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Abstract    The springing up of  large language models  (LLMs) has  shifted the community from single-task-orientated

natural language processing (NLP) research to a holistic end-to-end multi-task learning paradigm. Along this line of re-

search endeavors in the area, LLM-based prompting methods have attracted much attention, partially due to the techno-

logical  advantages  brought  by  prompt  engineering  (PE)  as  well  as  the  underlying  NLP principles  disclosed  by  various

prompting  methods.  Traditional  supervised  learning  usually  requires  training  a  model  based  on  labeled  data  and  then

making  predictions.  In  contrast,  PE methods  directly  use  the  powerful  capabilities  of  existing  LLMs (e.g.,  GPT-3  and

GPT-4)  via  composing  appropriate  prompts,  especially  under  few-shot  or  zero-shot  scenarios.  Facing  the  abundance  of

studies related to the prompting and the ever-evolving nature of this field, this article aims to 1) illustrate a novel perspec-

tive  to  review  existing  PE  methods  within  the  well-established  communication  theory  framework,  2)  facilitate  a

better/deeper understanding of developing trends of existing PE methods used in three typical tasks, and 3) shed light on

promising research directions for future PE methods.

Keywords    prompting method, large language model, communication theory

  

1    Introduction

Large  language  models  (LLMs)  (e.g.,  GPT-3[1],

GPT-4[2],  LLaMa[3])  make it  possible for machines to

understand  users'  attention  accurately,  thus  revolu-

tionizing  the  human-computer  interaction  (HCI)

paradigm.  Compared  with  traditional  machine  sys-

tems like databases and search engines, LLMs demon-

strate  impressive  capability  in  understanding,  gener-

ating,  and  processing  natural  language,  facilitating  a

series  of  services  ranging  from  personal  assistants[4],

healthcare[5] to e-commercial tools[6] via a unified nat-

ural language interface between users and machines.

The  research  paradigm  around  LLM  has  shifted

from  single-task-orientated  natural  language  process-

ing  (NLP)  research  to  a  holistic  end-to-end  multi-

task learning approach. Along this line of research en-

deavors,  LLM-based  prompting  engineering  (PE)

methods[1, 7] have attracted much attention,  partially

because they are the key techniques in making full use

of  the  superior  capabilities  of  LLMs via  constructing

appropriate prompts. PE refers to the process of care-

fully  constructing  instructional  prompts  to  steer  and

shape  the  behavior  of  LLMs,  and  it  greatly  helps  in

bridging the gap between the pre-training tasks used

to construct the LLM with the down-streaming tasks

queried by the end users. Through careful prompt de-

signing,  users  can  steer  LLM's  output  in  the  desired

direction, shaping its style, tone, and content to align

with their goals.

To  this  end,  numerous  prompt  engineering  (PE)

methods have been explored with the notable progress

of  LLM  advancement  and  technologies[7–24].  A  com-

mon  theme  of  PE  development  lies  in  continuously

improving  accuracy  and  responsiveness  of  designed

prompts,  which  often  include  components  like  Role,

Context,  Input,  Output  Format,  and  Examples.

Specifically, prompt template and answering engineer-
 
 

Survey

Song YF, He YQ, Zhao XF et al. A communication theory perspective on prompting engineering methods for large lan-

guage  models.  JOURNAL  OF  COMPUTER  SCIENCE  AND  TECHNOLOGY  39(4):  984−1004  July  2024.  DOI:

10.1007/s11390-024-4058-8

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-4058-8
https://doi.org/10.1007/s11390-024-4058-8
https://doi.org/10.1007/s11390-024-4058-8
https://doi.org/10.1007/s11390-024-4058-8
https://doi.org/10.1007/s11390-024-4058-8
https://doi.org/10.1007/s11390-024-4058-8
https://doi.org/10.1007/s11390-024-4058-8


ing  have  evolved  from  solely  utilizing  discrete

prompts  to  continuous  prompts,  and  even  to  explor-

ing hybrid prompts that combine continuous and dis-

crete  elements,  which  provides  a  larger  optimization

space to achieve better performance. With the emerg-

ing  capabilities  of  LLMs,  these  models  can  leverage

their  in-context  learning  abilities  to  plan  and  utilize

external  tools,  significantly  enhancing  their  perfor-

mance  in  specialized  domains  and  broadening  their

applications across diverse fields.

Following  these  studies,  representative  PE  meth-

ods  can  be  categorized  as  three  groups  that  corre-

spond to three prompting tasks  proposed to improve

the  qualities  of  LLMs'  outputs,  namely  prompt  tem-

plate  engineering,  prompt  answer  engineering,  and

multi-prompt  engineering  and  multi-turn  prompt  en-

gineering,  respectively.  An example  of  the  input  and

output for the above-mentioned tasks can be found in

Table 1.

[Z]

[Z]

• First, prompt template engineering methods aim

to  carefully  design  a  piece  of “text” that  guides  the

language models  to produce the desired outputs.  For

example, in Table 1, to finish a classical sentiment de-

tection for an input A=“Delicious dining options close

to  my  current  location”,  the  prompt  template  engi-

neering designs a template “[A] In summary, it was a

 restaurant” to enforce the LLM to fill the desired

comments  in  the  blank  (i.e., ).  Essentially  this

type of template engineering method induces LLM to

focus  on  word  embeddings  that  are  relevant  to  the

questions.  A  common  designing  principle  of  existing

prompt  template  engineering  methods  is  to  better

align  information  between  users  and  LLMs.  Such

a  trend  is  manifested  by  the  evolution  from  using

discrete  prompts  (i.e.,  a  piece  of  human-readable

text)[9, 11] to continuous ones (i.e.,  a continuous task-

specific vector)[13, 20].

• Second,  prompt  answer  engineering [7] refers  to

the process of exploring the vast answer space and a

map to the desired, intended output, which enhances

users'  understanding  of  the  information  encapsulated

within  the  LLM.  For  the  same  example  in Table 1,

the  prompt  answer  engineering  aims  to  find  a  map-

ping  from the  result “good” obtained  from the  LLM

to the desired answer “positive”. The field of prompt

answer  engineering  is  currently  witnessing  a  notable

development  trend  characterized  by  the  pursuit  of

models that excel in decoding model information from

simple  mapping  to  complex  mapping  to  enhance  hu-

man comprehension.

• Third,  multi -prompting  methods  mainly  apply

ensemble  techniques[10] to  mitigate  the  sensitivity  of

LLM to  different  formulations  and  to  obtain  a  more

stable output. In Table 1, the multi-prompting meth-

ods combine three different templates (i.e., 1) “It was

a [Z]” place, 2) “A [Z] place to eat”, and 3) “In gener-

al,  it  was  [Z]”),  and  their  inference  results  (i.e.,  1)

“good”,  2) “fantastic”,  and 3) “okay”)  to  obtain  the

final desired one (i.e., “positive”). Later, as LLMs be-

come  more  capable,  multi-turn  prompt  methods  at-

tract  more  attention that  aims to  provide  more  con-

text  to  LLM  by  leveraging  information  either  from

LLM itself or external tools[25, 26]. In the field of multi-

prompting  methods,  researchers  are  endeavoring  to

develop adaptive strategies that enhance LLM's abili-

ty to task planning and the utilization of tools.

In this article, we summarize the prompting meth-

ods  from  a  communication  theory  perspective  with

which the ultimate goal of PE is to reduce the infor-

mation  misunderstanding  between  the  users  and  the

LLMs. Therefore, as delineated in Section 2, the com-

munication theory perspective provides a coherent ex-

planation  of  different  PE  methods  in  terms  of  their

objectives  and  underlying  principles.  Moreover,  this

novel perspective also offers and presents insights in-

to  scenarios  where  existing  prompting methods  come

short.

The  remainder  of  the  article  is  structured  as  fol-

lows: Section 2 details the overview of the prompting

methods from the communication theory perspective.

Sections 3, 4, and 5 review and summarize the recent

 

Table  1.    Running Examples for PE Methods

Stage Input Output

Prompt template
engineering

Delicious dining options close to my current location
[Z]

Delicious dining options close to my current location.
In summary, it was a  restaurant

Large language
model [Z]

Delicious dining options close to my current location.
In summary, it was a  restaurant.

Delicious dining options close to my current location.
In summary, it was a good restaurant

Prompt answering
engineering

Good Positive

Multi-prompt 1) It was a [Z] place; 2) A [Z] place to eat; 3) In
general, it was [Z]

1) good, 2) fantastic, and 3) okay

Yuan-Feng Song et al.: Communication Theory Perspective on Prompting Engineering Methods for LLMs 985



progresses  from three  PE tasks  namely  prompt  tem-

plate  engineering,  prompt  answer  engineering,  and

multi-prompt  engineering  and  multi-turn  prompt  en-

gineering,  respectively. Sections 6 discusses  other  re-

lated surveys and potential research directions. Final-

ly, we conclude this article in Section 7 by summariz-

ing  significant  findings  and  discussing  potential  re-

search  directions.  We  summarize  the  main  symbols

and  abbreviations  in Table 2 for  the  convenience  of

readers. 

2    Communication  Theory  Perspective  of

Prompting Methods

The  study  of  modern  communication  theory,

which  dates  back  to  the  1940s  and  the  following

decades,  gave  rise  to  a  variety  of  communication

models including both linear transmission models and

non-linear  models  such  as  interaction,  transaction,

and  convergence  models[27–29].  A  common  theme  of

these  early  studies  is  to  analyze  how individuals  uti-

lize  verbal  and  non-verbal  interactions  to  develop

meaning  in  diverse  circumstances.  Conceptually,  the

communication process is often modeled as a chain of

information  processing  steps  involving  encoding,

transmitting,  and  decoding  of  messages,  between  a

sender and a receiver.

To give  a  better  illustration, Fig.1(a)  depicts  the

classical Model of Communication in the communica-

tion theory, which includes a sender encoding a mes-

sage and transmitting it to the receiver over a chan-

nel. Then, the receiver decodes the message and deliv-

ers  some  type  of  response.  During  the  transmission

process,  the  message  may  be  distorted  due  to  noise,

leading to the necessity of multi-turn interaction.

The  original  communication  theory  is  widely  uti-

lized to examine factors including social[30], cultural[31],

and  psychological[32] that  influence  human  communi-

cation. The overall goal of communication theory is to

reveal  and  clarify  the  common  human  experience  of

interacting with others through information exchange.

Among  early  studies  of  various  communication

models,  we  are  particularly  inspired  by  two  influen-

tial  works,  namely,  Shannon-Weaver  Model  of  Com-

munication[33] and  Schramm  Communication  Mo-

del[34].  Shannon-Weaver's  pioneering  work,  first  pub-

 

Table  2.    Summary of Key Symbols and Abbreviations

Symbol Description

PES Prompt engineering system, a mathematical formulation for interactive user-LLM communication

X Input to the LLM, which can be text or other data

PT Prompt template, a carefully crafted piece of text designed to guide the LLM to produce desired outputs

PA PTPrompt answer, the output yielded by the LLM following the input 

Y Target output or desired result from the LLM

gωT X PTFunction representing the mapping from the input  to 

fθ PT PAFunction representing the mapping from the prompt  to the answer 

hωA PA YFunction representing the mapping from the answer  to 

I(X;Y ) Mutual information between two random variables X and Y, used in the context of maximizing information flow in PES

 

Sender Receiver

Message
Decode

Feedback Encode

Encode

Channel

Decode

Noise
User

Input 

Prompt Template
Engineering

( → ) 

Prompt Answer
Engineering

( → ) 

LLM

( → ) 

Output 

(b)(a)

Fig.1.  Prompting methods from the communication theory perspective. (a) Classical interaction model of communication. (b) Differ-
ent aspects of existing prompting methods.
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lished  in  1948,  provides  a  strong  mathematical  foun-

dation to analyze information flow between an active

sender and a passive receiver. It is however over-sim-

plistic in the sense that it does not take into account

of  complexities  involved  in  interactive  communica-

tion  between  active  senders  and  receivers,  who  may

respond by sending their messages as a form of feed-

back.  The interaction models  of  communication were

first  studied  by  Scharmm and  published  in  his  1954

book[34], which pictorially illustrates the feedback loop

as depicted in Fig.1(a). Nevertheless, Scharmm's mod-

el falls short of rigorous theoretical and mathematical

formulation  to  accommodate  quantitative  analysis,

e.g., information gain or mutual information between

senders and receivers.

Various prompting engineering methods for LLM,

in our view, can be understood from Scharmm's mod-

el  point  of  view  (see Fig.1(b)).  In  the  same  vein  of

Shannon-Weaver's analysis, we, therefore, delineate a

mathematical  formulation  of  prompting  engineering

systems  for  interactive  user-LLM  communication  as

follows.

Definition 1 (PES). A prompt engineering system
(PES) consists of a processing chain:
 

X
gωT−→ PT

fθ−→ PA

hωA−→ Y,

gωT
X

PT fθ
PT PA hωA

PA Y

where  represents the mapping from the input  to
the  prompt ,  denotes  the  mapping  from  the
prompt  to  the  answer ,  and  denotes  the
mapping  from  the  answer  to  the  output  (see
Fig.1(b) for an illustration).

X

Y

Definition  2 (Goal  of  PES). PES  aims  to  maxi-
mize  the  mutual  information  between  the  inputs 
and outputs , i.e.,
 

max
ωT , ωA

I(X,Y ) = max
ωT , ωA

I(X, hωA
◦ fθ ◦ gωT

(X)), (1)

f ◦ g(x) = f(g(x))where .
It is worth noting that prompt engineering is con-

sistently  divided  into  two  procedures:  prompt  tem-

plate  engineering  and  prompt  answer  engineering.

Each  procedure  has  specific  goals  similar  to  (1)  that

align with its intended purpose.

While  the  capacity  in  Definition  2  is  well-known

in information theory[35],  how to reach the maximum

of (1) for LLMs illustrated in Fig.1(b) remains an un-

explored research direction. There exists a large vari-

ety  of  prompting engineering methods,  which,  in  our

view, essentially aim to reduce information misunder-

standing  between  users  and  LLMs.  In  other  words,

they aim to reach the capacity of PES as defined. For

instance, Sorensen et al.[36] demonstrated selecting the

prompt with the greater mutual information (MI) en-

hanced  the  model  performance.  This  underscores  the

objective  of  PE techniques,  which  is  to  optimize  the

mutual  information  between  prompts  and  answers

(see  practical  examples  in  Appendix  C of  [36]).  This

connection  between  PES  and  the  communication

models has never been explicitly stated before.

X
gωT−→ PT PA

hωA−→ Y

Moreover,  the  existing  work  can  be  divided  into

three  categories:  prompt  template  engineering

( ),  prompt  answer  engineering  ( ),

and multi-prompt engineering and multi-turn prompt

engineering  as  shown  in Fig.1(b).  Specifically,  the

prompt  template  engineering  aims  to  reduce  the  en-

coding error or look for the prompt that is easily un-

derstood  by  the  machine,  while  the  prompt  answer-

ing  engineering  aims to  reduce  the  decoding  error  or

look for the prompt that can be easily understood by

the  human.  The  development  of  LLMs  aims  to  en-

hance the capability of the receiver that could better

handle users' information needs, and most important-

ly,  the multi-turn prompting and multi-prompt engi-

neering aim to constantly reduce the information mis-

understanding via multi-turn interactions.

• Prompt template engineering aims to optimize
 

max
ωT

I(X,PA) = max
ωT

I(X, fθ ◦ gωT
(X)), (2)

which looks for an additional piece of text, namely a

prompt,  to  steer  the  LLMs  to  produce  the  desired

outputs for downstream tasks. From the communica-

tion  theory  perspective,  it  acts  as  an “encoder” to

bridge  the  gap  between  the  users  and  the  LLMs  by

encoding  the  messages  in  a  way  that  the  model  can

understand and then elicit knowledge from LLMs (see

details  in Section 3).  In  the  encoding  process,  the

challenge lies in the accurate understanding of the us-

er's intention by LLM with limited instruction follow-

ing  capability.  Template  engineering  aims  to  reduce

this  mismatch  by  translating  the  user's  request  to  a

format that could be better understood by LLM.

• Prompt answer engineering aims to optimize
 

max
ωA

I(PT , Y ) = max
ωA

I(PT , hωA
◦ fθ(PT )), (3)

PA

Y

which  focuses  on  developing  appropriate  inputs  for

prompting methods. It has two goals: 1) to search for

a prompt answer  and 2) to look for a map to the

target output  that will result in an accurate predic-

tive  model.  In  the  decoding  process,  LLM-generated

output  often  carries  redundant  information  in  addi-

Yuan-Feng Song et al.: Communication Theory Perspective on Prompting Engineering Methods for LLMs 987



Y

tion to the expected answer due to its unlimited out-

put  space.  Answer  engineering  aims  to  confine  the

output space and extract the target answer. The field

of  prompt  answer  engineering  is  currently  witnessing

a  notable  development  trend  characterized  by  the

pursuit of effective answer engineering such that ulti-

mate  outputs  (i.e., )  are  well  aligned  with  that  of

end users' expectations (see details in Section 4).

• To  further  reduce  the  information  misunder-

standing, the user could conduct multi-interaction ac-

cording  to  (2)  and  (3),  called  multi-prompt/multi-

turn PE. Multi-prompting methods aim to optimize
 

max
ωT1

, ..., ωTM

M∑
i=1

I(X, fθ ◦ gωTi
(X)),

which mainly  applies  ensemble  techniques[10] to  miti-

gate  the  sensitivity  of  LLM to  different  formulations

and to  obtain  a  more  stable  output.  Later,  as  LLMs

become more capable, multi-turn prompt methods fo-

cus on providing more context to LLM by leveraging

multiple  communication  procedures  between  the  ma-

chine  and  person[25, 26].  In  the  field  of  multi-prompt-

ing  methods,  researchers  are  endeavoring  to  develop

adaptive strategies that enhance LLM's ability to task

planning  and  the  utilization  of  tools.  The  adaptive

and iterative nature of multi-prompting methods is by

the communication theory (see Section 5 for an elabo-

rated explanation). 

3    Prompt Template Engineering

X → PT → PA

PA PT

M θ

P̄A

p(P̄A|M,PT , θ)

PT

PT PT

Given  the  information  chain ,  the

answer  is determined by the prompt-processed 

and  model  with  pre-trained  weights .  Suppose

that  is the targeted prediction, the key problem of

prompt template engineering is to find a good prompt

that  maximizes  the  probability  on  di-

verse downstream tasks with limited data. To obtain

the optimal  prompt,  current  work[8–24] can be formu-

lated  into  three  categories:  constructing ,  ranking

, and tuning . 

3.1    Constructing the Prompt

PTThe  basic  motivation  of  constructing  is  to

transform the specific  task to make it  align with the

pre-training  objective  (i.e.,  next-word  prediction,

masked  LM)  of  the  LM.  Existing  prompt  construc-

tion  methods[8–11, 15, 37–39] could  be  categorized  into

five  different  approaches  as  shown in Table 3,  which

are discussed in detail as follows. 

3.1.1    Manually-Designed

Initially,  the  prompt  templates  are  manually  de-

signed in the natural language based on the user's ex-

perience, and they have been validated to be able to

improve the performances of downstream tasks, espe-

cially  in  a  zero-shot  setting[1, 8].  The  most  frequent

style  is  to  reformulate  the  original  task  as  a “fill-in-

the-blank” cloze one[9, 10],  and the answer is obtained

by predicting  the  words  in  the  given “[mask]” place.

For example, as illustrated in Table 3, Petroni et al.[9]

manually  designed  prompts  to  re-structure  the  rela-

tional knowledge, while studies like [10, 37] focused on

solving  the  text  classification  and  language  under-

standing  tasks  by  several  self-defining  prompt  pat-

terns  and  proposed[10] a  new  training  procedure

named  PET.  Another  line  of  work  involves  develop-

ing  prefix  prompts  for  generation  tasks,  which  pro-

vide  instructions  and  steer  the  LLMs  to  finish  the

sentence.  For  example,  a  summarization  task  can  be

handled by adding “TL;DR:”[8], and a translation task

can  be  conducted  into “English  Translate  to

Spanish:”[38]. Even though manually designed prompts

show some effectiveness[39], they are also criticized for

being time-consuming and unstable[15]. A subtle differ-

ence in the designed prompts may result in a substan-

tial  performance  decrease.  As  such,  how  to  explore

the  prompt  space  and  construct  prompts  more  thor-

oughly  and  more  effectively  becomes  an  important

and challenging issue. 

3.1.2    Heuristic-Based

The  heuristic-based  methods  focus  on  finding
 

Table  3.    Summary of Prompt Construction Methods

Method Automated Gradient-Free Few-Shot Zero-Shot Stability Interpret-Ability

Manually-designed[8–10] ✗ ✓ ✓ ✓ ✗ ✓

Heuristic-based[11, 19, 40] ✓ ✓ ✓ ✓ ✓ ✓

Paraphrasing-based[11, 14, 41] ✓ ✓ ✓ ✓ ✗ ✓

Generation-based[17, 42] ✓ ✓ ✓ ✓ ✓ ✓

Optimization-based[12, 22] ✓ ✗ ✓ ✗ ✓ ✗
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prompts by some intuitive strategies. For example, to

construct more flexible and diverse prompts for differ-

ent examples (rather than fixed ones),  Jiang et al.[11]

proposed to use the most frequent middle words and

the phrase spanning in the shortest dependency path

that appeared in the training data as a prompt. This

method  shows  a  large  performance  gain  compared

with  the  manually-designed  prompts.  Han et  al.[19]

tried to form task-specific prompts by combining sim-

ple human-picked sub-prompts according to some log-

ic  rules.  Different  from  the  above  methods,  Logan

et al.[40] used an extremely simple uniform rule by null

prompts, which only concatenates the inputs and the

“[mask]” token,  and  it  is  able  to  gain  a  comparable

accuracy with manually-defined prompts. 

3.1.3    Paraphrasing-Based

The  paraphrasing-based  methods  are  widely  used

in data augmentation, aiming at generating augment-

ed  data  that  is  semantically  related  to  the  original

text,  and  this  could  be  achieved  in  various  ways  us-

ing machine translation, model-based generation, and

rule-based  generation[43].  The  paraphrasing-based

methods could naturally be used to construct prompt

candidates  based  on  the  original  text,  and  we  could

further  select  the  best  one  or  integrate  them to  pro-

vide  better  performance.  Representative  studies  in-

cludes  [11, 14, 41].  Specifically,  Jiang et  al.[11] used

back-translation to enhance the lexical diversity while

keeping the semantic meaning. Yuan et al.[41] manual-

ly  created  some  seeds  and  found  their  synonyms  to

narrow down the search space. Haviv et al.[14] used a

BERT-based  model  to  act  as  a  rewriter  to  obtain

prompts that LLMs can understand better. 

3.1.4    Generation-Based

The  generation-based  methods  treat  prompt

searching as a generative task that can be carried out

by some LMs.  For  example,  Gao et  al.[17] first  lever-

aged  the  generative  ability  of  T5[38] to  fill  in  the

placeholders as prompts, and then the prompts could

be  further  improved  by  encoding  domain-specific  in-

formation[42]. 

3.1.5    Optimization-Based

To  alleviate  the  weakness  of  insufficient  explo-

ration  space  faced  by  existing  methods,  the  opti-

mized-based methods try to generate prompts guided

by some optimization signals. For example, Shin et al.[12]

employed gradients as the signals, and then searched

for  discrete  trigger  words  as  prompts  to  enrich  the

candidate space. Deng et al.[22] generated the prompt

using  a  reinforced-learning  approach  that  is  directed

with the reward function. 

3.2    Ranking the Prompt

After  obtaining  multiple  prompt  candidates  with
the  above-mentioned  methods,  the  next  step  is  to
rank  them  to  select  the  most  effective  one.  Existing
studies solve this problem by finding prompts that are
close  to  the  training  samples  to  reduce  the  informa-
tion mismatch between the pre-training and inference
phases. 

3.2.1    Execution Accuracy

Since the prompts are designed to accomplish spe-

cific downstream tasks, it is intuitive and straightfor-

ward to evaluate their performance by measuring the

execution accuracy on those tasks[11, 17, 44]. 

3.2.2    Log Probability

The  log  probability  criterion  prefers  the  prompt

that delivers the correct output with higher probabili-

ty, rather than being forced to give the exact answer.

For  example,  a  prompt  template  that  can  work  well

for all training examples is given the maximum gener-

ated probability in [17].  Furthermore,  language mod-

els  can  also  be  utilized  to  evaluate  the  quality  of

prompts. In [45], the prompt with the highest proba-

bility  given  by  an  LM  is  selected,  which  indicates

closer  to  the  general  expression  that  appears  in  the

training dataset. 

3.2.3    Others

k

Other criteria can be used to select the top one or

the top-  prompt. For example, Shin et al.[12] regard-

ed  the  words  that  are  estimated  to  have  the  largest

performance  improvement  as  the  most  crucial  ele-

ments. 

3.3    Tuning the Prompt

Recent  studies  turn  to  optimizing  the  prompt  as

continuous embeddings to further improve the perfor-

mance. The main idea is to learn a few continuous pa-
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rameters,  referred to as soft prompts,  and these con-

tinuous  parameters  can  be  optionally  initialized  by

the  previously  obtained  discrete  prompt.  Li et  al.[13]

first introduced a continuous task-specific “prefix-tun-

ing” for  generative  tasks.  Studies  like  [20]  and  [15]

adopted  a  similar  strategy  and  proved  its  effective-

ness in various natural language understanding tasks.

Following  the  above-mentioned  studies,  many  im-

provements  have  been  conducted  to  find  better

prompts,  such as  better  optimizing strategies[16],  bet-

ter  vector  initialization[21, 23],  and  indicative

anchors[15].  Furthermore,  studies  like  [13, 20, 46]  fur-

ther point out that prompt position,  length,  and ini-

tialization  all  affect  the  performance  of  continuous

prompts[13, 20, 46] (Table 4).  In  this  subsection,  we

summarize these factors as follows:

[PREFIX;XT ;Y ]

[XT ; INFIX;Y ]

[PREFIX;XT ; INFIX;Y ]

• Different Positions. There are three different po-

sitions for autoregressive LM that the prompt can be

inserted  into,  that  is,  the  prefix ,

the  infix ,  and  the  hybrid  one

.  There  is  no  significant

performance difference  between those  positions.  Li et
al.[13] showed  that  prefix  prompt  sightly  outperforms

infix prompt, and the hybrid one is much more flexi-

ble than the others.

• Different Lengths. There is no optimal length for

all tasks, but there is always a threshold. The perfor-

mance  will  increase  before  reaching  the  threshold,

then it will either plateau or slightly decrease.

• Different  Initializations.  A  proper  initialization

is  essential  for  the  performance  of  the  prompts  and

the  performance  of  random  initialization  is  usually

unsatisfactory. Typical methods include initialized by

sampling  real  words[13, 20],  using  class  labels[20],  using

discrete prompts[16],  and using pre-trained based vec-

tors[21, 23].  Furthermore,  the  manually  designed

prompts serve as a good starting point for the follow-

ing search process.

k k

Besides  the  above-mentioned  methods,  PE  meth-

ods  have  also  been  used  for  tuning  and  constructing

the LLMs.  Typical  methods in this  area include Bit-

Fit[47],  Partial-  tuning,  MLP-  tuning,  side-

tuning[48],  adapter  tuning[49],  Ladder  Side-Tuning[50],

and  the  essential  Prompt  Tuning[13].  These  methods

aim to achieve a comparable performance by fine-tun-

ing  the  whole  network  by  only  tuning  some parts  of

the parameters of LLMs. 

3.4    Trends for Prompt Template Engineering

There  are  two  trends  in  prompt  template  engi-

neering.

• Increased  reliance  on  automated  methods  over

manual  design  when  constructing  prompts,  reducing

the need for human involvement.

• Development  of  optimization -based  techniques.

The  gradient-based  searching  method  shows  better

performance  than  the  derivative-free  one  in  hard

prompts  construction  while  the  soft  prompts  appear

more promising than hard prompts.

From  the  communication  theory  perspective,  the

development history of prompting template engineer-

ing  reflects  the  trends  of  utilizing  prompts  with

stronger expressive ability to better capture the user's

intent. 

4    Prompt Answering Engineering

As depicted in Fig.1(b),  prompt answer engineer-

ing  (PAE)  aims  to  align  LLMs  outputs  with  the  in-

tended purpose. The use of PAE is motivated by the

need  to  mitigate  the  gap  between  the  capabilities  of

pre-trained LLMs and a large variety of requirements

of different downstream tasks (see more discussion in

Section 2).  Technology-wise,  PAE  involves  a  set  of

methods that control the admissible answer space and

optimization  mechanisms  of  LLMs'  output  (see

overview in Table 5). 

4.1    Search for an Answer Space
 

4.1.1    Pre-Defined Answer Space

This involves a set of pre-defined answers for the
 

Table  4.    Summary of Prompt Tuning Methods

Work Position Length Initialization

Prefix tuning[13] Prefix, infix 200 (summarization), 10 (table-to-text) Random, real words

Prompt tuning[20] Prefix 1, 5, 20, 100, 150 Random, sampled vocabulary, class label

P-tuning[15] Hybrid 3 (prefix), 3 (infix) LSTM-trained

DART[18] Infix 3 Unused token in vocabulary

OPTIPROMPT[16] Infix 5, 10 Manual prompt

Dynamic[46] Hybrid, dynamic Dynamic Sampled vocabulary
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PA

question-answering  task,  e.g.,  pre-defined  emotions

(“happiness”, “surprise”, “shame”, “anger”,  etc.)  for

the sentiment classification task. The model can then

be trained to select the best answer from this pre-de-

fined  space.  As  an  illustration,  the  answer  space 

can be defined as the set of all  tokens[9],  fixed-length

spans[56],  or  token  sequences[8].  Furthermore,  in  cer-

tain tasks like text classification, question answering,

or entity recognition, answers are crafted manually as

word lists that pertain to relevant topics[7, 54, 55]. 

4.1.2    Discrete Answer Space

The discrete answer space refers to a set of specif-

ic and distinct answer options that a language model

can choose from when generating a response to a giv-

en prompt.

Specifically,  the  possible  answers  are  limited to  a

fixed set of choices, such as a small number of named

entities  or  keyphrases  (e.g.,  the  total  choice  of  the

planet  in  the  solar  system  is  eight).  The  model  can

then  be  trained  to  identify  whether  the  correct  an-

swer is among this set of possibilities[10–12]. 

4.1.3    Continuous Answer Space

The continuous  answer  space  refers  to  a  scenario

where  the  possible  answers  or  responses  are  not  re-

stricted  to  a  predefined  set  of  discrete  options.  In-

stead, the answers can take on a range of continuous

values  or  be  any  text,  number,  or  value  within  a

broader, unbounded spectrum[52, 57].

The model can then be trained to predict a point

in  the  continuous  space  that  corresponds  to  the  cor-

rect answer. 

4.1.4    Hybrid Approach

This  involves  combining  multiple  methods  to  de-

sign the answer space, such as using a pre-defined list

of entities for certain types of questions, but allowing

for  free-form  text  answers  for  other  types  of

questions[58].

Remark  1. Answer  shapes  summarized  as  follows
are  also  needed  in  prompt  answer  engineering.  In
practice,  the  choice  of  the  answer  shape  depends  on
the desired outcome of the task.

• Tokens: individual tokens within the vocabulary
of a pre-trained language model, or a subset of the vo-
cabulary.

• Span:  short  sequences  of  multiple  tokens,  often
comprising a phrase or segment of text.

• Sentence: a longer segment of text that can en-
compass one or more complete sentences. 

4.2    Search for an Answer Mapping

There  are  several  strategies  to  search  for  an  an-

swer mapping. 

4.2.1    Manually Mapping

PA Y

In  many  cases,  the  mapping  from  potential  an-

swers space  to output  is obvious such that this

mapping can be done manually. For instance, the an-

swer  is  output  itself  for  the  translation  task[9] such

that  the  mapping  is  identity  mapping.  Additionally,

Yin et al.[54] designed related topics (“health”, “food”,
“finance”, “sports”,  etc.),  situations  (“shelter”, “wa-

ter”, “medical  assistance",  etc.),  or other possible la-

bels. Cui et al.[55] manually proposed some entity tags,

e.g., “organization”, “person”, and “location”, for the

named entity recognition problem. 

PA4.2.2    Broadening Answer 

PA P ′
A = B(PA)

PA

Broadening  ( ) is expanding the an-

swer space to obtain a more accurate mapping. Jiang

et al.[11] proposed a method to paraphrase the answer

space  by transferring the original prompt into oth-

er  similar  expressions.  In  their  approach,  they  em-

ployed a back-translation technique by first  translat-

ing prompts into another language and then translat-

ing  them  back,  resulting  in  a  set  of  diverse  para-

phrased  answers.  The  probability  of  the  final  output

 

Table  5.    Summary for Prompt Answer Engineering Methods

Answer Space Type Answer Mapping Method Work Task Type

Optimizing the mapping Discrete answer space [10, 12, 17, 51] Classification & regression

Continuous answer space [52] Classification

Broadening the output Discrete answer space [11] Generation

Decomposing the output Discrete answer space [53] Classification

Manually mapping Pre-defined answer [9, 54, 55] Generation
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P (Y |x) =
∑

y∈B(PA)
P (y|x)

B(Y )

can be expressed as ,  where

 represents  the  set  of  possible  paraphrased  an-

swers. 

4.2.3    Decomposing the Output

Y (Y )

Y

gθ

P (y|x) =
∑

y∈D(Y )
P (y|x)

Decomposing  (D ) aims to expand the infor-

mation of , which makes it easier to look for a map-

ping .  For example,  Chen et  al.[53] decomposed the

labels  into  several  words  and  regarded  them  as  the

answer.  Concretely,  they  decomposed  label/output

“per:city_of_death” into  three  separated  words {per-

son, city, death}. The probability of final output can

be written as .
 

4.2.4    Optimizing the Mapping

P̃A

v

v

v

P̃ c
A

c

There  exist  two  approaches  to  optimizing  the

mapping  function.  The  first  approach  is  to  generate

the pruned space  and search for a set of answers

within  this  pruned  space.  Schick et  al.[10, 51] intro-

duced  a  technique  for  generating  a  mapping  from

each  label  to  a  singular  token  that  represents  its  se-

mantic  meaning.  This  mapping,  referred to as  a  ver-

balizer , is designed to identify sets of answers. Their

approach involves estimating a verbalizer  by maxi-

mizing  the  likelihood  w.r.t.  the  training  data  condi-

tioned on the verbalizer . Shin et al.[12] proposed an

alternative  approach  for  selecting  the  answer  tokens.

They employed logistic classifiers to identify the top-k
tokens that yield the highest probability score, which

together  form  the  selected  answer.  In  addition,  Gao

et  al.[17] constructed  a  pruned  set  containing  the

top-k vocabulary  words  based  on  their  conditional

likelihood  for  each  class .  As  for  the  second  ap-

proach,  it  investigates  the  potential  of  utilizing  soft

answer  tokens  that  can  be  optimized  through  gradi-

ent descent. Hambardzumyan et al.[52] allocated a vir-

tual  token  to  represent  each  class  label  and  opti-

mized the token embedding for each class along with

the prompt token embedding using gradient descent. 

4.3    Trends for Prompt Answer Engineering

There are two trends in prompt answer engineer-

ing:

• Developing more robust and generalizable ques-

tion-answering models that can handle more complex

tasks and a broader range of inputs. For example, the

answer space is some discrete spans at the beginning

(see Section 6) and developed to the complex continu-

ous space (see Subsection 4.1.3).

• There  is  also  a  focus  on  improving  the  quality

and  relevance  of  prompts  to  improve  model  perfor-

mance.  Specifically,  several  techniques  have  been  ex-

plored,  such  as  paraphrasing  and  pruning,  after  the

direct  mapping  approach.  More  recently,  optimiza-

tion  methods[59, 60] using  gradient  descent  have  been

proposed to enhance accuracy.

The  prompt  answering  engineering  also  shows  a

trend  of  exploring  prompts  to  decode  the  machine

language with less  information loss,  i.e.,  has a better

understanding of the machine. 

5    Multiple Prompting Methods

Multiple  prompts  can  be  utilized  to  further  re-

duce  the  information  mismatch  during  the  encoding

and decoding  process.  These  methods  can be  catego-

rized into two main types, namely “multi-prompt en-

gineering” and “multi-turn  prompt  engineering”,  de-

pending  on  the  interrelationship  of  prompts  (see

Fig.2). Multi-prompt engineering is akin to an ensem-

ble  system,  whereby  each  response  serves  as  a  valid

answer, and responses from multiple prompts are ag-

gregated to produce a more stable outcome. This type
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Fig.2.  Overview of multiple prompting methods. (a) Multi-prompt methods utilize several similar prompts to produce a more stable
result. (b) Multi-turn prompt methods produce the final result by aggregating responses from a sequence of prompts.
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of  method  can  be  thought  to  extend  the  use  of

prompts  in  the  spatial  domain.  On  the  other  hand,

multi-turn  PE entails  a  sequence  of  prompts,  where-

by subsequent prompts depend on the response gener-

ated from previous prompts or the obtaining of the fi-

nal answer relies on multiple responses. Consequently,

this type of method can be viewed as an extension in

the  temporal  domain. Table 6 summarizes  the  main

multiple prompting methods. 

5.1    Multi-Prompt Engineering Methods

Multi-prompt  methods  employ  multiple  prompts

with  similar  patterns  during  the  inference  aiming  to

enhance  information  preservation.  This  method  is

closely  associated  with  assembling  techniques[91–93].

Although  the  primary  motivation  is  to  exploit  the

complementary  advantages  of  different  prompts  and

reduce the expenses associated with PE, it can also be

integrated with prompt-engineering techniques to fur-

ther  improve efficacy.  From a communication theory

perspective,  multi-prompt  engineering  can  be  consid-

ered as sending multiple copies of the message to en-

sure the authentic delivery of data (see Fig.3(a)). 

5.1.1    Expanding the Prompt

PT

XA

Expanding the prompt  aims to cover a larger

semantic  space  around  the  sender's  true  intention,

and  a  more  stable  approximation  of  the  target  out-

put, , can be obtained by aggregating the respons-

es.

Jiang et  al.[11]，  Lester  et  al.[20],  and  Ham-

bardzumyan et al.[52] proposed to combine outputs of

different prompts to get the final result for classifica-

tion  tasks.  Qin et  al.[61] incorporated  multi-prompt

ideas with soft prompts and optimized the weights of

each prompt together with prompt parameters. Yuan

et al.[41] proposed to use text generation probability as

the score for text generation evaluation, and aggregat-

ed  multiple  results  of  different  prompts  as  the  final

score. 

 

Table  6.    Summary of PE Methods Involving Multiple Prompts

Method Language Understanding Language Generation Reasoning

Multi-prompt PTExpanding [11, 20, 52, 61] [41] –

PADiversifying – – [62–67]

θOptimizing [10, 37] [17, 68] –

Multi-turn prompt PTDecomposing – [59, 60, 69] [70–77]

PTRefining – [78, 79] [25, 60, 79–82]

PTAugmenting – [83, 84] [85–87]

θOptimizing – [59, 69] [87–90]

 

(b)(a)

Expanding  

Augmenting  

Refining  

External Tools

Decomposing  

Diversifying 

LLM

LLM

Rational

Final Answer

Rational

Final Answer

Context

Question

Context

Question

Optimizing 

Optimizing 

Fig.3.  Schematic illustrations of multi-prompting methods. (a) Multi-prompt methods utilize several similar prompts to produce a
more stable result. (b) Multi-turn prompt methods mainly leverage LLMs or external tools to provide clearer and more helpful con-
text.
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5.1.2    Diversifying the Answer

PT

PT

PA

Different  from  expanding  the  prompt  whose

main  goal  is  to  leverage  the  input  space  around ,

diversifying  the  answer  aims  to  exploit  the  vari-

ous “thinking  paths” of  the  LLM  through  sampling

its  decoder.  This  is  especially  effective  for  handling

complex  tasks,  such  as  mathematical  and  reasoning

problems.

Wang et al.[62] proposed a self-consistency method

based  on  the  Chain-of-Thoughts  (CoT)  which  sam-

ples  multiple  reasoning  paths  and  selects  the  most

consistent answer by majority voting or weighted av-

eraging. Lewkowycz et al.[63] applied a similar idea to

quantitative problems by combining multiple prompts

and output sampling. Wang et al.[64] investigated vari-

ous  ensemble  variants  in  reasoning  problems  and

found  that  rational  sampling  in  the  output  space  is

more efficient. These methods solely use the final an-

swer as the selection criterion and do not exploit the

generated  rationals  from  various  sampling  paths.  To

take  advantage  of  these  intermediate  results,  Li et
al.[65] proposed to generate more diversified reasoning

paths with multiple prompts and used a model-based

verifier  to  select  and  rank  these  reasoning  paths.  Fu

et al.[66] introduced a complexity-based metric to eval-

uate reasoning paths and prioritize those with higher

complexity  in  the  aggregation.  Weng et  al.[94] em-

ployed  the  LLM  to  self-verify  various  reasonings  by

comparing  predicted  conditions  using  the  generated

reasonings  to  original  conditions.  The  consistency

score  is  then  used  to  select  the  final  result.  Yao et
al.[95] proposed the “Tree of Thoughts” to explore the

intermediate steps across various reasoning paths, and

used  the  LLM to  evaluate  the  quality  of  each  possi-

ble path. Besta et al.[67] further proposed the “Graph

of Thoughts” to treat the various reasoning paths as

graphs  so  that  the  essence  of  the  thought  networks

can be extracted. 

5.1.3    Optimizing the Model

This line of work treats multiple prompts as a la-

bel  generator  to  address  the  sample  deficiency  prob-

lem.  Schick et  al.[10] first  proposed  pattern-exploiting

training (PET) that employs a knowledge distillation

strategy  to  aggregate  results  from  multiple  prompt-

verbalizer  combinations  (PVP).  They  first  utilized

PVP  pairs  to  train  separate  models  that  generate

pseudo-labels  for  unlabeled  datasets.  This  extended

dataset was then used to train the final classification

model.  Schick et al.[96] extended this idea to the text

generation task by using the generation probability of

decoded text as the score. Gao et al.[17] used a similar

method for  automatic  template  generation.  Schick et
al.[37] further expanded PET with multiple verbalizers.

This  was  achieved  by  introducing  sample-dependent

output space. 

5.2    Multi-Turn Prompt Engineering

Methods

PT

PT

X

Y

Multi-turn  prompt  engineering  methods  involve

decomposing the full prompting task into several sub-

tasks,  each  addressed  by  a  corresponding  prompt.

This  process  typically  entails  a  sequence  of  encoding

and  decoding  operations,  where  subsequent  prompts

may  depend  on  the  decoded  message  from  previous

prompts or each prompt is responsible for a sub-task.

The outcome can be obtained either from the result of

the last prompt or by aggregating the responses gen-

erated  by  all  prompts.  This  strategy  is  designed  to

tackle challenging tasks, such as complex mathemati-

cal  questions  or  reasoning  tasks.  It  mainly  involves

two components: 1) decomposing the prompt  into

sub-tasks  to  reduce  the  difficulty  of  each  sub-task;

and  2)  modifying  the  prompt  to  generate  better

intermediate results for later steps. These two compo-

nents can help to bridge the gap between complex 

and  (see Fig.3(b)). 

5.2.1    Decomposing the Prompt

PTDecomposing  the  prompt  is  the  first  step  in

handling  complex  tasks,  and  a  proper  decomposition

requires a good understanding of both the target task

and  the  user's  intention.  Yang et  al.[97] decomposed

SQL operations using fine-tuned few-shot models and

untrained zero-shot models combined with predefined

rules. However, ruled-based decomposition heavily re-

lies on human experiences, and thus it is desirable to

automate  this  step  with  LLMs.  Min et  al.[59] pro-

posed an unsupervised method that utilizes a similari-

ty-based pseudo-decomposition set as a target to train

a seq2seq model as a question generator. The decom-

posed simple question is then answered by an off-the-

shelf single-hop QA model. Perez et al.[69] treated the

decomposition  in  a  multi-hop  reading  comprehension

(RC)  task  as  a  span  prediction  problem  which  only

needs a few hundreds of samples. For each task, vari-

ous  decomposition  paths  are  generated,  with  each
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sub-question answered by a single-hop RC model. Fi-

nally, a scorer model is used to select the top-scoring

answer based on the solving path. Khot et al.[60] pro-

posed  a  text  modular  network  leveraging  existing

models to build a next-question generator. The train-

ing samples are obtained from sub-task models condi-

tioned on distant supervision hints.

With  the  emergent  general  ability  of  LLMs,  in-

stead of training a task-specific decomposition model,

LLMs are used to fulfill decomposition tasks. Zhou et
al.[70] proposed  the  least-to-most  prompting  method

where hard tasks are first reduced to less difficult sub-

tasks  by  LLMs.  Then  answers  from  previous  sub-

problems are combined with the original task to facili-

tate  subsequent  question  solving.  Dua et  al.[71] em-

ployed  a  similar  idea  and  appended  both  questions

and  answers  from  the  previous  stage  to  the  subse-

quent prompt. Creswell et al.[72] proposed a selection-

inference framework. It uses LLM to alternatively ex-

ecute selecting relevant information from a given con-

text and inferring new facts based on the selected in-

formation.  Arora et  al.[73] proposed to  format the in-

termediate  steps  as  open-ended  question-answering

tasks  using  LLMs.  It  further  generates  a  set  of

prompt  chains  and  uses  weak  supervision  to  aggre-

gate  the  results.  Khot et  al.[74] proposed  a  modular

approach for task decomposition with LLMs by using

specialized  decomposition  prompts.  Drozdov et  al.[98]

introduced  a  dynamic  least-to-most  prompting

method for semantic parsing tasks by utilizing multi-

ple  prompts  to  build  a  more  flexible  tree-based  de-

composition. Ye et al.[75] used LLMs as the decompos-

er for table-based reasoning tasks. LLMs are used for

both sub-table extraction and question decomposition.

Press et  al.[99] proposed  Self-Ask  which  decomposes

the original task by repeatedly asking the LLM if fol-

low-up questions are needed. Wu et al.[76] proposed to

build  an  interactive  chaining  framework  with  several

primitive operations of LLMs to provide better trans-

parency  and  controllability  of  using  LLMs.  Wang et
al.[77] proposed  a  Plan-and-Solve  (PS)  method  that

explicitly prompts LLM to devise a plan before solv-

ing the problem to address the missing-steps error in

the reasoning. 

5.2.2    Refining the Prompt

PT

PT

Refining the prompt  aims to construct  a  bet-

ter  representation  of  based  on  the  feedback  from

previous  prompting  results.  This  is  especially  impor-

tant  for  multi-step  reasoning,  where  the  quality  of

generated  intermediate  reasonings  has  a  critical  im-

pact on the final answer.

Following  the  success  of  the  few-shot  chain-of-

thoughts  (CoT)  prompting  method,  Kojima et  al.[25]

proposed  a  zero-shot  CoT  method  that  utilizes  the

fixed  prompt  ``Let's  think  step  by  step"  to  generate

reasonings.  These intermediate results  are then fused

with the original question to get the final answer. To

select more effective exemplars, various methods were

proposed.  Li et  al.[78] used  LLMs  to  first  generate  a

pseudo-QA pool,  then  a  clustering  method  combined

with  similarity  to  the  question  was  adopted  to  dy-

namically  select  QA  pairs  from  the  generated  QA

pool as demonstration exemplars. Shum et al.[80] lever-

aged a high-quality exemplar pool to obtain an exem-

plar distribution using a variance-reduced policy gra-

dient estimator. Ye et al.[79] employed a self-consisten-

cy  method[62] to  generate  pseudo-labels  of  an  unla-

beled  dataset.  The  accuracy  of  these  silver  labels

serves as the selection criterion of exemplars. To fur-

ther reduce the search complexity of various combina-

tions, additional surrogate metrics were introduced to

estimate  the  accuracy.  Diao et  al.[81] addressed  this

problem by using hard questions with human annota-

tions as exemplars. The hardness is measured by the

disagreement  of  results  obtained  by  multiple  sam-

pling of the LLM. Zhang et al.[82] proposed automatic

CoT  methods.  They  introduced  question  clustering

and  demonstration  sampling  steps  to  automatically

select the best demonstrations for the CoT template. 

5.2.3    Augmenting the Prompt

PT

PT

Different  from  refining  the  prompt  which

mainly focuses on finding prompts that generate bet-

ter  intermediate  results,  augmenting  the  prompt 

leverages  the  exploitation  of  external  information,

knowledge,  tools,  etc.  in  the  prompting.  We  present

some  examples  in  this  field  below,  and  for  more  de-

tails  we  refer  the  reader  to  the  specific  survey[100].

Yang et  al.[83] proposed  a  recursive  reprompting  and

revision  (3R)  framework  for  long  story  generation

leveraging pre-defined outlines. In each step, the con-

text of the current status and the outline of the story

are  provided  to  the  prompt  to  ensure  better  content

coherence.  Yang et  al.[84] proposed  to  use  more  de-

tailed outlines so that the story generation LLM can

focus  more  on  linguistic  aspects.  Information  re-

trieved  from other  sources  is  also  often  used  to  aug-
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PTment . Yao et al.[101] gave the LLM access to infor-

mation  from  Wikipedia.  Thoppilan et  al.[102] taught

the  LLM  to  use  search  engines  for  knowledge  re-

trieval. More broadly, Paranjape et al.[26] introduced a

task  library  to  enable  the  LLM using  external  tools.

Schick et al.[85] trained the LLM to use various exter-

nal tools via API. Shen et al.[86] utilized an LLM as a

central controller to coordinate other models to solve

tasks. 

5.2.4    Optimizing the Model

General  LMs  (language  models)  are  not  opti-

mized for producing intermediate rationals or decom-

posing a  complex task or  question.  Before  the  era  of

LLMs,  these  tasks  require  specifically  trained  LMs.

Min et  al.[59, 69] trained  an  LM model  for  decompos-

ing  the  original  task  into  sub-tasks.  Nye et  al.[88]

trained the LLM to produce intermediate steps stored

in a scratch pad for later usage. Zelikman et al.[89] uti-

lized  the  intermediate  outputs  that  lead  to  the  cor-

rect answer as the target to fine-tune the LLM. Wang

et  al.[87] proposed  an  iterative  prompting  framework

using  a  context-aware  prompter.  The  prompter  con-

sists of a set of soft prompts that are prepared for the

encoder and decoder of  the LLMs, respectively.  Tay-

lor et  al.[90] employed  step-by-step  solutions  of  scien-

tific papers in the training corpus, which enables the

LM to output reasoning steps if required. 

5.3    Trends for Multiple Prompting Methods

Ensemble-based  methods  are  easy  to  implement

and flexible to incorporate with various strategies, e.g.

expanding  the  input  space  and  aggregating  the  out-

put  space.  However,  this  brings  limited  advantages

for complex problems whose final answers are hard to

obtain  directly,  but  rely  heavily  on  the  intermediate

thinking  steps.  Therefore,  multi-turn  PE  methods

emerged.  A multi-turn  method  essentially  adjusts  its

input dynamically during the interaction based on the

knowledge  and  feedback  from  the  LLM  or  external

tools.  In  this  way,  LLMs  can  leverage  more  context

and understand better the true intention of the user.

Initially, specialized LLMs are trained to handle plan-

ning and solving specific subtasks, which not only in-

troduces  extra  training  effort  but  also  constrains  the

generalization  capability  of  LLM.  With  the  increas-

ing  understanding  ability  and  larger  input  length  of

LLMs,  in-context  learning  becomes  the  preferred

paradigm,  which  utilizes  embedded  knowledge  and

the  capability  of  LLMs  to  handle  various  tasks  via

prompting. This paradigm soon dominated because of

its efficiency and flexibility.

There are two trends in multiple prompting engi-

neering.

• Developing  an  enhanced  adaptive  prompting

strategy for LLM-based task decomposition is impera-

tive.  The  extensive  range  and  intricacy  of  tasks  ren-

der human-based or rule-based task decomposition in-

feasible. While some studies have explored the use of

LLM prompting to generate intermediate questions or

actions for specific tasks, a comprehensive strategy is

currently lacking.

• Enabling  LLMs  to  leverage  tools  without  the

need for fine-tuning is a crucial objective. By incorpo-

rating external  tools,  LLMs can address  their  limita-

tions  in  specialized  domains  or  capabilities.  Previous

studies[85] have employed fine-tuning based approach-

es to train LLMs in utilizing web search or other tools

accessible through APIs.

From the communication theory perspective, mul-

tiple  prompting  methods  evolved  from  the  extension

in the spatial  domain (ensemble-based methods) into

the temporal domain (mulit-turn), to better align the

user's  intention  and  LLM's  capability  by  decompos-

ing the user's request and leveraging external tools. 

6    Discussion

Researchers have proposed several surveys to reca-

pitulate  the  rapid  advancements  in  the  field  of  PE

methods[7, 103–107]. To name a few, Liu et. al proposed

a  comprehensive  survey  about  existing  PE  methods,

which covers common aspects like template engineer-

ing,  answering  engineering,  training  strategies,  appli-

cations,  and challenges[7].  They revealed the develop-

ment history of prompting learning and describe a set

of mathematical notations that could summarize most

of  the  existing  studies.  Furthermore,  they  considered

prompt-based  learning  as  a  new  paradigm  that  re-

volves  around  the  way  we  look  at  NLP.  In  another

survey[103] that mainly focuses on the reasoning abili-

ties  (e.g.,  arithmetic,  commonsense,  symbolic  reason-

ing,  logical,  and  multi-modal)  of  LLMs,  Qiao et  al.
summarized  the  studies  that  harness  these  reasoning

abilities  via  advanced  PE  methods  like  chain-of-

though  and  generated  knowledge  prompts.  Addition-

ally,  some  focused  surveys  cover  specific  topics  like

parameter-efficient  fine-tuning  (PEFT)  LLMs  using
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PE  methods[104]. Different  from  the  above-mentioned

studies, we try to interpret existing PE methods from

a communication theory perspective.

Following this line of research, we also would like

to discuss some potential challenges and future direc-

tions  for  PE  methods,  which  could  be  divided  into

three  categories  including  finding  the  optimal

prompts,  privacy  issue  and  concern,  and  interactive

and multi-turn prompting.

• Finding the Optimal Prompts. One of the points

of discrete prompts is that it is difficult to design and

choose an optimal prompt, causing its instability. Al-

though soft prompts partly address this problem, the

discrete prompt is still very important because it has

good interpretability and has been proven to be able

to  help  soft  prompts  search  effectively.  Looking

through the existing methods, we can find that accu-

racy-based criteria are resource-consuming, while LM-

based log probability is not sufficient to evaluate the

prompt.  Therefore,  a  well-designed  ranking  criterion

combined  with  a  mass  of  auto-based  generated

prompts may be a good direction for the future. Fur-

thermore,  even  though  the  prompt  has  been  proven

effective in many tasks such as classification and text

generation, most of the existing work has to design a

specific prompt for a given task, which makes it com-

plex  and  complicated[108].  Thus,  how  to  generate  a

task-agnostic prompt or transfer the prompt to other

fields quickly may be a challenging problem. Discrete

(meta-learning[109])  and  continuous  (decompositi-

on[110]) prompts are applied to tackle this issue. How-

ever,  they  are  not  well-optimized  and  can  not  serve

unseen tasks.

• Privacy  Issue  and  Concern.  There  are  two  as-

pects  of  privacy  and  security  issue  in  LLMs.  First,

users' data may be leaked during the training and in-

ference  of  LLMs.  For  instance,  training  LLMs  re-

quires vast amounts of data including personal infor-

mation, private conversations, or copyrighted materi-

al. By providing a series of queries or prompts, an at-

tacker  might  be  able  to  extract  personal  details  or

confidential  information  from  the  model's  responses.

Privacy-preserving methods including techniques such

as  differential  privacy,  homomorphic  encryption,  and

federated learning[111–113] may preserve the privacy of

the data used for training and inference. Second, the

LLMs  may  be  stolen  by  attackers  to  misuse.  LLMs

are  highly  valuable  assets,  requiring  substantial  time

and  financial  investment  for  their  training.  Protect-

ing them from unauthorized access and misuse is cru-

cial. Developing robust security measures, such as wa-

termarking techniques[114], is essential to prevent theft

and ensure the rightful ownership of LLMs.

• Interactive  and  Multi-Turn  Prompting.  Besides

the automation in prompting methods, humans in the

loop can bring more controllability, transparency, and

explainability  over  the  process,  producing  more  reli-

able  results.  The  success  of  the  chain-of-thoughts

methodology[115] demonstrates  the “thinking  path”
can enhance LLMs' reasoning capability. This proper-

ty can also be exploited to generate step-by-step task-

solving  procedures  like  scratch  paper  in  exams,  so

that  the final  answer can be better  justified.  Follow-

ing this idea, Wu et al.[76] built an interactive frame-

work involving human interaction for better controlla-

bility of the process. However, frequent human inter-

vention  will  diminish  the  efficiency  gained  by  using

LLMs. Therefore, in addition to the granularity of de-

composed tasks, it is also required to determine when

to  involve  human  feedback.  This  could  be  designed

manually  for  each  task,  but  it  would  be  much  more

efficient  if  LLMs  could  plan  these  stages  by  them-

selves.

• Bias and Fairness. LLMs often tend to internal-

ize  biases  presented  in  their  training  datasets,  mak-

ing  the  mitigation  of  such  biases  and  the  pursuit  of

fairness a key aspect of existing PE methods. For ex-

ample,  Zhao et  al.[116] revealed  that  factors  such  as

the structure of prompts, demonstrations contained in

the  prompt,  and  even  the  order  of  these  demonstra-

tions  can  lead  to  diverse  performance  in  in-context

learning  prompts,  and they  further  proposed  calibra-

tion to alleviate the bias. Schick et al.[117] designed bi-

ased  or  debiased  instructions  to  guide  the  LLMs  to

conduct  self-diagnosis  and  self-debiasing.  Further-

more, the social biases exhibited by LLMs can poten-

tially lead to discriminatory actions or content target-

ed at specific groups or demographics. Such problems

are  often  caused  from  stereotypes  that  perpetuate

harmful  generalizations  related  to  gender,  race,  and

religion. For instance, Liu et al.[118] introduced a nov-

el  prompting  approach  that  reveals  how  existing

LLMs exhibit social biases during text-to-SQL predic-

tion tasks. Despite this progress, the challenge of mit-

igating biases in LLMs using PE methods remains an

area that requires further investigation. 

7    Conclusions

This  article  summarizes  the  prompting  methods

from  a  perspective  of  communication  theory  which
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provides  a  coherent  explanation  of  different  prompt

engineering (PE) methods in terms of their objectives

and  underlying  principles.  Theoretical  analysis  re-

veals that the ultimate goal of PE is to reduce the in-

formation  misunderstanding  between  the  users  and

the LLMs.  This  novel  view facilities  a  unified review

of three PE methods and offers and insights into sce-

narios where existing prompting methods come short.

We  hope  this  survey  will  inspire  researchers  with  a

new understanding of the related issues in prompting

methods,  therefore  stimulating  progress  in  this

promising area. 
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