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Abstract    Prevalent  use  of  motion  capture  (MoCap)  produces  large  volumes  of  data  and  MoCap  data  retrieval  be-

comes crucial for efficient data reuse. MoCap clips may not be neatly segmented and labeled, increasing the difficulty of re-

trieval. In order to effectively retrieve such data, we propose an elastic content-based retrieval scheme via unsupervised

posture encoding and strided temporal alignment (PESTA) in this work. It retrieves similarities at the sub-sequence level,

achieves  robustness  against  singular  frames  and  enables  control  of  tradeoff  between  precision  and  efficiency.  It  firstly

learns  a  dictionary of  encoded postures  utilizing unsupervised adversarial  autoencoder  techniques  and,  based on which,

compactly symbolizes any MoCap sequence. Secondly, it conducts strided temporal alignment to align a query sequence to

repository sequences to retrieve the best-matching sub-sequences from the repository. Further, it extends to find matches

for multiple sub-queries in a long query at sharply promoted efficiency and minutely sacrificed precision. Outstanding per-

formance of  the proposed scheme is  well  demonstrated by experiments on two public  MoCap datasets and one MoCap

dataset captured by ourselves.
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1    Introduction

Motion  capture  (MoCap)  is  widely  employed  for

film  production,  video  game  development,  computer-

assisted medical diagnosis and so forth. Prevalent use

of  motion capture is  producing large volumes of  Mo-

Cap  data.  With  a  large  database  (or  repository)  of

MoCap  sequences  at  hand,  it  is  often  crucial  to  re-

trieve the right sequences or sub-sequences for synthe-

sis  or  analysis.  Correspondingly,  content-based  Mo-

Cap data retrieval has been intensively researched in

recent years.

Existing  content-based  MoCap  data  retrieval

methods can be classified in different ways. They can

be  classified  into  two  categories,  one  that  retrieves

whole  MoCap  sequences[1–21] and  the  other  that  re-

trieves  sub-MoCap-sequences  (or  sub-sequences  for

short)  similar  to  the  query[22–33].  In  general,  the  for-

mer  runs  with  higher  efficiency  by  matching  at  a

coarser  granularity  without  temporally  aligning  the

retrieved  sequences  or  sub-sequences  and  the  query,

while the latter runs less efficiently due to the similar-

ity  search  at  a  finer  granularity.  Existing  algorithms

may also be classified into supervised[14–17, 20, 21, 27] and

unsupervised[1–13, 18, 19, 22–26, 28–33] ones.  The  former,

though leading to high performance as reported, usu-

ally require huge data labeling efforts, are sensitive to

labeling ambiguities, may not generalize well as limit-

ed by the scope of  labelling,  and may not be readily

applicable for sub-sequence similarity search.
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We  are  motivated  to  make  a  generic  scheme  for

MoCap data retrieval that works on MoCap clips, ei-

ther  segmented and labeled or  not,  and locates  simi-

larities,  either  holistic  or  partial,  between  MoCap

clips.  Therefore,  we  take  an  approach  of  unsuper-

vised  sub-sequence  retrieval.  Specifically,  we  propose

a novel elastic scheme for content-based MoCap data

retrieval via unsupervised posture encoding and strid-

ed  temporal  alignment  (PESTA).  The  core  of  the

scheme learns a dictionary of  encoded postures using

unsupervised  neural  network  based  adversarial  au-

toencoder  (AAE)  techniques[34],  symbolizes  each  Mo-

Cap  sequence  based  on  the  learned  dictionary,  and

temporarily aligns a given query to the repository se-

quences  to  find  sub-sequence  similarities.  Further,  it

extends  for  efficient  retrieval  by  multiple  sub-queries

inside  a  long  query.  The  most  remarkable  contribu-

tions of the proposed scheme are listed as follows.

1) Unsupervised  Dictionary-Based  Motion  Ab-
straction. The proposed scheme learns a posture dic-

tionary  using  the  neural  network  of  unsupervised

AAE techniques  and,  based  on  which,  converts  each

raw  MoCap  sequence  into  a  compact  string  of  sym-

bols.  This  abstract  motion  representation  serves  as

the basis for the similarity search.

2) Robust  Sequence  Alignment  Method. Distinc-

tive  from  most  existing  sub-sequence  retrieval  meth-

ods,  our  proposed  strided  temporal  alignment  (STA)

method relaxes the constraint of continuity and is re-

silient  to  intermittently  occurring  singular  frames  in

the alignment.

3) Elastic  Framework  Configuration. The  pro-

posed framework is  elastic  in  several  aspects.  It  may

be used for both sub-sequence retrieval and whole-se-

quence retrieval. It supports both holistic queries and

sub-queries (with acceleration) for the retrieval. Flexi-

ble  tradeoff  between  precision  and  speed  of  retrieval

may be achieved by adjusting the posture dictionary

size. Further, it is easy to extend the repository as no

data labelling is required.

We provide a detailed introduction to PESTA in

this paper as follows. In Section 2, we survey the re-

lated work on content-based MoCap data retrieval. In

Section 3,  we  formulate  the  problem  we  address.  In

Sections 4–7, we explain how PESTA operates for dif-

ferent  kinds  of  MoCap  data  retrievals.  In Section 8,

we  demonstrate  the  effectiveness  of  PESTA  through

experiments. In Section 9, we summarize our findings

and suggest future work.

Code and data of this work① will be posted to fa-

cilitate further research in this field. 

2    Related Work

In  recent  years,  many  algorithms  have  been  pro-

posed for content-based MoCap data retrieval[35].  We

divide  them  into  two  categories:  one  that  retrieves

whole  MoCap sequences  and the  other  that  retrieves

sub-MoCap-sequences similar to the query. 

2.1    Whole-Sequence Retrieval

Liu et  al.[1] and  Deng et  al.[2] used  hierarchical

structures  for  indexing motions  or  fusing similarities.

Liu et al.[1] made elastic matching to compare the key

frame  sets  of  two  MoCap  sequences,  while  Deng

et  al.[2] turned  a  body  part's  motion  into  a  string  of

motion pattern indices and used fast string matching

for similarity measurement. Lv et al.[3] also employed

a  tree  structure,  named  minimal  motion  spanning

tree, to construct a motion signature for each MoCap

sequence,  which  statistically  describes  its  high-level

and low-level morphological and kinematic character-

istics.

Some  algorithms  employ  matrix  factorization  to

derive motion descriptors. Jin and Prabhakaran[4] ap-

plied  singular  value  decomposition  to  motion  data

matrices and described a motion by the histogram of

the  semantically  quantized  singular  values.  Sun

et al.[5] conducted a low-rank subspace decomposition

on  a  motion  sequence  volume  representation  to  ob-

tain three rank-1 tensors for motion description. Zhu

et al.[6] performed sparse decomposition in the quater-

nion space and used the dictionary component to de-

scribe  a  motion.  Wang et  al.[7] transformed  six  fea-

ture  matrices  of  the  whole  body  and  body  parts  to

eigenspaces to obtain the eigenvectors for motion de-

scription.

Some algorithms match motions based on key mo-
tion  frames'  or  segments'  features.  Xiao et  al.[8] con-
structed a weighted bipartite graph of two key frame

sets and measured their similarity by weighted graph
matching. Qi et al.[9] trained a Gaussian mixture mod-
el  for  every  motion  class  and  used  them  with  the
sparse  coding for  retrieval.  Sedmidubsky et  al.[10] ob-

tained a  dictionary of  motion words  (MWs) by clus-
tering  on  fixed-length  motion  segments,  represented
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any MoCap sequence by a sequence of MWs and used
mature text-retrieval  models  to  complete  the MoCap
data retrieval.

Some  algorithms  use  energy  features  to  describe

human motions. Li et al.[11] proposed to use a motion

energy  image  to  represent  each  MoCap  sequence.

Feng et al.[12] represented a motion by potential ener-

gy  and  kinetic  energy  of  a  human  torso.  They  also

used  entropy  to  measure  the  intensity  of  different

joints in a motion to find the most remarkable ones.

Xiao et  al.[13] combined  the  earth  movers  distance

with the quaternion description to measure the simi-

larity between a query motion and the motions in the

database.

Recently,  some  deep  neural  network  based  algo-

rithms  have  been  proposed  for  motion  classification

and  retrieval.  Deep[14–16] and  recurrent[17] neural  net-

works constitute the best-performing methods in rec-

ognizing actions.  Though highly effective,  these algo-

rithms  are  inherently  designed  for  classifying  actions

and hardly employed to quantify pair-wise similarity,

which is required for the task of data retrieval. Some

exceptions[18–21] exist where discriminative feature vec-

tors  are  extracted  for  similarity  comparison.  Holden

et  al.[18] used  a  deep  convolutional  autoencoder  to

learn  a  human  motion  manifold  from  160-frame  mo-

tion clips and represented each 160-frame motion clip

by  its  latent  feature.  For  each  MoCap  sequence,

Wang  and  Neff[19] extracted  a  160-bit  feature  called

deep signature by a deep autoencoder, and Sedmidub-

sky et al.[20] extracted a 4 096-dimensional motion fea-

ture vector by a fine-tuned deep convolutional neural

network  (DCNN).  Lv et  al.[21] extracted  a  hash  code

for  each motion clip  by an adapted VGG16 network

with a hash layer added.

Among the algorithms reviewed in this subsection,

the deep neural network based ones[14–17, 20, 21] take a

supervised  approach,  while  the  rest  unsupervised.

These supervised methods[14–17, 20, 21] require huge da-

ta  labeling  efforts,  are  sensitive  to  labeling  ambigui-

ties, are not directly applicable to sub-sequence simi-

larity  search,  and may not  generalize  well  as  limited

by the scope of labelling. 

2.2    Sub-Sequence Retrieval

As a  general  technique  for  aligning  two temporal

sequences,  dynamic  time  warping  (DTW)  has  also

been adapted for sub-sequence retrieval by some algo-

rithms. The sub-sequence retrieval algorithms not us-

ing and using DTW and its  variants are reviewed in

the following two paragraphs, respectively.

Sakamoto et  al.[22] built  a  motion  map  using  the

self-organizing map (SOM) technique, with each node

indexing to the corresponding postures in the motion

files.  It  is  used  to  retrieve  sub-sequences  from  the

repository  corresponding  to  a  user-specified  node  se-

quence.  Krüger et  al.[23] found  repository  poses  simi-

lar  to  those  in  a  query  with  the  help  of  a  kd-tree

structure, constructed a lazy neighborhood graph and

found end-constrained paths in it for the result. Choi

et al.[24] rendered all repository motions into stick fig-

ures and allowed a user to draw stick figures to speci-

fy a query. All the files that contain stick figures simi-

lar  to  and in  the  same order  as  the  user-drawn ones

are  retrieved.  Kapadia et  al.[25] described  motions

around  key  frames  by  motion  keys  and  used  a  trie-

based  data  structure  to  map  user-specified  key  se-

quences to motions. Xiao et al.[26] allowed the user to

specify the query by sketching five-stroke human pos-

tures. They devised a two-dimensional geometric pos-

ture  descriptor  and  conducted  a  posture-by-posture

motion  matching.  Sedmidubsky et  al.[27] made  multi-

level segmentation of long MoCap sequences and con-

ducted  the  retrieval  on  the  segment  level,  based  on

the segments' motion features as extracted by a fine-

tuned DCNN.

Kovar  and  Gleicher[28] pre-constructed  a  match

web using  1D minimum heuristics  and  dynamic  pro-

gramming (DTW in essense) for each pair of reposito-

ry MoCap sequences and used the match webs for ef-

ficient  intra-repository  query.  Müller et  al.[29] and

Müller  and Röder[30] all  used  boolean geometric  rela-

tion features for motion description. The former work

indexes the motion repository by inverted lists,  com-

putes  coarse  matches  on  the  segment  level  and  re-

fines the alignment by DTW; the latter learns a mo-

tion  template  for  each  motion  class  and  matches  a

motion  class'  motion  template  to  repository  feature

matrices  using  sub-sequence  DTW.  Forbes  and  Fi-

ume[31] projected  the  motion  data  matrix  into  the

weighted  principal  component  analysis  space  for  re-

duced  dimensionality  and  used  an  adapted  DTW

method to find matching sub-sequences.  Wu et  al.[32]

learned a two-dimensional (2D) SOM of key postures

and  represented  each  MoCap  sequence  with  a  string

of  indices  into  the  SOM.  Motifs  are  derived  to  help

quickly locate candidate matches and the Smith-Wa-

terman (SW) algorithm, an adapted DTW algorithm,

is  used  for  string  matching.  Gupta et  al.[33] used  a

video clip as  the query.  They used dense trajectories
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and 2D relational pose features to describe each video

or  MoCap  frame,  and  conducted  sub-sequence  DTW

for the retrieval. Compared with the non-DTW based

approaches,  the  DTW-based  ones  are  based  on  finer

modelings of frame-to-frame distances and make finer

and more flexible temporal alignment in general.

The sub-sequence retrieval algorithms reviewed in

this subsection can effectively deal with unsegmented

MoCap  clips  that  may  have  highly  variant  lengths.

Among them, the one by Wu et al.[32] is the most re-

lated to ours, as it is also an unsupervised, automatic

and  generic  method  for  MoCap-to-Mocap  data  re-

trieval,  while  the  rest  have  different  orientations

and/or  extra  requirements.  Krüger et  al.[23] quickly

identified  just  the  very  closest  matches  without  pay-

ing much attention to general precison and recall ra-

tios. Gupta et al.[33] used a video clip as a query and

conducted  video-to-MoCap  data  retrieval.  Some

methods  require  user  interaction  in  query  specifica-

tion[22, 24–26], feature selection[29] or characteristic point

specification[31]. Kovar and Gleicher[28] and Müller and

Röder[30] required  motion  types  to  be  known.  Sed-

midubsky et  al.[27] required  data  labelling  to  make  a

supervised learning. 

3    Problem Statement

In  order  to  facilitate  a  quick  reference,  we  firstly

list  in Table 1 the  symbols  that  will  be  consistently

used later in the text.
 
 

Table  1.    Symbols Used in This Work

Symbol Meaning

Q Query (a MoCap sequence)

E Symbolized query

B MoCap database or MoCap repository

M Matrix containing all the raw repository

MoCap sequences

S Symbolized representation of the whole

MoCap repository

B Raw MoCap sequence

G Symbolized MoCap sequence
 

Q = (f1,f2, . . . ,fq)

B = {B1,B2, . . . ,Bb} fi ∈ Rh×1 i ∈ [1, q]

i h

h× 1

Bj ∈ Rh×nj j ∈ [1, b] j

nj

We  formally  define  the  core  problem  of  sub-Mo-

Cap-sequence  retrieval  as  follows.  For  a  query,

,  and  a  MoCap  database,

, where , , repre-

sents the -th frame (represented by an -dimension-

al  vector  or  an  matrix)  in  the  query  and

, ,  represents  the -th  repository

MoCap  sequence  of  frames,  the  maximum  set  of

R = {R1,R2, . . . ,Rr}
B ∀i ∈ [1, r],∃j ∈ [1, b],Ri ⊑ Bj

d(Q,Ri) < Ud ⊑
d(.) Ud

r R r

B Q

M=(B1,B2, . . . ,Bb)=(p1,p2, . . . ,pn) ∈ Rh×n, n =
∑b

i=1

×ni,

sub-sequences, ,  is  to  be  found

from  such  that,  and

 with  standing  for  the  sub-sequence

relationship,  being a distance metric and  a dis-

tance threshold.  For the convenience of  experimental

evaluation, we set  flexibly and form  by the  sub-

sequences  from  with  the  smallest  distances  to .

For  the  convenience  of  description,  we use  a  matrix,

 to  record  the  raw  data  of  all  the  MoCap  se-

quences in the database, and may interpret a column

matrix as a vector and vice versa later in the text. 

4    Overview of PESTA

In  our  design  of  the  MoCap  data  retrieval  solu-

tion,  we  take  the  strategy  of  posture  symbolization

and  string  matching.  We  make  this  choice  as  it  en-

ables flexible control of the granularity of motion en-

coding and is suited for both holistic and partial simi-

larity search.

Our  proposed  solution  to  the  core  unsupervised

sub-MoCap-sequence retrieval problem is composed of

two  stages:  the  preprocessing  stage  and  the  retrieval

stage, as shown in Fig.1. In the preprocessing stage, a

symbolization process is conducted on all the reposito-

ry  MoCap  sequences.  It  firstly  employs  the  unsuper-

vised  adversarial  autoencoding  technique  to  learn  a

dictionary of (encoded) postures. Based on the dictio-

nary, it then represents each repository motion with a

concise symbolic  sequence.  In the retrieval  stage,  the

query  is  firstly  converted  to  a  concise  symbolic  se-

quence  based  on  the  pre-learned  posture  dictionary,

which  is  then  aligned  to  the  symbolic  repository  se-

quences  to  retrieve  similar  symbolic  sub-sequences

and the corresponding raw MoCap sub-sequences.

Further,  the core scheme is  extended for  efficient

retrieval  by multiple  sub-queries  inside a long query.

The extended scheme takes a segment-by-segment ap-

proach  to  quickly  form  the  quasi-optimal  temporal

alignments between the sub-queries and the reposito-

ry sequences.

Note that the strategy of posture or segment sym-

bolization  and  string  matching  has  been  adopted  by

related  work  (e.g.,  [2, 10, 32])  as  well.  However,  our

algorithm distinguishes in the following major aspects:

1)  descriptive  and  discriminative  posture  codes

learned  by  AAE,  2)  deep  reduction  of  temporal  re-

dundancy  through  repetitive  symbol  pattern  detec-

tion,  3)  flexible  and  robust  temporal  alignment  be-
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tween  sequences,  and  4)  a  novel  solution  to  efficient

retrieval by multiple sub-queries inside a long query.

Details of the algorithmic components are provid-

ed in Section 5–Section 7. 

5    Motion  Symbolization  Based  on  Posture

Encoding
 

5.1    Overall Strategy

The  raw  MoCap  data  usually  have  high  dimen-

sionalities  and  contain  vast  spatial  and  temporal  re-

dundancies[36],  which need to be reduced for compact

and discriminative motion description. Of various ap-

proaches taken by the existing MoCap data retrieval

algorithms for the redundancy reduction, one (as tak-

en by Deng et al.[2], Wu et al.[32] and Sedmidubsky et
al.[10]) is of our particular interest. It firstly generates

a dictionary of postures or motion segments and then

turns  each  raw  MoCap  sequence  into  a  sequence  of

keys  according  to  the  dictionary,  which  leads  to  re-

duced  spatial  redundancy.  For  the  dictionary  con-

struction, all the methods operate in the raw posture

or motion space but not other spaces that may better

capture  discriminative  features  of  the  data  samples.

Regarding the reduction of temporal redundancy in a

symbolic sequence, these methods make no special ef-

fort or simply reduce consecutive occurrences of a sin-

gle symbol into one.

In this work, we also adopt the approach of dictio-

nary-based  MoCap sequence  symbolization  but  make

more  effective  reduction  of  spatial  and  temporal  re-

dundancies. Specifically, for spatial redundancy reduc-

tion, we make a compact and descriptive dictionary of

encoded  postures,  deeply  exploiting  the  discrimina-

tive features of the postures by AAE; for temporal re-

dundancy  reduction,  we  reduce  consecutive  occur-

rences of  the same symbol  pattern into one,  employ-

ing a repetitive symbol pattern detection technique. 

5.2    Spatial Redundancy Reduction

2π

A raw MoCap frame contains each joint's orienta-

tion with respect to its parent. An orientation may be

represented by a rotation in the form of Euler angles.

However,  the  Euler  angle  representation  is  not

unique,  considering  that  different  choices  and  order-

ings  of  rotation  axes  may  be  adopted  and  angles 

apart  around  the  same  axis  correspond  to  the  same

orientation. By contrast, an orientation can be repre-

sented  by  either  of  two  unit  quaternions  with  oppo-

site  signs.  Always  picking  the  one  with  the  first  ele-

ment  being  nonnegative,  we  reach  a  unique  quater-

nion  representation,  which  is  adopted  in  this  work.

 

MoCap Repository

Query

①②③②

①②③④②

①②③⑤③②①

①②⑥⑦

①⑥⑦②

Symbolized Repository

Sequences

Symbolized Query

Sequences

Strided

Temporal

Alignment
（STA）

Preprocessing Stage Retrieval Stage

Retrieved Sub-Sequences

Dictionary

of Postures

Adversarial

Autoencoder
(AAE)

...

...

... ...

Fig.1.  Flowchart of the proposed core scheme. In the preprocessing stage, a dictionary of (encoded) postures is learned by the unsu-
pervised adversarial autoencoding technique and, based on which, the repository motions are represented with symbolic sequences. In
the retrieval stage, the query is converted to a symbolic sequence and then aligned to the symbolic repository sequences to retrieve
similar symbolic sub-sequences.
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J

f ∈ Rh×1 h = 4J

Concatenating  the  quaternions  of  all  joints  in  the

skeleton, we form a long vector, , , to

represent a raw MoCap frame.

K

K

In  order  to  reduce  the  spatial  redundancies  exis-

tent in MoCap frames, we learn a compact dictionary

of  encoded  postures  in  an  unsupervised  fashion  and

represent a MoCap frame by a symbol (or key) point-

ing to an atom in the dictionary with the closest pos-

ture. In essence, unsupervised dictionary learning is a

process that clusters the non-labeled training samples

and  computes  a  representative  (or  named  head)  for

each  cluster.  While  a  variety  of  techniques  (e.g., -

means  clustering[2], -medoids  clustering[10] and

SOM[32])  have  been  used  for  learning  dictionaries  of

postures  or  motion  segments,  we  choose  to  use  the

unsupervised AAE technique[34], as reasoned below.

K

In  general,  an  autoencoder  is  capable  of  extract-

ing a descriptive and discriminative representation of

the input. Makhzani et al.[34] enhanced a probabilistic

autoencoder  architecture  by  integrating  GAN[37] to

regularize  the  distribution  of  the  latent  codes.  Fur-

ther,  Makhzani et  al.[34] showed  an  extended  AAE

network for unsupervised clustering that exhibited ex-

cellent  performance  in  disentangling  class  and  style

information.  Both  the  code  regularization  and  class

and style  separation enhance  the  basic  autoencoder's

power in making descriptive and discriminative codes.

Therefore,  we  choose  it  for  our  posture  clustering.

Our choice is supported by experiments as well in the

ablation  study  (see Subsection 8.4)  that  shows  the

sharp advantage of the extended AAE over -means

and SOM.

m

The  extended  AAE  architecture  (or  AAE  for

short)  for  unsupervised  clustering  is  diagramed  in

Fig.2(a). Assume that the dataset contains  classes

n x

m y

n z

q(y, z|x)
x′ x y z

Cat(y) y N(z|0, I)
z y

z

of samples and we are reducing the dimensionality of

each  sample  to .  For  an  input ,  the  encoder  pre-

dicts  an -dimensional  discrete  class  variable  and

an -dimensional continuous latent variable  accord-

ing to , and the decoder reconstructs an out-

put  that is similar to  with  and . Two adver-

sarial  networks  impose  the  categorial  distribution

 on  and the Gaussian distribution 

on ,  respectively.  As  a  result,  the  class  variable 

corresponding  to  the  categorial  distribution  does  not

carry any style information and the style variable  is

ensured to be a continuous Gaussian variable. The en-

coder,  the  decoder  and  the  two  discriminators  each

have  two  layers  of 1 000 hidden  units.  Each  layer  is

with  the  ReLU  activation  function  except  that  the

second layer  of  the encoder is  with the Tanh activa-

tion function.

T = {t1, t2, . . . , tu}
m

U = {u1,u2, . . . ,um}
up uq U

dp,q = |up − uq|2
D = [dp, q]m×m

X = (x1,x2, . . . ,xC) ∈ Rh×C

xc

1 ⩽ c ⩽ C

k 1 ⩽ k ⩽ m k uk

Specifically,  we  make  the  spatial  redundancy  re-

duction in the following way. Firstly, we use a train-

ing posture set, , to train the unsu-

pervised clustering AAE. During the  training,  the 

cluster heads in the dimensionality-reduced space are

automatically  learned,  which  form  our  dictionary  of

encoded postures, .  For each pair

of  atoms,  and ,  in ,  we  compute  their  Eu-

clidean  distance,  to  form  a  posture

distance matrix  which will be used lat-

er  for  temporal  alignment  of  symbolized  MoCap  se-

quences. With the AAE trained, we symbolize all the

repository  MoCap  sequences,  as  part  of  the  prepro-

cessing,  and  any  query  given  later.  Denoting  a  Mo-

Cap  sequence  as ,  the

trained  AAE  predicts  the  class  variable  of 

( )  that  indicates  the  most  probable  class,

the -th ( ) class with  being the key of 
 

Draw Samples
from y

Draw Samples
from z I

Input

Input

x x'

Linear

Softmax

S
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(b)(a) (c)

Fig.2.  Process of motion symbolization. (a) Extended AAE architecture for unsupervised posture clustering. (b) 2D projections of
cluster heads (top) and encoded training posture samples (bottom). (c) Spatial and temporal redundancy reduction.
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U yc X

Y = (y1, y2, . . . ,

yC)

in  and used as the symbol of . As a result,  is

converted  into  a  symbolic  sequence 

.

m = 400

10−4

In this work, we train the AAE with  for

all  the  algorithm evaluations  in Section 8 except  the

test  of  elasticity  on the  dictionary size  in Subsection

8.5.1.  All  the  MoCap  sequences  in  a  repository  are

quarterly  downsampled  in  the  temporal  dimension

with the sampled postures randomly divided into two

parts,  three  quarters  for  the  training  set  and  one

quarter  for  the  validation  set.  The  autoencoder  and

the two adversarial networks are trained jointly with

the Adam optimizer. We use the same loss function as

Makhzani et al.[34]. The networks are trained for 5 000

epochs,  using a gradient  clipping value of  5.0,  a  mo-

mentum  value  of  0.1,  a  learning  rate  of  and  a

batch size of 64.

m = 200

We illustrate  in Fig.2(b)  the  clustering  result  on

our  first  experimental  dataset  (see Subsection 8.1),

where the top and the bottom parts visualize the 2D

projections  of  the  cluster  heads  and  the  encoded

training  posture  samples,  respectively,  using  the  t-

SNE  (t-distributed  stochastic  neighbor  embedding)

technique.  Here we use  for the ease of  illus-

tration. We observe in Fig.2(b) that the encoded pos-

tures  show  an  evident  clustering  tendency  and  the

cluster heads are well apart from each other. 

5.3    Temporal Redundancy Reduction

In  a  symbolized  MoCap  sequence  resulting  from

the  spatial  redundancy  reduction,  we  often  observe

segments  of  identical  symbols,  e.g.,  ①①①,  mostly

due  to  dense  temporal  sampling  of  the  MoCap  sys-

tem. We remove this  type of  redundancy by keeping

only one symbol out of each segment of this kind. In

the thus-simplified symbolic sequence, we continue to

search  for  segments  of  repetitive  symbol  patterns,

e.g.,  ①②③①②③,  mostly  due  to  cyclic  motions  of

the subject with a symbol pattern signifying a seman-

tic  behavioral  unit,  e.g.,  a walking cycle.  We remove

this type of redundancy by keeping only one instance

of  the  symbol  pattern  out  of  each  segment  of  this

kind. The segments of identical symbols can be easily

detected through a one-pass traversal of the symbolic

sequence.  For  detecting  segments  of  repetitive  sym-

bol patterns, we employ the suffix array technique[38].

Again it is worth noting that the related work[2, 10, 32]

makes  no  special  effort  to  reduce  repetitive  multi-

symbol patterns.

In Fig.2(c), we create a brief example to illustrate

the effects of spatial and temporal redundancy reduc-

tions  on  a  raw  MoCap  sequence,  according  to  a

learned posture  dictionary.  A real  example  is  further

given  in Fig.3,  showing  that  a  341-frame  raw

cartwheel  MoCap  sequence  is  sharply  reduced  to  an

eight-symbol  sequence  by  the  proposed  method.

Fig.3(a)  shows the frame samples  of  the raw MoCap

data,  with the  corresponding dictionary keys  marked

below; Fig.3(b)  presents  the  symbolized  final  se-

quence,  shown  by  both  dictionary  keys  and  postures

reconstructed  from  the  corresponding  dictionary

atoms; Fig.3(c)  shows  that,  in  a  symbolized  MoCap

sequence,  one  symbol  usually  corresponds  to  a  long

(43-frame  for  this  case)  segment  in  the  raw  MoCap

sequence. Fig.3 demonstrates  visually  that  AAE  can

effectively cluster similar postures while summarizing

the whole MoCap sequence.
 
 

① ① ① ① ⑤ ⑧ ⑧ ⑧ ⑧ ⑧

① ② ③ ④ ⑤ ⑥ ⑦ ⑧

⑤

(b)

(a)

(c)

Fig.3.   A  real  example  of  a  341-frame  cartwheel  MoCap  se-
quence  symbolized  to  an  eight-symbol  sequence.  (a)  Symbol-
ized 341 raw frames.  (b) Symbolized final  sequence with eight
symbols. (c) 43 raw frames corresponding to one symbol.
  

6    Strided Temporal Alignment

B = {B1,B2, . . . ,Bb} Bi ∈ Rh×ni

i ∈ [1, b] i

ni h× 1

M=(B1,B2, . . . ,Bb)=

(p1,p2, . . . ,pn) ∈ Rh×n, n =
∑b

i=1
ni Bi ∈

Rh×ni Gi ∈ N+
1×ci Gi 1 ⩽

i ⩽ b

S = (G1,G2, . . . ,Gb) = (s1, s2, . . . ,

sY ) ∈ N+
1×Y , Y =

∑b

i=1
ci

As  formulated  in Section 3,  the  MoCap  database

is denoted as , where ,

,  represents  the -th  repository  MoCap  se-

quence of  frames each represented by an  ma-

trix.  All  MoCap sequences in the repository are con-

catenated into a long sequence, 

.  Symbolizing 

 into  and  concatenating , 

,  we  obtain  a  symbolic  representation  of  the

whole  repository, 

 . In addition, we store neces-
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S M

S M

sary  index  correspondences  between  and  that

enable mapping any sub-sequence in  to one in .

Q = (f1,f2, . . . ,fq)

E = (e1, e2, . . . , eX) ∈ N+
1×X

E S

S E

M

Q

Given  a  query, ,  it  is  symbol-

ized  to .  We  propose  to

make a strided temporal alignment of  to  to ex-

tract  sub-sequences  of  that  are  most  similar  to 

and,  correspondingly,  sub-sequences  of  that  are

most similar to .

W ∈ RX×Y

Specifically, we use dynamic programming to com-

pute a weight matrix, , by 

W (x, y) =


D(ex, sy), if x = 1,

min
(m,n)∈A

(
W (m,n) +D(ex, sy)× p

)
,

if x ∈ (1, X],

where 

A = {[max(1, x− w), x]× [max(1, y − w), y]− (x, y)},

w (w + 1)×
(w + 1) p = max(x−m,y − n)

m n

W (x, y) x ∈ (1, X]

W (X, y) E

V S

y S

W

V

M V

T d(Q,T ) = W (X, y)

and  is  named  stride  corresponding  to  a 

 local search window and 

is the penalty factor. During the iterative process, the

optimal ( , ) tuple is recorded as a backward point-

er  with each , .  Any element in the

last row, , represents the distance between 

and  a  best-matching  sub-sequence, ,  from  that

ends  at  the -th  symbol  in .  Following  the  back-

ward  pointers,  we  obtain  an  optimal  aligning  path

through  all  the  rows  of .  The  indices  of  the

columns that this  path crosses give .  Denoting the

raw  MoCap  sub-sequence  in  corresponding  to 

as , we define .

S

E

W

W

Gi Gi+1 1 ⩽ i < b

S

M

S M

In  order  to  retrieve  sub-sequences  of  that  are

the  most  similar  to ,  we  traverse  the  elements  in

the  last  row  of  in  the  ascending  order  of  their

weights.  Starting  from  each  element,  we  trace  back-

ward to the first row of  to obtain a similar sub-se-

quence.  During  the  search,  we  invalidate  a  similar

sub-sequence if it overlaps with any of the valid simi-

lar  sub-sequence(s)  obtained  so  far.  In  case  a  thus-

identified  similar  sub-sequence  crosses  the  boundary

between  two  adjacent  symbolized  MoCap  sequences,

 and , ,  it may be either kept or dis-

carded,  depending  on  the  users'  need.  The  search

stops when a desired number of  valid similar  sub-se-

quences  have  been  retrieved.  With  a  similar  sub-se-

quence located inside , it is easy to locate the corre-

sponding sub-sequence in  based on the pre-stored

index correspondences between  and .

As reviewed in Subsection 2.2, DTW and its vari-

ants have been used for MoCap data retrieval. There

w = 3

frequently exist singular frames in a MoCap sequence,

resulting  from  sensory  noises,  computing  errors  or

brief minor motions mixed inside major ones. Howev-

er,  the  common  DTW-based  methods  do  not  deal

with this situation well. We show a simple example of

STA-based  and  DTW-based  temporal  alignments  in

Fig.4 to  illustrate  the  difference  between  the  two

methods. The symbolized postures of the query and a

repository sequence are presented on the left and the

bottom,  respectively.  The  postures  marked  by  solid

boxes correspond to singular frames in the sequences.

For convenience of illustration, we show the pairwise

posture distance matrix but not the weight matrix in

Fig.4, where a lighter shade means a smaller distance.

The  dashed  and  the  dotted  paths  show  the  align-

ments  between  the  query  and  two  sub-repository-se-

quences,  respectively,  using  STA,  and  the  solid  path

shows the alignment between the query and the whole

repository sequence using DTW. The dashed and the

solid boxes on the paths indicate the compared neigh-

bors  by  two  methods,  respectively,  when  computing

the weight of the element in the lower right corner of

each box. For this example,  is used.
  

Fig.4.  Example of the STA-based and the DTW-based tempo-
ral alignments.
 

W (x, y)

W

(w + 1)× (w + 1) W (x, y)

x ∈ (1, X]

w − 1

When  computing ,  DTW-based  methods

search  for  the  minimum only  from at  most  three  di-

rect neighbors in  that have been computed, as il-

lustrated in Fig.4 by the solid box on the path. As a

result, one or more segments of singular frames inside

may override  the  match between two sequences  that

are  largely  similar.  By  contrast,  the  proposed  STA

method  conducts  the  minimum  search  in  a  local

 window  when  computing ,

,  as  illustrated  in Fig.4 by  the  dashed  box

on  the  path.  Therefore,  it  may  bypass  up  to 

symbolized  atoms  that  do  not  locally  match  well,

making it robust against intermittently occurring sin-

gular  frames  inside  overall  similar  sequences  or  sub-

sequences.

From Fig.4,  we  observe  that  STA  successfully

strides over the singular frames in both the query and
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the  repository  sequence,  while  the  standard  DTW

does not. As a result,  the weight of the solid path is

significantly higher than those of the other two paths,

which  may  mistakenly  indicate  a  mismatch  between

the  query  and  the  repository  sequence.  In  other

words, STA more effectively captures partial similari-

ties of the repository sequence to the query, with ro-

bustness  against  intermittent  singular  frame  occur-

rences. 

7    Retrieval by Sub-Queries in a Long Query

There  are  often  scenarios  where  we  have  a  long

query and wish to find similarities from the reposito-

ry  to  various  portions  of  the  long  query  (or  named

sub-queries). Multiple sub-queries may be interactive-

ly specified by the user or automatically specified by a

window  sampling  process  (e.g.,  in  the  scanning  for

certain motions). In either way, there are often signif-

icant overlaps between sub-queries.

E

SE1,SE2, . . . ,SEZ

S Vi

SEi 1 ⩽ i ⩽ Z

We assume  that  all  the  MoCap  sequences  in  the

repository  and  the  query  are  symbolized,  and  may

omit “symbolized” in the following to simplify the de-

scription.  For  a  given  query, ,  and  sub-queries

,  we  aim  to  retrieve  from  the

repository, , the set of similar sub-sequences, , for

any sub-query, , . A straightforward ap-

proach is to treat each sub-query as a new query, and

conduct  the  STA  on  it.  When  sub-queries  overlap,

however,  temporal  alignments  are  repetitively  com-

puted on each overlapping segment. In order to avoid

such  repetitive  computation,  we  propose  a  segment-

by-segment  temporal  alignment  approach  that  di-

vides the query into equal-length segments, computes

the weight matrix by STA at most once for each seg-

ment and, for any given sub-query, uses the segments'

weight matrices that are already computed to quickly

extract  the  matching  sub-sequences  from  the  repo-

sitory.

E K

Ei 1 ⩽ i ⩽ K

S Wi

1 ⩽ i ⩽ K E

K

E

SEi

Ej li ⩽ j ⩽ ui

Wj li ⩽ j ⩽ ui

Y Wui

Wli

Specifically, we divide  into  equal-length seg-

ments, , , and denote their weight matri-

ces  when  each  aligned  to  using  STA  by ,

. If the number of frames in  is not a mul-

tiple  of ,  we  make  it  so  by  duplicating  the  last

frame of  at the end. Then we conduct the retrieval

for  any  given  sub-query.  For  sub-query ,  we  get

the  minimum  set  of  query  segments, , ,

that jointly cover it.  If  any of , ,  is  not

computed yet, we compute and store it. Next, we ini-

tiate  paths  from  the  bottom  row  of  and  ex-

tend them till the top row of .

Wj li ⩽ j ⩽ ui

Wui

Wui

ui = li

1× (w + 1) w = 2

Wui−1

c

Wui−1

c

Wli

The path extension  process  is  illustrated  in Fig.5

where the weight matrices, , , are shown

in  grid  structures  with  a  lighter  shade  meaning  a

smaller weight. We initiate one path at each element

in the bottom row of , and extend it by reversely

following the optimal aligning path in ,  with one

example  shown  in Fig.5(a).  The  cost  of  the  current

path  is  set  to  the  initial  element's  weight.  If ,

the path extension is done. Otherwise, we extend each

path  further  as  shown  by  the  example  in Fig.5(b).

Close to the top element of  the current path,  we se-

lect from a local  (  for this example)

window in the bottom row of  (black-framed in

Fig.5(b)) the element with the smallest weight, , ap-

pend  it  to  the  current  path  and  further  extend  the

path by reversely following the optimal aligning path

in . The current path is updated to the extend-

ed path and its cost is increased by . This process is

iterated until each path grows to the top row of ,

as shown by the example in Fig.5(c).

SEi

S

M

S M

Finally,  the  paths  with  the  smallest  costs  are  se-

lected.  The  portions  of  these  paths  corresponding  to

the frames of  give the matching sub-sequences in

, which in turn give the matching sub-sequences in

 by  the  pre-stored  index  correspondences  between

 and . 

 

W

W

W

W

W

W

W

W

W

(b)(a) (c)

Fig.5.  Path extension process for retrieval by a sub-query. (a) Path extension process inside the segment of the sub-query. (b) Path
extension process between the segments of the sub-query. (c) Extension process of the whole path.
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8    Experiments

In  the  experiments,  we  carefully  design  both  the

datasets  and the experimental  procedures to test  the

versatility and elasticity of the proposed algorithm, as

detailed below. 

8.1    Data and Platform

We compose three datasets for experiments. From

the  first  to  the  third,  the  average  length  of  the  Mo-

Cap sequence, the average number of motion types in

a MoCap sequence, and the fineness of labelling all in-

crease. They are so designed for a full-range capabili-

ty test of the proposed algorithm.

First Dataset. This is a homogeneous dataset with

MoCap  sequences  taken  from  the  HDM05  cut

database[39],  each  containing  a  single  type  of  motion

with  a  label.  This  dataset  includes  10  motion  types,

i.e., cartwheel, elbow-to-knee, hop, jog, jumping jack,

kick,  shuffle,  squat,  throw-sitting  and  walk,  and  20

MoCap  sequences  for  each  motion  type.  In  total,

there  are  200  MoCap  sequences  and  frames  in  this

dataset. The motions are performed by five actors/ac-

tresses,  and  each  type  may  consist  of  different  sub-

types  in  terms  of  the  number  of  the  cycles,  starting

hand/foot, ending position, etc.

Second Dataset. This is a subset of the CMU Mo-

Cap  database②.  Since  the  database  itself  does  not

provide  fine  category  annotations,  we  use  the  data

and settings same to Gupta et al.'s[33], i.e., we use the

same 2 000 shortest  of  the 2 549 sequences  from  the

CMU  database  and  the  same  annotations  made  by

Gupta et al.[33] on these sequences. There are 1 900 416

frames  in  this  dataset,  corresponding  to  about  4.5

hours  human  motions.  The  annotations  of  eight  mo-

tion types, i.e., down, get up, turn, walk, punch, kick,

pick  up and throw overhead,  are  used  in  the  experi-

ment. Note that a MoCap sequence may contain more

than one type of motion, and a MoCap sequence may

contain none of the eight motion types.

Third Dataset. This is a dataset captured by our-

selves  using  a  Vicon  optical  motion  capture  system.

In  contrast  to  the  first  and  the  second  datasets,  the

third  one  consists  of  longer  MoCap  sequences  each

containing more types of motion. Besides, a complete

frame-level  labeling  is  made  on  the  third  dataset.  In

total,  it  consists  of  45  long  MoCap  sequences  of  12

motion  types,  which  are  captured  from  nine

actors/actresses. Each long MoCap sequence is a mix-

ture  of  an  unfixed  number  of  motion  types,  and one

type  of  motion  may  appear  for  multiple  times  with

different periods in the sequence. When acting a mo-

tion  sequence,  an  actor/actress  acts  a  randomly  se-

lected  subset  of  motion  types  in  a  randomly  deter-

mined  order.  The  12  motion  types  and  their  total

times  of  occurrences  in  the  45  MoCap  sequences  are

shown in Table 2. On the average, each sequence con-

sists of eight types of motion. In total, there are 103 849

frames in this dataset.
 
 

Table   2.      Motion  Types  and  the  Total  Number  of  Occur-
rences of Each Motion Type in the Third Dataset

Motion Type Total Number of Occurrences

Boxing 21

Tie 23

Leg press 22

Dribble 38

Jump shot 20

Arm raise 22

Arm wave 29

Crab walk 14

Cross step 13

Run circle 11

Rotate 13

Walk circle 14
 

All  the  experiments  in  this  subsection  are  con-

ducted on an iMac platform with an Intel i5-4570R @

2.7 GHz CPU, 8 GB memory and 500 GB hard disk. 

8.2    Evaluation Metrics

n n

n

n n

n = N N

AP

The metrics we use to evaluate the proposed algo-

rithm  include  precision  at  (P@ ),  precision-recall

curve  (P-R  curve),  and  confusion  matrix.  For  each

query,  the  fraction  of  relevant  samples  in  the  result

set  gives  the  precision,  while  the  fraction  of  all  rele-

vant samples that have been returned gives the recall.

If  the  result  set  has  a  size  of ,  the  precision  gives

P@ .  By  varying ,  we  obtain  a  P-R  curve  of  this

query.  When ,  with  being  the  size  of  the

database,  the  average  precision, ,  of  this  query is

computed by 

AP =
1

R

N∑
j=1

Ij ×
Rj

j
,

Rwhere  is  the  number  of  relevant  samples  in  the
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Ij = 1 j

Ij = 0 Rj

j

n

database,  if the -th ranking sample of the re-

sult set is relevant and  otherwise, and  is the

number of relevant samples in the  top-ranking sam-

ples  of  the  result  set.  By  averaging  the  statistics  of

every query in a motion class, we obtain the P@ , P-

R  and  mean  average  precision  (MAP)  statistics  for

their  class.  A  confusion  matrix  is  a  square  matrix

where  each  element  corresponds  to  a  specific  motion

class  for  both  rows  and  columns.  The  values  within

the  matrix  represent  the  frequence  of  motion  se-

quences from the row class being returned as relevant

to the column class. In the confusion matrices used in

this  paper,  larger  values  are  represented  with  darker

grayscale. 

8.3    Full Algorithm Evaluations

w = 3

w = 2

w

w

In this subsection, we evaluate our proposed algo-

rithm with  other  unsupervised  MoCap data  retrieval

algorithms on the three datasets. For the evaluation,

we  conduct  three  experiments,  each  emphasizing  the

capability  of  our  proposed  method  in  a  different  as-

pect. As the stride,  is used in the first two ex-

periments  and  is  used in the third.  In STA, a

larger  leads  to  higher  robustness  against  singular

frames  but  more  computation  at  the  same  time.

Therefore,  we  empirically  set  the  value  of  to  bal-

ance  robustness  and  efficiency.  The  three  experi-

ments are detailed below. 

8.3.1    Whole-Sequence Retrieval

This experiment is conducted on the first and the

second dataset.

On  the  first  dataset,  we  compare  our  proposed

method (PESTA) with the method using motion sig-

natures[3] (abbreviated  as “MS”),  the  method  using

weighted  graphs[8] (abbreviated  as “WG”),  the

method  using  motion  segment  dictionaries[10] (abbre-

viated  as “MW”),  the  method  using  deep

signatures[19] (abbreviated as “DS”),  and the  method

using  SOMs[32] (abbreviated  as “SOM”).  Among  the

algorithms reviewed in Section 2, MS[3], WG[8], MW[10]

and  SOM[32] are  the  latest  non-deep-learning  based

methods while DS[19] is one latest deep learning based

method  suited  for  unsupervised  whole-sequence  Mo-

Cap-to-MoCap data retrieval. We implement WG, DS

and MW by ourselves and SOM with the help of  its

authors, and use the implementation of MS (unsuper-

vised  version)  provided  by  the  original  paper.  For

MW, we implement the multi-overlay version and use

the 1/5 settings in [10] for best retrieval performance.

We  also  implement  and  test  another  latest  deep

learning based approach by Holden et al.[18] for unsu-

pervised whole-sequence retrieval. The performance is

quite low. Reasons may include that our implementa-

tion differs in details like joint sampling that are not

fully specified by Holden et al.[18],  and that their  ap-

proach  is  not  optimized  for  motion  sequences  with

highly  varied  frame  lengths  and  motion  cycles  as

present  in  our  first  dataset.  Since  the  test  dataset  is

not  specified  in  their  paper,  we  choose  not  to  show

this part of experimental results to avoid biased eval-

uation.

n n = 5, 10, 15, 20

n

When  testing  an  algorithm,  we  use  each  MoCap

sequence  in  the  dataset  as  the  query  for  once  to  re-

trieve  similar  sequences  from  the  repository.  When

testing  PESTA,  for  a  given  query,  we  return  the

whole repository sequences that contain the most sim-

ilar sub-sequences to the query as the result. We use

the  performance  statistics  gathered  from  all  the  re-

trievals  to  draw  P@  ( )  statistics  and

precision-recall  curves,  and  use  the  top  20  retrieving

results in each retrieval to draw the confusion matri-

ces.  The  P@  statistics,  P-R  curves  and  confusion

matrices of the algorithms are shown in Fig.6, which

show a  clear  performance  advantage  of  PESTA over

the others.

On the second dataset,  we compare PESTA with

WG and SOM. We do not make comparison with MS,

DS and  MW as  they  are  originally  designed  for  seg-

mented MoCap sequences, each including a single mo-

tion  type,  while  a  MoCap  sequence  in  the  second

dataset  may  include  more  than  one  motion  type.  In

this  experiment,  we  manually  extract  10  examples

from the dataset for each motion type as the queries.

Table 3 shows  the  per-type  and  the  overall  MAP

statistics  of  the  algorithms.  We  clearly  observe  that

PESTA  outperforms  WG  and  SOM  in  most  of  the

motion types. 

8.3.2    Sub-Sequence Retrieval by Holistic Queries

This  experiment  is  conducted  on  the  third

dataset.  We  compare  PESTA with  SOM that  is  the

most related to our method for sub-sequence retrieval,

as explained in Subsection 2.2. For each of the 12 mo-

tion types, we manually extract 10 examples from the

long MoCap sequences, which together form the query

set.  Each  query  is  used  once  for  the  retrieval.  A  re-

turned  sub-sequence  may  contain  frames  from  more

than  one  motion  type,  and  is  classified  to  the  type
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nFig.6.  P@  statistics (the first column), precision-recall  curves (the second column) and confusion matrices (the third column) of
whole-sequence retrieval of (a) MS[3], (b) WG[8], (c) MW[10], (d) DS[19], (e) SOM[32] and (f) PESTA on the first dataset. The labels A
to J represent cartwheel, elbow-to-knee, hop, jog, jumping jack, kick, shuffle, squat, throw-sitting, and walk, respectively. The label
K in precision-recall curves represents the mean curve.
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n

n = 2, 5, 10

n

with  the  largest  number  of  frames.  A  hit  is  made  if

and only  if  the  returned sub-sequence  and the  query

have  the  same  motion  type.  The  performance  statis-

tics are gathered from all the retrievals to draw P@

( ) statistics and P-R curves, and the top 10

retrieving  results  in  each  retrieval  are  used  to  draw

the  confusion  matrices.  The  P@  statistics,  P-R

curves  and  confusion  matrices  of  SOM  and  PESTA

on  the  query  set  are  shown  in Fig.7,  which  show  a

clear performance advantage of PESTA over SOM. 

8.3.3    Sub-Sequence Retrieval by Sub-Queries

This  experiment  is  conducted  on  the  third

dataset. In this experiment, retrieval by a long query

is  implemented by multiple  retrievals  by sub-queries.

As  such,  we  use  SOM  and  PESTA  as  benchmark

methods  that  treat  each  sub-query  as  a  fresh  short

query  and  conduct  a  fresh  sub-sequence  retrieval  by

the holistic short query. Our proposed method for re-

trieval by sub-queries of a long query as described in

3× s s s = 4

n

Section  7  is  denoted  as  PESTA-LQ.  We  compare

PESTA-LQ with PESTA and SOM. We use each se-

quence in the third dataset as a long query, and use a

( )-frame  window sliding  at  a  stride  of  ( )

through each symbolized long query to sample sub-se-

quences.  If  a  sample  has  no less  than 60% frames  of

one motion type, it is classified to this type and kept

as  a  sub-query.  Otherwise,  it  is  discarded.  A  re-

trieved  sub-sequence  is  classified  to  the  motion  type

with the largest number of frames in it. A hit is made

if and only if the retrieved sub-sequence and the sub-

query have the same motion type. The average P@

statistics  and  the  time  cost  of  SOM,  PESTA  and

PESTA-LQ are shown in Table 4, from which we ob-

serve that both PESTA and PESTA-LQ achieve sig-

nificantly  higher  precision  of  retrieval  than  SOM,

PESTA-LQ achieves  the  highest  time  efficiency  and,

compared with PESTA, PESTA-LQ leads to slightly

lower  precision  of  retrieval  but  sharply  reduced  time

of  retrieval.  In  this  experiment,  PESTA-LQ  reduces

the  retrieval  time  of  PESTA  by  47.6%,  showing  its

 

Table  3.    Per-Type and Overall MAP Statistics of WG[8], SOM[32] and PESTA on the Second Dataset

Sit down Get up Turn Walk Punch Kick Pick up Throw Overhead Overall

#Seq. 30.000 56.000 194.000 739.000 13.000 23.000 76.000 17.000

WG[8] 0.069 0.052 0.305 0.543 0.096 0.062 0.072 0.107 0.163

SOM[32] 0.123 0.078 0.360 0.537 0.161 0.108 0.094 0.141 0.200

PESTA 0.139 0.115 0.513 0.563 0.138 0.111 0.112 0.163 0.232

Note: #Seq.  is the number of motion sequences in the dataset containing a motion type. The overall  column represents the MAP
statistics of all eight motion types. Result in bold is the best in each column.
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bel M in precision-recall curves represents the mean curve.
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big advantage in efficiency at slightly sacrificed preci-

sion of retrieval. 

8.4    Ablation Study

In  this  subsection,  we  study  the  effects  of  key

components  in  our  proposed scheme through the  fol-

lowing experiments.

K

K

K

K

Effect  of  AAE. In  order  to  study  the  effect  of

AAE, we construct two benchmark algorithms by re-

placing  the  AAE  module  in  our  algorithm  by -

means  and SOM, which are  frequently  used for  data

clustering,  and keeping  the  rest  part  unchanged.  We

conduct  the  whole-sequence  retrieval  on  the  first

dataset,  and  collect  the  MAP  statistics  in Table 5,

where -means+STA  and  SOM+STA  are  the  two

benchmark algorithms and AAE+STA (i.e.,  PESTA)

is our proposed scheme. On the average, the MAP of

AAE+STA is 0.777, which is 31.9% higher than that

of -means+STA  and  19.2%  higher  than  that  of

SOM+STA.  The  sharp  advantage  of  AAE  over -

means and SOM is clearly demonstrated.

Effect  of  STA. In  order  to  study  the  effect  of

STA, we construct two benchmark algorithms by re-

placing  the  STA  module  in  our  algorithm  by  DTW

and  SW  and  keeping  the  rest  part  unchanged.  We

conduct  the  whole-sequence  retrieval  on  the  first

dataset,  and  collect  the  MAP  statistics  in Table 5,

where AAE+DTW and AAE+SW are the two bench-

mark algorithms and AAE+STA (i.e., PESTA) is our

proposed  scheme.  On  the  average,  the  MAP  of

AAE+STA is  0.777,  which  is  7.2% higher  than  that

of  AAE+DTW  and  14.9%  higher  than  that  of

AAE+SW.  The  advantage  of  STA  over  DTW  and

SW is  clearly  demonstrated.  Further,  we  modify  the

original MoCap sequences in the first dataset to intro-

duce singularities. This is done by replacing random-

ly selected 10-frame clips in each original  MoCap se-

quence by randomly selected 10-frame clips from Mo-

Cap sequences of other motion types. We conduct the

whole-sequence retrieval on the modified first dataset,

and plot the singularity-MAP curves of AAE+DTW,

AAE+SW and  AAE+STA in Fig.8,  where  the  hori-

zontal  axis  represents  the  extent  of  singularity  (the

ratio  of  replaced  clips)  and  the  vertical  axis  repre-

sents the MAP. From Fig.8 we observe that MAP de-

creases  when  singularity  increases  for  all  the  three

methods while STA leads to higher robustness against

singularity than DTW and SW.

Effect  of  Segment-by-Segment  Temporal  Align-
ment. For retrieval by sub-queries which is detailed in

Section 7,  a  segment-by-segment  approach  is  pro-

posed  to  quickly  derive  the  quasi-optimal  temporal

alignments between the sub-queries and the reposito-

ry  sequences.  The  effect  of  this  segment-by-segment

approach  has  already  been  demonstrated  in Subsec-

tion 8.3.3 by  the  performance  comparison  between

PESTA and PESTA-LQ. 

8.5    Discussions
 

8.5.1    Elasticity

As verified in Subsection 8.3, the proposed scheme

works  for  both  whole-sequence  and  sub-sequence  re-

trieval.

Further, the proposed scheme supports both holis-

tic  query  and  sub-queries  for  the  retrieval.  For  the

latter,  it  invents  a  segment-by-segment  approach  to

quickly  form  quasi-optimal  temporal  alignments  be-

tween  the  sub-queries  and  the  repository  sequences,

leading to sharply promoted efficiency at slightly sac-

 

Table  4.    P@n Statistics and Time Cost of Sub-Sequence Re-
trieval by Sub-Queries of SOM[32], PESTA and PESTA-LQ on
the Third Dataset

P@2 P@5 P@10 Time (s)

SOM[32] 0.675 0.596 0.479 10.75

PESTA 0.913 0.824 0.716 15.52

PESTA-LQ 0.886 0.773 0.675 8.13

Note: Result in bold is the best in each column.

 

Table  5.    MAP Statistics of Various Combinations of Data Clustering and Temporal Alignment Modules for Whole-Sequence Re-
trieval on the First Dataset

1 2 3 4 5 6 7 8 9 10 Overall

K-means+STA 0.602 0.579 0.353 0.688 0.478 0.558 0.855 0.648 0.402 0.728 0.589

SOM+STA 0.590 0.643 0.389 0.784 0.501 0.581 0.964 0.656 0.500 0.907 0.652

AAE+DTW 0.660 0.511 0.644 0.714 0.736 0.478 0.946 0.868 0.723 0.971 0.725

AAE+SW 0.929 0.675 0.591 0.621 0.573 0.360 0.948 0.771 0.338 0.953 0.676

AAE+STA 0.853 0.647 0.562 0.736 0.898 0.535 0.980 0.952 0.628 0.975 0.777

Note: The following 10 motion types are represented by the labels 1 to 10 respectively: cartwheel, elbow-to-knee, hop, jog, jumping
jack,  kick,  shuffle,  squat,  throw-sitting,  and  walk.  The  overall  column  represents  the  MAP statistics  of  all  the  10  motion  types.
Result in bold is the best in each column.
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rificed precision of retrieval, as demonstrated in Sub-

section 8.3.3.

5

Y

5

Since the proposed motion representation is based

on  a  learned  posture  dictionary,  the  dictionary  size

may be adjusted to balance between the precision and

the  time  cost  of  retrieval.  To  investigate  the  influ-

ences  of  dictionary  size,  we  experiment  with  a  wide

range  of  dictionary  sizes,  collect  the  corresponding

P@ , retrieval time (Time), and length of symbolized

repository  string  ( )  statistics  on  the  first  dataset,

and list  the  statistics  in Table 6.  Firstly,  we  observe

from Table 6 that  the  trends  of  the  quantity  change

of Time and P@  roughly consist with that of Y. This

is expected since, in general, the time to search from

a string is positively related to the string length, and

the  precision  of  retrieval  is  positively  related  to  the

representational  precision  (or,  in  a  rough  correspon-

dence, the symbolic string length) of the whole reposi-

tory. Secondly, we observe from Table 6 that a larger

dictionary  leads  to  higher  precision  but  also  more

time  of  retrieval  in  general,  though  local  drops  may

happen,  most  notably  at  the  dictionary  sizes  of  100,

500 and 800 in this example. The local drops may be

explained by the  fact  that  both the  number  and the

distribution of words (encoded postures) in the dictio-

Y

nary determine the extent of temporal redundancy re-

duction. A larger dictionary with slightly fewer words

representing  postures  in  certain  MoCap  sequences  of

relative  dominance  in  length  may  still  lead  to  more

aggressive  reduction  of  overall  temporal  redundancy

and thus a smaller , which may cause drops in pre-

cision and time of retrieval in turn.

As the proposed scheme is based on unsupervised

learning,  it  is  easy  to  extend  the  repository  with  no

need for data labelling. 

8.5.2    Limitations

When  symbolizing  a  MoCap  sequence,  the  pro-

posed PESTA scheme reduces redundancies maximal-

ly to preserve the most skeletal motion semantics (see

Section 5).  As  a  result,  it  does  not  distinguish  mo-

tions of the same type at different speeds (e.g., walk-

ing slowly and walking quickly)  or  motions  with dif-

ferent  cycles  of  the  same  pattern  (e.g.,  walking  two

steps and walking four steps). This could be a draw-

back if speed and/or cycle count is considered as im-

portant in motion semantics. Nevertheless, this draw-

back may be addressed by fully or partially saving the

repetitive  symbol  reduction  and/or  the  repetitive

symbol pattern reduction from the PESTA scheme.

Compared  with  most  existing  whole-sequence  re-

trieval  methods  in  general,  the  proposed  PESTA

scheme may be less time-efficient due to the extra ef-

fort it makes in fine-grained temporal alignment. 

9    Conclusions

In  this  work,  we  proposed  an  elastic  PESTA

scheme  for  content-based  MoCap  data  retrieval.  We

evaluated  PESTA  on  two  public  datasets  and  one

self-captured  dataset  for  whole-sequence  retrieval,

sub-sequence  retrieval  by  holistic  queries  and sub-se-

quence retrieval by sub-queries.  The overall  accuracy

and  the  accuracy  of  each  motion  type  of  our  algo-

rithm significantly outperform the compared methods.

For multiple sub-queries inside a long-query, the pro-

posed  extended  scheme  improves  retrieval  efficiency

significantly with slight sacrifice of accuracy. In addi-

tion,  we  conducted  ablation  experiments  on  the  PE

module  and  STA  module.  Due  to  the  elasticity  of

PESTA, the PE module is able to strike a balance be-

tween accuracy and efficiency, while the STA module

can effectively handle singular frames.

In the future, it  is  worthwhile to extend the pro-
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Fig.8.  MAP curves of AAE+DTW, AAE+SW and AAE+STA
(i.e.,  PESTA)  on  the  first  dataset  under  different  percentages
of singularity.

 

Table   6.      Performance  Statistics  of  PESTA  on  the  First
Dataset Under Different Posture Dictionary Sizes

Dictionary Size P@5 Time (s) Y

50 0.791 0.069 7 673

100 0.782 0.053 6 941

200 0.816 0.050 6 536

300 0.832 0.064 7 532

400 0.892 0.113 10 035

500 0.881 0.100 9 460

600 0.890 0.136 11 101

700 0.887 0.190 13 089

800 0.887 0.173 12 468

YNote: Time is the average retrieval time.  is the whole length
of symbolized repository.
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posed  scheme for  more  application  scenarios.  For  in-

stance,  we  may  use  a  human  motion  video  as  the

query, extract the posture sequence from it[40–43], and

adapt  the  scheme  of  this  work  for  the  video-based

motion retrieval.  Further,  it  is  interesting to transfer

the concepts and methods of the proposed scheme for

the retrieval of other types of time series data such as

video and music data. 
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