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Abstract    Federated multi-task learning (FMTL) has emerged as a promising framework for learning multiple tasks si-

multaneously with client-aware personalized models. While the majority of studies have focused on dealing with the non-

independent  and  identically  distributed  (Non-IID)  characteristics  of  client  datasets,  the  issue  of  task  heterogeneity  has

largely been overlooked. Dealing with task heterogeneity often requires complex models, making it impractical for federat-

ed learning in resource-constrained environments. In addition, the varying nature of these heterogeneous tasks introduces

inductive biases, leading to interference during aggregation and potentially resulting in biased global models. To address

these issues, we propose a hierarchical FMTL framework, referred to as , to facilitate the construction of large-

scale models with improved generalization.  leverages server-client split learning and gradient projection to split

the entire model into two components: 1) a large-scale general model (referred to as the general model) on the cloud serv-

er, and 2) multiple task-specific models (referred to as client models) on edge clients, accommodating devices with limited

compute power. To enhance the robustness of the large-scale general model, we incorporate the conflicting gradient projec-

tion technique into  to rectify the skewed gradient direction caused by aggregating gradients from heterogeneous

tasks. The proposed  framework is evaluated on three benchmark datasets and one real ophthalmic dataset. The

comprehensive experiments demonstrate that  efficiently adapts to the heterogeneous local  tasks of  each client

and outperforms existing federated learning algorithms in various dense prediction and classification tasks while utilizing

off-the-shelf computational resources on the client side.

Keywords    federated learning, multi-task learning, split learning, heterogeneous task

  

1    Introduction

Federated  learning[1] is  a  collaborative  model

training approach that allows multiple edge devices or

institutions  to  participate  in  the  training  process

while  keeping  their  data  local  and  confidential.  In  a

typical federated learning pipeline, several edge clients

independently  train  models  using  their  local  data.

These  clients  then  send  their  trained  model  parame-

ters  to  a  central  cloud  server.  The  server  aggregates

these  parameters  into a global  model  and distributes

the  updated  model  back  to  the  clients.  In  this  way,

each  client  benefits  from  the  knowledge  learned  by

other  clients  without  revealing  their  private  data.  In

recent years, researchers have proposed various feder-

ated  learning  methods  to  address  challenges  such  as
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handling  non-independent  and  identically  distributed

(Non-IID)  data[2],  enhancing  privacy  protection  to

prevent data leakage[3]. While the majority of federat-

ed  learning  methods  focus  on  classification  tasks,

some  researches  have  extended  federated  learning  to

handle more complex tasks, for instance object detec-

tion[4], semantic segmentation[5], etc. These researches

have contributed to the widespread adoption of feder-

ated learning in many real-world applications.

Due to the diversity of  tasks,  it  is  natural  to en-

counter task heterogeneity among clients in practical

federated learning scenarios. For instance, in a medi-

cal federated learning setting, different hospitals with

the  same  kind  of  medical  images  may  have  distinct

tasks  based  on  their  specific  medical  objectives.  One

hospital  might  focus  on  directly  classifying  diseases

using medical images, while another hospital could be

engaged  in  lesion  detection  tasks,  where  doctors/re-

searchers in the hospital can label lesions with bound-

ing boxes to identify locations of lesions. Additionally,

another hospital  might perform more advanced tasks

like lesion segmentation, where doctors/researchers in

the  hospital  may  annotate  the  masks  of  lesions  to

compute  lesion  volumes.  The  federated  learning  set-

ting  of  heterogeneous  tasks  is  defined  as  federated

hetero-task  learning  in  B-FHTL[6],  a  federated  learn-

ing  benchmark  with  heterogeneous  tasks.  This  feder-

ated  learning  setting  holds  considerable  promise  to

unlock  a  broader  range  of  applications  for  federated

learning. It effectively encourages the participation of

various clients with different learning objectives, pro-

moting wider adoption of federated learning and facil-

itating beneficial collaborations.

Despite the setting definition, the federated multi-

task learning (FMTL) of heterogeneous tasks remains

a relatively unexplored research area. While consider-

able  attention  has  been  devoted  to  addressing  data

heterogeneity,  most  existing  work  assumes  a  consen-

sus on the learning objective and limits the ability to

effectively  handle  task  heterogeneity[6].  However,  B-

FHTL[6] shows  unsatisfactory  benchmark  results  of

existing FMTL methods, which prompts us to investi-

gate  a  more  tailored  FMTL  method  for  heteroge-

neous  tasks.  In  centralized  multi-task  learning[7],  the

presence of data label for every task allows the simul-

taneous training of multiple tasks towards a complex

backbone.  Each  task  is  then  adapted  using  a  task-

aware output head model, enhancing the model's per-

formance  for  individual  tasks.  In  contrast,  federated

learning  operates  in  a  distributed  way,  where  client

data  is  privacy-sensitive  and  cannot  be  shared  with

other clients for task labeling. This data privacy con-

straint  leads  to  data  and  task  heterogeneity  across

clients, making it challenging to align learning objec-

tives and perform aggregation. Moreover, edge clients,

such as  hospitals,  may encounter  limitations  in  com-

putational  resources,  preventing  them  from  training

the full backbone on their own devices. The computa-

tional constraint adds another layer of complexity to

the  FMTL  of  heterogeneous  tasks,  necessitating  effi-

cient model partitioning and aggregation strategies to

accommodate  the  diverse  capabilities  of  edge  clients.

Therefore, the FMTL of heterogeneous tasks requires

novel techniques to handle data and task heterogene-

ity while respecting resource limitations.

FedBone
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In light of these challenges, we propose , a

hierarchical  FMTL  framework  as  shown  in Fig.1,

which takes advantage of the server-client split learn-

ing paradigm to enable the edge clients to participate

in  large-scale  federated  training  with  low  memory

footprints. The  framework is designed to ex-

ecute  a  multi-stage  process  for  handling  heteroge-

neous  tasks  which  entail  client-side  data  embedding,

server-side  universal  model  feature  extraction,  and

client-side  task-specific  processing.  Throughout  the

process, edge clients are only responsible for comput-

ing  data  embedding  and  propagating  it  to  the  cloud

server for feature extraction of the large-scale general

model.  The  resulting  latent  representations  are  then

dispatched back to the clients to perform task output.

In this way, the edge clients can utilize their limited

computational  resources  to  focus  on  task-specific

learning,  while  benefiting  from the  knowledge  shared

by the general model. To enhance the general model's

generalization,  we  introduce  a  gradient  projection

method and gradient rescaling based on historical gra-

dient attention to reduce the negative impact of con-

flicting gradient components on gradient aggregation.

The  task  output  module  on  the  client  is  tailored  to

specific task types but is generally concise due to the

assumption of feature extraction having already been

fulfilled.  Latent  representations  extracted  from  the

large-scale  general  model  are  usually  low-level  fea-

tures  for  various  tasks.  In  addition,  we  consider  is-

sues related to privacy and local environment hetero-

geneity.  We  design  an  approach  that  combines  local

differential privacy and the trusted execution environ-

ment to address various threats from the cloud server.

Asynchronous  federated  optimization  is  incorporated

to  alleviate  performance  degradation  caused  by  dis-

FedBoneYi-Qiang Chen et al.: : Towards Large-Scale Federated Multi-Task Learning 1041



parities between network states and computational re-

sources.  Therefore,  we  propose  a  task  adaptation

module, which utilizes deformable convolutions and a

self-attention  mechanism  to  focus  on  low-level  fea-

tures in the task-specific  region and perform task in-

teractions. The proposed task adaptation module sig-

nificantly  improves  downstream  task  performance  in

the experiments. Our main contributions can be sum-

marized as follows.

FedBone• We  propose  ,  a  novel  FMTL  frame-

work via split learning for large-scale federated train-

ing  on  edge  clients  and  heterogeneous  task  adapta-

tion.

• We  propose  GPAggregation  to  alleviate  opti-

mization  challenges  of  the  general  model  posed  by

task heterogeneity among clients, which rescales client

gradients  with  historical  gradients  attention  and

merges gradient conflict between clients.

• We design an approach that combines local dif-

ferential  privacy  and  the  trusted  execution  environ-

ment  to  cover  different  server  roles,  tackling  threats

from  semi-trusted  and  malicious  servers  while  safe-

guarding sensitive information.  Simultaneously,  asyn-

chronous optimization is incorporated to alleviate the

performance  issue  caused  by  the  mismatch  between

client states and computational resources.

• We conduct extensive experiments on three pub-

lic multi-task datasets. The results show that our pro-

FedBone

FedBone

posed  outperforms  the  compared  state-of-

the-art  federated  learning  algorithms  in  heteroge-

neous tasks with much smaller client resource require-

ments.  The experiments  on 13 real-world ophthalmic

tasks reveal the potential capability of  in re-

al medical and healthcare applications with heteroge-

neous dense prediction and classification tasks. 

2    Related Work
 

2.1    Federated Multi-Task Learning

Federated  multi-task  learning[8] was  proposed  to

handle  the  statistical  challenges  of  Non-IID  data  by

training  personalized  models  in  a  federated  learning

setting.  Ditto[9] provides  a  multi-task  learning  objec-

tive  for  federated  learning  to  enhance  task  personal-

ization. The FATHOM framework[10] leverages the at-

tention mechanism to extract input features and learn

a  shared  temporal  representation  across  different  de-

vices,  thereby  achieving  knowledge  transfer  and  per-

formance improvement.  FedICT[11] achieves  personal-

ized  models  for  multi-task  clients  by  using  federated

prior distillation and local knowledge adjustment.

In  addition  to  addressing  the  Non-IID  problem,

FMTL has also expanded to accommodate various da-

ta modalities. FedMSplit[12] was proposed to use a dy-

namic  multi-view  graph  structure  to  address  the

modality  incongruity  problem  among  sensor  devices
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and  to  promote  local  model  relations  through  neigh-

borhood  message  passing  in  the  graph.  The  Spread-

GNN[13] framework has solved the Non-IID problem of

graph  data  and  uses  a  dynamic  multi-task  optimiza-

tion  method  to  ensure  model  convergence.  Among

these  FMTL  methods,  knowledge  distillation  based

approaches  and  frameworks  with  hierarchical  model

structures  can adapt to heterogeneity tasks  with less

modification. The B-FHTL[6] benchmark results show

that FMTL methods could outperform traditional fed-

erated learning methods, but perform even worse than

model trained using only the client's own data in the

federated learning setting of heterogeneous tasks.

FedBone follows  the  FMTL  framework,  and  fur-

ther takes into account the computational limitations

on edge clients and the central server. 

2.2    Personalized Federated Learning

Another  related  topic  is  personalized  federated

learning. Personalized federated learning tries to solve

the challenges of federated learning on heterogeneous

data.  There  are  two different  strategies  for  personal-

ized  federated  learning:  personalization  of  the  global

model  and  individual  personalized  models.  The  for-

mer  performs  local  adaptation  for  each  client  based

on the trained global federated model to achieve per-

sonalized  processing,  while  the  latter  trains  individu-

al  personalized  models  on  each  client.  In  the  data

augmentation  aspect,  the  self-balancing  learning

framework  Astraea[14] uses  z-score  based  data  aug-

mentation and mediator-based multi-client reschedul-

ing to mitigate the impact of data distribution differ-

ences.  In  FedHome[15],  each  client  performs  personal-

ized  adaptation  on  a  locally  enhanced  class-balanced

dataset.

Some studies use the method of adding a local loss

regularization  term.  For  instance,  FedProx[16] intro-

duces  an  approximation  term  for  the  local  subprob-

lem, taking into account the dissimilarity between the

global  federated  learning  model  and  the  local  model

to adjust  the impact of  local  updates.  FedCL[17] uses

the  regularization  term  of  elastic  weight  consolida-

tion (EWC) from the continual learning domain. Oth-

er  methods  like  transfer  learning[18],  and  meta-learn-

ing[19] are also used to improve the performance of the

global shared model trained on heterogeneous data in

federated  learning.  The  personalized  solutions  for

clients mainly include methods such as parameter de-

coupling[20],  model  interpolation[21],  and  clustering[22].

Specifically,  the  importance  of  parameters  in  Fed-

Curv[23] is  estimated  by  the  Fisher  information  ma-

trix, and a penalty step is performed to retain impor-

tant  parameters,  which  can  reduce  the  catastrophic

forgetting problem between multiple tasks.

The  concept  of  personalized  federated  learning

highlights  the  necessity  of  adaptation  for  local  data

distribution. Furthermore, FedRep[24] employs a hier-

archical structure that learns a shared data represen-

tation model across clients and unique local heads for

each client. However, existing methods fail to consid-

er  the  potential  for  personalization  in  the  event  of

task heterogeneity[6]. 

2.3    Foundation Models

The  foundation  model[25] is  a  deep  learning

paradigm in  which a  model  is  pre-trained on a  large

amount  of  unlabeled  data,  which  can  be  adapted  to

various downstream tasks via transfer learning meth-

ods  like  fine-tuning.  This  paradigm has  already been

used  in  a  variety  of  domains,  including  neural  lan-

guage processing[26],  computer vision[27],  etc. The pre-

training of foundation models requires substantial da-

ta  and  computational  power,  typically  conducted  by

large data centers.

Some  existing  work[28] has  adopted  federated

learning  to  carry  out  the  pre-training  process,  there-

by reducing the resource burden on individual nodes.

Most  current  research  focuses  on  efficiently  adapting

a  foundation  model  to  downstream  tasks  using

adapters[29]. Chen et al.[30] have extended the training

of  these  adapters  to  federated  learning.  Offsite-

tuning[31] provides a method based on knowledge dis-

tillation  and  simulators  that  can  train  an  adapter

without  transmitting  the  entire  foundation  model,

while  achieving  high  performance  on  downstream

tasks.  FedKD[32] provides  a  method  to  update  the

foundation  model  from  feature  tasks,  but  since  the

parameter size of the distillation model is much small-

er  than  the  original  foundation  model,  it  enables  di-

rect training and updating of the foundation model by

the clients.

FedBone

In contrast, our primary goal is to develop a task-

agnostic foundation model by incorporating addition-

al layers that can successfully adjust to various down-

stream  tasks.  The  construction  of  exempli-

fies  large-scale  models.  This  enables  the  foundation

model  to  utilize  the  knowledge and insights  acquired

from diverse tasks, thus transforming it into an excep-

tionally  efficient  and  adaptable  feature  extractor  ca-

pable  of  extracting  common patterns  across  multiple

clients. 
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3    Method
 

3.1    Problem Formulation

K =

{1, 2, . . . , K} k ∈ K
Dk = {(xk, yk)i, i = 1, 2, . . . , Nk}

fk

We  consider  a  set  of  federated  clients 

, and each client  has a local data-

set  and collaborative-

ly trains models with other federated learning clients,

with the goal of training personalized local models 

that can adapt to the distinct local task. The goal is

to solve the following optimization problems:
 

∀k ∈ K, min
fk∈F
Lk(fk),

F
Lk

where  denotes the set of all personalized local mod-

els and  denotes the local loss function.
 

3.2    Overall Architecture

FedBoneOur proposed framework  aims to enable

the participation of heterogeneous task clients in fed-

FedBone

erated  learning,  thereby  facilitating  federated  train-

ing of large-scale models. To achieve this, we adopt a

split  federated  learning  approach[33],  which  involves

the computation of a large-scale general model on the

cloud server and the lightweight computation of data

embedding and task head output on the edge clients.

 aggregates large-scale general models using a

task gradients projection method, which prevents gra-

dient conflicts and improves model generalization per-

formance,  as  opposed  to  the  direct  federated  averag-

ing  aggregation  methods.  To  enhance  the  perfor-

mance of client local tasks, we introduce a task adap-

tation  module,  which  comprises  the  deformable  con-

volution  and  self-attention  mechanism.  These  tech-

niques  adapt  to  irregularly  shaped  feature  maps

through deformable convolution and capture the task

interaction features. The full  framework is illustrated

in Fig.2.  In  the  following,  we  will  outline  the  work-

flow of split FMTL and elaborate on the comprehen-

sive design of federated aggregation via task gradient
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projection and task adaptation module. 

3.3    Split Federated Multi-Task Learning

FedBone follows  the  split  learning[33] approach,

but  it  only  requires  one  cloud server  for  high-perfor-

mance  computation  and  model  aggregation.  All

clients  perform  patch  embedding[34] computations  in

parallel  and  then  send  the  local  results  to  the  cloud

server for feature extraction using a large-scale gener-

al model. After receiving client results, the cloud serv-

er responds to the client with general latent represen-

tations.  Using  these  representations,  clients  sequen-

tially complete forward propagation through the task

adaptation  module  and  then  the  task  output  head,

and  immediately  begin  backward  propagation.  After

receiving the gradients of the general model, the cloud

server stores them and then sends the subsequent gra-

dients  of  the  task  adaptation  module  to  the  original

client.  Clients  with  complete  gradients  can  now  up-

date the parameters of the local patch embedding, the

task  adaptation  module,  and  the  task  output  head.

When  all  selected  clients  send  the  gradients  of  the

general  model,  the cloud server aggregates the gradi-

ents and updates the parameters of the general model.

The specific detail can be found in Algorithm 1.

e(·) l(·) o(·)
ζ, η ϕ

∇t
k

In Algorithm 1, clients compute patch embedding

,  task  adaptation ,  and  task  output  head 

with parameters , and , respectively. The patch

embedding  module  transposes  raw  data  patches  to

flatten  patch  embeddings  with  a  single  convolution

operation.  The  task  adaptation  module  is  built  with

deformable convolution and multi-head self-attention,

which  will  be  described  in  more  detail  in Subsection

3.5. The task output head can vary for heterogeneous

tasks,  but  it  typically  contains  convolution,  normal-

ization,  and  deconvolution  operations.  Computation

on  clients  yields  relatively  low  resource  requirements

and  can  be  conducted  on  low-power  consumption

edge devices.  During clients  update,  the  cloud server

gradually gathers task gradients  for gradients ag-

gregation and general model update subsequently. 

3.4    Gradients  Aggregation  via  Conflicting

Gradients Projection

The  cloud  server  conducts  gradient  aggregation

for optimizing parameters of the general model, which

could  integrate  the  knowledge  of  all  client  tasks  and

improve  the  generalization  capability  of  the  general

model.  Learning  multiple  tasks  simultaneously  is  a

challenging optimization problem that can sometimes

lead to poorer model performance[35].

FedBoneAlgorithm 1. 

K Dk,∀k ∈ KInput: client set  with local datasets 

θ ζ, η, ϕOutput: general model , client task-specific modules 

θ0 ∀ k ∈ K ζ0
k , η

0
k, ϕ

0
k

1: Server initializes ,  client  initializes 

t = 0, . . . , T − 12: for round  do

k = 1, . . . , K3: 　　for client  do

xt
k, e ← e(xk; ζ

t
k)4: 　　　Client patch embedding 

xt
k, h ← f(xt

k, e; θ
t)5: 　　　Server feature extraction 

∂Lk/∂f ← xt
k, h

6: 　　　 CLIENTUPDATE

∇t
k = (∂Lk/∂f)(∂f/∂θ

t)7: 　　　

∂Lk/∂e8: 　　　Server sends  to client

9: 　　　Client completes backward propagation

ζt+1
k , ηt+1

k , ϕt+1
k

10:  Client optimizes 

11: 　　end for

∇t
K = {∇t

1, ∇t
2, . . . , ∇t

K}12: 　　Server gathers 

∇t ← ∇t
K,∇t−113: 　　 GPAGGREGATION

θt+1 ← θt,∇t14: 　　  OPTIMIZER

15: end for

xt
k, h

16: function CLIENTUPDATE( )

xt
k, l ← l(xt

k, h; η
t
k)17: 　　Task adaptation 

ŷt
k ← o(xt

k, l;ϕ
k
t )18: 　　Task output 

Lk(ŷ
t
k, yk)19: 　　Task specific loss computation 

∂Lk/∂f ←20: 　　  Backward propagation to task adaptation

∂Lk/∂f21: 　　return 
22: end function

∇i

i ∇j j

In  the  federated  learning  scenario,  things  become

even trickier, since most existing methods require ac-

cess  to  raw  data  to  build  the  relationship  between

tasks and determine the strategy for aggregating task

gradients. To ease the need for raw data, one feasible

approach  is  to  attribute  multi-objective  optimization

problems  to  the  existence  of  gradient  conflicts,  de-

scribe them as gradients from different tasks conflict-

ing with one another among tasks[36], and solve them

by  correcting  the  gradients.  For  gradients  from

client  and gradients  from client , we define the

conflicting gradients as follows.

i ∇i j

∇j ωij ∇i ∇j

cosωij < 0

Definition  1 (Conflicting  Gradient). Defining  the
angle between client  gradients  and client  gradi-
ents  as ,  and  are  conflicting  gradients
when .

∇i ∇j

∇i

∇j

As shown in Fig.3(a), gradients  and  have a

negative  impact  on  each  other,  and  direct  aggrega-

tion will cause a reduction in final gradients. An intu-

itive idea can be projecting one gradient  onto the

normal plane of another gradient  to eliminate the

opposite component:
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∇′
i = ∇i −

∇i : ∇j

∥∇j∥2
∇j,

∇i αi

∇j

where  ``:''  denotes  the  Frobenius  inner  product,  the

projecting  procedure  is  illustrated  in Fig.3(b).  The

method works well when the general model converges

towards  flatter  minima,  but  certain  clients  may  fall

into  a  sharp  valley  and  the  weight  of  the  clients

should be decreased in the aggregation procedure. To

dampen  the  influence  of  clients  which  converge  to-

wards sharp minima, we propose a novel gradients ag-

gregation  method  GPAggregation  by  the  use  of  his-

torical  aggregated gradients.  We rescale gradients by

calculating the attention values of historical aggregat-

ed gradients.  A simple example is  shown in Fig.3(c):

the  gradient  is  scaled  by  attention  and  then

projected  onto  the  normal  plane  of  scaled  gradient

.

∇k

∇′

The gradient projection method is described in Al-

gorithm 2. The task gradients  are scaled by atten-

tion  mechanism  with  historical  aggregated  gradients

:
 

∇k = softmax
(
∇k∇′T

d∇

)
∇k.

Iterating  through  the  gradients  of  all  the  other

clients  and  projecting  onto  every  normal  plate,  we

now get the de-conflicted task gradients which can be

used for average aggregation. 

3.5    Heterogeneous Task Adaptation

The  large-scale  general  model  can  extract  latent

representations  with  sufficient  information  for  han-

dling  heterogeneous  tasks  on  the  client  side.  In  cen-

tralized multi-task learning, similar task output head-

er structures are used for different tasks to reduce the

complexity  of  optimizing  model  parameters[7].  In  an

FMTL scenario, data distribution shifts more uneven-

ly than centralized multi-task learning data. As a re-

sult,  the  latent  representations  by  the  general  model

are more generalized and decoupled from the specific

distribution  of  client  data.  Relying  solely  on  a

lightweight task output head makes it challenging to

extract further task-specific information from the gen-

eral latent representations and apply it to accomplish

tasks, leading to a more obvious distribution shift.

Algorithm 2. GPAggregation

∇K
∇′

Input: a set of current round task gradients , previous round
aggregated gradients 

∇Output: aggregated gradients 

∇k ∈ ∇K1:   for  do

∇k = (∇k∇′T/d∇)∇k2: 　　   SOFTMAX

3:  end for

∇p
k ← ∇k,∀∇k in ∇K4:   store 

∇k ∈ ∇K5:   for  do

∇i ∈ ∇K \ ∇k6: 　　  for  do

∇p
k : ∇i < 07: 　　　  if  then

∇p
k = ∇p

k − (∇p
k : ∇i/∥∇i∥2)∇i8: 　　　　 

9: 　　　  end if

10: 　　end for
11: end for

∇ = (
∑

k
∇p

k)/K12: 

Inspired by the successful deformable convolution-

al  network[37] and  convolutional  Transformer  joint

structure[38], we propose a heterogeneous task adapta-

tion  module  that  adaptively  captures  unique  recep-

tive  regions  specific  to  each  task  and  task  interac-

tions.  The heterogeneous task adaptation module us-

es channel-wise pooling, spatial-wise sampling, and in-

tra-task  attention  to  learn  relevant  task-specific  fea-

tures.  Utilizing  the  reconstructed  feature  representa-

tions enables the task output head to perform down-

stream tasks more effectively and efficiently.

1× 1

xh

1× 1

x′
h

The heterogeneous task adaptation module  main-

ly  consists  of  convolution,  deformable  convolu-

tion, and self-attention mechanism, as shown in Fig.4.

The module uses general latent representation  re-

ceived from the cloud server which is initially fed in-

to a linear layer to reduce the channel dimension. The

feature map then employs  convolution to com-

municate  between  channels.  Following  the  Gaussian

error linear unit (GELU) activation, the resulting fea-

ture map is denoted as .

RFollowing  [37],  we  first  sample  a  regular  grid 
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Fig.3.   Gradients  projection  process  of  two  task  gradients 
and . (a) Two gradients with conflicting gradient directions
are aggregated directly, which can lead to interference. (b) Gra-
dients  are  firstly  projected  onto  the  normal  vector  of  the
gradients , and then they are aggregated. (c) Two gradients

 and  are scaled with attention , and continue the pro-
jection-aggregation procedure. (d) Red, yellow, and green lines
represent  the  aggregated  gradients  of  the  three  cases,  respec-
tively.
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x′
h

w

p x′
h

δp

p R

over the input feature map  and then the summa-

tion  of  sampled  values  weighted  by .  To  generate

the relative offsets with respect to the reference point

,  the  full  feature  map  is  fed  to  the  convolution

operator  to  learn  the  corresponding  offsets .  For

each  location  point  and  a  regular  grid ,  the  de-

formable convolution can be formulated as:
 

xd(p) =
∑
δp∈R

w(p) · x′
h(p+ δp).

xd

xq xk xv dk

dk

The output  is  then  projected  into  the  queries

( ), keys ( ),  and values ( ) of dimension  us-

ing  linear  transformation  for  the  final  self-attention.

The  self-attention  mechanism  calculates  the  atten-

tion  weights  by  computing  the  dot  product  between

the queries and keys, scaled by the square root of the

dimension . The softmax function is applied to nor-

malize  the  attention  weights.  Finally,  the  values  are

weighted by the attention weights to obtain the out-

put:
 

xt = softmax
(
xqx

T
k√

dk

)
xv,

xq xk xv

Wq Wk Wv

LN(·)

and , , and  are obtained by multiplying with

learnable  weight  matrices , ,  and ,  respec-

tively.  The  layer  normalization  layer  is  ap-

plied before the self-attention:
 

xq = LN(xdWq),

xk = LN(xdWk),

xv = LN(xdWv).

Finally,  a  linear  layer  is  utilized  to  enhance  the

features produced by the self-attention module, gener-

ating task-specific adapted features. 

3.6    Asynchronous Algorithm

Synchronous  federated  learning  methods  require

that  every  selected  client  returns  updated  results  in

each round. Due to the differences in computing capa-

bilities,  network  bandwidth,  latency,  and  data  vol-

ume among clients,  the time required for each round

of  updates  from  each  client  may  vary  significantly.

Although  the  process  of  clients  uploading  local  up-

dates is asynchronous, the cloud server must wait for

all  participants  to  complete  their  updates  before  it

can perform the aggregation. Consequently, the slow-

est  client  determines  the  training  time  per  round  in

synchronous federated learning. In the FMTL scenar-

ios  with  task  heterogeneity,  the  time  difference  in

client  updates  caused  by  these  factors  will  be  even

greater due to the larger size of the general model.

Asynchronous  federated  learning[39] enables  the

cloud  server  to  initiate  the  aggregation  process  after

receiving at least a predetermined proportion of client

updates.  This  provides  flexibility  in  server  aggrega-

tion, as it does not require all clients to complete lo-

cal  training  and  network  uploading.  For  clients  who

lag  behind,  the  cloud  server  measures  the  weights

based on the asynchronous federated learning method

once their local updates are uploaded. The cloud serv-

er then performs a weighted averaging aggregation for

these outdated updates. Numerous asynchronous fed-

erated learning methods[40] have been proposed, offer-

ing  more  flexible  aggregation  strategies.  However,

these  methods  may  lead  to  performance  degradation

as  updates  from  certain  clients  might  be  discarded

due  to  their  relatively  small  weight  in  the  aggrega-

tion strategy.

FedBone

FedBone
p

λ

 employs  a  split  learning  paradigm,

whereby the general model is kept, avoiding the net-

work  latency  issues  caused  by  uploading  the  general

model  gradients  from  clients.  However,  the  differ-

ences in computational capabilities among clients and

the varied sizes of local datasets still result in the di-

versity  of  the  total  time  for  each  round  of  local  up-

dates.  Therefore,  we  propose  an  asynchronous

 algorithm that allows the aggregation of the

general model after  clients have completed a round

of  local  training.  This  idea  is  similar  to  FedBuff[41],

but under the paradigm of split learning, every client

retains  some  batches  of  general  model  update  gradi-

ents  on  the  cloud  server.  Hence,  we  set  an  update

completion ratio ,  which represents the ratio of up-

dated  batches  to  total  batches,  and  the  cloud  server

aggregates  gradient  updates  from  both  clients  who

 

Linear

1x1 Convolution

GELU Activation

Deformable Convolution

GELU Activation

Layer Normalization

Self-Attention

Linear

Fig.4.  Illustration of task adaptation module.
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λ

have accumulated  updates and the  fully complet-

ed  clients.  Before  updating  the  general  model,  it  is

necessary  to  rescale  the  gradients  of  all  participants

involved  in  the  aggregation  using  GradNorm[42] or

similar  methods.  It  is  to  ensure  the  balance  of  the

gradients  involved  in  the  aggregation  and  maintain

convergence stability. The updated general model pa-

rameters  will  be  immediately  implemented  on  the

cloud  server,  and  the  ratio  will  be  reset.  In  this

way, the flexibility and scalability of federated learn-

ing  are  enhanced,  while  also  optimizing  the  utiliza-

tion of gradient updates from participants and hetero-

geneous tasks. The algorithm process is shown in Al-

gorithm 3.

FedBoneAlgorithm 3. Asynchronous 

K Dk,∀k ∈ KInput: client set  with local datasets 

θ ζ, η, ϕOutput: general model , client task-specific modules 

　Server Side:

θ0 λK = {λ1, . . . , λK}1:  Server initializes , 

t = 0, . . . , T − 12:   for round  do

p3: 　　 while any  clients have fully completed do

λk4: 　　　 Server records  for each client

∇t
PC = {∇t

1, ∇t
2, . . . , ∇t

p}5: 　　　 Server gathers 

∇t
PR = {∇t

k|λk > Λ}6: 　　　 Server gathers 

∇t
P = ∇t

PC ∪∇t
PR7: 　　　 

∇t ← (∇t
P ,∇t−1)8: 　　　   GPAGGREGATION

θt+1 ← θt,∇t9: 　　　  OPTIMIZER( )

λK10: 　　　Server resets 

11: 　　end while
12: end for

　  Client Side:
FedBone13: Do the same as synchronous 

 

3.7    Privacy Threat and Protection

FedBoneThe  general  model  employed  by  oper-

ates  exclusively  within  the  server-side  infrastructure,

effectively mitigating existing client-side privacy-relat-

ed attacks.  Consequently,  our focus lies  solely on at-

tacks initiated from the server environment. To tack-

le  this  challenge,  we  follow a  prevalent  threat  model

that  portrays  the  adversary as  an honest-but-curious

server.  This  implies  that  while  the  server  complies

with allowing federated learning algorithms to run ac-

cording  to  their  design,  it  actively  attempts  to  infer

sensitive  information  from  the  embeddings  uploaded

by clients.

In our defense strategy, we integrate trusted exe-

cution  environments  (TEEs)[43] within  the  server  in-

frastructure  to  counter  this  identified  threat.  TEEs

represent hardware extensions specifically designed to

furnish  both  integrity  and  confidentiality  assurances

FedBone

during  security-sensitive  computations  conducted

within  an  untrusted  environment,  without  exposing

the  data  or  processing  activities  to  the  host  system

(comprising  the  kernel,  hypervisor,  etc.).  Primarily,

TEEs  aim  to  resolve  the  challenge  of  executing  se-

cure remote computations on potentially  untrustwor-

thy  machines,  ensuring  integrity  and  trustworthiness

throughout.  As  a  consequence,  TEEs  have  garnered

widespread  adoption  in  privacy-preserving  federated

learning  methods[44].  Within  the  TEE-augmented

 framework,  the  cloud  server  disseminates  a

public  key  generated  by  TEEs  to  clients.  This  key

serves  the  purpose  of  encrypting  local  embeddings

possessed  by  clients  before  transmitting  them  to  the

cloud  server.  Subsequently,  the  cloud  server  receives

these encrypted embeddings and decrypts them with-

in the confines of the TEE environment. As a result,

client embeddings remain shielded from unauthorized

inference, thus bolstering the overall  security posture

of the system.

While TEEs serve to prevent unauthorized access

to client embeddings by an honest-but-curious server,

it  is  imperative  to  acknowledge  the  susceptibility  of

TEEs  to  various  side-channel  attacks.  Should  a  suc-

cessful attack occur, the cloud server could potential-

ly  transform into  a  malicious  entity,  posing  a  severe

threat  to  the  security  of  the  system.  To  fortify  the

protection  of  client  embeddings  in  such  precarious

scenarios, we leverage the efficacy of local differential

privacy (LDP)[45].  Incorporating LDP involves apply-

ing  a  zero-mean  Gaussian  noise  mechanism  to  the

client  embeddings,  thereby  mitigating  the  risk  of  in-

formation leakage. This process is guided as follows:
 

xe = e(x; ζ) +N (0, σ2),

N (0, σ2)
σ2 σ2

σ2 = 2s2 log(1.25/δ)/ϵ2 s

e

ϵ

ϵ σ

where  is a sample from the normal distribu-

tion with mean zero and variance . The value of 

is determined by , where  rep-

resents the sensitivity of the embedding module  and

 denotes  the  privacy  budget.  Consequently,  the

client  embeddings,  augmented  with  meticulously

crafted noise,  are transmitted to the cloud server for

subsequent  feature  extraction.  This  strengthens  the

data's  resilience  against  potential  inference  or  ex-

ploitation,  especially  in  scenarios  involving  compro-

mised TEE security, while satisfying ( , )-LDP. 

4    Experiments
 

4.1    Experimental Setup

FedBoneWe evaluate  the  performance  of  on  two
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multi-task  dense  prediction  datasets  and  one  large

multi-task dataset,  which contains  both classification

and  dense  prediction  tasks.  We  compare  it  with  a

common federated learning method FedAvg[1], person-

alized  federated  learning  methods  FedProx[16] and

pFedMe[46],  and  a  multi-task  federated  learning

method FedEM[47]. 

4.1.1    Datasets

FedBone

We  adopt  three  publicly  accessible  datasets  to

evaluate  the  performance  of  our  proposed  method

, including NYUDv2[48], PASCAL-Context[49],

and Taskonomy[7].  NYUDv2 contains 1 449 RGB im-

ages and provides dense labels for semantic segmenta-

tion,  depth  estimation,  normal  estimation,  and

boundary detection tasks. PASCAL-Context contains

10 180 training RGB images with dense labels for se-

mantic segmentation, saliency estimation, normal esti-

mation,  and  boundary  detection  tasks.  Meanwhile,

Chen et  al.[50] provided  extra  human  parts  annota-

tions for 3 589 images, which act as the labels for the

human  part  segmentation  task.  The  taskonomy

dataset  contains  more  than  4.5  million  images  from

537  building  scenes,  and  we  use  the  tiny  split  with

366 782 images  and 30  building  scenes.  The taskono-

my dataset has annotations for 26 tasks.  We discard

tasks  with  corrupt  annotations  and  choose  10  tasks

among them: object classification (OC), scene classifi-

cation  (SC),  depth  estimation  with  Euclidean  depth

(DE), depth estimation with z-buffer depth (DZ), sur-

face  normals  (SN),  principal  curvature  estimation

(PC), edge detection in 2D (E2D) and 3D (E3D), and

keypoint  detection  in  2D (K2D)  and 3D (K3D).  De-

tails of these tasks can be found in [7], and we follow

the preprocessing procedure from [51]. 

4.1.2    Implementation

We determine the number of clients by the tasks

of each dataset. For each task in the dataset, we ran-

domly  split  it  into  four  clients  with  equal  data  vol-

umes and partition the training and testing sets in an

8:2  ratio  on  the  clients.  For  the  federated  learning

methods  used  for  comparison,  we  design  a  fully  con-

volutional[52] task-specific  output  head  for  each  task.

For every federated learning method, we set commu-

nication  rounds  to  200.  For  the  taskonomy  dataset,

since  the  images  are  taken  from  30  building  scenes,

each scene naturally forms a data domain. As shown

in Fig.5, the specified scenes all feature a view of the

kitchen but with distinctive variations in the decora-

tion style and interior arrangement. We consider each

scene as representing a data domain and correspond it
to  a  client,  dividing  them  into  30  different  data  do-

main  clients.  These  clients  are  evenly  distributed

across 10 tasks, ensuring that each task involves three

clients conducting the same task.

FedBoneFor ,  FedAvg,  and  FedEM,  we  use

stochastic gradient descent (SGD)[53] as the optimizer.

For FedProx and pFedMe, we have modified the SGD

optimizer  to  fit  the  optimization process  of  the  algo-

rithm.  The  batch  size  is  set  to  16  and  the  learning

rate is set to 0.001, scheduled to decay by a fraction

of  0.1  every  50  epochs  for  NYUDv2  and  PASCAL-

Context, and 0.5 every 10 epochs for taskonomy. All

our experiments are conducted on the PyTorch frame-

work  with  eight  NVIDIA  A800  80  GB  GPUs  and

1 TB system memory. 

4.1.3    Metrics

The  chosen  two  dense  prediction  datasets  com-

prise  a  total  of  five  different  types  of  tasks.  For  se-

mantic segmentation tasks (including human part seg-

mentation),  we  use  mean  intersection  over  union

(mIoU)  as  the  metric.  For  normal  estimation  tasks,

mean error  (mErr)  is  adopted,  and for  boundary de-

tection tasks, optimal dataset scale F-measure (odsF)

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig.5.   Kitchen  views  from  nine  buildings  in  the  taskonomy
dataset. (a) Beechwood. (b) Benevolence. (c) Coffeen. (d) Cos-
mos. (e) Forkland. (f) Hanson. (g) Hiteman. (h) Lakeville. (i) Leo-
nardo.

FedBoneYi-Qiang Chen et al.: : Towards Large-Scale Federated Multi-Task Learning 1049



is  used.  For  the  depth  and  saliency  estimation,  the

root mean square error (RMSE) and the maximum F-

measure (maxF) are exploited, respectively.

↑ ↓

For the taskonomy dataset, we use accuracy (Acc)

as  the  metric  of  classification  tasks,  RMSE  as  the

metric  of  depth  estimation  with  Euclidean  depth,

depth estimation with z-buffer depth, principal curva-

ture  estimation,  and  keypoint  detection  in  2D  and

3D. The mean Error (mErr) is still the metric of the

surface  normal  estimation  task.  The  mean  absolute

error (MAE) is employed as the metric of edge detec-

tion tasks in 2D and 3D as the labels are derived from

a Canny edge detector output without non-maximum

suppression, rather than binary edge annotations. Due

to the inconsistency in the comparison of metrics such

as  mIoU,  where  higher  values  are  preferred,  and

RMSE,  where  lower  values  are  preferred,  we  employ

upward ( ) and downward ( ) arrows to denote high-

er-is-better and lower-is-better metrics in our results,

respectively.  Additionally,  the  best  results  are  high-

lighted in bold font for clarity. 

4.1.4    Backbones

We  employ  Swin  Transformer  Small  (Swin-S)[34]

pre-trained on ImageNet-22K as the backbone for all

experiments  except  the  analysis  of  computational  re-

source requirements. In order to accommodate the de-

mand  of  model  scale  in  the  production  environment,

we use a larger model Swin Transformer Base (Swin-

B)[34] as  the  backbone  to  analyze  the  computational

and  memory  resources  required  by  various  federated

learning methods on the client side. 

4.2    Evaluation Results

FedBone

FedBone

FedBone

Table 1 and Table 2 present  the  performance  of

 on  the  NYUDv2  dataset,  and Table 3

presents  the  performance  on  the  PASCAL-Context

dataset. These tables compare the performance of four

different  methods,  namely  FedAvg[1],  FedProx[16],

pFedMe[46],  and  FedEM[47],  across  multiple  tasks.  In

certain  tasks  such  as  segmentation,  human  part,

saliency, and bound, higher values indicate better per-

formance,  whereas  in  tasks  like  depth  and  normal,

lower  values  indicate  superior  performance.  Our

method, ,  outperforms  all  the  comparative

methods in the segmentation, human part, and salien-

cy tasks. For the bound task,  is only 0.25%

lower  than  the  pFedMe  method,  which  achieves  the
 

Table  1.    Comparison of Federated Learning Methods on Dataset NYUDv2 for Segmentation and Depth Tasks

Method ↑Segmentation (mIoU) ↓Depth (RMSE)

1 2 3 4 Avg. 1 2 3 4 Avg.

FedAvg[1] 38.97 38.29 43.30 37.48 39.51 0.428 3 0.529 4 0.557 1 0.717 0 0.558 0

FedProx[16] 29.25 31.92 31.68 24.66 29.38 0.484 6 0.606 9 0.615 5 0.789 2 0.624 1

pFedMe[46] 33.14 33.32 33.90 26.74 31.78 0.434 0 0.531 4 0.546 6 0.745 7 0.564 4

FedEM[47] 41.57 38.33 41.97 40.31 40.55 0.402 3 0.522 1 0.534 6 0.721 5 0.545 1

FedBone 42.92 40.73 43.22 42.47 42.34 0.459 4 0.519 0 0.540 7 0.613 6 0.533 2

 

Table  2.    Comparison of Federated Learning Methods on Dataset NYUDv2 for Normal and Bound Tasks

Method ↓Normal (mErr) ↑Bound (odsF)

1 2 3 4 Avg. 1 2 3 4 Avg.

FedAvg[1] 27.01 26.52 25.64 28.40 26.89 62.57 62.23 63.67 59.86 62.08

FedProx[16] 27.68 27.33 26.12 28.75 27.47 61.01 61.27 62.70 58.15 60.78

pFedMe[46] 23.93 25.97 22.76 27.50 25.04 62.29 62.92 64.57 60.77 62.63

FedEM[47] 26.44 26.41 25.11 28.16 26.53 62.81 63.91 63.82 60.43 62.74

FedBone 23.67 25.32 22.57 27.78 24.84 63.46 63.74 65.04 61.32 63.39

 

Table  3.    Comparison of Federated Learning Methods on Dataset PASCAL-Context

Method ↑Segment (mIoU) ↑HumanPart (mIoU) ↑Saliency (maxF) ↓Normal (mErr) ↑Bound (odsF)

FedAvg[1] 52.71 56.12 82.97 17.66 61.23

FedProx[16] 61.69 53.21 81.48 15.69 62.32

pFedMe[46] 59.16 57.04 80.90 15.67 66.59

FedEM[47] 51.10 53.79 82.15 19.64 59.27

FedBone 62.74 58.09 84.36 15.13 66.42
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best performance. These results highlight its effective-

ness and broad capabilities across diverse tasks. Con-

versely, for the depth and normal tasks,  con-

sistently  achieves  lower  values,  indicating  its  better

performance  compared  with  the  comparative  meth-

ods. These results highlight the effectiveness and gen-

eralization of  across diverse tasks.

FedBone

FedBone

The  experimental  results  on  the  taskonomy

dataset  are  shown  in Table 4.  Due  to  the  ensemble

learning design of FedEM, the time consumed in each

round  of  training  greatly  exceeds  that  of  the  other

methods,  and  we  do  not  observe  converged  results.

With  large-scale  data,  both  FedProx  and  pFedMe

achieve  good  performance.  Meanwhile, 

achieves the best performance in nine out of ten tasks

among  them,  which  also  indicates  that  can

carry out preferable performance with large data sizes

and generalize the general model to a variety of tasks.

It  is  worth  noting  that  there  is  substantial  room for

improvement  in  the  performance  of  federated  learn-

ing  methods  on  object  and  scene  classification  tasks,

which  only  account  for  two  out  of  ten  tasks  in  the

taskonomy dataset but have 1 000 and 365 classes, re-

spectively. This suggests that the model may be more

biased towards optimizing tasks that make up a larg-

er  proportion,  i.e.,  dense  prediction  tasks,  and  per-

forms poorly on tasks that make up a smaller propor-

tion.

FedBone

FedBone
FedBone

Overall,  exhibits  clear  advantages  over

the methods being compared in terms of average per-

formance  in  spite  of  a  few  isolated  clients,  of  which

 falls  slightly  short.  The  findings  demon-

strate  the  effectiveness  of  across  multiple

tasks,  validating  its  potential  as  a  robust  method  in

FMTL of heterogeneous tasks. 

4.3    Analysis
 

4.3.1    Ablation Study

FedBoneWe conduct an ablation study of  to eval-

uate the contribution of each component and setting.

The results are presented in Fig.6.

FedBone
FedBone

The  baseline  FedAvg  is  shown  in  the  first  row

(Base), while the +GPA and +TA indicate the addi-

tion  of  the  GPAggregation  and  heterogeneous  task

adaptation  module  to  the  baseline,  respectively,  and

+GPT  indicates  the  addition  of  both  modules.  The

figure  shows  that  compared  with  FedAvg,  the  addi-

tion  of  either  the  GPAggregation  or  task  adaptation

module  results  in  improved  performance,  with  the

task  adaptation  module  providing  a  more  significant

gain  in  all  tasks  except  the  normal  estimation  task.

This finding supports that heterogeneity between dif-

ferent  tasks  is  a  critical  factor  to  consider  when  ap-

plying  federated  learning  methods  across  multiple

tasks. The last bar of Fig.6 shows the performance of

the  proposed .  By  integrating  both  the

GPAggregation and task adaptation module, 

achieves  the  best  performance  among  the  different

settings evaluated. 

4.3.2    Effect of Differential Privacy Budgets

δ

ϵ

ϵ

With a fixed  value of 0.1, we systematically ad-

just the parameter  to investigate the impact of dif-

ferential privacy budgets on performance, as depicted

in Table 5.  Owing  to  the  inherent  heterogeneity

among tasks, the results on metrics subsequent to the

application of uniform privacy budgets manifest in an

inconsistent  manner.  Globally,  there  is  a  discernible

tendency  wherein  metrics  across  all  tasks  exhibit  a

decrement  as  the  privacy  budget  increases.  Notably,

the  semantic  segmentation  and  edge  detection  tasks

demonstrate  relatively  consistent  declines  in  metrics,

maintaining a functional performance threshold when

 surpasses 0.1. Conversely, both surface normal pre-

diction and depth prediction tasks exhibit an immedi-

ate  and  substantial  decline  in  metrics  following  the

implementation of differential  privacy. Noteworthy is

the  considerably  greater  decline  observed  in  the  lat-

ter  compared  with  the  scenario  without  differential

privacy. This substantiates the need for a tailored de-

sign of differential privacy budgets specific to hetero-

geneous tasks per client, ensuring a judicious trade-off
 

Table  4.    Comparison of Federated Learning Methods on Dataset Taskonomy

Method ↑
OC

Acc% ↑
SC

Acc% ↓
DE

RMSE ↓
DZ

RMSE ↓
SN

mErr ↓
PC

RMSE ↓
E2D

MAE ↓
E3D

MAE ↓
K2D

RMSE ↓
K3D

RMSE 

FedAvg[1] 24.51 17.79 0.064 7 0.064 7 13.49 0.878 3 0.073 3 0.039 9 0.134 5 0.111 1

FedProx[16] 27.36 24.25 0.068 4 0.068 3 12.91 0.853 8 0.071 5 0.033 6 0.150 4 0.107 4

pFedMe[46] 25.68 19.58 0.059 6 0.059 6 12.52 0.809 8 0.063 2 0.033 1 0.133 5 0.106 4

FedEM[47] 13.68 12.13 0.264 5 0.264 5 56.19 1.019 2 0.183 9 0.108 5 0.209 9 0.149 7

FedBone 39.09 56.00 0.054 4 0.047 7 12.88 0.807 2 0.061 5 0.027 9 0.124 7 0.100 8
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between  task  performance  and  preservation  of  priva-

cy integrity.
 

4.3.3    Client Resource Requirements

We conduct an analysis of the computational and

FedBone

FedBone FedBone

communication  resource  requirements  to  compare

 with  other  federated  learning  methods.  In

Table 6,  federated  learning  methods  FedAvg,  Fed-

Prox,  and  pFedMe,  which  employ  the  fully  convolu-

tional task-specific head, have a total parameter num-

ber similar to that of . However,  uti-

lizes  the  split  learning  paradigm,  which  places  most

computations on the cloud server,  and thus,  the ma-

jority of parameters are not stored locally, resulting in

a vast disparity in local computation and memory us-

age  during  training.  FedEM  implements  ensemble

learning  and  has  triple  the  parameters  of  common

federated  learning  methods.  Nevertheless,  the  total

memory  usage  is  comparable  since  it  trains  sequen-

tially  in effect.  In terms of  network resource require-
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FedBoneFig.6.  Ablation study results of . (a) Segmentation. (b) Depth. (c) Normal. (d) Bound.

 

Table  5.    Comparison of Different Privacy Budgets' Effect

Privacy
Budget ↑

Segment
mIoU ↓

Depth
RMSE ↓

Normal
mErr ↑

Bound
odsF

Original 42.34 0.533 2 24.84 63.39

ϵ = 0.500 42.89 0.919 9 30.75 59.00

ϵ = 0.100 38.33 0.942 6 32.02 53.28

ϵ = 0.050 11.85 1.089 4 39.20 50.98

ϵ = 0.025 11.76 1.093 3 42.62 43.46

ϵ = 0.001 0.07 1.143 3 44.65 28.21

 

Table  6.    Computational Resources Required by Federated Learning Methods on the Client Side when Training the Swin-B Model

Method ×106Number of Parameters ( ) GFLOPS (G) Memory (GB) Comm. Cost per Client (MB)

FedAvg[1]  95.04 123.30 33.32 1 648.44

FedProx[16]  95.04 123.30 33.68 1 648.44

pFedMe[46]  95.04 123.30 33.68 1 648.44

FedEM[47] 285.13 369.91 36.13 4 945.36

FedBone 1.92 (+88.67) 11.74 (+87.05) 3.31 (+32.12) 32.49

Note: The + number in brackets means the required resources on the cloud server.
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ments, ,  which  adopts  the  split  learning

paradigm,  has  its  communication  load  for  each  in-

stance determined by the results of forward propaga-

tion  for  each  batch  of  training  data,  which  includes

the patch embedding outputs uploaded by the clients

and the general model outputs sent by the server, as

well as the results of backward propagation, which in-

cludes the task adaptation gradients uploaded by the

clients  and  the  general  model  gradients  sent  by  the

server. In the experimental setup of this paper, it re-

quires less than 50MB of traffic. In contrast, federat-

ed  learning  methods  being  compared  require  the  up-

load and download of the complete general model pa-

rameters for each communication, and result in a sig-

nificant  increase  in  single  communication  load  com-

pared with . 

4.4    Real-World Ophthalmic Tasks

FedBone
To further investigate the effectiveness of our pro-

posed method  in real-world applications, we

collect 12 912 color fundus images illustrated in Fig.7

and  label  the  images  according  to  ophthalmic  dis-

eases,  including  high  myopia  maculopathy  (HMM),

retinal  vein  occlusion  (RVO),  proliferative  retinopa-

thy (PR), diabetic macular edema (DME), pathologi-

cal  myopia  (PM),  hypertensive  retinopathy  (HR),

glaucoma (G), macular epiretinal  membrane (MEM),

and  macular  hole  (MH).  We  label  images  that  show

potential pathological changes but could not be diag-

nosed  as  any  specific  disease,  as  needing  further  ex-

amination  (FE).  The  10  diseases,  combined with  the

normal  fundus  labels,  form  10  binary  classification

(disease  diagnosis)  tasks.  In  addition  to  labeling  for

disease  diagnosis,  we  also  conduct  labeling  for  two

types of disease grading, i.e.,  age-related macular de-

generation  (AMD)  grading  and  diabetic  retinopathy

(DR)  grading.  Together  with  Retinal-Lesions[54],  a

retinal lesion segmentation dataset, we build up a 13-

task real-world ophthalmic dataset, and the compari-

son results are shown in Table 7.

All  federated  learning  methods  perform  well  on

simple binary classification tasks in Table 7, as these

ophthalmic  diseases  manifest  discernible  characteris-

tics  or  distinct  features  observable  in  fundus  images.

Overall,  personalized  federated  learning  methods,  in-

cluding FedProx, pFedMe, and FedEM, perform bet-

ter  than  the  common  federated  learning  method  Fe-
 

(a) (b) (c) (d)

(e) (f) (g) (h)

(j)(i) (k) (l)

Fig.7.  Sample fundus images from real-world ophthalmic dataset. (a) High myopia maculopathy (HMM). (b) Retinal vein occlusion
(RVO).  (c)  Proliferative  retinopathy  (PR).  (d)  Diabetic  macular  edema  (DME).  (e)  Pathological  myopia  (PM).  (f)  Hypertensive
retinopathy (HR).  (g)  Glaucoma (G).  (h)  Macular  epiretinal  membrane  (MEM).  (i)  Macular  hole  (MH).  (j)  Further  examination
(FE). (k) Age-related macular degeneration (AMD). (l) Diabetic retinopathy (DR).
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dAvg.  Additionally,  our  proposed  achieves

the  best  performance  on  the  vast  majority  of  tasks,

except the retinal vein occlusion (RVO) classification

task, on which FedEM achieves the best performance

with triple parameters. Fundus images with potential

pathological  changes  may  exhibit  features  indicative

of  many  ophthalmic  diseases. ,  employing

GPAggreation,  has  effectively  cultivated  a  versatile

capability in extracting shared features across diverse

ophthalmic  diseases,  thus  demonstrating  enhanced

classification  performance  of  the  further  examination

(FE)  task.  Despite  the  somewhat  imprecise  grading

criteria  for  diabetic  retinopathy  (DR),  which  engen-

ders  a  degree  of  subjectivity  in  labels,  re-

markably  exhibits  a  negligible  performance  disparity

of  less  than  0.2% when  compared  with  the  superior-

performing FedEM. For the ophthalmic semantic seg-

mentation task LS,  outperforms all the oth-

er  federated  learning  methods,  which  shows  the  po-

tential of  in real medical scenarios. 

5    Conclusions

FedBone

FedBone

FedBone

FedBone
FedBone

In this paper, we proposed a novel federated mul-

ti-task learning framework  via split learning

for  large-scale  federated  training  on  edge  clients  and

gradient  deconflicting  aggregation  for  heterogeneous

task  adaptation.  We  further  proposed  an  asynchro-

nous  variant  of  to  mitigate  the  influence  of

clients'  restricted  network  connectivity  on  federated

learning aggregation, offering enhanced flexibility and

scalability.  The  extensive  experiments  showed  that

 outperforms existing federated learning algo-

rithms in heterogeneous tasks  with off-the-shelf  com-

putational resources on the client side. The real oph-

thalmic experiment also indicated a promising future

in using  for real medical and healthcare app-

lications. In the future, we may further extend 

to  encompass  a  broader  range  of  tasks,  especially  in

the emerging research area of large language models. 
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