

Functional Verification for Agile Processor Development: A Case for
Workflow Integration

Yi-Nan Xu1, 2 (徐易难), Student Member, CCF, Graduate Student Member, IEEE, Zi-Hao Yu1 (余子濠)
Kai-Fan Wang1, 2 (王凯帆), Hua-Qiang Wang1, 2 (王华强), Jia-Wei Lin1, 2 (蔺嘉炜), Yue Jin1, 2 (金　越)
Lin-Juan Zhang1, 2 (张林隽), Zi-Fei Zhang1, 2 (张紫飞), Dan Tang1, 3 (唐　丹), Sa Wang1 (王　卅)
Kan Shi1 (石　侃), Ning-Hui Sun1, 2 (孙凝晖), Fellow, CCF, Member, ACM, IEEE, and
Yun-Gang Bao1, 2, * (包云岗), Senior Member, CCF, Member, ACM, IEEE

1 State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Institute of Open Source Chip, Beijing 100080, China

E-mail: xuyinan@ict.ac.cn; yuzihao@ict.ac.cn; wangkaifan@ict.ac.cn; wanghuaqiang20s@ict.ac.cn; linjiawei20s@ict.ac.cn
jinyue20s@ict.ac.cn; zhanglinjuan20s@ict.ac.cn; zhangzifei@ict.ac.cn; tangdan@ict.ac.cn; wangsa@ict.ac.cn
shikan@ict.ac.cn; snh@ict.ac.cn; baoyg@ict.ac.cn

Received April 7, 2023; accepted July 5, 2023.

Abstract Agile hardware development methodology has been widely adopted over the past decade. Despite the re-

search progress, the industry still doubts its applicability, especially for the functional verification of complicated proces-

sor chips. Functional verification commonly employs a simulation-based method of co-simulating the design under test

with a reference model and checking the consistency of their outcomes given the same input stimuli. We observe limited

collaboration and information exchange through the design and verification processes, dramatically leading to inefficien-

cies when applying the conventional functional verification workflow to agile development. In this paper, we propose work-

flow integration with collaborative task delegation and dynamic information exchange as the design principles to effective-

ly address the challenges on functional verification under the agile development model. Based on workflow integration, we

enhance the functional verification workflows with a series of novel methodologies and toolchains. The diff-rule based agile

verification methodology (DRAV) reduces the overhead of building reference models with runtime execution information

from designs under test. We present the RISC-V implementation for DRAV, DiffTest, which adopts information probes to

extract internal design behaviors for co-simulation and debugging. It further integrates two plugins, namely XFUZZ for ef-

fective test generation guided by design coverage metrics and LightSSS for efficient fault analysis triggered by co-simula-

tion mismatches. We present the integrated workflows for agile hardware development and demonstrate their effectiveness

in designing and verifying RISC-V processors with 33 functional bugs found in NutShell. We also illustrate the efficiency

of the proposed toolchains with a case study on a functional bug in the L2 cache of XiangShan.

Keywords functional verification, agile development, open-source hardware, workflow integration

 1 Introduction

Since its inception in the 20th century, the semi-

conductor industry has developed mature workflows

for designing, verifying, and fabricating processor

chips. As illustrated in Fig.1(a), the conventional wa-

terfall model follows a sequential development work-

flow, starting from design specifications for desired

Regular Paper

This work was supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) under
Grant No. XDC05030200, the National Key Research and Development Program of China under Grant No. 2022YFB4500403, the
National Natural Science Foundation of China under Grant Nos. 62090022 and 62172388, the Youth Innovation Promotion Associa-
tion of the Chinese Academy of Sciences under Grant No. 2020105, and the Innovation Grant No. E261100 by Institute of Comput-
ing Technology, Chinese Academy of Sciences.

*Corresponding Author

Xu YN, Yu ZH, Wang KF et al. Functional verification for agile processor development: A case for workflow integration.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(4): 737−753 July 2023. DOI: 10.1007/s11390-023-3285-8

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-023-3285-8

features (F1–F4) and ending with the delivery of ful-

ly functional chips. Despite its clear and structured

approach with well-defined stages and deliverables,

the waterfall model can also be inflexible, as changes

made at later stages can be difficult and expensive to

implement.

Over the past decade, with the growing demand

from emerging fields, domain-specific architectures

have presented significant challenges in terms of effi-

ciency and flexibility in hardware development[1]. To

tackle the challenges, agile hardware development

methodologies have attracted great attention from

academia and industry[2]. As Fig.1(b) demonstrates,

the agile paradigm emphasizes the quick response to

requirements and adopts an iterative development

process with improved tools and workflows[3].

Despite the research progress, according to recent

studies[4, 5], the applicability and scalability of agile

hardware development, especially regarding the func-

tional verification efficiency for complicated processor

designs, still need to be improved.

This paper attempts to enhance the conventional

dynamic functional verification methodology and ap-

ply it to agile hardware development. This verifica-

tion approach usually employs a simulation-based

workflow to verify the design functionalities against

those of specific golden reference models given the

same stimuli[6]. The workflow involves four stages, in-

cluding the development of the design under test

(DUT) and the reference model (REF), co-simulation,

test generation, and fault analysis.

Although the industry has established standard-

ized dynamic verification workflows[7], agile develop-

ment methodologies have changed how the verifica-

tion stage interacts with the design stage and raised

new challenges. As shown in Fig.1(c), the waterfall

model mainly adopts the sequential design (D), verifi-

cation (V), and tape–out (T) workflow with usually

separated working teams and toolchains for each

stage. However, the agile model further requires more

workflows for design–design (D–D), verification–verifi-

cation (V–V), and design– verification (D–V) itera-

tions to develop various features. In this development

model, the verification stage stays in lock-step with

the design stage and cannot progress independently.

Therefore, the waterfall and agile models put differ-

ent demands on the hardware development infrastruc-

tures. Applying conventional verification workflows

and toolchains in agile development remains challeng-

ing, as their feasibility and suitability are uncertain.

A significant transition of the agile development

model is the adoption of high-level hardware con-

struction languages (HCLs)[8]. While improving de-

sign efficiency, they also bring about transformation-

al changes in DUTs (D–D) and disrupt conventional

D–V–T workflows that are mainly developed for Ver-

ilog designs. For example, in the traditional waterfall

model, design parameters and specifications are most-

ly predetermined, with which designers and verifiers

independently construct DUT and REF models using

Verilog and SystemVerilog. The verification process

spends most of its time comparing the functionalities

of DUT and REF without worrying about the devel-

opment of REF (V–V). However, in the agile model,

designs may rapidly change in response to feature re-

quests (D–D) and require changes in V–V as well. If

we still use Verilog and SystemVerilog for verifica-

tion, it will take a long time to develop the REFs due

to their limited programming efficiency compared

with HCLs.

We observe limited collaboration and information

exchange in current functional verification workflows

and toolchains with the transition from waterfall de-

velopment to the agile model. For example, while the

conventional waterfall model is suitable for relatively

stable processor designs and separated working teams,

the agile model with a common adoption of HCLs

leads to more rapid design changes. However, the

D
e
sig
n

V
e
rific

a
tio
n

T
a
p
e
-o
u
t

F1

F2

F3

F4

(a)

Design

Verification

F1 F2 F3 F4

F1 F2 F3 F4

F4

(b)

D

V

D

D

V

V

D

V

T

(c)

Tape-out

Fig.1. Waterfall and agile models for developing processors with a breakdown of the development workflows. (a) The waterfall mod-
el adopts a sequential workflow for predetermined features (F1–F4). (b) The agile model employs iterative processes with incremen-
tal design changes for the features. (c) While the waterfall requires only the design (D), verification (V), and tape–out (T) workflow,
the agile model has further demands for the design–design (D–D), verification–verification (V–V), and design–verification (D–V)
workflows.

738 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

changing design information cannot be effectively

shared across current workflows, resulting in informa-

tion gaps and development inefficiencies.

To address the challenges, we propose workflow

integration with collaborative task delegation and dy-

namic information exchange. These principles pro-

vide a general paradigm for identifying opportunities

and optimizing the development toolchains towards

the integrated agile design and verification workflows.

In particular, we investigate the obstacles of dy-

namic functional verification for agile development

and enhance the design methodologies of the REFs,

co-simulation frameworks, test generation approaches,

and fault analysis techniques. We present the diff-rule

based agile verification (DRAV) methodology to sim-

plify the REFs. Based on the DRAV methodology, we

propose DiffTest, a dynamic verification framework

for RISC-V processors, and provide classifications of

the diff-rules. We also introduce a generic test genera-

tion tool called XFUZZ and propose an efficient snap-

shot technique Lightweight Simulation Snapshot

(LightSSS) to accelerate the debugging process. We

further present a comprehensive overview of the inte-

grated design and functional verification workflows

with discussions on how useful information is effec-

tively identified, transferred, and utilized through

them. We evaluate the proposed workflows in verify-

ing two RISC-V processors and demonstrate the effec-

tiveness of the presented tools by finding 33 function-

al bugs in NutShell. We also offer a case study on Xi-
angShan that illustrates the efficiency of the inte-

grated workflows and toolchains.

Building upon the results presented in [4, 5], this

paper further makes the following contributions.

● We investigate major obstacles to functional

verification in the era of agile development and ob-

serve limited collaboration and information exchange

among various development stages.

● We propose workflow integration with collabo-

rative task delegation and dynamic information ex-

change as the principles for optimizing workflows and

toolchains for agile hardware development.

● We enhance the functional verification work-

flow with a classification of diff-rules and a coverage-

guided test generation technique, and present the in-

tegrated workflows for RISC-V processors.

● We evaluate the usage of DiffTest, XFUZZ, and

LightSSS and demonstrate their efficiency and effec-

tiveness in verifying two RISC-V processors.

The rest of this paper is organized as follows. We

begin by introducing the background of functional

verification and agile development in Section 2. We

then present our key insights into the emerging chal-

lenges and opportunities that the agile paradigm pos-

es on functional verification in Section 3. Next, Sec-

tion 4 describes the design methodologies of the pro-

posed tools and workflows, which are further evaluat-

ed in Section 5. Finally, we discuss the future and re-

lated work in Section 6, and conclude this paper in

Section 7.

 2 Background

 2.1 Agile and Open-Source Hardware

Agile chip development and open-source hard-

ware have gained ever-growing attention over the

past years. In contrast to the conventional waterfall

model, the agile model appeals to an iterative, respon-

sive, and flexible development methodology[3]. The ag-

ile approach aims to reduce significant engineering

costs and long design cycles for chip development.

The XiangShan team suggests three levels of

open-source hardware[5], including 1) L1: instruction

sets are open and free, such as the RISC-V, 2) L2: the

design and the implementation are open and free,

such as the open-source RISC-V processors, and 3)

L3: the development infrastructures are open and free.

To facilitate a more practical chip development work-

flow, researchers have proposed a variety of tools for

different working stages, such as simulation[9], formal

verification[10], and prototyping[11], which collectively

contribute to the L3 open-source hardware ecosystem.

However, despite its popularity in recent years,

the agile and open methodology is still unrecognized

for high-performance and complicated designs. Al-

though a number of chips have been built using agile

approaches, most of them are research prototypes and

are relatively small or less complicated designs. It is

still being determined if similar approaches can be ap-

plied to large-scale designs such as modern processors.

The most recent practice of using agile methodolo-

gies for developing high-performance RISC-V proces-

sors is carried out by the XiangShan team[4, 5]. They

present the MinJie platform with novel tools and use

the presented toolchains to develop two generations of

XiangShan processors with industry-competitive per-

formance. In this paper, we will provide a systematic

perspective into the functional verification workflows

of MinJie and propose novel design methodologies of

the toolchains for agile hardware development.

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 739

 2.2 Functional Verification

Functional correctness is an essential and funda-

mental requirement for processors to perform their in-

tended operations correctly. As chips cannot be

changed once they are fabricated, it is critical to en-

sure that all possible scenarios and use cases are cov-

ered in the verification stage. The common verifica-

tion approaches for processors can be classified into

two categories, namely static and dynamic methods.

The static verification methodologies use formal

and mathematical techniques to fully examine the de-

sign space. Nonetheless, its practicality is inevitably

curtailed by the significant domain expertise and the

state explosion issues[12].

Due to the ease of implementation, dynamic veri-

fication approaches have gained greater popularity.

They usually employ simulation-based workflows to

verify the design functionalities against those of spe-

cific golden reference models given the same stimuli[6].

However, as modern processors continue to evolve

and incorporate advanced features, it becomes in-

creasingly difficult to identify all potential issues dur-

ing the functional verification stage. This creates a

major bottleneck in the chip development process.

The most challenging aspect of functional verifica-

tion is to ensure that the design is thoroughly ex-

plored and that functional correctness is verified for

all possible use cases, given the limited time and re-

sources available before the chips are shipped for

manufacturing.

This challenge can be generally tackled by im-

proving functional verification workflows' effective-

ness or efficiency. Formal methods and test genera-

tion techniques usually address the effectiveness, such

as simplifying the problem or using fewer resources to

cover a larger state space. On the other hand, the

brute-force way proposes faster and reusable tools to

reduce and amortize verification costs for every step,

such as simulation acceleration tools. Both approach-

es are believed necessary for the functional verifica-

tion of processors and complementary to each other.

 2.3 Simulation-Based Dynamic Verification

Over the past few decades, due to the limitations

of formal methodologies for large-scale designs, simu-

lation-based dynamic verification has remained practi-

cally popular in academia and industry.

As illustrated in Fig.2, the common and standard-

ized practice[6, 7] is to build a co-simulation frame-

work between the design under test (DUT) and a ref-

erence model (REF) and compare their outcomes with

the same test stimuli. Accordingly, to enhance the

verification effectiveness and efficiency, researchers

have proposed techniques for ① accurately describ-

ing the DUTs and REFs, ② improving the co-simula-

tion speed, ③ generating higher-quality test cases,

and ④ flexibly analyzing the simulation results.

DUT REF

② Co-Simulation

④ Fault Analysis

③ Test Generation

①1

2

3

4

Fig.2. Simulation-based dynamic verification workflows.

Due to the popularity of using Verilog for hard-

ware description, conventional verification toolchains

and workflows are developed mainly for Verilog. For

example, Verilog supports non-synthesizable expres-

sions used widely by verification engineers. Together

with synthesizable grammars, they provide a univer-

sal programming environment for hardware develop-

ers with end-to-end support of commercial toolchains.

However, with the rise of agile hardware development,

traditional verification workflows face severe techni-

cal challenges, which will be detailed later in Section 3.

 3 Challenges

As the agile development methodology is increas-

ingly adopted, it poses new challenges for the func-

tional verification of processor designs, particularly for

the dynamic co-simulation workflow. This section ex-

plores and discusses the challenges that arise in func-

tional verification due to adopting agile design

methodologies.

As introduced in Fig.1 and Subsection 2.1, the

waterfall hardware development model is character-

ized by well-defined stages carried out sequentially

(D–V–T), transferring specific deliverables from one

stage to the next. In contrast, the agile model is an it-

erative and flexible approach to hardware develop-

ment. Design and verification stages are interleaved

with frequent interactions, such as D–D, D–V, and

V–V.

To facilitate the hardware design efficiency, novel

toolchains have been proposed and accepted in prac-

740 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

tice. For example, high-level hardware construction

languages (HCLs)[8] enable object-oriented and func-

tional programming paradigms for the hardware.

They are used to build hardware generators[13] to sup-

port rapid design changes in the agile development

model.

However, emerging agile design methodologies of-

fer limited benefits to the hardware verification stage

and can disrupt the conventional functional verifica-

tion workflows to some extent. As discussed in Sub-

sections 2.2 and 2.3, simulation-based functional veri-

fication typically consists of four stages, namely devel-

opment of DUT and REF, co-simulation of DUT and

REF, test generation, and fault analysis. Since agile

design methodologies change how DUTs are devel-

oped, other stages in functional verification are signif-

icantly affected.

Reference Model (REF). Under the traditional de-

velopment model, given the same hardware design

specifications, RTL design engineers implement the

processor in hardware description languages, while

verification engineers develop corresponding reference

models for various parts and levels of the processor.

However, the HCL-based hardware generators, with

diverse implementation details and thus various be-

haviors, may require multiple traditional REFs to be

maintained for different DUTs and hinder the

reusability of REFs across V–V iterations. This issue

will be discussed with more examples in Subsections

4.2 and 4.3.

Co-Simulation Framework. High-level HCL de-

signs are often simulated via the emitted Verilog

code. However, processor design generators in HCLs

can result in frequent changes to their generated code,

which may involve a large number of internal signal

definitions for co-simulation. For example, Dromajo[6]

requires the program counter and instruction for co-

simulation, whose implementations will likely differ on

different designs. Traditionally, verification engineers

must adapt the co-simulation framework manually for

different DUTs. This results in repetitive and tedious

porting efforts in D–V cycles, which will be addressed

later in Subsection 4.4.

Test Generation Techniques. Functional verifica-

tion adopts test generation approaches to create stim-

uli for DUTs. Their effectiveness for achieving higher

coverage metrics usually relies on design-specific opti-

mizations. However, existing handcrafted proposals

may not be suitable for the agile design paradigm

with frequent design changes and limited D–V cycles.

We attempt to address this challenge in Subsection

4.5.

Fault Analyzers. Software-based RTL simulators

are widely used for simulating circuits and offer com-

plete visibility into the simulated designs. Neverthe-

less, these simulators may only run at a frequency of

KHz for large designs, and enabling debugging fea-

tures, such as dumping waveform, can further slow

them down. Despite recent studies trying to tackle

this issue, their brute-force solutions still cause either

waste of resources or significant performance over-

head. We will tackle this issue in Subsection 4.6.

As discussed above, adopting agile development

methodologies introduces new challenges to function-

al verification workflows. By reviewing these emerg-

ing issues, we observe limited collaboration and infor-

mation exchange among various stages.

For example, with the adoption of HCLs, it be-

comes popular to maintain DUTs as hardware genera-

tors with frequent changes in the generated Verilog

code. Though co-simulation relies on internal design

details, the typical deliverables from the design stage

to the verification stage contain solely the design

specifications and generated Verilog code, which re-

sult in the broken co-simulation framework.

However, hardware designers have a comprehen-

sive understanding of the revisions in HCLs and thus

have the capabilities of maintaining verification inter-

faces for co-simulation. As such, there exist opportu-

nities that this issue could be addressed by standard-

ized co-simulation interfaces for collaboration and in-

formation exchange between the design and verifica-

tion stages.

 4 Design

In Section 3, we outline the challenges that agile

development presents for functional verification. By

understanding the complexities, this section further

proposes workflow integration as a viable solution,

fostering collaborative task delegation and dynamic

information exchange. Based on these design princi-

ples for agile development toolchains, we propose nov-

el methodologies and techniques to enhance the con-

ventional functional verification workflows.

 4.1 Workflow Integration

To effectively address the challenges on function-

al verification under the agile development model, we

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 741

propose workflow integration. It refers to the process

of combining and coordinating different development

stages and workflows to enhance the overall efficien-

cy of agile hardware development.

Fig.3 illustrates the proposed functional verifica-

tion workflows with the adoption of workflow integra-

tion. Unlike the separated stages in Fig.2, the en-

hanced workflows are closely integrated with collabo-

rative task delegation and dynamic information ex-

change.

DUT REF

Co-Simulation

Fault Analysis

Test Generation

Internal

Events &

States

Coverage Metrics

Runtime Behavioral Hints

Snapshots

Fig.3. Integrated agile design and verification workflows.

Collaborative task delegation emphasizes the col-

laborative relationship between development stages. It

involves delegating tasks from one stage to another,

recognizing that stages can work on behalf of each

other to accomplish certain tasks. For example, be-

sides the source code deliverable, the DUTs are also

required to annotate and expose their internal events

and states utilized by the following stages such as co-

simulation. By leveraging collaborative task delega-

tion, the overall development productivity is improved.

Dynamic information exchange focuses on the re-

al-time exchange of information across development

stages. It ensures that information is shared not only

before or after each stage but also during the stages

themselves. For example, the REF leverages the

DUT's runtime behaviors as its execution hints to

simplify its design. This dynamic exchange of infor-

mation enables timely decision-making and facilitates

agility in responding to changing requirements.

These two principles play a vital role in support-

ing and facilitating workflow integration within the

context of agile development methodologies, as they

provide a framework for identifying opportunities and

optimizing the agile development workflows.

For example, with emerging toolchains like HCLs,

agile development enables iterative and frequent de-

sign changes in the design–design (D–D) workflow. Wh-

ile increasing the design efficiency, they also provide

more design information that the verification stage

could utilize to foster agility in the design–verificat-

ion (D–V) and verification–verification (V–V) workfl-

ows. Following the two design principles of workflow

integration, the proposed workflows and toolchains

can identify, transfer, and utilize useful information

throughout the entire hardware development process.

In this paper, we further provide practical exam-

ples for workflow integration by presenting novel

methodologies and toolchains for various stages in the

functional verification of RISC-V processors. Fig.4

shows an overview of the proposed techniques and

workflows.

As Fig.3 previously illustrates, the proposed tech-

niques showcase the prevalent design paradigm for ag-

ile development tools of workflow integration with

collaborative task delegation and dynamic informa-

tion exchange. While the proposed tools are only

demonstrated with RISC-V processors, they also hold

promise for application to general hardware designs.

They optimize various stages in functional verifi-

cation, including REFs in Subsections 4.2 and 4.3, co-

simulation in Subsection 4.4, test generation in Sub-

section 4.5, and fault analysis in Subsection 4.6.

Fig.4. Overview of the proposed agile hardware design and functional verification workflows.

742 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

 4.2 Diff-Rule Based Agile Verification

(DRAV)

The instruction set architecture (ISA) defines the

standard software-hardware interface, and thus every

RISC-V processor must comply with the RISC-V ISA

manuals. To represent the ISA compliance in a ma-

chine-readable way, people have built RISC-V golden

models either formally or in the form of an instruc-

tion set simulator (ISS). Practically, these golden ISA

models are selected as REFs for functional verifica-

tion of RISC-V processors.

When co-simulating RISC-V processors under test

with the REFs, architectural registers are usually se-

lected as indicators for the program behavior in co-

simulation, such as the general-purpose registers and

the program counter. When the DUT outputs a dif-

ferent register value from that of the REF, the co-

simulation framework will report a potential bug.

However, in reality, the actual ISS used as the

REF implements only one or several simplified vari-

ants of the ISA model. There will be scenarios where

designs are legally allowed by the ISA to have di-

verse architectural behaviors, such as the timing of

handling asynchronous external interrupts. In an in-

order five-stage processor, the instruction at the de-

code stage typically services the interrupt. By con-

trast, XiangShan always raises interrupts along with

the oldest interrupt-safe instruction. However, an ISS

without detailed pipelines responds to an interrupt

immediately on the next unfinished instruction. If we

co-simulate the ISS with either a five-staged pipelined

processor or XiangShan, a mismatch will be report-

ed after the interrupt is serviced. This is a false posi-

tive result because the asynchronous behaviors of all

three implementations are ISA-compatible.

As shown in the example, though compatible with

RISC-V, different designs still appear to behave non-

deterministically even with the same stimuli. The di-

verse behaviors are caused mainly by microarchitec-

tural implementation details and probably result in

false positives during co-simulation.

Therefore, considering the diversity an ISA would

allow, any co-simulation mechanism for processor

functional verification must address the issue of be-

havioral nondeterminism.

As discussed in Section 3, processors are conven-

tionally designed and verified for a long time. The

problem can be tackled by setting up detailed REFs

specifically targeted at certain design parts to thor-

oughly eliminate any nondeterministic possibilities.

This fine-grained and tedious verification strategy en-

sures a 1-to-1 correspondence between the DUT and

the REF.

However, despite its usefulness for designs with a

long production life-cycle, maintaining the 1-to-1 cor-

respondence between the DUT and the REF can be

difficult with a short development cycle and rapid fea-

ture changes, commonly seen in the agile develop-

ment model.

Rethinking the principle of verification, a given

design specification, such as the RISC-V manuals, can

lead to diverse implementations. Once the behavior of

the DUT satisfies the definition of specifications, the

implementation details are allowed to be diverse, and

the checking between the DUT and the REF in co-

simulation could be conditionally relaxed.

N

Following this principle, it is feasible that DUTs

with different implementation details can be verified

with the same REF if their behaviors conform to the

same specification. This forms an -to-1 correspon-

dence between DUTs and the REF. Since only one

simpler REF is maintained, the functional verifica-

tion overhead for multiple processors is reduced.

Based on the observations, we propose a novel

diff-rule based agile verification mechanism DRAV.

The diff-rules abstract legal behaviors defined in spec-

ifications with the consideration of nondeterminism in

functional verification. DRAV identifies the sources

and indicators of nondeterminism (diff-rules), trans-

fers the behavioral hints from the DUT to the REF,

and refines the REF on-the-fly to align with the

DUT. By utilizing runtime execution information

from the designs, REFs no longer require fine-grained

implementation details and could be simplified. We

enhance the conventional verification by providing

both DRAV methodology and an implementation for

RISC-V processors.

 4.3 DRAV for RISC-V Processors

DiffTest is a co-simulation based verification

framework for RISC-V processors that accelerates

functional verification by adopting the DRAV

methodology. It provides the flexibility to add diff-

rules and adaptively reconfigure the reference model,

thus being scalable to support multiple designs dy-

namically.

The key challenge of devising diff-rules is identify-

ing sources of nondeterministic behaviors in the

RISC-V architecture. In this subsection, we introduce

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 743

in detail several representative sources of nondeter-

minism in multicore high-performance RISC-V proces-

sors.

 4.3.1 Speculative Virtual Address Translations

In the RISC-V Linux kernel, the operating sys-

tem chooses not to execute a memory-barrier instruc-

tion after allocating a new physical page to avoid

flushing instructions until a page fault exception. In

most cases, the in-memory page table entries (PTEs)

are updated quickly after the retirement of the store

instructions. However, the store operation that up-

dates a PTE may not take effect when the TLB ac-

cesses the memory, possibly due to the existence of a

store queue or a store buffer. In that case, a memory

instruction accessing the page will trigger a page fault

exception.

Two diff-rules are involved in addressing this is-

sue: 1) the DUT may trigger a page fault exception

even if the REF does not trigger; 2) the DUT and the

REF should have the same architectural states after

executing the same instruction. If the DUT reports a

page fault exception, this event serves as a hint to the

REF and notifies the REF to conditionally report a

page fault exception as well, even if the REF suc-

ceeds in the page table walker with a valid page ta-

ble entry.

 4.3.2 Cache Hierarchy and Multicore Scenarios

Under the RISC-V weak memory order (RVWMO)

model, load and store instructions may have an expo-

nential interleaving space of concurrent memory ac-

cesses. We leverage diff-rules to prune the astronomi-

cally large interleaving space and co-simulate multi-

core processors against simple single-core REFs.

For example, load instructions can bypass the val-

ue from the private store buffer first and access the

global memory if the bypass fails. A naive multicore

co-simulation requires maintaining a correct store

buffer in the REF unless disagreements between the

DUT and the REF will frequently abort the co-simu-

lation.

In DiffTest, we devise a diff-rule from the RVWMO

specification that allows DUTs to maintain the glob-

al memory and updates the REF memory when they

disagree. It introduces the Global Memory (GM) that

records the store requests that enter the cache hierar-

chy in the DUT. Data correctness is checked by both

GM and the local memory of single-core REFs. When

the single-core REF executes a load with a different

value from the DUT, DiffTest accesses the same load

address in GM to check whether other hardware

threads possibly write this load value. If so, the value

will be updated to both the local memory and the

destination register of the load instruction in the sin-

gle-core REF.

 4.3.3 More Sources of Nondeterminism

We provide additional examples and categorize

the diff-rules for RISC-V processors based on the

sources and effects of nondeterminism, as listed in Ta-

ble 1.

Table 1. Classifications of Diff-Rules for RISC-V Processors

Category Source of Nondeterminism

Static Implementation-dependent registers

Dynamic Asynchronous events, speculative execution,
weak memory models, hardware timing

On the one hand, a large portion of nondetermin-

istic behaviors can be handled with static implemen-

tation-defined configurations of the REFs.

satp
PPN

satp.PPN

satp

Taking the control and status registers (CSRs) in

RISC-V as an example, the supervisor address trans-

lation and protection () register has a field called

 to represent the physical page number of the root

page table. can have platform-dependent

constraints on its values and thus may hold only valid

physical page numbers. Depending on the physical ad-

dress width, would have different write masks

in various implementations. However, this implemen-

tation-dependent behavior does not rely on runtime

DUT information and can be statically configured in

the REF.

Similarly, we investigate the RISC-V privilege

specification and identify at least 120 diff-rules for

machine-mode CSRs. However, since these diff-rules

do not rely on any runtime information, they are the

most straightforward cases and are classified as static

diff-rules.

On the other hand, we propose the dynamic diff-

rules and further distinguish primary runtime sources

of nondeterminism with the root causes.

We classify them into at least four categories.

First, asynchronous events cannot be predicted by the

REFs, such as the service of external and timer inter-

rupts mentioned in Subsection 4.2. Second, specula-

tive execution and pervasive buffering in high-perfor-

mance processor designs lead to different architec-

744 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

tural behaviors from in-order designs, such as the

page fault example discussed in Subsection 4.3.1.

Third, as shown in Subsection 4.3.2, weak memory

models usually allow a huge nondeterministic pro-

gram interleaving space, resulting in difficulties in ac-

curately modeling the caches. Moreover, hardware

timing and microarchitecture optimizations may also

bring nondeterminism. For example, RISC-V allows

the load-reserved instruction to adopt an implementa-

tion-defined timeout before the store-conditional in-

struction executes, which can never be mimicked by

behavioral ISA models.

It is worth noting that the attempt to cover more

diff-rules of processors is never enough, since the in-

crease of rule-checking coverage only increases the

confidence of correctness but never ensures the cor-

rectness. Instead, agility addresses the verification is-

sue by increasing the workflow efficiency and thus al-

lows more verification trials within a fixed time inter-

val.

Overall, DiffTest leverages the DRAV and diff-

rules to verify the RISC-V processors. It offers sys-

tematical support for handling co-simulation nonde-

terminism and significantly reduces the efforts of

building correct REFs for complex processors.

 4.4 Information Probes

Towards the second challenge of co-simulation dis-

cussed in Section 3, we further decompose DiffTest in-

to diff-rule checkers and information probes. The in-

formation probes are embedded into processor de-

signs and automatically carry the required informa-

tion for verification. In this subsection, we discuss the

design methodologies of probes and how they bridge

the co-simulation workflow with HCL designs.

We observe that functional verification requires

only some design information with stable structures

across designs. Specifically, we identify two major cat-

egories, including architectural events like instruction

commits and architectural states like register values.

The probes describe them using pre-defined bundles

in the Chisel HCL. The bundles are then instantiated

in processor designs and highlight the necessary infor-

mation for other workflows like functional verifica-

tion.

In the Chisel elaboration stage, the compiler will

generate both the corresponding Verilog and struc-

tured C++ descriptions of the information. They

form the uniform interfaces between the DUT and the

REF and are further utilized by the co-simulation

framework.

During RTL-simulation in the functional verifica-

tion process, the extracted information can be used

for online rule checking of co-simulation and collect-

ed for further debugging at post-simulation stages.

For example, by creating SQL tables from the gener-

ated C++ classes, ChiselDB is able to automatically

record the semantic information and provide elegant

SQL interfaces for Chisel designers to visualize the

transactions for debugging and analyzing.

While diff-rules bridge the DUTs and REFs with

runtime behaviors and states, information probes ef-

fectively carry the internal design information to veri-

fication toolchains with standardized interfaces.

DiffTest with diff-rules and information probes en-

ables universal functional verification workflows with

high agility for diverse RISC-V processor designs.

 4.5 Test Generation

As mentioned in Section 3, many test generation

techniques rely on handcrafted, design-specific knowl-

edge and may need to be better suited for agile devel-

opment. In this subsection, we propose and introduce

an efficient yet generic test generation approach.

The proposed tool, XFUZZ, is a coverage-guided

mutational fuzzing technique. Fuzzing aims at find-

ing design bugs by injecting arbitrary but fast-run-

ning inputs to the DUT, and recent fuzzing studies

have been using the coverage feedback to guide the

generation of higher-quality inputs[14-16]. While soft-

ware fuzzers usually use system crashes as the target,

hardware designs generally do not crash. Therefore,

XFUZZ integrates the software fuzzing library

LibAFL[17] into DiffTest and monitors the hardware

assertions and co-simulation mismatches for potential

bugs. By observing that RISC-V processors follow the

standard stored-program paradigm, XFUZZ mutates

and generates the initial memory contents as the uni-

form fuzzing input for all processor designs.

However, despite being widely adopted, Chisel

still lacks native coverage support and relies on open-

source and commercial RTL simulators to collect cov-

erage metrics. We harness the benefits of high-level

HCLs and develop user-friendly XFUZZ workflows for

coverage definition and collection.

First, we design a circuit annotation on the FIR-

RTL intermediate representation[18] with a transform

to create corresponding Verilog and C++ interfaces.

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 745

This coverage annotation enables developers to de-

sign customized functional and code coverage metrics.

Second, with the annotation, we implement new in-

struction and instruction-immediate coverage metrics

with the decoders of RISC-V processors and also port

the existing MUX[14] and control register[15] coverage.

Third, as one of the circuit optimization passes in the

Chisel compiler, we propose the coverage FIRRTL

transform that collects and converts the annotations

to DPI-C calls in Verilog and C++ classes with sta-

tistical information. This generated information is

used for coverage feedback of the fuzzing process and

quantitative reports of the functional verification pro-

cess.

By integrating XFUZZ into DiffTest, we have de-

veloped a fully automated functional verification

pipeline for RISC-V processors, shown in the bottom

half of Fig.4. Starting with a seed collection of test

cases and coverage points generated by the DUT,

XFUZZ continuously mutates inputs with coverage

feedback, feeds inputs into the DUT, and monitors

the simulation results. As far as DiffTest identifies no

faults, the fuzzing iterations continue, and the cover-

age metrics are expected to increase. This workflow

provides a generic and efficient method for verifying

RISC-V processors with minimal human effort. We

will demonstrate its effectiveness in Subsection 5.2.

 4.6 Fault Analysis

Analyzing and debugging the reported faults re-

quire information such as the waveform that signifi-

cantly slows down the simulation speed. For example,

the simulation speed for XiangShan when waveform

is enabled drops to about 8.5% of the normal speed.

To enhance the efficiency of debugging processes,

it is common to focus on the region of interest (ROI),

the last seconds of RTL-simulation[19]. This is the

time period in which design bugs are more likely to be

triggered, and their effects are propagated to the visi-

ble output signals. By enabling waveform only during

the ROI, this approach prevents spending excessive

time and resources on analyzing unnecessary informa-

tion and allows focusing on resolving the root cause of

the problem, significantly improving the overall simu-

lation throughput. Nevertheless, accurately predict-

ing the termination of the simulation due to reported

functional bugs remains a significant challenge.

To address this problem, instead of forward pre-

diction, a recent study[20] proposes an alternative ap-

proach for taking snapshots of the simulation environ-

ment and restoring recent snapshots after simulation

abortion for reproducing the ROI. However, the pre-

sented simulation snapshot technique LiveSim incurs

a considerable overhead for snapshotting, ranging

from 10% to 20% of the overall simulation perfor-

mance.

In this paper, we tackle the performance issues by

simplifying the contents of snapshots and propose the

Lightweight Simulation Snapshot (LightSSS).

LightSSS considerably reduces the overhead of

snapshots while still allowing debugging the ROI with

far less resource waste. First, it preserves only the two

most recent snapshots in memory and drops any out-

dated, thus useless ones. Second, instead of creating

complete snapshots, it records in memory only the

different contents between the last snapshot and the

current status. Furthermore, it generates process-level

snapshots with operating systems independent of the

simulated circuit structure.

fork()

fork()

LightSSS is integrated into the simulation-based

functional verification workflow and implemented us-

ing the highly efficient system call of the Lin-

ux kernel. During RTL-simulation, LightSSS periodi-

cally calls and treats the forked process as a

snapshot. The forked process waits for the parent pro-

cess to exit abnormally, possibly because DiffTest de-

tects a potential functional bug. Meanwhile, as the

parent process continues and updates the memory,

the copy-on-write (COW) forking strategy inherently

creates incremental snapshots: the operating system

allocates physical pages for only the modified pages,

leaving unmodified pages shared between processes.

LightSSS allows the existence of at most two snap-

shots and kills older snapshots to avoid consuming

any more resources.

fork()

fork()

fork()

With the COW mechanism, performance over-

head by LightSSS comes from two sources: the

 system call and copying of the modified pages

between the parent and child processes. On the one

hand, as the hardware design size increases, the

 overhead is not affected, but the number of

modified pages increases. However, the increased

snapshot overhead may be negligible, given that larg-

er designs generally simulate much slower than small-

er designs. On the other hand, the overall perfor-

mance overhead is also impacted by the frequency of

taking snapshots. Compared with smaller snapshot in-

tervals, a larger snapshot interval reduces the num-

ber of system calls. Besides, since the COW

746 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

strategy copies pages on demand only when a page is

modified by the parent or child process for the first

time, longer snapshot intervals reduce the overhead

by copying modified pages only once during a longer

period. Therefore, as the snapshot interval increases,

the overall overhead of copying modified pages de-

creases. We will quantitatively evaluate the perfor-

mance overhead of LightSSS on different designs with

various snapshot intervals later in Subsection 5.3.

As a plugin for the DiffTest framework, LightSSS

provides a lightweight approach to verifying the func-

tionalities and analyzing the reported faults. The co-

simulation mechanism naturally serves as the indica-

tor for restoring snapshots and enables a continuous

workflow without human intervention.

 5 Evaluation

To showcase how the proposed tools facilitate

more agile workflows, we will employ them to develop

and verify two representative RISC-V processor desi-

gns: the in-order processor NutShell[21] and the high-

performance out-of-order processor XiangShan[22].

 5.1 DiffTest on RISC-V Processors

DiffTest is a co-simulation framework supporting

multiple RISC-V processors by composing diff-rules

and information probes. As discussed in Subsection

4.3, the diff-rules are consistent and thus reused

across different RISC-V designs. In this subsection,

we further demonstrate the applicability of informa-

tion probes on NutShell and XiangShan.

As shown in Table 2, DiffTest currently imple-

ments 15 information probes, and 10 of them are op-

tional. These probes are mainly classified as events

and states, providing standardized interfaces for veri-

fying the RISC-V architectural functionalities.

RefillEvent

Since NutShell only supports the single-core con-

figuration, it does not instantiate probes used for on-

ly multicore co-simulation, such as the

for synchronizing the global memory. These unused

probes are detected during the Chisel elaboration pro-

cess and result in undefined macros, which would

comment out the corresponding diff-rule checkers in

compile time.

In contrast, XiangShan implements a superscalar

out-of-order microarchitecture and instantiates more

probes multiple times. The number of instantiations

will also be collected during the elaboration and

passed to the rule checkers as macros to guide the it-

erations of checking.

To summarize, by using the probes as basic build-

ing blocks for design information sharing, DiffTest

provides a uniform interface for co-simulating RISC-V

processors against the reference models. Next, we

evaluate the test generation and fault analysis plug-

ins for DiffTest, namely XFUZZ and LightSSS respec-

tively.

 5.2 Fuzzing Effectiveness

To demonstrate the effectiveness of the XFUZZ

fuzzing framework introduced in Subsection 4.5, we

use it to generate test cases for NutShell with both

functional and code coverage metrics as feedback. As

a five-stage pipelined RISC-V processor, NutShell is
capable of running modern operating systems such as

Table 2. Information Probes for DiffTest and Their Number of Instantiations in Single-Core NutShell and Dual-Core XiangShan

Probe Name Description Mandatory NutShell XiangShan

ArchEvent Exceptions and interrupts Yes 1 2

InstrCommitEvent Executed instructions Yes 1 12

TrapEvent Simulation environment call Yes 1 2

CSRState Control and status registers Yes 1 2

DebugModeState Debug mode registers No 0 2

ArchIntRegState General-purpose registers Yes 1 2

ArchFpRegState Floating-point registers No 0 2

IntWritebackEvent General-purpose writeback operations No 1 16

FpWritebackEvent Floating-point writeback operations No 0 16

StoreEvent Store operations No 1 4

SbufferEvent Store buffer operations No 0 4

LoadEvent Load operations No 0 12

AtomicEvent Atomic operations No 0 2

RefillEvent Cache refill operations No 0 4

LrScEvent Executed LR/SC instructions No 0 2

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 747

Debian and complicated CPU benchmarks like SPEC

CPU2006. Despite its design simplicity and trusted

functionalities, we aim at detecting more escaped

functional bugs of NutShell using XFUZZ.

XFUZZ is compared with an existing hardware

fuzzing approach called HWFP proposed by Google[16]

that uses only software fuzzers with C++ branch cov-

erage feedback from the generated simulation binary.

In contrast, XFUZZ adopts and provides support for

both functional coverage metrics, including the in-

struction and instruction-immediate coverage, and

code coverage metrics, including the MUX[14] and con-

trol register[15] coverage.

In total, XFUZZ finds 33 and 18 exclusive func-

tional bugs of NutShell and the reference model re-

spectively. These exclusive bugs escape HWFP with

only software coverage feedback but are detected by

XFUZZ with hardware coverage feedback. Therefore,

they showcase the necessity and superiority of using

hardware coverage metrics for fuzzing over only soft-

ware coverage of the simulation binary.

Table 3 lists 13 representative bugs for arithmetic

operations, CSR operations, and access control. While

the arithmetic bugs may result in malformed func-

tionalities of well-behaved programs, bugs in CSR op-

erations and access control are seldom touched and

thus hardly detected by real-world workloads. As the

bugs have not been previously discovered, the test

cases generated by XFUZZ are demonstrated to be

complementary to the real-world workloads originally

used by NutShell developers.

To conclude, XFUZZ provides built-in support for

customized hardware coverage metrics and finds more

bugs that escape HWFP. By integrating fuzzing with

co-simulation in DiffTest, XFUZZ is effective and

valuable for functional verification of RISC-V proces-

sors.

 5.3 Snapshot Efficiency

In this subsection, we evaluate the performance

overhead of LightSSS and demonstrate its efficiency

in creating snapshots for RTL-simulation using two

designs of varying sizes as the benchmarks, including

single-core NutShell and XiangShan.

Both designs are simulated with two workloads:

running the CoreMark benchmark and booting a Lin-

ux kernel to user mode. We use Verilator to simulate

the RTL designs, with simulation speeds of 843.7 KHz

for NutShell (single thread, 58.8k lines of C++ gen-

erated by Verilator) and 3.3 KHz for XiangShan (8

threads, 15.2M lines of C++). Though it takes only

10 seconds and five minutes for NutShell to run

CoreMark and boot Linux, XiangShan is much more

complex and reaches higher performance, thus finish-

ing the workloads in eight and 18 minutes, respectively.

fork()
As discussed in Subsection 4.6, the performance

overhead of LightSSS, including the system

calls and on-demand copying of modified pages, is af-

fected by both design sizes and snapshot intervals.

Fig.5 demonstrates the overall results on Nut-
Shell and XiangShan with various snapshot inter-

vals. While we increase the snapshot interval from

one second to 60 seconds, minor performance devia-

tion is observed on both designs. The maximum per-

formance overhead is caused by a snapshot interval of

one second for NutShell, still less than 1% of the

normal RTL-simulation speed. Overall, this result

demonstrates that LightSSS introduces an order of

magnitude lower overhead than the state-of-the-art

Table 3. Representative Design Bugs of NutShell That Escape the AFL++ Fuzzing But Are Detected by XFUZZ

Category Bug ID Description

Arithmetic 769669f 32-bit AMO instructions do not sign-extend the 32-bit operands

CSR operations 42c8460 mstatusReserved and non-writable fields in may be written by CSR instructions

ef78025 The virtual address is not zero-extended to 64-bit if virtual memory is disabled

5b60e9c mtval stval/ is incorrectly updated without considering the exception delegation

b86c319 mstatus.mprv MRET SRET M is not cleared when / to a mode less privileged than

6f4cd05 mstatus.mpp ModeH is updated and read with an illegal value ()

Access control 54367ce An illegal jump target causes mistakenly executed load/store operations

f23acbf LR SCMisaligned / operations are not detected as address-misaligned exceptions

5dd6a74 pmpcfg1 pmpcfg3Non-existent CSRs such as and are enabled in RV64

ccd9c7f CSRRC CSRRCI rs1 = x0 uimm[4 : 0] = 0/ causes write side effects when or

7f928a3 SC LR incorrectly updates the reservation sets that should be set by only

f8acb2a mstatus.TVM does not intercept supervisor virtual-memory management operations

c508b32 Large pages with misaligned PPNs are not detected as page-fault exceptions

748 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

LiveSim[20], which reports a 10%–20% performance ov-

erhead.

Therefore, by integrating with DiffTest and creat-

ing snapshots for the RTL-simulation process with

minimum overhead, LightSSS enables quick access to

the region of interest and an agile debugging work-

flow.

 5.4 Case Study

In this subsection, we further demonstrate the ef-

fectiveness and efficiency of proposed workflows with

a functional bug found in the L2 cache of XiangShan.

This complicated bug is exposed when running the

Redis benchmark on dual-core XiangShan for over

168 hours after three billion simulated cycles. DiffTest

reports a data mismatch between DUT and the Glob-

al Memory using the diff-rule described in Subsection

4.3.2. After the co-simulation detects the functional

bug, we obtain two types of debugging information

for fault analysis.

We start with the behavioral database created by

ChiselDB. As introduced in Subsection 4.4, it enables

recording the transaction information across the mul-

ti-level caches. Reviewing the high-level behaviors of

L2 and L3 caches, we find that a TileLink Acquire re-

quest from the L2 cache to L3 overlaps with a Probe

transaction from L3 to L2 in the same cache block.

Though L2 acquires the correct data from L3, later, it

grants the wrong data upward to L1, indicating a po-

tential bug in the arbitration logic of the L2 cache.

To further investigate the internal design of the

L2 cache, we turn to the waveform generated by

LightSSS. As presented in Subsection 4.6, after

DiffTest reports the mismatch and while we are re-

viewing the database, LightSSS activates the second

to the last simulation snapshot to re-run the RTL-

simulation for the last seconds. It takes only three

minutes to simulate the last 30.8k cycles with wave-

form enabled. Further investigation confirms that L2

MSHR does not handle the overlapping correctly

when Probe and GrantData from L3 cache arrive at a

specific time interval.

By integrating the proposed tools, we provide an

end-to-end workflow for processor developers to de-

sign and verify their processor designs. As shown in

Fig.3, DRAV and DiffTest share the runtime informa-

tion of DUTs with REFs and refine the REFs on-the-

fly, significantly simplifying the design of REFs. Infor-

mation probes are initially implanted into DUTs and

effectively highlight valuable information for later de-

velopment stages, e.g., co-simulation, debugging, and

performance analysis. By retrieving and utilizing cov-

erage metrics, XFUZZ provides an unceasing work-

flow to explore the input space deeply and verify the

design functionalities. LightSSS monitors the co-simu-

lation status, periodically creates snapshots, and

quickly restores the region of interest for debugging.

These tools enable chip beginners and non-experts to

automate their work and improve development effi-

ciency.

For example, in this case study, without the inte-

gration of LightSSS, it may take extra 16 hours to

create and restore the simulation snapshots with

LiveSim, or even 168 hours to re-run the simulation

without any snapshot techniques. Similarly, with in-

formation probes and ChiselDB, we can analyze the

detected mismatch with high-level behaviors and bet-

ter debugging efficiency. Overall, this case study

showcases the superior efficiency and effectiveness of

the proposed techniques and tools.

 6 Discussions and Related Work

In recent years, agile chip development methods

have garnered attention from both academia and in-

dustry. To meet the massive demand for emerging ap-

plications and domain-specific architectures, the agile

hardware development model pursues fast response

and continuous delivery capabilities through optimiza-

tions of tools and workflows[2, 3, 13].

parameter struct

As a notable transition from the conventional de-

velopment model, the adoption of high-level hard-

ware construction languages (HCLs) accelerates the

design stage for agile development by enabling hard-

ware reusability, parametrization, and abstraction. In

contrast to the traditional hardware description lan-

guages (HDLs) with only basic primitives such as

 and , modern HCLs usually sup-

port built-in automation for advanced design

paradigms via host languages and compilers[8, 23].

-1%

0%

1%

2%

3%

1 2 3 4 5 10 15 20 30 40 50 60

NUTSHELL (CoreMark) NUTSHELL (Linux Boot)
XIANGSHAN (CoreMark) XIANGSHAN (Linux Boot)

Snapshot Interval (s)P
e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d

Fig.5. Performance overhead of LightSSS.

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 749

Specifically, Chisel adopts the FIRRTL[18] intermedi-

ate representation in compilers and supports cus-

tomized transformations of the circuits based on FIR-

RTL. While we present our workflows on Chisel and

FIRRTL only, the design methodologies of the pro-

posed tools also apply to other HCLs, and techniques

like LightSSS are theoretically independent of the un-

derlying languages and simulators.

In addition to the progress for hardware construc-

tion, agile chip development also requires the im-

provement of verification tools. Software-based simu-

lation techniques have been enhanced for higher

throughput for both conventional HDLs[24] and emerg-

ing HCLs[25]. Due to the significantly faster clock rate

and reconfiguration flexibility, FPGA-accelerated sim-

ulation has become popular in recent years, and re-

searchers have presented many tools to address the is-

sues of debuggability[19] and scalability[11]. One of our

future studies is to adopt FPGAs to further acceler-

ate the proposed functional verification workflows,

such as FPGA-accelerated co-simulation[6, 26].

Despite significant advancements in simulation

and debugging acceleration, the most challenging as-

pect of hardware verification lies in the comprehen-

sive exploration of the design space and identifying

potential bugs.

Formal and static approaches are promising to-

wards this objective, thus being actively studied to

address the scalability issues and continually pro-

posed for hardware designs[27]. Dynamic simulation-

based workflows are still popular in practice. Various

testing strategies have been put forward to improve

the verification effectiveness, such as property-based

testing[28] and coverage-directed test generation[29].

Besides, with the increasing recognition of agile and

open-source hardware, there has been a promising

proliferation of domain-specific functional verification

tools for RISC-V processors[15] and accelerators[30].

With partial reliance on domain-specific knowledge,

they present superior tradeoffs between general appli-

cability and effectiveness, which is also important fu-

ture work for us.

To enable agile development, which emphasizes

development efficiency, and functional verification,

which demands high levels of effectiveness and quali-

ty, both aspects must be carefully considered. Look-

ing toward the future, this paper suggests improving

the efficiency and effectiveness of functional verifica-

tion by further incorporating agile development

paradigms and tools. There have been some studies

adopting similar strategies. For example, since the

hardware design is iteratively refined under the agile

model, functional verification can focus on the modi-

fied code instead of the whole design[31]. High-level

HCLs can also be utilized for formal verification[10],

parameterized verification[32], and instrumentation of

coverage metrics[33].

 7 Conclusions

In this paper, we systematically investigated the

challenges that the agile development methodology

poses on the conventional functional verification

workflows. We proposed workflow integration with

collaborative task delegation and dynamic informa-

tion exchange as the fundamental design principles of

agile development toolchains. We enhanced the func-

tional verification toolchains for RISC-V processors

and presented the integrated workflows for agile hard-

ware development. The proposed toolchains are quan-

titatively evaluated by designing and verifying two

RISC-V processors. We found 33 functional design

bugs and demonstrated the effectiveness of the pre-

sented workflows and toolchains.

 Acknowledgements The authors would like

to thank Zhi-Wei Xu for his valuable insights into the

idea. The proposed techniques in this paper have been

extensively used by the XiangShan team. We give

special thanks to our team members for their feed-

back and help on the work.

 Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Hennessy J L, Patterson D A. A new golden age for com-

puter architecture. Communications of the ACM, 2019,

62(2): 48–60. DOI: 10.1145/3282307.

[1]

 Bao Y G, Carlson T E. Agile and open-source hardware.

IEEE Micro, 2020, 40(4): 6–9. DOI: 10.1109/MM.2020.

3002606.

[2]

 Lee Y, Waterman A, Cook H, Zimmer B, Keller B,

Puggelli A, Kwak J, Jevtic R, Bailey S, Blagojevic M,

Chiu P F, Avizienis R, Richards B, Bachrach J, Patter-

son D, Alon E, Nikolic B, Asanović K. An agile approach

to building RISC-V microprocessors. IEEE Micro, 2016,

36(2): 8–20. DOI: 10.1109/MM.2016.11.

[3]

 Xu Y N, Yu Z H, Tang D, Chen G K, Chen L, Gou L R,

Jin Y, Li Q R, Li X, Li Z J, Lin J W, Liu T, Liu Z G,

Tan J Z, Wang H Q, Wang H Z, Wang K F, Zhang C Q,

Zhang F W, Zhang L J, Zhang Z F, Zhao Y Y, Zhou Y

Y, Zhou Y K, Zou J R, Cai Y, Huan D D, Li Z S, Zhao J

Y, Chen Z H, He W, Quan Q Y, Liu X, Wang S, Shi K,

[4]

750 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

https://doi.org/10.1145/3282307
https://doi.org/10.1109/MM.2020.3002606
https://doi.org/10.1109/MM.2020.3002606
https://doi.org/10.1109/MM.2016.11

Sun N H, Bao Y G. Towards developing high perfor-

mance RISC-V processors using agile methodology. In

Proc. the 55th IEEE/ACM International Symposium on

Microarchitecture, Oct. 2022, pp.1178–1199. DOI: 10.1109/

MICRO56248.2022.00080.

 Xu Y N, Yu Z H, Tang D, Cai Y, Huan D D, He W, Sun

N H, Bao Y G. Toward developing high-performance

RISC-V processors using agile methodology. IEEE Micro,

2023, 43(4): 98–106. DOI: 10.1109/MM.2023.3273562.

[5]

 Kabylkas N, Thorn T, Srinath S, Xekalakis P, Renau J.

Effective processor verification with logic fuzzer enhanced

co-simulation. In Proc. the 54th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, Oct. 2021,

pp.667–678. DOI: 10.1145/3466752.3480092.

[6]

 IEEE. IEEE standard for universal verification methodol-

ogy language reference manual. IEEE Std 1800.2-2020,

2020, pp.1–458. DOI: 10.1109/IEEESTD.2020.9195920.

[7]

 Bachrach J, Vo H, Richards B, Lee Y, Waterman A,

Avižienis R, Wawrzynek J, Asanović K. Chisel: Con-

structing hardware in a Scala embedded language. In

Proc. the 49th Annual Design Automation Conference,

Jun. 2012, pp.1216–1225. DOI: 10.1145/2228360.2228584.

[8]

 Beamer S, Donofrio D. Efficiently exploiting low activity

factors to accelerate RTL simulation. In Proc. the 57th

ACM/IEEE Design Automation Conference, July. 2020.

DOI: 10.1109/DAC18072.2020.9218632.

[9]

 Yu S Z, Dong Y F, Liu J Y, Li Y, Wu Z L, Jansen D N,

Zhang L J. CHA: Supporting SVA-like assertions in for-

mal verification of chisel programs (tool paper). In Proc.

the 20th International Conference on Software Engineer-

ing and Formal Methods, Sept. 2022, pp.324–331. DOI:

10.1007/978-3-031-17108-6_20.

[10]

 Karandikar S, Mao H, Kim D, Biancolin D, Amid A, Lee

D, Pemberton N, Amaro E, Schmidt C, Chopra A, Huang

Q J, Kovacs K, Nikolic B, Katz R, Bachrach J, Asanović
K. FireSim: FPGA-accelerated cycle-exact scale-out sys-

tem simulation in the public cloud. In Proc. the 45th

ACM/IEEE Annual International Symposium on Com-

puter Architecture, July. 2018, pp.29–42. DOI: 10.1109/

ISCA.2018.00014.

[11]

 Kern C, Greenstreet M R. Formal verification in hard-

ware design: A survey. ACM Trans. Design Automation

of Electronic Systems, 1999, 4(2): 123–193. DOI: 10.1145/

307988.307989.

[12]

 Asanović K, Avizienis R, Bachrach J, Beamer S, Biancol-

in D, Celio C, Cook H, Dabbelt D, Hauser J, Izraelevitz

A, Karandikar S, Keller B, Kim D, Koenig J, Lee Y, Love

E, Maas M, Magyar A, Mao H, Moreto M, Ou A, Patter-

son D A, Richards B, Schmidt C, Twigg S, Vo H, Water-

man A. The rocket chip generator. Technical Report

UCB/EECS-2016-17, EECS Department, University of

California, Berkeley, 2016. https://www2.eecs.berkeley.

edu/Pubs/TechRpts/2016/EECS-2016-17.html, July.

2023.

[13]

 Laeufer K, Koenig J, Kim D, Bachrach J, Sen K. RFUZZ:

Coverage-directed fuzz testing of RTL on FPGAs. In

Proc. the 2018 IEEE/ACM International Conference on

Computer-Aided Design, Nov. 2018. DOI: 10.1145/

[14]

3240765.3240842.

 Hur J, Song S, Kwon D, Baek E, Kim J, Lee B. Difuz-

zRTL: Differential fuzz testing to find CPU bugs. In Proc.

the 42nd IEEE Symposium on Security and Privacy, May

2021, pp.1286–1303. DOI: 10.1109/SP40001.2021.00103.

[15]

 Trippel T, Shin K G, Chernyakhovsky A, Kelly G, Rizzo

D, Hicks M. Fuzzing hardware like software. In Proc. the

31st USENIX Security Symposium, Aug. 2022, pp.3237–
3254.

[16]

 Fioraldi A, Maier D C, Zhang D J, Balzarotti D. LibAFL:

A framework to build modular and reusable fuzzers. In

Proc. the 2022 ACM SIGSAC Conference on Computer

and Communications Security, Nov. 2022, pp.1051–1065.
DOI: 10.1145/3548606.3560602.

[17]

 Izraelevitz A, Koenig J, Li P, Lin R, Wang A, Magyar A,

Kim D, Schmidt C, Markley C, Lawson J, Bachrach J.

Reusability is FIRRTL ground: Hardware construction

languages, compiler frameworks, and transformations. In

Proc. the 2017 IEEE/ACM International Conference on

Computer-Aided Design, Nov. 2017, pp.209–216. DOI: 10.

1109/ICCAD.2017.8203780.

[18]

 Kim D, Celio C, Karandikar S, Biancolin D, Bachrach J,

Asanović K. DESSERT: Debugging RTL effectively with

state snapshotting for error replays across trillions of cy-

cles. In Proc. the 28th International Conference on Field

Programmable Logic and Applications, Aug. 2018, pp.76–
764. DOI: 10.1109/FPL.2018.00021.

[19]

 Skinner H, Trapani Possignolo R, Wang S H, Renau J.

LiveSim: A fast hot reload simulator for HDLs. In Proc.

the 2020 IEEE International Symposium on Performance

Analysis of Systems and Software, Aug. 2020, pp.126–135.
DOI: 10.1109/ISPASS48437.2020.00028.

[20]

 Wang H, Zhang Z, Jin Y, Zhang L, Wang K. Nutshell: A

Linux-compatible RISC-V processor designed by under-

graduates. https://riscv.org/proceedings/2020/09/risc-v-

global-forum-proceedings/, July 2023.

[21]

 Wang K F, Xu Y N, Yu Z H, Tang D, Chen G K, Chen

X, Gou L R, Hu X, Jin Y, Li Q R, Li X, Lin J W, Liu T,

Liu Z G, Wang H Q, Wang H Z, Zhang C Q, Zhang F W,

Zhang L J, Zhang Z F, Zhang Z Y, Zhao Y Y, Zhou Y Y,

Zou J R, Cai Y, Huan D D, Li Z S, Zhao J Y, He W, Sun

N H, Bao Y G. XiangShan open-source high performance

RISC-V processor design and implementation. Journal of

Computer Research and Development, 2023, 60(3):

476–493. DOI: 10.7544/issn1000-1239.202221036. (in Chi-

nese)

[22]

 Lockhart D, Zibrat G, Batten C. PyMTL: A unified

framework for vertically integrated computer architecture

research. In Proc. the 47th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Dec. 2014, pp.280–
292. DOI: 10.1109/MICRO.2014.50.

[23]

 Wang H Y, Beamer S. RepCut: Superlinear parallel RTL

simulation with replication-aided partitioning. In Proc.

the 28th ACM International Conference on Architectural

Support for Programming Languages and Operating Sys-

tems, Mar. 2023, pp.572–585. DOI: 10.1145/3582016.3582

034.

[24]

 Jiang S N, Ilbeyi B, Batten C. Mamba: Closing the per-[25]

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 751

https://doi.org/10.1109/MICRO56248.2022.00080
https://doi.org/10.1109/MICRO56248.2022.00080
https://doi.org/10.1109/MM.2023.3273562
https://doi.org/10.1145/3466752.3480092
https://doi.org/10.1109/IEEESTD.2020.9195920
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1007/978-3-031-17108-6_20
https://doi.org/10.1007/978-3-031-17108-6_20
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/307988.307989
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1145/3548606.3560602
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/ISPASS48437.2020.00028
https://riscv.org/proceedings/2020/09/risc-v-global-forum-proceedings/
https://riscv.org/proceedings/2020/09/risc-v-global-forum-proceedings/
https://doi.org/10.7544/issn1000-1239.202221036
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1145/3582016.3582034
https://doi.org/10.1145/3582016.3582034

formance gap in productive hardware development frame-

works. In Proc. the 55th ACM/ESDA/IEEE Design Au-

tomation Conference, Jun. 2018. DOI: 10.1109/DAC.2018.

8465576.

 Shi K, Xu S X, Diao Y H, Boland D, Bao Y G. EN-

CORE: Efficient architecture verification framework with

FPGA acceleration. In Proc. the 2023 ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Ar-

rays, Feb. 2023, pp.209–219. DOI: 10.1145/3543622.

3573187.

[26]

 Xing Y, Lu H X, Gupta A, Malik S. Leveraging processor

modeling and verification for general hardware modules.

In Proc. the 2021 Design, Automation & Test in Europe

Conference & Exhibition, Feb. 2021, pp.1130–1135. DOI:

10.23919/DATE51398.2021.9474194.

[27]

 Naylor M, Moore S. A generic synthesisable test bench. In

Proc. the 2015 ACM/IEEE International Conference on

Formal Methods and Models for Codesign, Sept. 2015,

pp.128–137. DOI: 10.1109/MEMCOD.2015.7340479.

[28]

 Shen H H, Wei W L, Chen Y J, Chen B W, Guo Q. Cov-

erage directed test generation: Godson experience. In

Proc. the 17th Asian Test Symposium, Nov. 2008, pp.321–
326. DOI: 10.1109/ATS.2008.42.

[29]

 Huang B Y, Zhang H C, Subramanyan P, Vizel Y, Gup-

ta A, Malik S. Instruction-level abstraction (ILA): A uni-

form specification for system-on-chip (SoC) verification.

ACM Trans. Design Automation of Electronic Systems,

2019, 24(1): Article No. 10. DOI: 10.1145/3282444.

[30]

 Canakci S, Delshadtehrani L, Eris F, Taylor M B, Egele

M, Joshi A. DirectFuzz: Automated test generation for

RTL designs using directed graybox fuzzing. In Proc. the

58th ACM/IEEE Design Automation Conference, Dec.

2021, pp.529–534. DOI: 10.1109/DAC18074.2021.9586289.

[31]

 Jiang S N, Ou Y H, Pan P T, Cheng K S, Zhang Y X,

Batten C. PyH2: Using PyMTL3 to create productive and

open-source hardware testing methodologies. IEEE De-

sign & Test, 2021, 38(2): 53–61. DOI: 10.1109/MDAT.

2020.3024144.

[32]

 Laeufer K, Iyer V, Biancolin D, Bachrach J, Nikolić B,

Sen K. Simulator independent coverage for RTL hard-

ware languages. In Proc. the 28th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, Mar. 2023, pp.606–
615. DOI: 10.1145/3582016.3582019.

[33]

Yi-Nan Xu received his B.Eng. de-

gree in computer science and technolo-

gy from the University of Chinese

Academy of Sciences, Beijing, in 2019.

He is currently a Ph.D. candidate at

the State Key Lab of Processors, Insti-

tute of Computing Technology, Chi-

nese Academy of Sciences, Beijing. His research inter-

ests include agile development of processors and proces-

sor microarchitecture.

Zi-Hao Yu received his Ph.D. de-

gree in computer systems organiza-

tion from the Institute of Computing

Technology (ICT), Chinese Academy

of Sciences (CAS), Beijing, in 2022. He

is currently an engineer at ICT, CAS.

His research interests include comput-

er architecture and operating systems.

Kai-Fan Wang received his B.Eng.

degree in computer science and tech-

nology from the University of Chinese

Academy of Sciences, Beijing, in 2020.

He is currently a Ph.D. candidate at

the State Key Lab of Processors, Insti-

tute of Computing Technology, Chi-

nese Academy of Sciences, Beijing. His research inter-

ests include agile development of processors and proces-

sor microarchitecture.

Hua-Qiang Wang received his

B.Eng. degree in computer science and

technology from the University of Chi-

nese Academy of Sciences, Beijing, in

2020. He is currently a Master stu-

dent at the State Key Lab of Proces-

sors, Institute of Computing Technolo-

gy, Chinese Academy of Sciences, Beijing. His research

interests include processor microarchitecture and open-

source hardware design.

Jia-Wei Lin received his B.Eng. de-

gree in computer science and technolo-

gy from the University of Chinese

Academy of Sciences, Beijing, in 2020.

He is currently a Master student at

the State Key Lab of Processors, Insti-

tute of Computing Technology, Chi-

nese Academy of Sciences, Beijing. His research inter-

ests include high-performance computer architecture.

752 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

https://doi.org/10.1109/DAC.2018.8465576
https://doi.org/10.1109/DAC.2018.8465576
https://doi.org/10.1109/DAC.2018.8465576
https://doi.org/10.1109/DAC.2018.8465576
https://doi.org/10.1145/3543622.3573187
https://doi.org/10.1145/3543622.3573187
https://doi.org/10.23919/DATE51398.2021.9474194
https://doi.org/10.1109/MEMCOD.2015.7340479
https://doi.org/10.1109/ATS.2008.42
https://doi.org/10.1145/3282444
https://doi.org/10.1109/DAC18074.2021.9586289
https://doi.org/10.1109/MDAT.2020.3024144
https://doi.org/10.1109/MDAT.2020.3024144
https://doi.org/10.1145/3582016.3582019

Yue Jin received his B.Eng. degree

in computer science and technology

from the University of Chinese Acade-

my of Sciences, Beijing, in 2020. He is

currently a Ph.D. candidate at the

State Key Lab of Processors, Institute

of Computing Technology, Chinese

Academy of Sciences, Beijing. His research interests in-

clude high performance processor design, computer ar-

chitecture security, and processor verification.

Lin-Juan Zhang received her

B.Eng. degree in computer science and

technology from the University of Chi-

nese Academy of Sciences, Beijing, in

2020. She is currently a Master stu-

dent at the State Key Lab of Proces-

sors, Institute of Computing Technolo-

gy, Chinese Academy of Sciences, Beijing. Her research

interests include high-performance computer architec-

ture.

Zi-Fei Zhang received his B.Eng.

degree in computer science and tech-

nology from the University of Chinese

Academy of Sciences, Beijing, in 2020.

He is currently a Ph.D. candidate at

the State Key Lab of Processors, Insti-

tute of Computing Technology, Chi-

nese Academy of Sciences, Beijing. His research inter-

ests include computer architecture and agile develop-

ment.

Dan Tang received his Ph.D. de-

gree in computer systems organiza-

tion from the Institute of Computing

Technology (ICT), Chinese Academy

of Sciences (CAS), Beijing, in 2010. He

is currently a senior engineer at the

State Key Lab of Processors, ICT,

CAS, and the assistant director at the Beijing Institute

of Open Source Chip, Beijing. His research interests in-

clude computer architecture and low power SoC design.

Sa Wang received his Ph.D. degree

in computer science from the Insti-

tute of Software, Chinese Academy of

Sciences, Beijing, in 2016. He is cur-

rently an associate professor at the

State Key Lab of Processors, Institute

of Computing Technology, Chinese

Academy of Sciences, Beijing. His current research inter-

ests include cloud computing and operating systems.

Kan Shi received his Ph.D. degree

in digital computing from Imperial

College London, in 2015. He is cur-

rently an associate professor at the

State Key Lab of Processors, Institute

of Computing Technology, Chinese

Academy of Sciences, Beijing. His re-

search interests include agile chip design and verifica-

tion, and custom computing using FPGAs.

Ning-Hui Sun received his Ph.D.

degree in computer systems organiza-

tion from the Institute of Computing

Technology (ICT), Chinese Academy

of Sciences (CAS), Beijing, in 1999. He

is currently a professor at the State

Key Lab of Processors, ICT, CAS,

Beijing, and an academician of the Chinese Academy of

Engineering. His research interests include computer ar-

chitecture and high-performance computing.

Yun-Gang Bao received his Ph.D.

degree in computer systems organiza-

tion from the Institute of Computing

Technology (ICT), Chinese Academy

of Sciences (CAS), Beijing, in 2008. He

is currently a professor at the State

Key Lab of Processors, ICT, CAS, and

the deputy director of the ICT, Beijing. His research in-

terests include open source hardware and agile chip de-

sign, data center architecture, and memory systems.

Yi-Nan Xu et al.: Functional Verification for Agile Processor Development 753

	1 Introduction
	2 Background
	2.1 Agile and Open-Source Hardware
	2.2 Functional Verification
	2.3 Simulation-Based Dynamic Verification

	3 Challenges
	4 Design
	4.1 Workflow Integration
	4.2 Diff-Rule Based Agile Verification (DRAV)
	4.3 DRAV for RISC-V Processors
	4.3.1 Speculative Virtual Address Translations
	4.3.2 Cache Hierarchy and Multicore Scenarios
	4.3.3 More Sources of Nondeterminism

	4.4 Information Probes
	4.5 Test Generation
	4.6 Fault Analysis

	5 Evaluation
	5.1 DiffTest on RISC-V Processors
	5.2 Fuzzing Effectiveness
	5.3 Snapshot Efficiency
	5.4 Case Study

	6 Discussions and Related Work
	7 Conclusions
	Acknowledgements
	Conflict of Interest
	References

