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Abstract    Based on well-designed network architectures and objective functions, self-supervised monocular depth esti-

mation has made great progress. However, lacking a specific mechanism to make the network learn more about the re-

gions containing moving objects or occlusion scenarios, existing depth estimation methods likely produce poor results for

them. Therefore, we propose an uncertainty quantification method to improve the performance of existing depth estima-

tion networks without changing their architectures. Our uncertainty quantification method consists of uncertainty mea-

surement, the learning guidance by uncertainty, and the ultimate adaptive determination. Firstly, with Snapshot and Siam

learning strategies, we measure the uncertainty degree by calculating the variance of pre-converged epochs or twins dur-

ing training. Secondly, we use the uncertainty to guide the network to strengthen learning about those regions with more

uncertainty. Finally, we use the uncertainty to adaptively produce the final depth estimation results with a balance of ac-

curacy  and  robustness.  To  demonstrate  the  effectiveness  of  our  uncertainty  quantification  method,  we  apply  it  to  two

state-of-the-art models, Monodepth2 and Hints. Experimental results show that our method has improved the depth esti-

mation performance in seven evaluation metrics compared with two baseline models and exceeded the existing uncertain-

ty method.
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 1    Introduction

Depth estimation[1] is a fundamental task in com-
puter  graphics  and  computer  vision,  which  can  be
used  in  text-to-image[2],  6D  pose  estimation[3],  and
scene reconstruction[4–6]. Depth estimation from a sin-
gle RGB image is an ill-posed problem. However, with
the  development  of  deep  learning,  monocular  depth
estimation  has  become  a  possibility.  The  deep  net-
work  learns  the  relationship  between  the  spatial  dis-
tance  and  image  features  with  large  datasets.  Com-
pared  with  fully  supervised  learning,  self-supervised
monocular  depth  estimation  only  needs  stereo  image

pairs or monocular video to supervise, which is a sig-
nificant advantage.

To  improve  the  performance  of  the  self-super-
vised  depth  estimation  network,  novel  loss  func
tions[7–9] and network architectures[10–13] have been pro
posed.  The  pre-processing  or  post-processing[14] is  al-
so  considered to  increase  data  usage.  However,  these
techniques only partially solve self-supervised monoc-
ular  depth  estimation  defects.  On  the  one  hand,  a
specific  technique  to  improve  certain  depth  estima-
tion  performance  always  requires  an  application  pre-
requisite. For example, the semantic information used
to  sharpen  the  object  boundary  in  the  depth  map is
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limited by the number of known objects. On the oth-
er  hand,  self-supervised  training  is  an  under-con-
straint  task due to  needing more optimization objec-
tives  to  restrict  the  factors  such  as  weak  textures,
moving  objects,  varying  illumination,  and  occlusion.
Solely depending on improving neural  network archi-
tectures is hard to solve above issues.

Uncertainty quantification is an effective strategy
to improve the accuracy of the depth estimation net-
work. There are some methods[15–19] about uncertain-
ty,  but  these  methods  still  have  several  weaknesses.
First, these methods are based on ground truth depth
to  obtain  uncertainty.  Second,  these  methods  cannot
completely solve the under-constraint problem. Third,
these  methods  do  not  explicitly  deal  with  the  learn-
ing  difficulty  of  uncertainty  and  uncertainty  regions
in the training process.

This paper proposes an uncertainty quantification
method to learn self-supervised monocular depth esti-
mation. Our idea is based on the observation that un-
certainty is caused by under-constraint and manifest-
ed as unstable prediction among consecutive training
epochs. Thus, we propose to estimate uncertainty re-
gions  based  on  the  variance  of  consecutive  epoch  re-
sults and guide the network to learn them. Our uncer-
tainty  quantification  method  consists  of  uncertainty
measurement,  guidance,  and  post-processing.  Based
on  our  simple  but  effective  method,  uncertainty  re-
gions can be detected and better learned (see Fig.1).

Our contributions can be summarized as follows.
• We propose  to  use  consecutive  training  epochs

or  a  Siamese  network  to  measure  the  uncertainty  of
the estimated depth. The estimated uncertainty mask
is used to guide the depth network learning.

• We  propose  ensemble-based  uncertainty  post-
processing  to  adaptively  produce  final  depth  results
with a balance of accuracy and robustness.

• Our uncertainty quantification method does not
add  additional  modules,  which  could  avoid  substan-
tially modifying the baseline model.

The rest  of  the paper is  organized as  below. Sec-
tion 2 reviews  the  related  work. Section 3 describes
our  method. Section 4 reports  our  experimental  de-
tails  and  results.  Finally, Section 5 concludes  our
work.

 2    Related Work

 2.1    Self-Supervised Monocular Depth

Estimation

Garg et al.[7] established the cornerstone of self-su-

pervised monocular depth estimation, and the photo-

metric  reconstruction  loss  is  the  core  loss  function.

This  loss  measures  the  discrepancy  between  the  ob-

served and reconstructed images based on photomet-

ric similarity. The reconstructed image is synthesized

by depth guided from the previous or the next frame

into the observed frames. Godard et al.[20] proposed a

depth  estimation  network  named  Monodepth.  Mon-

odepth predicts left-right disparities to enforce consis-

tency between the disparities produced relative to the

left and right images.

Zhou et  al.[21] first  used  the  monocular  video  to

train  the  depth  estimation  network  by  jointly  learn-

ing the depth and relative pose.  Godard et al.[8] pro-

posed  the  three  innovations  in  Monodepth2.  First,

they designed a minimum photometric reconstruction

loss  to  address  the  problem  of  occluded  pixels.  Sec-

ond,  they  designed  an  auto-masking  loss  to  ignore

training pixels that violate relative camera motion as-

sumptions.  Finally,  they  up-sampled  the  predicted

multi-resolution  depth  maps  to  the  input  resolution

and  computed  all  losses  to  reduce  texture-copy  arti-

facts.  Bian et  al.[9] proposed  a  geometry  consistency

loss to penalize the inconsistency of predicted depths

(a) (b)

(c) (d)

(e) (f)

(g) (h) 

Fig.1.  Two examples of our method. (a) Input image 1. (b) In-
put image 2. (c) Estimated depth 1 of image 1 by the baseline
model Monodepth2[8]. (d) Estimated depth 2 of image 2 by the
baseline  model  Hints[14].  (e)  Uncertainty  mask  of  depth  1.
(f) Uncertainty mask of depth 2. (g) Estimated depth of image
1  by  our  method (Snapshot).  (h)  Estimated  depth  of  image  2
by our method (Siam).
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between adjacent views and a self-discovered mask to

automatically localize moving objects that violate the

underlying  static  scene  assumption  and  cause  noisy

signals during training.

Some methods  propose  to  use  multi-task  training

strategies to improve depth estimation accuracy. Yin

and Shi[22] proposed to use a multi-task learning net-

work  GeoNet  for  monocular  depth,  optical  flow,  and

ego-motion estimation. Zou et al.[23] proposed DF-Net

to  solve  the  same  three  objectives.  GeoNet  uses  the

deep  network  to  estimate  the  residual  flow,  but  DF-

Net  uses  the  deep  network  to  estimate  the  optical

flow. Klingner et al.[10] used a semantic segmentation

network  to  detect  moving  objects,  preventing  photo-

metric reconstruction from contaminating.

 2.2    Uncertainty in Depth Estimation

Machine  learning  treats  under-constraint  as  an

uncertainty problem[24]. Liu et al.[25] made a systemat-

ical  discussion  on  uncertainty  in  depth  estimation.

Song et  al.[26] divided  the  uncertainty  of  neural  net-

works  into  two  categories:  random  uncertainty  and

model  uncertainty.  Random uncertainty  is  from sen-

sor and motion noise, which may cause inaccurate ob-

servation data. Model uncertainty mainly refers to the

uncertainty of model parameters[26].

Random  Uncertainty. Choi et  al.[18] proposed  a

model  consisting  of  a  monocular  depth  network,  a

confidence  network,  and  a  threshold  network.  They

distilled the training dataset with the confidence and

threshold networks to supervise the monocular depth

network.  Shen et  al.[27] supposed  that  the  noise

obeyed  the  Gaussian  distribution  in  the  training

dataset.  They  used  a  two-stage  teacher-student

framework to estimate the uncertainty.

Model  Uncertainty. Asai et  al.[15] formulated  re-

gression  with  uncertainty  estimation  as  a  multi-task

learning  problem  and  designed  a  separate  multi-task

loss  to  optimize  the  depth  and  uncertainty,  respec-

tively. Mertan et al.[16] treated the relative depth esti-

mation  problem  as  maximum  likelihood  estimation.

They assumed that the depth followed a normal dis-

tribution  and  used  a  neural  network  to  learn  the

mean and variance distribution parameters. The mean

represents  the  depth,  and  the  variance  indicates  the

uncertainty.  Teixeira et  al.[17] constructed  a  confi-

dence  network  and  a  depth  network.  The  estimated

confidence is used to filter out unreliable depth.

Poggi et  al.[19] summarized  the  uncertainty  quan-

tification  of  the  depth  estimation.  Their  work  ana-

lyzed  three  uncertainty  categories:  empirical,  predic-

tive,  and  Bayesian.  Predictive  and  Bayesian  cate-

gories  need  extra  uncertainty  estimation  models.

However, integrating them into the baseline model is

inconvenient.  Empirical  estimation  could  work  inde-

pendently  with  the  baseline  model,  which  is  suitable

for  single-value  objective  optimization  by  increasing

the diversity of iteration solutions.

The most difference between the method of Poggi

et al.[19] and our method is that we make use of con-

secutive  training  epochs  or  a  Siamese  network  to

identify  uncertainty  and  convert  it  into  a  spatial

mask over the training image to guide network learn-

ing,  instead of increasing the diversity by making an

ensemble of different solutions.

 3    Depth Estimation with Uncertainty

Quantification

We propose an uncertainty quantification method

to  train  self-supervised  monocular  depth  estimation.

Our goal function can be expressed as follows: 

F (Γ,M),

where Г is the baseline model, and M is the uncertain-

ty  mask  constructed  by  the  uncertainty  information

over all pixels of the depth map to identify uncertain-

ty positions and measure the uncertainty degree.

We  use  Snapshot[28] and  Siam[29] to  realize  our

method  (see Fig.2(a)).  The  uncertainty  quantifica-

tion  consists  of  uncertainty  measurement,  uncertain-

ty  guidance,  and  uncertainty  post-processing  (see

Fig.2(b)).

 3.1    Snapshot and Siam

Snapshot. Snapshot  is  a  learning  strategy  to  en-

semble multiple solutions to solve the single-value op-

timization  question[28],  promoting  the  diversity  of

models by aggressively cycling the learning rate used

during  a  single  training.  We  find  that  neighboring

epochs  can  exhibit  well  constraint  and  under-con-

straint  parts  with  inconsistent  results.  Thus,  we

choose  pre-converged  epochs  as  members  to  distin-

guish certainty and uncertainty pixels.

Siam. Siamese  network  (Siam)  consists  of  two

identical  sub-networks[29] called  twins.  We  use  Siam

to  run  two  streams  of  training,  where  the  twins  in

each epoch are  used to  compare  and distinguish  cer-

tainty pixels and uncertainty pixels.
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Fig.2.  Overview of the uncertainty quantification method. (a) Two empirical uncertainty quantification approaches, Snapshot and
Siam, in the training process. (b) Uncertainty quantification method consisting of three steps: uncertainty measurement, uncertain-
ty guidance, and uncertainty post-processing. Symbol  is the baseline model, M is the uncertainty mask, and  denotes the loss
function.
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We consider Snapshot and Siam to suit for differ-

ent  conditions.  Snapshot  calculates  the  horizontal

variance  of  the  baseline  model  based  on  the  differ-

ence  of  consecutive  epochs,  which  can  provide  more

meaningful  uncertainty  information  for  the  relatively

weak baseline model. Siam calculates the uncertainty

by  measuring  the  vertical  variance  between  the  two

sub-networks,  which  can  provide  more  useful  uncer-

tainty information for models with relatively stronger

performance.

 3.2    Uncertainty Measurement

Snapshot  collects  consecutive  epochs  in  back-for-

ward order from the current epoch and calculates un-

certainty (see Fig.3). During the training process, the

variance of depth maps from different epochs is used

to calculate the uncertainty information: 

U =
1

N

N∑
i=1

(Di −DSnapshot)
2, (1)

Di

i DSnapshot

where N is  the  number  of  closely  adjacent  pre-con-

verge models,  is the estimated depth of model Г at

the -th  epoch  and  is  the  average  of  depth

maps: 

DSnapshot =
1

N

N∑
i=1

Di.

We need to determine two factors. One is how many

pre-converged  epochs  are  needed,  and  the  other  is

which epochs are chosen.  We search one small  inter-

val for one empirically optimal value for the first one.

For  the  second  one,  we  reasonably  use  consecutive

pre-converged  epochs  just  before  the  current  epoch

because  certainty  parts  benefiting  from the  well-con-

straint should keep stable outputs in closely adjacent

epochs.

Siam  calculates  the  uncertainty  in  a  mirroring-

and-referring way, where the twin networks act like a

mirror for each other to refer to and calculate uncer-

tainty.  Siam runs  relatively  independent  streams.  At

the  same  epoch,  the  depth  results  from  twins  would

compare and calculate the uncertainty: 

U =
1

2

2∑
i=1

(Di −DSiam)
2,

DSiamwhere  is the average of depth maps: 

DSiam =
1

2

2∑
i=1

Di.

There  is  one  factor  for  Siam  to  determine  which

epoch  starts  to  estimate  the  uncertainty.  We  differ-

ently get an empirically optimal value.

 3.3    Uncertainty Guidance

U

U

u

Here,  we  use  the  uncertainty  measurement  to

explicitly and spatially guide the learning of the net-

work. We use the mean value of the uncertainty  as

the  threshold ,  imposing  the  uncertainty  on  pixels

differently: 

u =
1

|I|
∑
k∈I

U(k), (2)

U(k) k

|I|
where  is the uncertainty value at each pixel  in

the image space I, and  is the total amount of pix-

els in input image I.
U(k)

u

U(k)

u

If  the uncertainty value  is  smaller  than the

threshold ,  we  think  it  has  not  been  influenced  by

uncertainty  and  should  only  have  the  definite  well-

constraint  loss  part.  Conversely,  the  total  loss  can

add  uncertainty  when  the  uncertainty  value  is

greater  than  the  threshold .  The  uncertainty  mask

M is: 

M(k) =

{
1, if U(k) ⩽ u,

1 + λU(k), otherwise,
(3)

λwhere  is  an  empirical  parameter  to  control  the

weight given to the uncertain pixel.

Lnew = ML
L

After  considering  the  uncertainty  guidance,  the

new  loss  function  can  be  expressed  as ,

and  is  the  loss  function  of  the  baseline  model  Г.

Fig.4 demonstrates  two  uncertainty  guidance  exam-

(a) (b)

(c) (d)

(e) (f) 

Fig.3.  Five depth maps from consecutive pre-converged epochs
based  on  the  baseline  model  Monodepth2-M50  and  the  corre-
sponding uncertainty mask. (a) Depth estimated from the 13th
epoch. (b) Depth estimated from the 14th epoch. (c) Depth es-
timated  from  the  15th  epoch.  (d)  Depth  estimated  from  the
16th epoch. (e) Depth estimated from the 17th epoch. (f) Un-
certainty mask.

514 J. Comput. Sci. & Technol., May 2023, Vol.38, No.3



ples on Snapshot and Siam. Uncertainty guidance can

persistently  concentrate  on  masking  the  rich  uncer-

tainty regions, and their area shrinks when the learn-

ing advances.

 3.4    Uncertainty Post-Processing

When the training process terminates, the trained

model  cannot  completely  reach  the  desired  optimal

point. It is possible to be a bit under-fit or over-fit. If

the training termination is beyond the optimal point,

it  may  cause  texture  copy  or  other  artifacts.  There-

fore,  we use the averaging result as the final  output.

If the last epoch in Snapshot or the better one in twin

models  is  quite  near  but  does  not  reach  the  optimal

point, we choose the last epoch as the final output for

Snapshot and the better one in twin models as the fi-

nal output for Siam because it would be the closest to

the optimal point.

Dup

According  to  the  principle  above,  the  final  depth

after  uncertainty  post-processing  is  determined

based on the uncertainty information: 

Dup(k) =

{
D(k), if U(k) ⩽ u,

DΓ′(k), otherwise,

D DSnapshot DSiam DΓ′where  denotes  or ,  is the depth

Γ′

Γ′ u

map  of  the  last  epoch  model  in  Snapshot  or  the

better  twine  model  in  the  Siam,  and  is  the

threshold in (2).

 3.5    Baseline Models

Γ

We  choose  Monodepth2[8] and  Hints[14] as  the

baseline model  to validate the proposed uncertain-

ty  quantification  method  respectively.  Monodepth2

and  Hints  are  the  two  frequently  used  methods  and

have well-organized source codes, which could guaran-

tee the fairness  of  evaluation.  We do not modify the

parameters and structures of the two baseline models

but only impose uncertainty on their loss functions.

Lp

Monodepth2. Referring  to  [20, 30],  the  photomet-

ric reconstruction loss function  is as follows: 

Lp(It, It′→t) =
α

2
(1− SSIM(It, It′→t))+

(1− α) ∥It − It′→t∥1 ,

α = 0.85

3× 3

It′→t

where  and SSIM() denotes structure similari-

ty index measure which is computed over a  pix-

el window[31]. The re-projected image  is generat-

ed by operation: 

It′→t = It′⟨proj(Dt,Tt→t′ ,K)⟩,

⟨·⟩ Tt→t′

K∈R3×3

proj()

Dt It′

where  is  the  sampling  operator,  is  the  cam-

era  relative  pose,  and  is  the  camera  intrin-

sic  parameter  matrix.  Operation  gets  the  2D

coordinates of the projected depths  in image : 

proj(Dt,Tt→t′ ,K) = KTt→t′Dt(pt)K
−1pt,

ptwhere  is a pixel coordinate.

Ls

To  encourage  neighboring  pixels  to  have  similar

depths,  an  edge-aware  depth  smoothness  loss 

weighted  by  image  gradients  is  used  to  improve  the

predictions around object boundaries: 

Ls = |∂xD
mn
t |e−∥∂xIt∥ + |∂yD

mn
t |e−∥∂yIt∥,

∂x ∂y

Dmn
t

where  and  are gradient operations on the x-axis

and y-axis respectively, and  is the mean-normal-

ized inverse depth.

Lp

Ls

The final loss is computed as the weighted sum of

image photometric reconstruction loss  and smooth-

ness loss : 

L = Lp + µLs,

µ = 0.01where  is  the  weighting  for  the  smoothness

term.

Hints. Watson et  al.[14] introduced  depth  hint  to

help  the  network  escape  from  local  minima  and  to

In
p
u
t

2
0
th

1
9
th

1
8
th

1
7
th

1
6
th

(a) (b) 

Fig.4.  Five uncertainty masks from the 20th epoch back to the
16th  epoch.  (a)  Monodepth2+Snapshot-M50.  (b)  Hints+Siam-
MS50.
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D̃t

Ĩt′→t

D̃t k

guide  it  toward  a  better  overall  solution.  A  stereo

matching  algorithm[32] is  used  to  get  depth  hint ,

creating  a  second  synthesized  view .  They  had

conditions to determine whether or not to apply a su-

pervised loss  as the ground truth on pixel : 

L =


Lp(D(k)) + LlogL1

s (D(k), D̃(k)),

if Lp(D(k)) < Lp(D̃(k)),

Lp(D(k)), otherwise,

LlogL1
s (D(k), D̃(k)) = log(1 + ∥It − It′→t∥1)where .

 4    Experiments

↓

↑

In  experiments,  we  train  the  proposed  uncertain-

ty quantification method on the KITTI dataset[33] and

evaluate  it  using  the  Eigen  split  test  frames[34].  The

program  is  implemented  with  Pytorch  and  GPU:

NVIDIA  GeForce  GTX  2080Ti  × 2.  In  our  experi-

ments,  M  denotes  that  the  training  is  on  monocular

videos, S denotes that the training is on stereo pairs,

and  MS  denotes  that  the  training  is  on  calibrated

binocular  videos.  In  all  tables,  the  symbol  means

that  the  smaller  the  value  is,  the  better  the  perfor-

mance  is.  The  symbol  means  that  the  bigger  the

value  is,  the  better  the  performance  is.  The  best  re-

sult in each category is written in bold.

 4.1    Evaluation Metrics

D Dgt

δ

δ < 1.25 δ < 1.252 δ < 1.253

Depth Metrics.  We use seven metrics[34] to  evalu-

ate  the  estimated  depth  results.  The  four  error  met-

rics  measure  the  difference  between  predicted  depth

 and ground-truth depth :  the absolute  relative

error  (Abs  Rel),  the  squared  relative  error  (Sq  Rel),

the root mean square error (RMSE), and the logarith-

mic  root  mean  square  error  (RMSE  log).  The  three

accuracy  metrics  give  the  fraction  of  predicted

depth  inside  an  image  whose  ratio  and  inverse  ratio

with  the  ground  truth  are  below  the  thresholds

, , and  respectively. For the

first  four  metrics,  the  lower,  the  better.  For  the  last

three metrics, the higher, the better (see Table 1).

Uncertainty  Metrics. We  use  two  metrics  of  the

area under the sparsification error (Ause) (4) and the

area  under  the  random  gain  (Aurg)  (5)  to  evaluate

how significant the model uncertainties are[19]: 

Ause(U ,D) = ϵ(D)− ϵ(Du), (4)
 

Aurg(U ,D) = E1(rand,D)− E1(U ,D), (5)

ϵ(·) Duwhere  is the depth map error metric and  is the

depth map for the 2% pixels with the highest uncer-

δ ⩾ 1.25 ϵ

tainty.  As  shown  in Table 1,  there  are  seven  error

metrics  in  the  depth  evaluation.  In  the  uncertainty

evaluation,  we  consider  using  Abs  Rel,  RMSE,  and

 as the error metric ( ) to quantify the uncer-

tainty  map,  respectively.  Ause  quantifies  how  close

the estimation is to the ideal sparsification uncertain-

ty (the lower, the better). Aurg quantifies how better

it is compared with no modeling (the higher, the bet-

ter).

 4.2    Parameter Setting

λ

N

λ

λ = 1

λ = 1

We  do  several  important  experiments  to  deter-

mine  the  empirical  parameter  in  (3),  the  starting

epoch  of Siam, the number of closely adjacent pre-

converge  models N in  (1)  of  the  Snapshot,  and  the

threshold  of  uncertainty  mask M.  We  approximately

enumerate  multiple  values  to  determine  a  recom-

mended  setting  for  the  subsequent  experiments.  As

shown in Table 2, we set  for all experiments to

reduce the computation cost. We set  for all ex-

periments to reduce the computation cost.  As shown

in Table 3,  we set  the  starting epoch of  the  Siam at

Table  1.   Depth Metrics

Metric Definition

Abs Rel
1

|D|
∑
k∈I

|D(k)−Dgt(k)|
Dgt(k)

Sq Rel
1

|D|
∑
k∈I

|D(k)−Dgt(k)|2

D̂(k)

RMSE

√
1

|D|
∑
k∈I

|D(k)−Dgt(k)|2

RMSE log

√
1

|D|
∑
k∈I

|log D(k)− log Dgt(k)|2

Accuracy Percentage of D(k)

s.t. δ = max
(

D(k)

Dgt(k)
,
Dgt(k)

D(k)

)
< threshold

D(k) k
Dgt(k)

|D|
1.25, 1.252, 1.253

Note:  is the predicted depth at each pixel  in the image
space I,  is  the  corresponding  ground  truth  depth,  and

 is  the  total  amount  of  pixels  in  the  input  image.  Three
different  thresholds  are  used  in  the  accuracy
metrics respectively.

λTable  2.   Enumeration Experiment of  the Hyperparameter 
in the Uncertainty Mask Calculation

λ Monodepth2+Snapshot-M50 Hints+Siam-MS50

↓Abs Rel ↓RMSE δ < 1.25↑ ↓Abs Rel ↓RMSE δ < 1.25↑

0.6 0.110 4.574 0.881 0.101 4.561 0.881

0.8 0.110 4.599 0.882 0.102 4.539 0.881

1.0 0.109 4.551 0.885 0.102 4.546 0.880

1.2 0.108 4.542 0.884 0.102 4.563 0.882

1.4 0.110 4.580 0.886 0.102 4.572 0.882
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N = 5

the  1st  epoch.  As  shown in Table 4,  we  set  parame-

ter  and  start  the  uncertainty  guidance  of  the

Snapshot at the 6th epoch. In (2), the mean and oth-

er  possible  options  like  fractional  mean  and  median

can be used as the threshold to determine the uncer-

tainty  mask. Table 5 and Fig.5 show  that  the  mean

value as the threshold achieves the best performance.

 4.3    Performance Evaluation

We evaluate  the  accuracy  of  the  depth  and  how

significant the model uncertainties are. A total of six

conditions  of  Monodepth2,  Monodepth2+Snapshot,

Monodepth2+Siam,  Hints,  Hints+Snapshot,  and

Hints+Siam are  taken  into  evaluation.  We use  three

training  paradigms:  stereo  pairs,  monocular  videos,

and calibrated binocular videos. We use the convolu-

tional neural networks ResNet18 and ResNet50 to ex-

tract  the  image  features.  Because  the  stereo  match-

ing  algorithm needs  a  stereo  pairs  image,  Hints  can-

not train on monocular videos.

Depth  Evaluation. Fig.6 and Fig.7 illustrate  the

accuracy  of  the  estimated depth on the  two baseline

models  Monodepth2  and  Hints,  respectively.  Snap-

shot and Siam have improved the accuracy of the two

baseline  models  on  all  training  paradigms  and

ResNet18/50.

Uncertainty  Evaluation. We  quantitatively  evalu-

ate  the  model  uncertainty  using  the  two uncertainty

metrics.  Monodepth2+Snap+Self-M50  is  the  best

model  in  the  existing  uncertainty  method[19].  Mon-

odepth2+Snapshot-M50  and  Hint+Siam-MS50  are

the  optimal  models  in  our  results. Table 6 summa-

rizes  the  quantitative  evaluation  results  on  the  two

uncertainty  metrics.  We can  see  that  our  results  are

better than those of the method of [19].

Ablation Study. We conduct an ablation study to

validate the effectiveness of the uncertainty guidance

and post-processing. We switch on and off uncertain-

ty  guidance  and  post-processing  in  all  three  training

paradigms on baseline models Monodepth2 and Hints.

Table 7 and Table 8 present  the  complete  result,  re-

spectively,  where  UG  denotes  uncertainty  guidance,

UP  denotes  uncertainty  post-processing,  √ denotes

``turn  on  the  corresponding  step'',  and  × denotes

``turn  off  the  corresponding  step''.  We  can  see  that

uncertainty guidance and uncertainty post-processing

can improve the accuracy of the depth estimation net-

work, respectively. The best result is to use both un-

certainty guidance and uncertainty post-processing.

Comparison  with  Existing  Methods. We  make

comprehensive comparisons with the current represen-

tative methods. Table 9 presents the quantitative re-

sults  of  the  estimated  depth.  For  the  baseline  model

Monodepth2,  Monodepth2+Snapshot-M50  achieves

the  best  result.  For  the  baseline  model  Hints,  Hints-

Siam-MS50 achieves the best result. Our proposed un-

certainty quantification improves the accuracy of the

two baseline models.  Compared with the uncertainty

work[19], our results are superior. Fig.8 demonstrates a

group of resulted depth maps. The objects have com-

plete  structures  and  sharp  boundaries  in  our  depth

maps.

Table  3.   Enumeration Experiments of the Starting Epoch N
in Siam in the Hints+Siam-MS50 Model

N ↓Abs Rel ↓RMSE δ < 1.25↑

1 0.102 4.546 0.880

3 0.102 4.572 0.881

5 0.102 4.568 0.881

Table  4.   Number of Closely Adjacent Pre-Converge Models N
of Snapshot in the Monodepth2+Snapshot-M50 Model

N ↓Abs Rel ↓RMSE δ < 1.25↑

3 0.110 4.593 0.883

5 0.109 4.551 0.885

7 0.146 5.366 0.802

Table  5.   Verification Experiments of Different Thresholds in
the Uncertainty Mask Calculation

Mask Monodepth2+Snapshot-M50 Hints+Siam-MS50

↓
Abs
Rel ↓

RMSE δ < 1.25
↑ ↓

Abs
Rel ↓

RMSE δ < 1.25
↑

Mean 0.109 4.551 0.885 0.102 4.546 0.880

0.8 mean 0.115 4.670 0.871 0.102 4.546 0.882

1.2 mean 0.115 4.702 0.873 0.102 4.555 0.881

Median 0.111 4.584 0.882 0.103 4.584 0.878

(a) (b)

(c) (d) 

U

U
U 0.8

U
U

Fig.5.   Uncertainty  masks  from the  uncertainty  map  based
on  different  thresholds  on  the  baseline  model:  Monodepth2-
M50.  (a)  Median  of  the  uncertainty  map  as  the  threshold.
(b)  Mean  of  the  uncertainty  map  as  the  threshold.  (c) 
mean of the uncertainty map  as the threshold. (d) 1.2 mean
of the uncertainty map  as the threshold.
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 5    Conclusions

This paper proposes a novel uncertainty quantifi-

cation  method  to  train  a  self-supervised  monocular

depth  estimation  network.  The  uncertainty  quantifi-

cation  method  contains  uncertainty  measurement,

guidance,  and  post-processing.  Experimental  results

on the KITTI dataset showed that our approach can
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Fig.6.   Quantitative  evaluation  of  Snapshot  and  Siam on  the  baseline  model  Monodepth2[8] with  seven  depth  metrics.  One  radar
chart illustrates one metric and an axis of the radar chart represents the combination of one training paradigm (M, S, or MS) and
network modules (18 or 50). (a) Abs Rel. (b) Sq Rel. (c) RMSE. (d) RMSE log. (e) . (f) . (g) .
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improve the depth estimation accuracy of seven eval-

uation  metrics  and  exceeds  the  existing  uncertainty

method  in  two  uncertainty  metrics.  We  also  demon-

strated  the  effectiveness  of  the  proposed  uncertainty

guidance  and  post-processing.  They  can  improve  the

accuracy of the depth estimation network. The uncer-

tainty  quantification  can  be  conveniently  generalized

to other deep-learning work.
 

Table  6.   Uncertainty Evaluation

Method Abs Rel RMSE δ ⩾ 1.25

↓Ause ↑Aurg ↓Ause ↑Aurg ↓Ause ↑Aurg

[19] 0.069 0.005 3.733 0.258 0.101 0.008

Ours1 0.054 0.018 3.316 0.557 0.071 0.035

Ours2 0.043 0.027 3.071 0.860 0.057 0.051

Note:  Ours1:  Monodepth2+Snapshot-M50;  Ours2:  Hint+Siam-

MS50.
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Fig.7.  Quantitative evaluation of Snapshot and Siam on the baseline model Hints[14] with seven depth metrics. One radar chart illus-
trates one metric and an axis of the radar chart represents the combination of one training paradigm (M, S, or MS) and network
modules (18 or 50). (a) Abs Rel. (b) Sq Rel. (c) RMSE. (d) RMSE log. (e) . (f) . (g) .
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Table  7.   Ablation Study on the Baseline Model Monodepth2

Backbone[8] Train UG UP Snapshot Siam

↓Abs Rel ↓RMSE δ < 1.25↑ ↓Abs Rel ↓RMSE δ < 1.25↑

Monodepth2-18 M × × 0.118 4.887 0.874 0.118 4.887 0.874

M √ × 0.116 4.807 0.876 0.115 4.784 0.876

M √ D 0.115 4.807 0.874 0.116 4.784 0.873

M √ √ 0.114 4.762 0.879 0.114 4.693 0.877

Monodepth2-50 M × × 0.112 4.718 0.880 0.112 4.718 0.880

M √ × 0.109 4.556 0.885 0.111 4.714 0.879

M √ D 0.110 4.560 0.881 0.111 4.716 0.878

M √ √ 0.109 4.551 0.885 0.111 4.712 0.880

Monodepth2-18 S × × 0.110 5.001 0.867 0.110 5.001 0.867

S √ × 0.110 4.950 0.864 0.109 4.921 0.865

S √ D 0.109 4.957 0.866 0.108 4.890 0.866

S √ √ 0.109 4.924 0.866 0.109 4.882 0.865

Monodepth2-50 S × × 0.106 4.861 0.871 0.106 4.861 0.871

S √ × 0.105 4.816 0.870 0.105 4.803 0.872

S √ D 0.105 4.833 0.868 0.104 4.780 0.874

S √ √ 0.105 4.799 0.870 0.103 4.709 0.875

Monodepth2-18 MS × × 0.107 4.788 0.873 0.107 4.788 0.873

MS √ × 0.106 4.725 0.873 0.106 4.714 0.871

MS √ D 0.108 4.723 0.871 0.107 4.715 0.872

MS √ √ 0.105 4.717 0.874 0.106 4.678 0.873

Monodepth2-50 MS × × 0.103 4.658 0.880 0.103 4.658 0.880

MS √ × 0.102 4.650 0.880 0.104 4.650 0.881

MS √ D 0.103 4.651 0.880 0.104 4.651 0.880

MS √ √ 0.102 4.648 0.881 0.103 4.649 0.881

 
 

Table  8.   Ablation Study on the Baseline Model Hints

Backbone[14] Train UG UP Snapshot Siam

↓Abs Rel ↓RMSE δ < 1.25↑ ↓Abs Rel ↓RMSE δ < 1.25↑

Hints-18 S × × 0.109 4.812 0.872 0.109 4.812 0.872

S √ × 0.107 4.742 0.876 0.107 4.747 0.875

S √ D 0.106 4.763 0.874 0.106 4.748 0.874

S √ √ 0.105 4.714 0.878 0.105 4.683 0.877

Hints-50 S × × 0.104 4.677 0.879 0.104 4.677 0.879

S √ × 0.103 4.604 0.879 0.102 4.581 0.881

S √ D 0.104 4.613 0.879 0.102 4.576 0.882

S √ √ 0.102 4.582 0.881 0.101 4.551 0.883

Hints-18 MS × × 0.107 4.780 0.874 0.107 4.780 0.874

MS √ × 0.105 4.726 0.875 0.105 4.654 0.877

MS √ D 0.104 4.727 0.876 0.107 4.649 0.876

MS √ √ 0.105 4.676 0.876 0.103 4.620 0.879

Hints-50 MS × × 0.102 4.629 0.883 0.102 4.629 0.883

MS √ × 0.102 4.602 0.882 0.103 4.599 0.879

MS √ D 0.103 4.602 0.881 0.104 4.599 0.881

MS √ √ 0.102 4.582 0.883 0.102 4.546 0.880
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Table  9.   Quantitative Comparison with Existing Methods

Method Year Train ↓Abs Rel ↓Sq Rel ↓RMSE ↓RMSE log δ < 1.25↑ δ < 1.252↑ δ < 1.253↑

Zhou et al.[21] 2017 M 0.183 1.595 6.709 0.270 0.734 0.902 0.959

GeoNet[22] 2018 M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

DF-Net[23] 2018 M 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Ranjan et al.[35] 2019 M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

Struct2depth[36] 2019 M 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Monodepth2[8]⋆‡ 2019 M 0.118 0.912 4.887 0.196 0.874 0.958 0.980

Klingner et al.[10] 2020 M 0.117 0.907 4.844 0.196 0.875 0.958 0.980

PackNet[11] 2020 M 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Johnston and Carneiro[37] 2020 M 0.106 0.861 4.699 0.185 0.899 0.962 0.982

Poggi et al.[19]⊘ 2020 M 0.112 0.838 4.691 0.186 0.881 0.961 0.983

Bian et al.[9] 2021 M 0.126 0.920 5.245 0.208 0.840 0.949 0.979

SD-SSMDE[38] 2022 M 0.108 0.751 4.485 0.180 0.885 0.964 0.984

Ours1 ((Monodepth2+Snapshot-50)) - M 0.109 0.792 4.551 0.184 0.885 0.963 0.983

Garg et al.[7] 2016 S 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Monodepth R50[20] 2017 S 0.133 1.142 5.533 0.230 0.830 0.936 0.970

StrAT[39] 2018 S 0.128 1.019 5.403 0.227 0.827 0.935 0.971

Poggi et al. [40] 2018 S 0.129 0.996 5.281 0.223 0.831 0.939 0.974

Monodepth2[8]* 2019 S 0.110 0.903 5.001 0.209 0.867 0.949 0.975

Hints[14]⋆‡ 2019 S 0.109 0.870 4.812 0.194 0.872 0.957 0.980

Poggi et al.[19]⊘ 2020 S 0.108 0.835 4.856 0.202 0.865 0.951 0.977

Wavelet Decomposition[12] 2021 S 0.105 0.813 4.625 0.191 0.879 0.959 0.981

Ours(Hints-Siam-50) - S 0.101 0.771 4.551 0.187 0.883 0.961 0.981

Hints[14]⋆‡ 2019 MS 0.107 0.857 4.780 0.193 0.874 0.958 0.980

Monodepth2[8]⋆ 2019 MS 0.107 0.829 4.788 0.197 0.873 0.957 0.979

Poggi et al.[19]⊘ 2020 MS 0.104 0.783 4.654 0.190 0.876 0.958 0.981

Ours(Hints-Siam-50) - MS 0.102 0.769 4.546 0.188 0.880 0.961 0.982

Note: ⋆ denotes the model is retrained, ‡ denotes the baseline method, and ⊘ denotes the uncertainty method[19].
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Fig.8.  Qualitative comparison with existing methods. (a) RGB input. (b) Depth estimated by Monodepth2[8]. (c) Depth estimated
by Hints[14].  (d) Depth estimated by PackNet[11].  (e) Depth estimated by Klingner et al.[10].  (f) Depth estimated by Poggi et al.[19].
(g) Depth estimated by our method.
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