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Abstract    Diffusion models have recently emerged as powerful generative models, producing high-fidelity samples across

domains. Despite this, they have two key challenges, including improving the time-consuming iterative generation process

and controlling and steering the generation process. Existing surveys provide broad overviews of diffusion model advance-

ments.  However,  they lack  comprehensive  coverage  specifically  centered on techniques  for  controllable  generation.  This

survey seeks to address this gap by providing a comprehensive and coherent review on controllable generation in diffusion

models.  We provide a  detailed taxonomy defining controlled generation for  diffusion models.  Controllable  generation is

categorized based on the formulation, methodologies, and evaluation metrics.  By enumerating the range of methods re-

searchers have developed for enhanced control, we aim to establish controllable diffusion generation as a distinct subfield

warranting dedicated focus. With this survey, we contextualize recent results, provide the dedicated treatment of control-

lable diffusion model generation, and outline limitations and future directions. To demonstrate applicability, we highlight

controllable diffusion techniques for major computer vision tasks application. By consolidating methods and applications

for controllable diffusion models, we hope to catalyze further innovations in reliable and scalable controllable generation.

Keywords    diffusion model, controllable generation, application, personalization

 
 

1    Introduction

In recent years, the realm of artificial intelligence

has experienced noteworthy advancements across var-

ious domains,  encompassing computer vision,  natural

language processing, and reinforcement learning. And

the  area  of  generative  models  has  undergone  signifi-

cant progress,  where the primary objective is  to pro-

duce samples of high fidelity and diversity from intri-

cate  data  distributions.  During  the  initial  stages  of

generative models, conventional methods such as tex-

ture  composition[1] and  texture  mapping[2] were  em-

ployed.  However,  more  sophisticated  techniques  like

generative  adversarial  networks  (GANs)[3, 4],  varia-

tional  Autoencoders  (VAEs)[5],  and  normalizing

flows[6] have  risen  to  prominence  as  dominant  ap-

proaches for generation with the passage of time.

More recently, the landscape of generative models

has witnessed a paradigm shift, marked by the emer-

gence of diffusion models[7]. This novel family of deep

generative  models  has  brought  forth  a  comprehensi-

ble parameterization for probabilistic modeling, a sta-
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ble training procedure supported by theoretical foun-

dations,  and  a  unified  loss  function  characterized  by

its simplicity.

The structural components of diffusion models re-

volve around three key elements: a forward process, a

reverse  process,  and  a  denoising  procedure  for  sam-

pling. The forward process is designed to convert the

data distribution into random noise. The reverse pro-

cess  employs  a  learnable  neural  network  to  estimate

the  transformation  kernel  step  by  step  to  undo  the

forward process, as outlined by [8]. The sampling pro-

cedure  obtains  random  noise  and  employs  the  opti-

mized  network  to  generate  data.  The  difference  be-

tween  the  sampling  procedure  and  reverse  process  is

that the network used during sampling is already op-

timized and exclusively employed for inference. These

three  components  can  be  implemented  in  either  dis-

crete[9, 10] or continuous[11, 12] manners.

Nevertheless,  it  is  crucial  to  recognize  that  diffu-

sion  models  inherently  involve  a  more  time-consum-

ing sampling procedure[13] when compared with GANs

or VAEs. This extended duration can be attributed to

the  iterative  transformation  from  the  prior  distribu-

tion  into  more  complex  data  distributions  through

ODE,  SDE[14–17],  or  Markov  processes,  which  man-

dates  numerous  function  evaluations  in  the  process.

Additional  challenges  include  the  control  and  steer-

ing of the generation.

In  response,  researchers  have  proactively  pro-

posed a range of solutions to address challenges asso-

ciated with diffusion models. Advanced solvers on ei-

ther  ODE  or  SDE[14–17] and  model  distillation  tech-

niques[18] are introduced to expedite the sampling pro-

cess.  Guidance  mechanisms  are  explored  to  correct

the  unconditional  direction[19] given  guiding  condi-

tions, reducing the discrepancy between the desired[20]

and reference conditional distributions[21]. Such condi-

tions can be of diverse modalities[22, 23],  including im-

ages[24], texts[25], or 2D poses[26, 27].

Although there are several surveys[28–30] delving in-

to various aspects of diffusion models, many fall short

of offering a comprehensive investigation into control-

lable  generation.  And  certain  surveys[31–33] prioritize

the  application  side,  providing  valuable  insights  into

practical applications but offering limited coverage of

controllable techniques.

This  survey  bridges  the  gap  in  the  literature  by

offering a comprehensive and cohesive review of  con-

trollable generation. Specifically, we present a taxono-

my encompassing various forms of control in the con-

text  of  diffusion-based  image  synthesis,  providing  a

succinct  summary  of  diverse  techniques  and  strate-

gies, as illustrated in Fig.1. We also explore different

application  scenarios  where  controllable  generations

are  successfully  applied.  Through  a  careful  examina-

tion of these examples, our aim is to provide valuable

insights  into  the  potential  of  controllable  diffusion

models  and  to  inspire  new  directions  for  future  re-

search in this dynamic and evolving field.

We  will  explore  the  foundational  theories  and
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Fig.1.  Overview of multimodal controllable diffusion models.
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components of diffusion in Section 2. In Section 3, we

will  discuss  several  forms  of  controllable  generation,

and  review  the  current  solutions  that  have  been  de-

veloped to achieve this.  In Section 4,  we will  explore

the diverse applications of controllable generation. Fi-

nally,  we  will  conclude  with  a  discussion  on  the  po-

tential research trends and future directions for diffu-

sion-based technologies in Section 5.  Finally,  we con-

clude the paper in Section 6.
 

2    Diffusion Model
 

2.1    Discrete Form

 

2.1.1    DDPM

pθ(x0) :=∫
pθ(x0:T )dx1:T

x1, . . . ,xT

x0

q(x0)

x0

β1, β2, β3, . . . , βT

The  Denoising  Diffusion  Probabilistic  Model

(DDPM)[10] leverages  two  Markov  chains,  as  well-

known as the forward process and reverse process, to

generate  images  of  high  fidelity.  The  comprehensive

workflow of the diffusion model is illustrated in Fig.2.

Diffusion models are a class of latent variable models

characterized  by  the  expression: 

.  In  this  formulation,  the  latent  vari-

ables  possess  the  same  dimensionality  as

the  observed data ,  which is  distributed according

to . In the forward process, noises sampled from

a prior  distribution,  typically  standard Gaussian,  are

applied iteratively to corrupt a clean image .  This

transformation  can  be  achieved  by  using  Markov

transition  kernels,  of  which  coefficients  are  denoted

sequentially by :
 

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

Iwhere  denotes the identity matrix.

x0

Given the addition property of Gaussian, the tran-

sition  kernel  can  be  reformulated  to  avoid  repetitive

steps, making possible direct calculation from : 

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I),

αt = 1− βt ᾱt =
∏t

s=1
αs

xT

q(x1:T |x0) ≈ N (0, I)

where  and .  At  the  end  of

the  forward  process,  will  theoretically  follow  the

Gaussian distribution, as .

xT

The  reverse  process  parameterizes  its  transition

kernel  as  neural  networks  and  is  capable  of  turning

Gaussian  noise  back  to  a  clean  image  at  times-

tamp 0: 

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
,

µθ(xt, t) Σθ(xt, t)

Σθ(xt, t) βt

where  and  denote  the  mean  and

variance of Gaussian, respectively. By rule of thumb,

 is fixed to a constant  in practice.

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI)

Here KL divergence is introduced to minimize the

distance  between  the  learnable  transition  kernel  and

the Bayesian posterior of the forward process derived

as ,  by  opti-

mizing  variational  lower  bound  (VLB),  i.e.  evidence

lower bound (ELBO), on their negative log likelihood: 

Eq

[
− log pθ(x0|x1)︸ ︷︷ ︸

L0

+DKL(q(xT |x0) ∥ p(xT ))︸ ︷︷ ︸
LT

+

∑
t>1

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

]
,

L0 LT

x0

where  and  can be ignored for  simplicity,  that

is, with respect to : 

 

. . . . . .

Forward

Process
xx
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Fig.2.  Diffusion models alter the data by adding noise to it, and then generate new data from the noise through the inverse process.
In the reverse process, each denoising step requires estimating the transition kernel.
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Lt−1 = Eq

[
1

2σ2
t

∥µ̃t(xt,x0)− µθ (xt, t)∥
2

]
.

xt xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ

The  reparameterization  trick  of  noise  prediction

regards  as , thus the

loss function can be further simplified as: 

Lt−1 = Et,x0, ϵ

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2
]
.

ϵθ(xt, t)

z ∼ N (0, I)

On  an  optimized  neural  network ,  the

sampling  procedure  can  be  achieved  iteratively  with

random noises  by:
 

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz.

 

2.1.2    SMLD

∇x log p(x)
p(x)

sθ
θ p(x)sθ(x) ≈
∇x log p(x)

Denoising Score Matching with Langevin Dynam-

ics (SMLD) is a method that employs the estimation

of  scores,  representing the gradient  of  the log proba-

bility  density  with  respect  to  data,  at  varying  noise

scales.  Score  perspective  models  employ  a  maximum

likelihood-based  estimation  approach,  utilizing  the

score function of the log-likelihood of the data to esti-

mate  the  parameters  of  the  diffusion  process.  The

score  function ( )  of  a  given data distribu-

tion  is  estimated  through  score  matching  by

training a shared neural network  parameterized by

,  which  approximates  the  score  of 

,  achieved  by  minimizing  the  correspond-

ing objective: 

Ex∼p(x) ∥sθ(x)−∇x log p(x)∥
2

2
.

log
∇x log p(x)

∇x log(pσt
(x)) ∇xt

log pσt(xt|x) =

−(xt − x)/σt

However,  the  computational  complexity  associat-

ed  with  calculating  the  gradient  of  the  density

 hampers the scalability of score matching

to  deep  networks  and  high-dimensional  data.  To  ad-

dress this challenge, Song et al.[9] proposed the utiliza-

tion  of  denoising  score  matching  and  sliced  score

matching  techniques.  The  authors  further  proposed

training a single noise-conditioned score network (NC-

SN) to estimate scores corresponding to all noise lev-

els.  They  derive  as 

, given that: 

pσt
(xt|x) = N (xt, x, σ

2
t I)

=
1

σt

√
2π

× exp
−(xt − x)2

2σ2
t

,

xt xwhere  represents  a  noised  version  of .  The  pro-

cess of inference is carried out through the utilization

p(x)

∇x log p(x)
x0 p(x)

of  an iterative  technique known as  Langevin dynam-

ics.  Langevin  dynamics  employ  a  Markov  Chain

Monte Carlo (MCMC) approach to generate samples

from  a  distribution  solely  based  on  its  score

function, .  To  transform  from  an  initial

random sample  towards samples from , the al-

gorithm iteratively performs the following steps: 

xi
t = xt−1 +

γ

2
∇x log p(x) +

√
γ × ωi, i ∈ [0, N ],

ωi

γ

where  is  drawn  from a  standard  normal  distribu-

tion,  and  represents  the  friction  coefficient  of  the

environment where the particle resides. 

2.2    Continuous Form

DDPMs and SMLD can be further generalized to

the  case  of  infinite  time  steps  or  noise  levels,  where

the  perturbation  and  denoising  processes  are  solu-

tions to stochastic differential equations (SDEs). This

formulation  is  called  Score  SDE[11],  as  it  leverages

SDEs  for  noise  perturbation  and  sample  generation,

and  the  denoising  process  requires  estimating  score

functions of noise data distributions: 

dx = f(x, t)dt+ g(t)dw,

t ∈ [0, T ] f(·, ·) g(·)
{wt}t∈[0, T ]

where ,  and  are the drift and dif-

fusion  coefficients,  respectively,  and  de-

notes  the  standard  Brownian  motion.  The  forward

process  in  DDPM  is  a  discretization  of  SDE.  For

DDPMs,  its  corresponding  SDEs  transition  kernels

are: 

f(x, t) = −1

2
β(t)x,

g(t) =
√
β(t).

For  SMLD[9],  its  corresponding  SDEs  transition

kernels are: 

f(x, t) = 0,

g(t) =

√
d[σ2(t)]

dt
.

The  trajectories  of  the  reverse  SDE  share  the

same  marginal  density  as  those  of  the  forward  SDE,

with the only difference being that they evolve in the

opposite time direction.

Moreover,  Anderson's  work[34] is  of  considerable

importance  in  the  study  of  diffusion  processes,  as  he

showed that the diffusion process can be reversed by

solving a time-reverse SDE: 
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dx =
[
f(x, t)− g(t)

2∇x log pt(x)
]
dt+ g(t)dw.

Song et al.[11] found a property that the trajectory

of a new type of ordinary differential equation (ODE)

called  the  probabilistic  flow  ODE  has  the  same

marginal density as the trajectory of the time-reverse

SDE: 

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (1)

Due  to  the  lack  of  randomness,  ODEs  can  be

solved  using  larger  step  sizes,  thus  speeding  up  con-

vergence  and  reducing  computational  costs.  Some

work  such  as  DPM-Solver[35] and  DPM-Solver++[17]

obtains  faster  sampling  speed  based  on  acceleration

techniques  of  ODE. The training objective  is  defined

as: 

L = Et

[
λ(t)Ex0

Eq(xt|x0) ∥sθ(xt, t)−∇xt
log p(xt|x0)∥

2

2

]
,

λ(t) sθ(xt, t)

t

where  is the positive weighting function, 

is the output of the denoising network at time . 

2.3    Sampling Method
 

2.3.1    Optimization

A popular  approach  for  optimization  sampling  in

diffusion models centers on directly solving the proba-

bility  flow  ODE  (1)  from  the  continuous-time  per-

spective.  Denoising  diffusion  implicit  models

(DDIM)[15] accelerated sampling by adopting a deter-

ministic  process  aligned  with  the  probability  flow

ODE. In subsequent studies[35, 36], DDIM has been in-

terpreted as the result of applying an exponential in-

tegrator  to  the  ODE  governing  variance  preserving

(VP)  diffusion[11].  This  interpretation  sheds  light  on

the underlying mechanisms of DDIM and its relation-

ship to VP diffusion. Moreover, recent advancements

in the field have seen the utilization of advanced ODE

solvers in various methodologies, including PNDM[37],

EDM[12], DEIS[36], gDDIM[38], and DPM-Solver[35]. For

instance, EDM employs efficient Heun's[39] second or-

der  ODE  solvers  to  tackle  the  computational  chal-

lenges  inherent  in  diffusion  models.  DPM-Solver[35]

proposes  improved higher-order  ODE solvers  tailored

for  generative  modeling,  leveraging  semi-linear  struc-

ture and approximating solutions to reduce error. Ex-

tensions like DPM-Solver++[17] incorporate data-con-

ditional  constraints  during  ODE  integration  to  im-

prove sample quality and stability.

Other methods based on KL-divergence optimiza-

tion  set  the  reverse  mean  and  covariance  using  the

Monte  Carlo  method.  Although  these  methods,  such

as  Analytic-DPM[16] and  extended  Analytic-DPM[40],

provide optimal reverse solutions while accounting for

correction  at  each  state,  they  are  restricted  in  their

applicability to specific distributions due to their pre-

assumptions. 

2.3.2    Knowledge Distillation

Knowledge  distillation  was  originally  proposed  as

a model compression technique, where a smaller “stu-

dent” network  is  trained  to  mimic  the  outputs  of  a

larger “teacher” model. The key idea is that the stu-

dent  learns  an  efficient  representation  that  matches

the  teacher's  performance.  Recent  work  has  adapted

knowledge  distillation  to  compress  the  sampling  pro-

cedures of diffusion models[18, 41, 42]. The original sam-

pling  process  serves  as  the  teacher,  while  a  student

with fewer steps is trained to match its outputs using

distillation  objectives.  This  allows  reducing  sampling

complexity and cost[43].

Denoising Student[44] and DSNO[45] focus on opti-

mizing  the  distillation  process  for  maximum speedup

and  efficiency.  This  requires  a  large  and  costly

dataset[46] of teacher samples for distillation. Progres-

sive  distillation[18] addresses  this  by  gradually  merg-

ing pairs of teacher steps into the student. After com-

pressing  two  steps,  the  student  becomes  the  teacher

for  the  next  round[47].  However,  more  rounds  of  pro-

gressive distillation can compound errors and degrade

sample  quality.  Managing  this  trade-off  remains  an

open  challenge,  with  work  on  new  distillation  archi-

tectures and objectives to allow deeper compression[48]. 

2.4    Backbone
 

2.4.1    U-Net

U-Net[49] is  implemented  with  an  overlap-tile

strategy  and  mirroring  extrapolation  to  segment  im-

ages  of  arbitrary  size.  U-Net's  combination  of  effec-

tive feature localization, skip connections, and compu-

tational  efficiency  has  contributed  to  its  widespread

adoption. Several architecture modifications are made

to  adapt  U-Net  as  the  backbone  of  diffusion,  includ-

ing replacing weight normalization[50] with group nor-

malization[51] for learning efficiency, adding dense con-

nections between two groups to help in the vanishing

gradient problem, incorporating attention block[52] for

Rui Jiang et al.: A Survey of Multimodal Controllable Diffusion Models 513



higher capacity, and exploring normalization layers as

conditions in diffusion models[53]. 

2.4.2    Transformer

The Transformer architecture[54] has become a fo-

cus for incorporation into diffusion models for genera-

tive modeling[55]. Transformers offer useful abilities for

modeling  long-range  dependencies  in  image  and  se-

quence  data[56].  Recent  work  by  Peebles  and  Xie[57]

proposed  the  Transformer-based  diffusion  model

DiTs,  showing  improved  sample  quality  on  image

modeling tasks. Follow-up work U-Vit[58] and MDT[59]

has  continued  modifying  the  Transformer  architec-

ture  design  for  diffusion.  They  prove  that  the  inclu-

sion  of  long  skip  connections  is  crucial  for  diffusion-

based  image  modeling,  while  down/up  connections

play  a  key  role.  Despite  promising  results,  several

challenges  remain.  Modeling  long  sequences  is  still

costly,  with  quadratic  memory  and  compute  require-

ments. More work is needed to scale up Transformers

to handle high-resolution multimodal data. 

2.5    Architecture
 

2.5.1    Image Space Diffusion Model

Image  space  diffusion  models,  exemplified  by  the

seminal  model  DDPM[10],  function  by  directly  diffus-

ing and sampling within the pixel domain, as depict-

ed  in Fig.3(a).  This  approach  offers  conceptual  sim-

plicity  and facilitates  direct  optimization  of  the  data

distribution[60].  By leveraging  neural  networks,  image

space  diffusion  models  effectively  capture  both  local

and global image features, resulting in the generation

of  high-quality  and  visually-coherent  samples.  More-

over, the image space optimization allows for the inte-

gration of image-specific techniques, such as perceptu-

al  loss  functions[61],  to  improve  the  alignment  be-

tween generated samples and the target distribution.

However,  it  is  important  to  note  that  generating

high-dimensional data, like images, through pixel-lev-

el sampling can pose computational challenges and of-

ten  necessitates  significant  computational  resources

compared with those in the latent space[62]. Addition-

ally,  image  space  diffusion  may  occasionally  produce

pixel  values  outside  the  valid  range,  resulting  in  no-

ticeable clipping artifacts[63]. 

2.5.2    Latent Diffusion Model

Latent  space  diffusion  models  have  emerged  as  a

powerful  generative  modeling  approach  for  images

and  other  modalities[64].  Unlike  typical  generative

models  that  directly  output  pixels  or  waveforms,  la-

tent  diffusion  operates  in  a  learned  compact  latent

space, as depicted in Fig.3(b). Specifically, the model

encodes  the  data  into  this  lower-dimensional  latent

space,  then performs diffusion and sampling followed

by decoding to the output[63, 65].

Working  in  the  latent  space  provides  several  ad-

vantages.  Firstly,  sampling complex high-dimensional

data  like  images  is  more  stable  and  efficient  in  the

compressed latent representation[66]. Secondly, the de-

coder acts as a strong prior to convert sampled latent

codes  into  realistic  outputs[67, 68].  Finally,  manipulat-

ing the latent space gives fine-grained control over at-

tributes of generated samples[69, 70]. Notable latent dif-

fusion models such as DALL-E 2[71], Audioldm[72], and

SLD[73] have  demonstrated  state-of-the-art  sample

quality and training stability.  Meanwhile,  the latent-

based Diffusion method is also shining in the field of

video generation[74, 75].

Latent  space  diffusion  models,  although  promis-

ing for generative modeling, are not without their lim-

itations and challenges. One drawback pertains to the

loss  of  pixel-level  granularity  in  the  generated  sam-

ples,  stemming  from  their  operation  within  a  com-

pressed latent  space.  Furthermore,  the  interpretabili-

ty of  the latent space poses  a concern,  as  unraveling

the  semantic  correspondence  between  latent  dimen-

sions and resulting image transformations remains an

ongoing  challenge.  The  reliance  on  the  learned  prior

distribution  represents  an  additional  limitation,  as  it

may  result  in  the  generation  of  samples  exhibiting  a

pronounced dependence on the prior, potentially lead-

ing  to  a  lack  of  diversity  or  deviation  from  the  de-

sired distribution. 
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Fig.3.  Architecture of (a) Image Space Diffusion Model (DM),
(b) Latent Diffusion Model  (LDM), and (c)  Cascade Diffusion
Model (CDM).
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2.5.3    Cascade Diffusion Model

Cascading refers to a multi-stage generative mod-

eling  approach  for  producing  high-resolution  images,

introduced by Saharia et al.[76].  It involves training a

pipeline  of  separate  models  at  progressively  increas-

ing  resolutions,  as  depicted  in Fig.3(c).  Any  type  of

generative  model  could  be  used  in  a  cascading

pipeline[77].

This  cascading  strategy  confers  several  benefits.

By  initially  sampling  at  low  resolutions,  it  is  more

computationally efficient and stable[78, 79].  The super-

resolution  models  can  then  focus  on  adding  high-fre-

quency  details  on  top  of  the  low-frequency

structure[80].  Cascading  also  allows  combining  differ-

ent  specialized  models  for  each  resolution[76].  After

training  a  single  model  and  progressively  splitting  it

into  specialized  models  for  different  synthesis  stages,

the  eDiff-I[81] ensemble  outperforms  previous  large-

scale  text-to-image  diffusion  models  on  the  standard

benchmark  and allows  for  the  exploitation  of  a  vari-

ety of embeddings for conditioning.

Cascade diffusion models are not exempt from cer-

tain  limitations  and  challenges.  A  notable  drawback

resides  in  the  inherent  sequentiality  of  the  diffusion

process.  This  protracted  sequence  engenders  sluggish

convergence and augmented computational  complexi-

ty, thereby rendering cascade diffusion models compu-

tationally  burdensome  and  time-intensive.  Moreover,

the  sequential  nature  of  diffusion  engenders  the  po-

tential  for  accumulated  errors  at  each  step,  thereby

jeopardizing  the  preservation  of  fine-grained  details

and veracity in the generated samples. 

3    Controllable Generation
 

3.1    Formulation

Controllable  generation  can  take  various  forms,

depending on the specific domain. Here are some com-

mon forms of controllable generation in Fig.4. 

3.1.1    Semantic Control

Semantic-controlled image generation refers to the

ability  to  precisely  manipulate  salient  image  at-

tributes  or  characteristics  during  image  generation.

This precise controllability allows for fine-grained ad-

justments  to  the  generated  images.  Its  applications

range widely from class-to-image[7, 78] and text-to-im-

age[79, 82–84] generation  to  synthetic  data  augmenta-

tion[85, 86].  The main challenges  are  endowing genera-

tive models with semantic understanding so they can

represent  image  attributes  disentangled  from  other

factors  and  respond  precisely  to  semantic  controls.

This precision control during generation results in im-

ages with user-specified semantic characteristics. 

3.1.2    Spatial Control

Spatial-controlled  image  generation  refers  to  fine-

grained controls on the contents in specific regions of

the  generated  images.  Layout- or  segmentation-guid-

ed  approaches[83, 87–91] perform  generation  spatially

conditioned on bounding boxes or segmentation maps.

Sketch- or  edge-guided  approaches[22, 84, 92–96] synthe-

size  images  by  completion  from  either  user  scribbles

or detected edges of the reference image. Depth-guid-

ed  approaches[22, 84, 94–97] constrain  the  process  by

depth priors, which can be estimated in the monocu-

lar  manner  for  practice.  Skeleton-guided  approach-

es[22, 27, 84, 93, 95, 96] calibrate  human poses  in  the  syn-

thesis using keypoints generated by pre-trained Open-

Pose[98].

Recent  efforts[99] have  focused  on  combining  spa-

tial  coordinates  alongside  natural  language  descrip-

tions  to  achieve  precise  region  control  in  text-to-im-

age generation. The pioneering work of ControlNet[22]
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Fig.4.  Example of semantic control, spatial control, ID control, and style control.
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and  FreeControl[100] successfully  instills  spatial  infor-

mation from multi-modal guiding maps, like sketches,

depth maps, or human poses into a trainable copy of

denoising  U-Net,  which  is  affiliated  to  the  original

frozen  model  via  zero  convolution  and  is  capable  of

visually-compelling  and  textually-coherent  synthesis.

In  addition,  the  authors  of  ControlNet  designed

Fooocus① with  many  optimizations  and  quality  im-

provements  built  in  and  automated,  turning  manual

settings on other pages into automatic configuration. 

3.1.3    ID Control

ID-controlled image generation refers to condition-

ing image synthesis on user-specified identity informa-

tion to generate images of specific individuals. ID-con-

ditioned  image  generation  was  first  introduced  in

StyleGAN[4] to  control  stochastic  variation  in  GANs.

Unique IDs were mapped to seeds that control the la-

tent space sampling. StyleCLIP[101] and StyleSpace[102]

extend ID-conditioning by introducing text-condition-

al control through CLIP.

In the field of diffusion, the concept of ID control

has  been  further  expanded  to  object  customization,

allowing  users  to  have  fine-grained  control  over  the

generation process to tailor outputs according to their

individual  preferences  and  specific  requirements.

These diffusion methodologies can be broadly catego-

rized  into  optimization-based  techniques[103] and  en-

coder-based  approaches[104, 105].  Optimization-based

methods  exhibit  the  potential  to  preserve  identity

with  fidelity;  however,  they  often  suffer  from  time-

consuming computations and may occasionally lead to

overfitting.  Conversely,  contemporary  encoder-based

approaches  offer  the  advantage  of  zero-shot  perfor-

mance, but they may sacrifice identity preservation or

generate outcomes of copy-pasting. 

3.1.4    Style Control

While  diffusion  models  can  generate  remarkable

photorealistic  images,  controlling  specific  attributes

like  visual  style  remains  difficult  when  conditioned

solely on text prompts or example images. This limi-

tation constrains the full creative potential of genera-

tive art. Recent work has begun tackling finer-grained

control  through  techniques  like  style-based

guidance[106–109],  where  separate  style  and content  la-

tent  codes  are  decoded  to  isolate  stylistic  factors.

Some approaches explore directional style transfer via

weighted interpolation in the latent space[109]. Energy-

guided  methods[110] draw  inspiration  from  classifier

guidance[7], utilizing estimated loss gradients to guide

the  generation  process  at  each  sampling  step.  These

methods  employ  carefully  designed  energy  functions

to assess the discrepancy between the generated out-

put  and  the  target  style.  To  improve  efficiency,

coarse-grained  predictions  are  often  used  instead  of

directly utilizing the output of the diffusion model.

Moreover, it is noteworthy that style transfer can

be  effectively  achieved  through  the  process  of  fine-

tuning  a  pre-existing  model.  Personalization-based

methodologies  encompass  the  practice  of  refining  a

pre-trained model using sophisticated techniques such

as  Textual  Inversion[111],  Dreambooth[112],  or

LoRA[113].  Subsequently,  the  fine-tuned  model  is  em-

ployed to decode the latent codes of inverted content

images.  This  approach  shares  resemblances  with  the

GAN  Adaptation  method.  However,  most  control

mechanisms  remain  discrete  rather  than  continuous.

An open research direction is enabling fluid, granular

manipulation of attributes like color, texture, lighting,

etc.  This  could  be  achieved  by  mapping  generative

parameters  to  an  intuitive  creative  interface[114].  If

generative  models  could  smoothly  interpolate  be-

tween  granular  artistic  attributes  based  on  interac-

tive  human  guidance,  it  would  greatly  empower  cre-

ative expression. 

3.1.5    Controllability Trade-Off

Fidelity-Diversity  Trade-Off. Balancing  diversity

with fidelity to the user preference is a key aspect of

controllability  in  generative  models.  The  fidelity-di-

versity trade-off is delineated in Fig.5(a). Models that

adhere  too  strictly  to  conditional  inputs  may  suffer

from outputs lack of variety, while models that intro-

duce too much randomness can deviate from user in-

tent.  Recent  work  has  aimed  to  improve  trade-offs

through  technical  advances.  For  example,  DALL-E

2[71] uses a context-conditioned variation module that

maintains fidelity to the text prompt while still allow-

ing  for  diversity  by  sampling  different  latent  codes.

Similarly, Parti[115] separates the text embedding into

a content code for fidelity and a style code for diversity.

Faithfulness-Realism Trade-Off. The trade-off be-

tween  faithfulness  and  realism  pertains  to  finding  a
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balance where the generated images closely adhere to

the prompt (faithfulness) while also exhibiting a natu-

ral  and  realistic  appearance  (realism).  The  faithful-

ness-realism trade-off is delineated in Fig.5(b). By in-

troducing  additional  Gaussian  noise  along  with

stochastic  diffusion,  the  synthesized  images  are  more

realistic but less faithful[116]. The optimal balance pro-

duces images that both fulfill the user's intent and vi-

sualize the request in a realistic style.

Speed-Fidelity  Trade-Off. There  is  an  inherent

trade-off  between  speed  and  fidelity  (image  quality).

Using  more  diffusion  steps  results  in  higher  quality

images but takes longer to generate each sample. The

speed-fidelity  trade-off  is  delineated  in Fig.5(c).  Us-

ing fewer steps speeds up sampling but can reduce im-

age  quality.  One  way  to  adjust  this  trade-off  is  by

changing  the  number  of  diffusion  steps.  More  steps

improve fidelity at the cost of speed. Fewer steps in-

crease  speed  but  may  introduce  artifacts  or  reduce

image coherence. 

3.2    Methodologies
 

3.2.1    Guidance

This category of work utilizes a frozen pre-trained

diffusion model as a foundation model but introduces

modifications  to  the  sampling  method,  incorporating

feedback from the guidance function to guide the im-

age  generation  process.  For  instance,  Dhariwal  and

y

p(xt−1|xt) p(xt−1|xt,y)

y

Nichol[7] proposed classifier-guidance, where a classifi-

er  was  trained  on  images  of  different  noise  scales  to

serve  as  the  guidance  function.  For  the  generation

conditioned  on ,  the  classifier-guidance  method  en-

tails the replacement of  with .

The  condition  can  be  of  various  forms,  such  as

text[117],  class[78],  image-based[22],  and  multi-modal

condition[118].

∇ log p (xt | y) t

∇ ∇xt

For the sake of simplicity and without sacrificing

generality,  we will  discuss  guidance using the output

in  the  form  of  scores.  The  objective  is  to  learn  the

score  of  the  conditional  model,  represented  as

, at a noise level . To simplify the no-

tation,  we  use  as  shorthand  for .  Applying

Bayes' rule, we can derive the following equation: 

∇ log p (xt | y)

= ∇ log
(
p (xt) p (y | xt)

p(y)

)
= ∇ log p (xt) +∇ log p (y | xt)−∇ log p(y)
= ∇ log p (xt)︸ ︷︷ ︸

unconditional score

+ ∇ log p (y | xt)︸ ︷︷ ︸
adversarial gradient

. (2)

xt

xt−1

log p(y)
xt

p(y|xt)

Note  that  in  the  forward  process,  is  obtained

from  by  adding  a  noise,  which  will  not  con-

tribute to the classification, so the gradient of 

with  respect  to  is  zero.  The  final  result  involves

learning  an  unconditional  score  function  combined

with the adversarial gradient of a classifier, .

xt y

γ

Classifier  guidance[7, 119, 120] involves  training  the

score of an unconditional diffusion model and a classi-

fier  simultaneously.  The  classifier  takes  in  noisy  in-

put  and  predicts  the  conditional  information .

During  the  sampling  process,  the  overall  conditional

score  function  for  annealed  Langevin  dynamics[121] is

computed by adding the unconditional score function

to  the  adversarial  gradient  of  the  classifier.  To  con-

trol the influence of conditioning information, classifi-

er  guidance  introduces  a  hyperparameter  to  scale

the adversarial  gradient.  Therefore,  the learned score

function under classifier guidance can be summarized

as follows: 

∇ log p (xt | y) = ∇ log p (xt) + γ∇ log p (y | xt) . (3)

γ = 0

γ

Intuitively, by setting , the conditional diffu-

sion model learns to disregard the conditioning infor-

mation completely. On the other hand, when  takes

on a larger value, the model becomes more inclined to

generate  samples  that  closely  align  with  the  condi-

tioning information. However, this emphasis on adher-

ence  to  conditioning  information  comes  at  the  ex-

pense of sample diversity[122].
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Fig.5.   Example  of  trade-offs  control.  (a)  Fidelity-diversity
trade-off.  (b)  Faithfulness-realism  trade-off.  (c)  Speed-fidelity
trade-off.
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Classifier  guidance diffusion incorporates  gradient

information towards the target category in each step

of the reverse process to achieve targeted image gen-

eration.  This  process  bears  similarities  to  optimiza-

tion-based image generation algorithms, where a fixed

network  directly  optimizes  the  image  itself.  Conse-

quently,  previous  optimization-based  image  genera-

tion algorithms can be adapted to the diffusion mod-

el by modifying the condition type in guided diffusion.

For  example,  semantic  guide  diffusion  (SGD)[120] in-

troduces  two  forms  of  category  guidance:  reference-

based  and  text-based  guidance.  By  designing  corre-

sponding  gradient  items,  SGD  achieves  the  desired

guidance effect and produces high-quality results.

However,  learning  a  classifier  may come with  ex-

tra  costs  and  training  instability[123],  as  it  requires

training on data with scheduled noise levels. This in-

stability is further compounded by the fact that train-

ing on noisy data can be difficult due to the destruc-

tion  of  the  data  structure  caused  by  the  addition  of

more  and  larger  noise  according  to  the  noise

schedule[124].  Furthermore, generating images via gra-

dients can lead to adversarial attack effects[125], where

imperceptible details fool classifiers and are not actu-

ally  generated  conditionally,  raising  concerns  about

the reliability of the generated images. 

3.2.2    Condition

Methods  in  this  category  involve  the  training  of

new diffusion models  that  incorporate  the prompt as

an  additional  input[119, 123, 126].  For  instance,  the  ap-

proach  proposed  in  [123]  employs  classifier-free  guid-

ance using class labels as prompts. The diffusion mod-

el  in  this  case  is  trained  via  linear  interpolation  be-

tween  the  unconditional  and  conditional  outputs  of

the  denoising  networks.  In  classifier-free  guidance

(CFG)[123],  the  authors  proposed  an  alternative  ap-

proach  where  a  separate  classifier  model  is  not

trained. Instead, they utilized an unconditional diffu-

sion model and a conditional diffusion model. To ob-

tain the score function under CFG, we can rearrange

(2) to demonstrate the following relationship: 

∇ log p (y | xt) = ∇ log p (xt | y)−∇ log p (xt) .

By  substituting  this  derived  expression  into  (3),

we obtain the following result: 

∇ log p (xt | y)
= ∇ log p (xt) + γ∇ log p (xt | y)− γ∇ log p (xt)

= γ∇ log p (xt | y)︸ ︷︷ ︸
conditional score

+(1− γ)∇ log p (xt)︸ ︷︷ ︸
unconditional score

.

γ

γ

γ

When  is  set  to  0,  the  conditional  model  com-

pletely  disregards  the  conditioner  and  learns  an  un-

conditional diffusion model. On the other hand, when

 is set to 1, the model learns the vanilla conditional

distribution without any additional guidance. When 

is greater than 1, the diffusion model not only priori-

tizes  the  conditional  score  function,  but  also  moves

away  from  the  unconditional  score  function.  This

means that the model reduces the likelihood of gener-

ating  samples  that  do  not  utilize  conditioning  infor-

mation[122],  favoring  samples  that  explicitly  incorpo-

rate  it.  However,  this  comes  at  the  expense  of  re-

duced  sample  diversity,  as  the  model  becomes  more

focused  on  accurately  matching  the  conditioning  in-

formation.

The  study  in  [126]  investigates  scenarios  where

the guidance function takes the form of a known lin-

ear degradation operator. A conditional model is then

trained  to  tackle  linear  inverse  problems.  In  another

extension  to  classifier-free  guidance,  [119]  introduces

an approach for text-conditional image generation, us-

ing  descriptive  phrases  as  prompts.  The  diffusion

model  is  trained  with  the  objective  of  maintaining

similarity between the CLIP[127] representations of the

created  images  and  the  text  prompts.  However,  one

significant  drawback  is  that  the  necessity  to  retrain

the  diffusion  model  for  each  new  application  makes

them computationally intensive and potentially time-

consuming. 

3.2.3    Attention-Based Modification

P
xT → x0 = I P∗

I∗

ϕ(xt)

Q
K V

Some  approaches  such  as  [128–133]  utilize  cross-

attention in U-Net control to enable conditional gen-

eration. They discover a significant local similarity in

the  cross-attention  map[134] between  word  features

and objects, which serves as a valuable editing medi-

um.  Specifically,  let  the  original  text  description  be

,  the  diffusion  model  generation  process  be

,  the  edited  text  is  described  as ,  we

would  like  to  get  the  edited  image .  In  a  cross-at-

tention  layer,  the  image  features  are  linearly

mapped to . The text embedding is obtained by lin-

ear mapping as  and , the final output: 

ϕ̂ (xt) = Softmax
(
QKT

√
d

)
V.

P P∗ t

M ∗
t M̂t

In order to edit the image, we have created an image

with both  and  conditions,  then at  time step 

there will  be two attention maps  and , which

are obtained by a well-designed editing function. The
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M̂t = Edit(Mt,M
∗
t , t)

M̂t

new attention  map can be  edited  by  overwriting  the

original  attention  map  with .

The  purpose  of  editing  can be  achieved by overwrit-

ing the original attention map . Additionally, [116]

enables  image  translation  by  adjusting  the  initial

noisy  images.  There  has  been  some  new  progress  in

this field recently[93, 133]. 

3.2.4    Range-Null Space Decomposition

y = Ax A

x

x̂

Recent  techniques,  such  as  [135–138],  directly

modify  intermediate  results  to  achieve  zero-shot  im-

age  restoration.  DDNM[138] elucidates  the  essence  of

these methods. DDNM begins by addressing noise-free

linear  image  inverse  problems,  wherein  an  image

 is degraded. Here,  represents a linear oper-

ator and  denotes the original image. The objective

of  image  restoration  is  to  obtain  an  estimated  result

 that satisfies two constraints: 

Consistency : Ax̂ ≡ y,

Realness : x̂ ∼ q(x),

q(x)where  represents  the  distribution of  the  ground

truth (GT) images.  This problem possesses a general

solution  that  analytically  fulfills  the  consistency  con-

straint: 

x̂ = A†y + (I − A†A)xr. (4)

A† A

A†AA ≡ A xr

(I − A†A)xr Ax = 0

A(I − A†A)xr ≡ (A− A)xr ≡ 0 xr

x0|t

xr

Here,  represents  the  pseudo-inverse  of ,  satisfy-

ing  the  condition ,  while  denotes  the

unknown null-space variable that needs to be solved.

It is worth noting that (4) originates from the range-

null  space  decomposition[138–140].  Furthermore,

 is  a  generalization  to  since

 regardless  of .  A

crucial step in employing diffusion models for inverse

problems involves considering each estimation  as

the null-space variable  in (4): 

x̂0|t = A†y + (I − A†A)x0|t.

x̂0|tSubsequently,  the  obtained  consistent  result  is

utilized for subsequent sampling purposes. 

3.2.5    Performance Trade-Offs

Truncation.  Truncation  trick  is  a  technique  used

in GANs, flow models, and VAEs to trade off diversi-

ty for improved sample quality and fidelity. It works

by  restricting  the  sampling  distribution,  for  instance

by reducing  the  variance  of  noise  inputs.  This  yields

higher fidelity outputs but with less diversity. For ex-

ample,  BigGAN[141] uses  truncated  sampling  to  im-

prove fréchet inception distance (FID)[142] at the cost

of reduced inception score (IS)[143]. However, straight-

forward  truncated  sampling  techniques  prove  ineffec-

tive for diffusion models[7]. Simply limiting noise vari-

ance during sampling leads to low-quality, blurry out-

puts. The sequential sampling process in diffusions re-

quires more sophisticated techniques to restrict diver-

sity  and  improve  fidelity.  Recent  progress  has  been

made  with  heuristic  guidance[76] and  latent  space

modeling[64].

Timestep Respacing. Timestep respacing is a tech-

nique to adjust the spacing between timesteps in the

diffusion  process,  with  the  goal  of  improving  sample

quality.  The  three  main  types  of  respacing  schedules

are  leading,  linspace,  and  trailing.  The  original

DDPM[10] proposes  fixed,  equally-spaced  timesteps,

setting  the  baseline  for  future  work.  IDDPM[53] and

ADM[7] utilize  linspace-style  spacing,  with  denser

steps  at  the  start/end.  IDDPM  demonstrates  im-

proved  sample  quality  over  linear  spacing.  ADM

learns the spacing adaptively during training to allo-

cate more steps for challenging generations. DDIM[15]

and  PNDM[37] employ  leading-style  spacing,  with

more  steps  early  on.  DDIM  dynamically  adjusts

timesteps during sampling, adding steps for high-pre-

cision  regions.  PNDM  spaces  steps  based  on  a  Beta

CDF,  concentrating  them  in  key  areas.  DPM-

Solver[35] uses trailing-style spacing, with denser steps

at the end. 

3.3    Evaluation Metrics

Accurate  evaluation  metrics  play  a  vital  role  in

driving the advancement of research. However, evalu-

ation  can  be  challenging  due  to  the  involvement  of

multiple  attributes  that  contribute  to  the  quality  of

generated  results,  making  image  evaluation  subjec-

tive in nature. We also list the evaluation metrics and

performance  of  the  different  methods  on  different

benchmarks for the corresponding application scenar-

ios  in  the  subsequent  tables.  In Table 1,  a  compila-

tion  of  representative  work  from  various  domains  is

presented, alongside corresponding code links.

General  Evaluation  Metrics.  In  general  image

quality evaluation, metrics such as IS[143] and FID[142]

are  commonly  used.  IS  is  a  widely  used  measure  of

the  quality  and  diversity  of  generated  images  scored

by  the  Inception  model.  However,  it  has  faced  criti-
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Table  1.    Open Resources of Diffusion Models

Application Diffusion Model Year & Publication Open Source Code Link

Image Restoration RePaint[137] 2021 CVPR https://github.com/andreas128/RePaint

IterInpaint[144] 2023 arXiv https://github.com/j-min/IterInpaint

DDRM[136] 2022 NeurIPS https://github.com/bahjat-kawar/ddrm

SR3[80] 2022 TPAMI Image-Super-Resolution-via-Iterative-Refinement

Palette[77] 2022 SIGGRAPH Palette-Image-to-Image-Diffusion-Models

SRDiff[145] 2022 Neurocomputing https://github.com/LeiaLi/SRDiff

GDP[146] 2023 CVPR https://github.com/Fayeben/GenerativeDiffusionPrior

Class to Image ADM-G[7] 2021 NeurIPS https://github.com/openai/guided-diffusion

ED-DPM[147] 2022 ECCV https://github.com/ZGCTroy/ED-DPM

LDM[64] 2022 CVPR https://github.com/Stability-AI/stablediffusion

DiT[57] 2023 CVPR https://github.com/facebookresearch/DiT

MDT[59] 2023 ICCV https://github.com/sail-sg/MDT

Simple diffusion[60] 2023 arxiv https://github.com/rkstgr/simple-diffusion

Text to Image GLIDE[119] 2022 ICML https://github.com/openai/glide-text2im

Imagen[76] 2022 NeurIPS https://github.com/lucidrains/imagen-pytorch

VQ-Diffusion[13] 2022 CVPR https://github.com/cientgu/VQ-Diffusion

Parti[115] 2022 arXiv https://github.com/lucidrains/parti-pytorch

Muse[79] 2023 arXiv https://github.com/lucidrains/muse-maskgit-pytorch

SDD[82] 2023 arXiv https://github.com/nannullna/safe-diffusion

GLIGEN[83] 2023 CVPR https://github.com/gligen/GLIGEN

Text to Video RVD[99] 2023 Entropy https://github.com/buggyyang/rvd

FDM[148] 2022 NeurIPS flexible-video-diffusion-modeling

MCVD[149] 2022 NeurIPS https://github.com/voletiv/mcvd-pytorch

Make-A-Video[150] 2023 ICLR https://github.com/lucidrains/make-a-video-pytorch

Make-Your-Video[151] 2023 arXiv https://github.com/AILab-CVC/Make-Your-Video

Follow-Your-Pose[152] 2024 AAAI https://github.com/mayuelala/FollowYourPose

LFDM[74] 2023 CVPR https://github.com/nihaomiao/CVPR23_LFDM

VideoComposer[75] 2023 arXiv https://github.com/ali-vilab/videocomposer

ControlVideo[153] 2023 arXiv https://github.com/YBYBZhang/ControlVideo

VideoFusion[154] 2023 CVPR text-to-video-synthesis

Text to 3D DreamFusion[155] 2023 ICLR https://github.com/chinhsuanwu/dreamfusionacc

Magic3D[156] 2023 CVPR https://github.com/chinhsuanwu/dreamfusionacc

Fantasia3D[157] 2023 ICCV https://github.com/Gorilla-Lab-SCUT/Fantasia3D

Zero-1-to-3[158] 2023 arXiv https://github.com/cvlab-columbia/Zero-1-to-3

Magic123[159] 2023 arXiv https://github.com/guochengqian/Magic123

SyncDreamer[160] 2023 arXiv https://github.com/liuyuan-pal/SyncDreamer

LAS-Diffusion[161] 2023 SIGGRAPH https://github.com/Zhengxinyang/LAS-Diffusion

Personalization Textual Inversion[111] 2022 ICLR https://github.com/rinongal/textual_inversion

DreamBooth[112] 2023 CVPR https://github.com/Victarry/stable-dreambooth

Custom Diffusion[25] 2023 CVPR https://github.com/adobe-research/custom-diffusion

SVDiff[162] 2023 ICCV https://github.com/mkshing/svdiff-pytorch

Perfusion[163] 2023 SIGGRAPH https://github.com/lucidrains/perfusion-pytorch

HyperNetworks[164] 2017 ICLR https://github.com/g1910/HyperNetworks

LoRA[113] 2021 ICLR https://github.com/microsoft/LoRA

ELITE[165] 2023 ICCV https://github.com/csyxwei/ELITE

ProFusion[166] 2023 arXiv https://github.com/drboog/ProFusion

Mix of Show[167] 2023 NeurIPS https://github.com/TencentARC/Mix-of-Show
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cism for its lack of robustness and sensitivity to noise.

FID  demonstrates  greater  robustness  compared  with

IS  and  provides  a  better  overall  assessment  of  the

quality of generated images. However, FID assumes a

Gaussian  distribution  for  image  features,  which  may

not always hold true in practice. Moreover, there are

also evaluation metrics based on reference images. For

instance, PSNR is an image quality evaluation indica-

tor  based  on  the  difference  between  corresponding

pixel  points  of  two images.  SSIM[168] measures  image

similarity in terms of brightness, contrast, and struc-

ture. It has been revealed[169] that PSNR is more sen-

sitive to additive Gaussian noise than SSIM, while the

opposite is observed for jpeg compression. To address

the  problem  that  traditional  metrics  (PSNR,  SSIM,

etc.) disagree with human judgments under some cir-

cumstances,  Zhang et  al.[170] proposed  perceptually-

learned metric called Learned Perceptual Image Patch

Similarity (LPIPS), evaluating how well image quali-

ty  perception  models  actually  correspond  to  human

visual perception.

Pr

Pg

Pg Pr

Pr

Task-Specific  Evaluation  Metrics.  Fréchet  video

distance  (FVD)[171] is  a  new  metric  for  generative

models of video based on FID, considering the tempo-

ral  coherence of  the visual  content across  a sequence

of frames as well as its visual presentation at any giv-

en point in time. The CLIP score[172] is a metric that

captures  the  semantic  relationships  between  pairs  of

natural  language  and  image  inputs  by  learning  the

meaningful associations between them. Sajjadi et al.[173]

improved the traditional precision and recall by calcu-

lating  directly  from  distributions,  which  was  further

improved by Kynkäänniemi et al.[174] in 2019. Let 

and  denote the probability distributions of the re-

al  and  generated  data,  respectively.  Recall  quantifies

the extent to which data generated by  matches ,

while  precision  measures  the  proportion  of  generated

images that belong to . Recent work by [175] intro-

duced  an  enhanced  aesthetic  prediction  model  called

Improved-Aesthetic-Predictor  (LAION-Aesthetics

V2),  built  on  LAION-Aesthetics  V1[175].  This  large-

scale  aesthetic  database  allows  training  a  model  to

predict  human-like  aesthetic  scores  for  natural  im-

ages.

Human  Evaluation.  There  has  been  a  trend  to-

wards using human evaluation to assess model perfor-

mance[76, 176, 177],  as  some  commonly  used  objective

evaluation  metrics  are  not  sufficient  to  accurately

evaluate the quality of generated images. 

4    Applications
 

4.1    Image Restoration

Image restoration has been a longstanding funda-

mental challenge in computer vision, aiming to recov-

er an original image from a degraded version affected

by  noise  or  distortion.  In  recent  years,  the  diffusion

model  has  emerged  as  a  promising  approach  for  im-

age  restoration.  Its  strength  lies  in  effectively  han-

dling  complex,  high-dimensional  data  and  generating

high-quality  samples  from  probability  distributions.

Moreover,  many  image  restoration  tasks  can  be

framed as linear inverse problems.

RePaint[137] showcases the generalization capabili-

ty  of  unconditionally  trained  diffusion  models  for  in-

painting  tasks.  By  conditioning  on  available  pixels,

the  model  effectively  utilizes  the  strong  image  prior

learned by DDPMs. In the context of masked predic-

tion,  DiffMAE[178] introduces  a  conditional  objective

that approximates pixel distributions based on visible

regions.  This  formulation  allows  for  efficient  exten-

sion to video inpainting and recognition tasks.  Addi-

tionally,  IterInpaint[144] was  proposed  as  a  novel  in-

painting  baseline,  extending  the  stable  diffusion  ap-

proach for layout-guided inpainting.

Kawar et  al.[136] introduced  Denoising  Diffusion

Restoration  Models  (DDRM),  an  efficient  unsuper-

vised  posteriori  sampling  method.  Inspired  by  varia-

tional  inference,  DDRM  utilizes  a  pre-trained  de-

noised  diffusion  generation  model  to  solve  linear  in-

verse  problems.  The  Palette[77] employs  condition-

al  diffusion  models  to  establish  a  unified  framework

for  four  distinct  image  generation tasks:  colorization,

inpainting,  uncropping,  and  JPEG  restoration.  Fei

et al.[146] presented Generative Diffusion Prior (GDP),

a method for image restoration. Unlike existing tech-

niques  that  assume  known  degradation  and  require

supervised training, GDP models the posterior distri-

butions of natural images through unsupervised sam-

pling. It leverages a pre-trained DDPM to address lin-

ear inverse,  non-linear,  and blind problems.  The ver-

satility of GDP is demonstrated on various tasks, in-

cluding  super-resolution,  deblurring,  denoising,  and

multi-degradation  recovery  (see Fig.6).  In Tables 2

and 3,  we  list  the  comparison  of  diffusion's  perfor-

mance  in  six  common  image  recovery  domains  (in-

painting,  super-resolution,  shadow  removal,  deblur,

colorization,  and  enlighten),  and  the  best  results  on

different datasets are in bold. The upward and down-

ward arrows indicate that the bigger is better and the

smaller is better, respectively. 
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4.2    2D Image Generation
 

4.2.1    Class to Image

DDPM[10] pioneered  the  use  of  diffusion  proba-

bilistic models for conditional image synthesis. By in-

corporating class labels and noise into the generative

process, DDPM demonstrated the feasibility of utiliz-

ing  diffusion  for  controlled  image  generation.  Build-

ing  upon  this  work,  ADM-G[7] introduces  architec-

tural improvements such as classifier guidance, which

enhances  sample  quality  by  providing  conditioning

signals  during  sampling.  CDM[78] further  advances

controllability  by  employing  a  cascaded  pipeline  of

diffusion  models  to  synthesize  higher  resolution  im-

ages  in  a  step-wise  manner.  This  cascade  approach

 

(b)(a) (d)(c)

(e) (f) (g)

Fig.6.  Image restoration results from RePaint[146]. Restoration type: (a) deblur, (b) super-resolution, (c) inpainting, (d) colorization,
(e) low-light image enhancement, (f) non-linear enhancement, and (g) multiple-guidance enhancement.

 

Table  2.    Comparison of Diffusion Models' Performance in Mainstream Image Recovery Domains on ImageNet-1k[179]

Restoration Model ↑PSNR ↑SSIM ↓FID ↓Cons

Inpainting DGP[180] 27.59 0.82 60.65 414.60

SNIPS[181] 17.55 0.74 103.50 587.90

DDRM[136] 34.28 0.95 24.09 4.08

xtGDP- [146] 31.06 0.93 20.24 8.80

x0GDP- [146] 34.40 0.96 16.58 5.29

4x super resolution DGP[180] 21.65 0.56 152.85 158.74

SNIPS[181] 22.38 0.66 154.43 21.38

RED[182] 24.18 0.71 98.30 27.57

DDRM[136] 26.53 0.78 40.75 19.39

xtGDP- [146] 24.27 0.67 64.67 80.32

x0GDP- [146] 24.42 0.68 38.24 6.49

Deblur DGP[180] 26.00 0.54 136.53 475.10

SNIPS[181] 24.73 0.69 17.11 60.11

RED[182] 21.30 0.58 69.55 63.20

DDRM[136] 35.64 0.98 4.78 50.24

xtGDP- [146] 25.86 0.75 5.00 54.08

x0GDP- [146] 25.98 0.75 2.44 41.27

Colorization DGP[180] 18.42 0.71 94.59 305.59

DDRM[136] 22.12 0.91 47.05 37.33

xtGDP- [146] 21.30 0.86 66.43 75.24

x0GDP- [146] 21.41 0.92 37.60 36.92
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helps mitigate compounding errors. ED-DPM[147] pro-

poses  entropy-driven  sampling  and  training  schemes

to  improve  conditional  image  generation  with  diffu-

sion models. These schemes alleviate vanishing gradi-

ent issues during the denoising process. LDM[64] intro-

duces a novel approach by separating the training of

autoencoders  and  diffusion  models.  This  bifurcated

process allows each component to focus on its specific

capabilities,  resulting  in  performance  gains.  MDT[59]

accelerates  training  by  incorporating  masked  self-at-

tention, which improves the modeling of spatial  rela-

tionships  in  images.  This  work  demonstrates  the  po-

tential  of  integrating  transformer  architectures. Fig.7

showcases  the  results  of  class-to-image  generation.  A

performance  comparison  between  some  of  the  meth-

ods is listed in Tables 4 and 5. 

4.2.2    Text to Image

Text  to  image  generation  involves  the  generation

of  an  image  that  corresponds  to  a  descriptive  text.

Two typical problems in text-to-image generation are

attribute  misbinding  and  missing  objects.  Attribute

misbinding, where visual characteristics are incorrect-

 

Table  3.    Comparison of Performance of Diffusion Models in Image Recovery Domains

Restoration Dataset Model ↑PSNR ↑SSIM ↓FID ↓LPIPS

Inpainting CelebaHQ[183] RePaint[137] – – 6.98 0.060

SDM[178] – – 4.05 0.052

SDGM[136] – – 4.68 0.057

LDM[64] – – 1.50 0.137

LDM(w/o attention)[64] – – 2.37 0.146

Shadow removal ImageNet-1k[179]) DHAN[184] 20.42 0.69 109.35 0.247

IR-SDE[185] 20.30 0.66 74.35 0.152

U-Net baseline 20.69 0.71 102.10 0.236

Refusion[186] 21.88 0.69 56.22 0.121

Enlighten LOL[187] LightenNet[188] 10.29 0.45 90.91 –

Retinex-Net[187] 17.24 0.55 129.99 –

EnlightenGAN[189] 17.44 0.74 82.60 –

KinD[190] 17.57 0.82 74.52 –

xtGDP- [146]  7.32 0.57 238.92 –

x0GDP- [146] 13.93 0.63 75.16 –

Enlighten VE-LOL-L[191] LightenNet[188] 13.26 0.57 82.26 –

Retinex-Net[187] 16.41 0.64 135.20 –

EnlightenGAN[189] 17.45 0.75 86.51 –

KinD[190] 18.07 0.78 80.12 –

xtGDP- [146]  9.45 0.50 152.68 –

x0GDP- [146] 13.04 0.55 78.74 –

 

(b)(a) (c)

Fig.7.  Class-to-image results from DiT[57]. Resolution: (a) 512, (b) 256, and (c) 64.
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ly  paired  with  objects,  stems  from  inadequate  align-

ment  between  modalities[198].  Missing  objects  occur

when models fail to generate portions of an image de-

scribed in text[199].

GLIDE[119] draws  inspiration  from  the  success  of

guided diffusion models[7] in  generating photorealistic

samples, and the capability of text-to-image models to

handle free-form prompts[123]. GLIDE employs guided

diffusion  to  address  the  problem  of  text-conditional

image  synthesis.  Imagen[76] has  presented  a  text-to-

image  diffusion  model  along  with  a  comprehensive

benchmark,  indicating  that  Imagen  performs  better

when  compared  with  various  approaches  such  as

LDM[64],  GLIDE[119],  and  DALL-E 2[71].  The  key  dis-

covery  behind  Imagen  is  that  text  embedding  from

large language models (LLMs) pre-trained on a plain

text corpus is very effective for text-to-image synthe-

sis.  An example is  shown in Fig.8.  The work of  VQ-

Diffusion[13] introduces a novel vector-quantized diffu-

sion  model  for  text-to-image  generation.  This  ap-

proach effectively reduces unidirectional bias and cir-

cumvents  the  accumulation  of  prediction  errors.

Parti[115] demonstrates  the  efficacy  of  scaling  autore-

gressive  models  to  enhance  text-to-image  generation

using  a  ViT-VQGAN[200] image  tokenizer.  This  ap-

proach enables the models to effectively integrate and

visually convey world knowledge with a high degree of

accuracy. Muse[79] is a novel approach that leverages a

masked  modeling  task  in  the  discrete  token  space  to

generate  high-fidelity  images  from  text.  Specifically,

given a  text  embedding extracted from a pre-trained

LLM,  Muse  is  trained  to  predict  randomly  masked

image  tokens.  Compared  with  pixel-space  diffusion

models  such  as  Imagen[76] and  DALL-E  2[71],  Muse

demonstrates superior efficiency by virtue of its use of

discrete  tokens  and  requiring  fewer  sampling  itera-

tions. The performance comparison of various text-to-

image  methods  on  the  MS-CoCo  dataset  has  been

outlined in Table 6.

 

×Table  4.    Performance Comparison on Class to Image on ImageNet and FFHQ with Resolution 256 256

Dataset Model ↓FID ↑IS ↑Precision ↑Recall

×ImageNet-1k 256 256[179] BigGAN-deep[141] 6.95 171.40 0.87 0.28

StyleGAN-XL[192] 2.30 256.12 0.78 0.53

×ImageNet-1k 256 256[179] ADM[7] 10.94 100.98 0.69 0.63

ADM-U[7] 7.49 127.49 0.72 0.63

ADM-G[7] 4.59 186.70 0.82 0.52

CDM[78] 4.88 158.71 – –

LDM-8[64] 15.51 79.03 0.65 0.63

LDM-4[64] 10.56 103.49 0.71 0.62

LDM-4-G[64] 3.60 247.67 0.87 0.48

DiT-XL/2[57] 9.62 121.50 0.67 0.67

DiT-XL/2-G[57] 2.27 278.24 0.83 0.57

ViT-XL+Min-SNR-5[193] 2.06 – – –

Simple diffusion (U-Net)[60] 3.76 171.60 – –

Simple diffusion (U-ViT)[60] 2.77 211.80 – –

×FFHQ 256 256[4] DDPM[10] 8.33 – – –

p2[194] 7.00 – – –

LDM[64] 4.98 – 0.73 0.50

SD[195] 10.50 – – –

Note: GAN-based results are included, distinguished from the diffusion-based results by a divider for comprehensiveness.

 

Table  5.    Performance Comparison on Class to Image on CI-
FAR10 and ImageNet

Dataset Model ↓FID ↑IS

×
CIFAR10
32 32[196]

BigGAN[141] 14.70    9.22

StyleGAN-XL[192] 1.85 –

SDE[11] 2.20    9.89

DDPM[10] 3.17    9.46

LSGM[197] 2.10 –

EDM[12] 2.04    9.84

×
ImageNet-1k
512 512[179]

BigGAN-deep[141] 8.43 177.90

StyleGAN-XL[192] 2.41 267.75

ADM[7] 23.24   58.06

ADM-U[7] 9.96 121.78

ADM-G[7] 7.72 172.71

DiT-XL/2[57] 12.03 105.25

DiT-XL/2-G[57] 3.04 240.82

Simple diffusion
(U-Net)[60]

4.30 171.00

Simple diffusion
(U-ViT)[60]

3.54 205.30
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In order to address the problem that stable diffu-

sion  methods  may  generate  images  containing  harm-

ful information, Kim et al.[82] proposed safe Self-Distil-

lation  Diffusion  (SDD) and employed  an  exponential

moving  average  teacher  to  diminish  catastrophic  for-

getting. GLIGEN[83] is a novel approach that extends

existing  large-scale  text-to-image  diffusion  models  by

allowing them to be conditioned on grounding inputs,

achieving  open-world  grounded  text-to-image  genera-

tion with caption and bounding box condition inputs.

Mou et  al.[84] proposed  using  simple  and  lightweight

T2I-Adapters  to  explicitly  control  the  generation  of

text-to-image  models  by  aligning  internal  knowledge

with  external  control  signals,  achieving  rich  control

and  editing  effects  in  the  color  and  structure  of  the

generation results,  with attractive properties of  prac-

tical  value  such  as  composability  and  generalization

ability. 

4.3    Video Generation

Diffusion-based  generative  models  heavily  boost

the  field  of  video  generation,  as  first  promoted  by

RVD[99] and  followed  by  subsequent  work,  making

possible  significant  progress  on  conditional  control,

resolution,  and  temporal  consistency.  FDM[148] ap-

plies diffusion models to improve long-term video pre-

diction.  MCVD[149] adapts  conditional  tasks  like  fu-

ture  prediction  and  interpolation.  Imagen  Video[204]

and  Make-A-Video[150] each  constructs  a  cascade

pipeline  to  utilize  spatial  and  temporal  super-resolu-

tion models for high-resolution time-consistent videos.

Dreamix[205] fine-tunes  a  video  diffusion  model  on

 

 A Sign that Says ``NeurIPS''  A Wine Glass on Top of a Dog  A Blue Coloured Pizza

A Cool Man in the Room

A Modern City

A Car with Flying Wings

A Man Standing on Top of a Cliff

 

(b)

(a)

(c)

Fig.8.  Text-to-Image results from [22, 83]. Condition: (a) text only, (b) text and single condition, and (c) text and multiple condi-
tions.

 

Table  6.    Performance Comparison on Text to Image Genera-
tion on the MS-CoCo Dataset[201]

Model FID ↓

LAFITE[202] (GAN-based) 26.94

CogView[203] (Transformer-based) 27.10

LDM[78] 12.63

VQ-Diffusion[13] 13.86

DALL-E 2[71] 10.39

Parti[115] 7.23

GLIDE[119] 12.24

Muse[79] 7.88

Imagen[7] 7.27

eDiff-I[81] 6.95
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aligned text and low-resolution frames to improve fi-

delity.  Several  work[62, 206, 207] follows  the  LDM[64]

paradigm  and  successfully  transfers  generators  from

the  image  space  to  the  video  space  after  fine-tuning

on video sequences by introducing an extra temporal

axis.

There  has  been  a  surge  of  interest  in  conditional

video generation based on pretrained text-to-image or

text-to-video  models.  With  fixed  spatial  weights  and

learnable  temporal  weights  tuned  on  video  data,

Make-Your-Video[151] allows  re-rendering  of  the  ap-

pearance of source video given extra depth conditions.

Follow-Your-Pose[152] uses  pose  as  guidance  for  the

synthesis of human-like character videos. In LFDM[74],

the action class  is  served as condition and is  warped

in the latent space based on the generated temporal-

ly-coherent  flow.  VideoComposer[75],  as  an  extension

to  Composer[97],  takes  multiple  kinds  of  images  as

conditions, which are fused in the latent space and in-

teract  within  the  U-Net  via  cross-attention.  Control-

Video[153] seamlessly  incorporates  with  ControlNet[22],

which is tailored into video domain through the aug-

mentation of self-attention with a comprehensive fully

cross-frame  interaction  mechanism.  MV-Diffusion[208]

improves  temporal  consistency  by  explicit  motion

modeling through global trajectory information and a

motion  trend  attention  block.  EVDModel[209] reduces

computation  costs  in  video  synthesis  by  minimizing

convolutional  redundancy.  VideoFusion[154] addresses

the challenges of applying diffusion models to high-di-

mensional  data  spaces  by  employing  a  decomposed

diffusion  process  involving  a  shared  base  noise  and

varying residual noises along the time axis.

Diffusion-based  video  generation  has  witnessed

rapid advancements in architecture, conditioning, and

temporal  modeling,  leading  to  overall  improvement.

However, certain challenges still persist, such as iden-

tity  loss,  minimizing  flicker,  and effectively  modeling

intricate  physics  across  extended  timeframes  (as

shown  in Fig.9).  The  incorporation  of  robust  image

priors and the integration of temporal knowledge are

expected  to  have  a  significant  impact  on  addressing

these  challenges  and  shaping  the  future  of  diffusion-

based  video  generation.  In Tables 7 and 8,  perfor-

mance  comparisons  within  the  video  generation  field

are  provided,  with  distinct  labeling  for  zero-shot

methods and other approaches. 

4.4    3D Generation

3D synthesis presents significant challenges due to

the  limited  availability  of  large-scale  labeled  3D

datasets and the absence of efficient architectures for

denoising  3D data.  The  results  of  the  3D generation

are depicted in Fig.10.

To  address  these  challenges,  recent  research  has

focused on a research direction known as Score Distil-

lation  Sampling  (SDS)[155] or  Score  Jacobian  Chain-

ing  (SJC)[216] in  the  field  of  text-to-3D  generation.

SDS involves optimizing 3D representations by align-

ing their rendered images with regions of high proba-

bility  density  conditioned on the  accompanying text.

This  optimization  process  is  supervised  using  pre-

trained 2D diffusion models.

One  notable  application  of  SDS  is

DreamFusion[155],  which  utilizes  the  noise  residual  to

optimize  Neural  Radiance  Fields  (NeRF)  and  has

been  extended  by  much  later  work.  For  example,

Magic3D[156] introduces a two-stage coarse-to-fine op-

timization  framework  that  incorporates  sparse  grids

and  differentiable  rendering,  leading  to  accelerated

optimization  and improved fidelity.  Dream3D[215] ini-

tializes the neural field by a 3D shape prior extracted

from the text-to-shape phase and is capable of gener-

ating  high-quality  3D  contents  after  optimized  in  a
 

(b)(a)

Fig.9.  Problems with video generation between consecutive frames. (a) ID loss. (b) Temporal inconsistency.
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CLIP-guided manner. Zero-1-to-3[158] unveils the view-

point-aware  ability  of  pre-trained  diffusion  model  by

fine-tuning on camera extrinsics as condition for nov-

el view synthesis, yet followed by an SJC-based opti-

mization on neural fields to further enable 3D recon-

struction.  Magic123[159] incorporates  both  2D  priors

from SD and 3D priors from Zero-1-to-3 in SDS loss,

with  an  extra  hyperparameter  to  trade  off  explo-

ration against exploitation of the generated geometry.

Fantasia3D[157] disentangles appearance learning from

geometry  modeling  under  normal  map  supervision

and  introduces  fully  Bidirectional  Reflectance  Distri-

bution  Function  (BRDF)  into  text-to-3D tasks,  thus

enables photorealistic rendering of material surfaces.

Efforts  have  also  been  made  to  enhance  multi-

view  consistency  and  local  controllability  in  text-to-

3D  synthesis.  SyncDreamer[160] generates  multiview-

consistent  images  from  a  single-view  image  by  syn-

chronizing  intermediate  states  using  a  3D-aware  fea-

ture  attention  mechanism.  By  jointly  training  the

model on multi-view images (from 3D assets) and 2D

image-text  pairs,  they  proposed  multi-view  diffusion

models,  which  can  be  used  as  a  multi-view 3D prior

agnostic to 3D representations. Wonder3D[217] propos-

es a cross-domain diffusion model that generates mul-

tiview  normal  maps  and  the  corresponding  color  im-

ages, achieving high-quality reconstruction results, ro-

bust  generalization,  and  good  efficiency  compared

with  prior  work.  MVDream[218] believes  that  large-

scale  2D  data  is  crucial  to  generalizable  3D  genera-

tion.  Rodin[219] utilizes  latent  conditioning  and  3D-

aware  convolution  to  create  high-fidelity  3D  avatars

from  a  single  portrait  or  text  prompt,  allowing  for

text-based  semantic  manipulation  of  the  avatars.

LAS-Diffusion[161] addresses challenges related to qual-

ity,  local  controllability,  and  generalizability  by  em-

ploying  signed  distance  function  (SDF)  representa-

tion and a view-aware local attention mechanism.

In summary, the combination of neural rendering,

multimodal  representations,  and  diffusion  modeling

has shown promise for high-fidelity 3D synthesis. The

advancements  in  SDS,  such  as  DreamFusion[155] and

its  extensions,  have  improved  the  optimization  pro-

cess.  Additionally,  the  development  of  methods  has

enhanced  the  overall  quality,  multi-view  consistency,

and local controllability of the generated 3D outputs.

However,  challenges  remain  in  scaling  synthesis,  re-

ducing  optimization  costs,  and  improving  coherence.

 

Table   7.      Performance  Comparison  on  Text  to  Video  on
Dataset UCF-101[210]

Diffusion-Based Model Zero-Shot IS ↑ FVD ↓

Yes CogVideo[211] � 23.55 751.34

No MagicVideo[207] � – 699.00

Make-A-Video[150] � 33.00 367.23

Make-Your-Video[151] � – 330.49

Video LDM[62] � 33.45 550.61

VideoFusion[154] � 17.49 639.90

Video-LDM[62] � 33.45 550.61

Note: Methods listed above the horizontal line in the table are
not  based  on  diffusion,  whereas  those  below  the  line  are
diffusion-based.

 

Table   8.      Performance  Comparison  on  Text  to  Video  on
Dataset MSR-VTT[212]

Diffusion-Based Model Zero-Shot CLIPSIM ↑

Yes CogVideo[211] � 0.261 4

No GODIVA[213] – 0.240 2

NUWA[214] – 0.243 9

Make-A-Video[150] � 0.304 9

Video LDM[62] � 0.292 9

VideoFusion[154] � 0.279 5

VideoComposer[75] � 0.293 2

 

(a) (b) (c)

(d) (e) (f)

Fig.10.   Text-to-3D results  from Dream3D[215].  Text:  (a)  an  orangutan  making  a  clay  bowl  on  a  throwing  wheel,  (b)  a  bulldozer
clearing away a pile of snow, (c) a corgi taking a selfie, (d) a raccoon astronaut holding his helmet, (e) a table with dim sum on it,
and (f) a jay standing on a basket of macarons.
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Future  progress  in  3D synthesis  will  rely  on leverag-

ing 3D priors  and shape representations to overcome

these  challenges  and  achieve  even  higher  levels  of  fi-

delity.  Performance  comparisons  for  the  3D  genera-

tion domain are detailed in Table 9.
 
 

Table   9.      Performance  Comparison  on  Text  to  3D  Genera-
tion on Dataset GSO[220]

Model Chamfer Dist ↓ Volume IoU ↑

Realfusion[221] 0.081 9 0.274 1

Magic123[159] 0.051 6 0.452 8

One-2-3-45[222] 0.062 9 0.452 8

Shape-E[223] 0.043 6 0.358 4

Zero-1-to-3[158] 0.033 9 0.503 5

SyncDreamer[160] 0.026 1 0.542 1
 

4.5    Personalization

The personalization involves the generation of im-

ages with specific and unique concepts,  modifications

of their appearance, and compositions of new charac-

ters  and  scenes.  In  essence,  personalization  allows

users  to  communicate  with  a  generative  model  and

specify their desired output with greater precision and

flexibility. Fig.11 illustrates  four  prevalent  approach-

es to personalization generation.

Embedding  Tuning.  Textual  Inversion[111] is  note-

worthy in the field of embedding tuning. It generates

P+

images with a similar style to the training images us-

ing  a  limited  set  of  images  and  defining  new  key-

words.  To achieve this,  a novel  keyword needs to be

defined, one that is not currently present in the exist-

ing model. This keyword is assigned a distinct numer-

ical  value,  similar  to  other  tokens  in  the  tokenizer.

The keyword is then transformed into an embedding,

and  the  text  transformer  maps  it  to  the  most  suit-

able  embedding  vector  for  the  newly  provided  key-

word.  Improving  upon  Textual  Inversion, [224] in-

troduces  an  inversion  space  that  encompasses  multi-

ple  textual  conditions  corresponding  to  each  layer  of

the  denoising  U-Net  in  the  diffusion  model.  This  en-

hancement  offers  better  disentanglement  and  control

over image synthesis.

Embedding-Weight  Tuning.  Compared  with  the

textual  inversion method,  DreamBooth[112] employs  a

rare  word  instead  of  a  new  word  to  prevent  overfit-

ting.  Additionally,  DreamBooth  fine-tunes  the  entire

model, whereas textual inversion only adjusts the text

embedding  component.  Custom  Diffusion[25] intro-

duces  a  method  for  co-training  multiple  concepts  or

constrained  optimization  of  several  existing  concept

models.  SVDiff[162] fine-tunes  the  singular  values  of

weight  matrices,  reduces  the  risk  of  overfitting  and

language-drifting,  and  introduces  a  Cut-Mix-Unmix

data-augmentation  technique  to  enhance  multi-sub-

ject  image  generation.  Perfusion[163] is  a  personaliza-
 

[  ]
A

[  ]
photo

[  ]
of

[  ] [  ] [  ][  ] [  ] [  ]
[V]

Diffusion Model

(a)

A photo of [V] dog

Diffusion Model

(b)

[  ]
A

[  ]
photo

[  ]
of

[  ] [  ] [  ] [  ] [  ]
dog

Diffusion Model Diffusion Model

(c)

A photo of dog
Hyper

Network

(d)

Freezed Trainable Gradient Update

D

 

D

 emb

D

 emb

D

 hyper

D

 

x x x x

x x x x

     

D



W emb

Wi W hyper
Fig.11.   Methods  for  personalization.  (a)  Textual  inversion[111].  (b)  Dreambooth[112].  (c)  LoRA[113].  (d)  HyperNetwork[164]. :
learnable text encoding. W: model parameters. : lora parameters for layer i. : hypernetwork parameters.

528 J. Comput. Sci. & Technol., May 2024, Vol.39, No.3



tion method that uses dynamic rank-1 updates and a

mechanism  that  ``locks"  new  concepts'  cross-atten-

tion  keys  to  their  superordinate  category  to  balance

visual-fidelity  and  textual-alignment,  allowing  run-

time-efficient combination of multiple concepts with a

single trained models.

Fast  Test-Time  Tuning.  HyperNetworks[164] re-

places the weight matrix in a large model by fine-tun-

ing the structure of a small parameter model and has

been  applied  to  the  cross-attention  module  of  U-Net

in stable diffusion models[64] for achieving personaliza-

tion.  LoRA[113] is  a  commonly  used  fine-tuning

method.  Both  LoRA and HyperNetworks  modify  the

cross-attention module of the U-Net to alter the style

of  generated  images.  However,  LoRA  adjusts  the

weights  of  the  cross-attention  module,  while  Hyper-

Networks[164] inserts  additional  modules.  Instant-

Booth[225] and Taming[226] enable  personalized  output

generation  in  different  styles  by  introducing  a  new

conditioning  branch  for  the  diffusion  model.  Faster-

Composer[227] addresses the problem of identity blend-

ing in multisubject generation by proposing to use an

image encoder to predict subject-specific embeddings.

SuTI[228] achieves personalized image generation with-

out  test-time  finetuning  by  learning  from  a  large

dataset  of  paired  images  generated  by  subject-driven

expert  models.  While  SuTI  mitigates  the  need  for

finetuning,  the  inference  model  does  not  fully  main-

tain the original  integrity of  the text-to-image model

and  lacks  high  subject  fidelity[229]. Fig.12 shows  the

results  of  customized  generation  for  different  styles

and concepts.

Recently,  encoder-based  approaches  such  as

ElITE[165],  E4T[230],  Blip[94],  ProFusion[166],  and  Do-

main-Agnostic[231] have  emerged.  These  approaches

train  neural  networks  to  predict  a  latent  representa-

tion that  synthesizes  new images  of  a  given concept.

They  incorporate  regularization  techniques  such  as

subject-specific  segmentation  masks[165],  single-do-

main  training,  or  contrastive-based  regularization[231]

to improve inference from a single image. Alternative-

ly,  the  model  proposed  by  [228]  can  synthesize  new

images  from  dual  conditions,  combining  a  textual

prompt with a set of images depicting the target. 

5    Future Direction

Multimodal  controllable  diffusion  modeling  en-

ables the provision of high-quality, diverse, and inno-

vative  content  tailored  to  meet  users'  specific  needs

and  preferences.  However,  there  are  several  areas

where  multimodal  controllable  diffusion  models  have

room  for  improvement  in  both  theory  and  practice.

These include enhancing sampling efficiency and like-

lihood  estimation,  handling  special  data  structures,

integrating with other types of generative models, and

customization for specific applications. Looking ahead,

the  future  research  direction  of  the  diffusion  model

can be explored from the following perspectives:  per-

sonalization,  new  architectural  designs,  advancing

theoretical  understanding,  and  expanding  applica-

tions within the field of AI-driven content generation. 

 

(a) (b)

(c)

Fig.12.  Personalization results of single concept object from (a) DreamBooth[112], (b) single concept style from Custom Diffusion[25],
and (c) multi-concepts from Mix of show[167].
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5.1    Architecture

The  backbone  and  architecture  of  diffusion  mod-

els  hold  significant  potential  for  improvement.  While

U-Net  and  Transformer  have  demonstrated  impres-

sive  results  as  denoising  network  backbones,  they

have inherent limitations in certain applications. For-

tunately,  the  field  of  machine  learning  offers  a  di-

verse range of mature network architectures with at-

tractive advantages. Leveraging and fine-tuning these

architectures  as  denoising  networks  can  bring  addi-

tional  benefits  and  unlock  the  full  potential  of  diffu-

sion models. Efforts are underway to compress archi-

tectures,  reducing  the  number  of  parameters  while

maintaining performance. 

5.2    Theory

Advancements  in  diffusion  modeling  can  be

achieved  by  developing  new  formulations  for  dimen-

sion  destruction,  establishing  connections  with  well-

established  fields,  and  leveraging  explainable  tech-

niques  to  enhance  our  understanding  of  diffusion

models.  Additionally,  the  success  of  diffusion  models

highlights  the  effectiveness  of  auto-regressive  genera-

tion, which employs self-correction mechanisms to im-

prove  output  quality.  By  delving  into  the  informa-

tion  and  structure  embedded  in  random noise,  diffu-

sion  modeling  offers  valuable  insights  and  presents

new possibilities and challenges for researchers in the

field. 

5.3    AIGC

The  emergence  of  numerous  fun-oriented  mobile

apps  using  AIGC  is  fascinating.  While  traditional

tools  like  Photoshop  are  commonly  used  for  image

editing, they can be time-consuming and result in un-

natural  or  unrealistic  outputs.  Similarly,  video  edit-

ing requires analyzing each clip and making editorial

decisions  based  on  both  audio  and  visual  content,  a

time-consuming process that requires careful consider-

ation of every frame. Fortunately, some work has ex-

plored the utilization of diffusion, to the image[232, 233]

or video editing[234], making the applications in AIGC

such as face swapping and digital avatar possible. 

6    Conclusions

In this comprehensive exploration, we delved into
the  realm  of  controllable  diffusion  models.  We  first

provided a thorough understanding of  diffusion mod-

el's  formulations,  sampling  methods,  and  the  key  di-

rections  that  drive  their  development.  By  highlight-

ing the formulation of  control,  advancements  in con-

trollable technology, and the establishment of evalua-

tion indicators,  we have  shed light  on the  intricacies

of  achieving  controllability  in  diffusion  models.  Fur-

thermore,  our  survey  of  applications  across  diverse

domains has showcased the vast potential of diffusion

models in addressing real-world challenges. Future re-

search  may  witness  more  interdisciplinary  collabora-

tions to tackle complex problems specific  to different

domains. Establishing and refining evaluation metrics

will  be another key part of future research, aiding in

the  standardization  of  model  performance  compar-

isons  and  the  selection  of  the  most  suitable  models.

By  outlining  future  research  avenues,  we  aim  to  in-

spire  further  advancements  and provide  readers  with

a valuable guide to the world of controllable diffusion

models and their applications. 
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