different datasets. Each dataset is split

into 10 edge servers unequally (i.e.,  non-IID setting),

and the number of global training rounds is 100. We

can  see  from Figs.10(b)–10(d),  the  training  loss  de-

creases  as  the  number  of  workers  ( )  increases  for

each  model. Fig.10(a)  shows  the  R2  score  of  all  LR

models. Obviously, with more workers, the R2 scores

of  all  models  increase,  which  means  all  models  are

well-regressed.  However,  model  2  has  a  worse  R2

score  (a  negative  value)  in  fewer  workers  due  to  the

small size of the training dataset. But as the number

of  workers  increases,  the performance of  model  2  be-

comes better.

Fig.11 also  reports  the  learning  accuracy  of  our

method  on  more  complex  FL  tasks  with  different

numbers of workers (due to space limitation, we only

show the one from THSO). Here, the datasets of three

FL  models  (image  classification,  speech  recognition,

and text classification) are split into 30 partitions and

the  number  of  the  global  update  is  set  to  300.

Fig.11(a) shows the training accuracy of all three FL

models increases with the increasing number of itera-

tions. Figs.11(b)–11(d) show the detailed training ac-

curacy  of  three  different  models  with  different  num-

bers  of  FL workers.  We can  observe  that  with  more

FL  workers,  the  training  accuracy  of  all  models  can

reach  a  higher  value.  However,  when  comparing  the

result  in Fig.8,  the more FL workers,  the more total

cost  consumed.  Hence,  there  is  a  trade-off  between

the training accuracy and the total cost. Another in-

teresting  observation  is  that  for  FMNIST  and

Speech_Command,  the  accuracy  increases  with  more

FL workers,  but  for  AG_News,  the  accuracy  is  simi-

lar or the difference is very minimal. This may be due

to  the  simplicity  of  the  AG_News  learning  task.  In
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Fig.10.   Training  loss  with  LR  models/tasks  and  the  impact  of  the  number  of  FL  workers.  (a)  R2  score  of  three  LR  models.
(b) Training loss of Linear Regression over the California Housing dataset. (c) Training loss of Linear Regression over the diabetes
dataset. (d) Training loss of Linear Regression over a randomly generated dataset.
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summary,  one  needs  to  consider  the  trade-off  be-

tween the training accuracy and the total cost. If you

need  more  FL  workers,  it  will  incur  more  total  cost

but get higher training accuracy, and vice versa. 

7    Conclusions

In  this  paper,  we  mainly  focused  on  multi-model

FL over an edge cloud and carefully selected partici-

pants (both PS and workers) for each model by con-

sidering  the  resource  limitation  and  heterogeneity  of

edge  servers  as  well  as  different  data  distributions.

We formulated a joint participant selection and learn-

ing  optimization  problem  to  minimize  the  total  FL

cost  of  multiple  models  while  ensuring  their  conver-

gence performance. We proposed three different algo-

rithms to decompose the original problem into multi-

stages  so  that  each  stage  can  be  solved  by  an  opti-

mization solver or a greedy algorithm. Extensive sim-

ulations  with  real  FL  experiments  showed  that  our

proposed algorithms outperform similar existing solu-

tions. In the future, we plan to further investigate: 1)

reinforcement learning based solutions for similar op-

timization problems in a more dynamic edge system,

2) the extension of proposed multi-stage methods over

multiple time-scales, where learning schedule and par-

ticipant  selection  can  be  optimized  at  fast  and  slow

timescales  separately,  similar  to  [22],  3)  new  quan-

tum-assisted  methods  for  similar  optimization  prob-

lems[36], 4) new joint optimization problems where dif-

ferent  FL  models  can  choose  different  FL  structures

(such as  DFL[10] or  HFL[5, 8, 11]),  and 5)  similar  joint

optimization  problems  but  in  a  more  complex  edge

system with multiple edge operators.
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Fig.11.   Training  accuracy  with  three  FL tasks  and the  impact  of  FL workers[15].  (a)  Accuracy  of  three  FL models  with  30  edge
servers and 5 workers. (b) Accuracy of image classification over FMNIST. (c) Accuracy of voice recognition in Speech_Command.
(d) Accuracy of text generation in AG_News.
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