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Abstract    Image-text retrieval aims to capture the semantic correspondence between images and texts, which serves as

a foundation and crucial component in multi-modal recommendations, search systems, and online shopping. Existing main-

stream methods primarily focus on modeling the association of image-text pairs while neglecting the advantageous impact

of multi-task learning on image-text retrieval. To this end, a multi-task visual semantic embedding network (MVSEN) is

proposed for image-text retrieval. Specifically, we design two auxiliary tasks, including text-text matching and multi-label

classification, for semantic constraints to improve the generalization and robustness of visual semantic embedding from a

training perspective. Besides, we present an intra- and inter-modality interaction scheme to learn discriminative visual and

textual  feature representations by facilitating information flow within and between modalities.  Subsequently,  we utilize

multi-layer graph convolutional networks in a cascading manner to infer the correlation of image-text pairs. Experimental

results show that MVSEN outperforms state-of-the-art methods on two publicly available datasets, Flickr30K and MSCO-

CO, with rSum improvements of 8.2% and 3.0%, respectively.

Keywords    image-text retrieval, cross-modal retrieval, multi-task learning, graph convolutional network

  

1    Introduction

Vision and language are fundamental information

patterns that help people understand the world.  The

interplay between what we perceive visually and how

we communicate  through  language  forms  the  corner-

stone of our experience. Images and texts, as the most

direct reflections of vision and language, serve as po-

tent  conduits  through  which  we  exchange  ideas,  ex-

press  emotions,  and  weave  narratives.  Exploring  the

relationship  between  them  has  become  a  hotspot  in

the field of multimodality and spawned some specific

applications,  such  as  image-text  retrieval[1, 2],  multi-

modal  recommendation[3, 4],  and  visual  commonsense

reasoning[5, 6].  This  paper  focuses  on  image-text  re-

trieval that aims to bridge the semantic gap between

images  and  textual  descriptions.  Despite  significant

efforts  in  recent  years,  there  remains  a  challenge  in

measuring  the  relevance  of  images  and  texts  due  to

the heterogeneity and distributional differences in the

data of these two modalities.

To  cope  with  the  challenge,  early  approaches  for

image-text retrieval project the entire visual and tex-

tual  information  into  a  shared  subspace,  where  the

correlations between images and texts are easily mea-

sured.  For  instance,  Wang et  al.[7] presented  a  two-
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branch  embedding  network  to  model  images  and

texts,  respectively,  while  employing  a  similarity  net-

work with element-wise product operation followed by

a fully-connected layer to compute the correlations of

image-text pairs. Similar methods, such as [8–13], al-

so design different networks to acquire global seman-

tic features of images and texts to mine visual-linguis-

tic  associations.  Although  such  coarse-grained  meth-

ods are impressive, they overlook the details of image-

text  alignment,  resulting  in  poor  performance.  Intu-

itively, when observing an image, people tend to pay

more attention to salient regions and less attention to

non-salient  regions.  Considering  this,  some  work  be-

gins  to  explore  fine-grained  alignments  between  im-

age  regions  and  text  words  to  discover  the  connec-

tion  between  these  two  modalities.  A  common  prac-

tice  is  to  use  pre-trained  object  detection  tools  to

identify objects in an image and extract region-specif-

ic visual features using convolutional neural networks,

while  adopting  recurrent  neural  networks  to  obtain

word-level  features.  After  that,  the  similarity  scores

between images and texts are inferred using paired re-

gion-word  similarity  matrices.  SCAN[14] is  a  typical

representative  of  such  methods,  which  introduces  a

cross-modal  attention  network  to  explore  the  fine-

grained relationship between images and texts. Subse-

quently,  many attention-based methods[15–21] are pro-

posed  to  realize  fine-grained  alignment.  Compared

with  coarse-grained  methods,  fine-grained  methods

show great potential for image-text retrieval.

However, the fine-grained methods are more about

improving performance from a model  design perspec-

tive  and  ignore  the  view  of  training  optimization.

Therefore,  we  introduce  two  auxiliary  tasks  to  en-

hance  cross-modal  retrieval  performance  from  the

model optimization perspective. Theoretically, the op-

timization  of  single-task  learning  moves  toward  loss

reduction during training.  If  a  model  is  trapped in a

local minimum, it is difficult to be optimized further,

which is not conducive to finding the global optimum.

Distinctively, multi-task learning jointly trains multi-

ple  differentiated  tasks.  Due  to  the  differences  be-

tween tasks, the optimization directions between vari-

ous tasks may be different. When the target task falls

into  a  local  optimum,  it  may  jump  out  of  the  local

optimum under  the  action  of  the  other  tasks,  which

provides a possibility for finding the global optimum.

Furthermore,  some  sub-networks  or  parameters  are

shared  in  multi-task  learning,  which  helps  to  learn

general feature representations and improve the mod-

el's robustness and generalization ability.

Based  on  the  above  analyses  and  discussions,  a

multi-task  visual  semantic  embedding  network

(MVSEN)  is  proposed  to  explore  cross-modal  image-

text retrieval from both the training optimization and

model  design perspectives.  Firstly,  we design two se-

mantically constrained auxiliary tasks, including text-

text  matching  and  multi-label  classification,  to  train

jointly with the target task image-text retrieval, aim-

ing  to  improve  model  performance  from the  training

optimization perspective. Secondly, we present an in-

tra- and  inter-modality  interaction  mechanism  from

the model design perspective to obtain discriminative

transformed  visual  and  textual  features.  Subsequent-

ly,  a  similarity  vector  function  is  utilized  to  acquire

similarity matrix vectors that will be used to infer the

correlations between images and texts through graph

convolutional  networks  with  residual  connection  fol-

lowed by two fully-connected layers.  Finally,  we em-

ploy  a  weighted  approach  to  combine  the  optimiza-

tion  objectives  of  these  three  tasks  as  the  optimiza-

tion loss of the proposed MVSEN. In brief, our contri-

butions can be summarized as threefold.

● We present a multi-task visual semantic embed-

ding network (MVSEN) that leverages multi-task col-

laborative  training  alongside  intra- and  inter-modali-

ty  interaction  strategies  to  enhance  the  discrimina-

tion of visual and textual features, thereby improving

the performance of cross-modal image-text retrieval.

● We  introduce  two  auxiliary  tasks  into  image -

text retrieval, which is beneficial for improving the ro-

bustness and generalization of visual-semantic embed-

ding. To the best of our knowledge, we are the first to

introduce the task of text-text matching as a seman-

tic constraint into cross-modal retrieval.

● We  conduct  extensive  experiments  on  two

benchmarks, Flickr30K and MSCOCO, and the exper-

imental  results  show  that  the  proposed  MVSEN

achieves  advanced  performance  compared  with  the

state-of-the-art  methods,  with  improvements  of  8.2%

and 3.0% on evaluation metric rSum, respectively. 

2    Related Work
 

2.1    Image-Text Retrieval

According to the way of image-text modeling, ex-

isting methods can be roughly divided into two cate-

gories: global-based methods[8, 10–12, 22] and local-based

methods[15, 18–20, 23, 24].  The global-based methods aim

to project heterogeneous multimodal data into a joint
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embedding space, generating corresponding global fea-

ture representations for each modality and then mea-

suring their  correlation using a  distance  metric  func-

tion. Liu et al.[8] utilized ResNet152 and RNN to en-

code visual and textual information, and learned con-

sistent visual-semantic embedding through deep map-

ping  and  reconstructed  mapping.  Sarafianos et  al.[10]

developed an adversarial network to learn discrimina-

tive  feature  representations  in  these  two  modalities

jointly.  Chen et  al.[22] proposed  an  effective  general-

ized pooling strategy to learn optimized visual-seman-

tic features. Given that these methods solely focus on

the  global  semantic  information  of  image-text  pairs,

they may not effectively handle complex scenes. Com-

pared  with  global-based  methods,  local-based  meth-

ods  pay  more  attention  to  the  details  of  image-text

alignment. Lee et al.[14] presented a stacked attention

framework  to  identify  the  potential  alignment  be-

tween  visual  regions  and  textual  words.  Considering

that  different  fragment-level  features  contribute  dif-

ferently  to  inferring  the  correspondence  between  vi-

sion  and  language,  Liu et  al.[15] proposed  a  bidirec-

tional  focal  attention  approach  to  focus  on  relevant

regions and words and eliminate irrelevant ones.  Wu

et  al.[20] adopted  the  method  of  reassigning  region-

word  attention  weights  to  alleviate  the  impact  of

unimportant fragment-level features on model perfor-

mance.  Additionally,  some  methods  consider  global-

and local-based strategies to explore the correlation of

image-text  pairs  from  different  perspectives.  For  ex-

ample,  Diao et  al.[25] exploited  graph  convolutional

networks  to  perform  similarity  inference  on  fused

global-based  alignment  and  local-based  alignment.

Wang et al.[26] designed a global-local alignment strat-

egy that considers both global semantic and local seg-

ment  information.  Analogously,  similar  approaches

such as [27–29] also optimize the whole network in a

joint manner. 

2.2    Multi-Task Learning

Different  from  single-task  learning,  multi-task

learning  learns  a  shared  feature  representation  by

jointly  modeling  multiple  associated  single  tasks,

where each task can act as a semantic constraint for

other tasks, which is beneficial to improve the perfor-

mance of models. In recent years, multi-task learning

has been applied to various computer vision and nat-

ural  language processing tasks,  such as  dense  predic-

tion[30], emotion recognition[31], biomedical relation ex-

traction[32],  and  so  on.  Vandenhende et  al.[33] pro-

posed a multi-scale task interaction framework to de-

termine the information interaction between different

tasks in multi-task learning through distillation units.

Xu et al.[30] presented a shared encoder-decoder strat-

egy  to  model  multi-task  learning  and  capture  task-

specific  features  via  cross-task attention mechanisms.

Similarly,  Moscato et  al.[32] designed  shared  encoder

layers, including a lexicon encoder and a transformer

encoder, and task-specific layers to realize biomedical

relation  extraction.  Foggia et  al.[31] developed  a  con-

volution-based shared encoding layer  and a  task-spe-

cific  layer  while  employing an independent  classifica-

tion layer to make predictions for different tasks. Sim-

ilarly,  there  are  also  some  work[9, 34–37] that  adopts

multi-task learning in the field of cross-modal image-

text  retrieval,  but  the  difference  is  that  cross-modal

retrieval  is  the target task,  while  the other tasks are

auxiliary  tasks.  For  example,  Luo et  al.[34] presented

correlation  recognition  and  context  reconstruction

tasks  combined with two regularization terms to  im-

prove  the  performance  of  cross-modal  image-text  re-

trieval.  Xu et al.[36] integrated image and text multi-

classification  tasks  into  cross-modal  retrieval  to  con-

strain  the  global  semantic  features.  Li et  al.[9, 37] ex-

ploited  the  image  captioning  task  to  model  the

ground-truth caption and the generated caption asso-

ciation  through  the  log-likelihood  function.  Analo-

gously,  Yuan et  al.[35] adopted  the  joint  training  of

image captioning and image-text retrieval to improve

the performance of cross-modal retrieval. 

2.3    Differences with Existing Methods

The  proposed  MVSEN utilizes  the  idea  of  multi-

task learning which has been widely used to enhance

the  performance  of  image-text  retrieval.  However,  it

differs  from previous  methods  as  follows.  First,  com-

pared  with  existing  multi-task  learning  approaches,

such as [9, 34–37], we introduce a new auxiliary task,

text-text  matching,  into  cross-modal  retrieval.  Theo-

retically, if an image strongly correlates with a specif-

ic  text,  other  texts  highly  associated  with  that  text

are  likely  to  correlate  with  the  image.  Considering

this,  we  implement  an  auxiliary  text-text  matching

task  to  constrain  the  global  semantic  information  to

improve  the  performance  of  cross-modal  image-text

retrieval.  To  the  best  of  our  knowledge,  we  are  the

first to introduce the text-text matching task into im-

age-text retrieval. Second, although CASC[36] also em-

Xue-Yang Qin et al.: Multi-Task Visual Semantic Embedding Network for Image-Text Retrieval 813



ploys a multi-label classification task, it treats images

and  texts  as  separate  multi-label  classifications.  In

contrast, our approach performs multi-label classifica-

tion on the fused visual and textual information. Fur-

thermore,  we  consider  the  interaction  within  each

modality to preserve shared information between im-

ages  and  texts  before  the  multi-label  classification,

while  CASC ignores  this.  Based on the  above  analy-

ses, it can be observed that MVSEN is different from

existing cross-modal retrieval approaches. 

3    Methodology

In this section, we will present the proposed Mul-

ti-Task  Visual  Semantic  Embedding  Network

(MVSEN) in detail. As illustrated in Fig.1, the over-

all framework of MVSEN mainly consists of two com-

ponents:  feature  representation  for  encoding  shared

visual  and  textual  features,  and  multi-task  learning

for  jointly  learning  and  optimizing  various  tasks.

Specifically,  we  introduce  the  feature  representation

module  in Subsection 3.1,  explain  the  multi-task

learning  in Subsection 3.2,  and  introduce  the  opti-

mization objective of MVSEN in Subsection 3.3. 

3.1    Feature Representation

I

v = (v1,v2, . . . ,vi, . . . ,vk)

I vi ∈ R1×d i

Visual Feature Representation. Given an image ,

we employ  to represent the

features of image , where  denotes the -th

k

k k = 36

regional feature and  indicates the number of salient

regions.  Concretely,  a  well-known  object  detection

tool  Faster-RCNN  pre-trained  by  Anderson et  al.[38]

on  Visual  Genome,  is  used  to  detect  visual  regions.

Then,  we  select  top-  ( )  salient  regions  with

the  highest  confidence  scores  and  utilize  the  pre-

trained  ResNet[39] to  extract  the  feature  of  each  re-

gion. This process can be formalized as
 

v = frn(ffr(I,θfr),θrn), (1)

frn(·) ffr(·)
θrn θfr

where  and  denote  the  Faster-RCNN  and

ResNet functions, respectively, and  and  are the

corresponding  learnable  parameters.  In  the  experi-

ment, Faster-RCNN and ResNet are only used to ex-

tract  visual  features  and  do  not  participate  in  the

joint training of the entire network.

T

n

T = {w1, w2, . . . , wj, . . . , wn}

Textual  Feature  Representation. Given  a  text 

containing  words,  following  previous

approaches[18–21],  we  utilize  a  bidirectional  gated  re-

current unit (Bi-GRU) to model the sequential infor-

mation  of  the  text.  Bi-GRU  consists  of  a  forward

GRU to capture semantic features in the forward di-

rection and a backward GRU to capture semantic fea-

tures  in  the  reverse  direction.  Therefore,  Bi-GRU

helps  capture  the  contextual  relationships  between

words, facilitating the flow of information in both for-

ward and backward directions, and thus enriching the

feature  representation  of  text  to  enhance  the  perfor-

mance  of  cross-modal  image-text  retrieval.  For  the

given  text ,  the  encoding
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using Bi-GRU can be expressed as
  −→

h j = f−→g (
−→
h j+1, wj,θ−→g ),

←−
h j = f←−g (

←−
h j+1, wj,θ←−g ), (2)

−→
h j

←−
h j j

f−→g (·)
f←−g (·) θ−→g θ←−g

−→
h j

←−
h j

tj wj

tj = (
−→
h j +

←−
h j)/2 ∈ R1×d

T t = (t1, t2, . . . , tj, . . . , tn)

T+

T t+ = (t+1 , t
+
2 , . . . , t

+
j , . . . ,

t+m) T+

T+

i i ∈ {1, 2, 3, 4}
i+ 1 T+

where  and  indicate the -th hidden state rep-

resentations  from  the  forward  and  backward

,  respectively.  and  are the learnable pa-

rameters.  To better  exploit  the  encoding information

of  Bi-GRU,  we  adopt  the  average  of  and  as

the  feature  representation  of  the  word ,  i.e.,

.  Subsequently,  the  features

of text  can be written as .

Similarly, the features of the positive text sample 

of  text  can  be  denoted  as 

. Furthermore, the method to obtain  is as fol-

lows: since each image in the datasets we use is asso-

ciated with five matching texts, we consider these five

texts to be positive examples of each other. Specifical-

ly, we first assign numbers from 1 to 5 to these texts,

respectively.  Then  the  positive  text  example  for

the -th  (where )  text  is  set  as  the

( )-th text, and the positive text example  for

the last text is the text numbered 1. 

3.2    Multi-Task Learning

In this subsection, we will  illustrate the proposed

multi-task  learning  module,  including  image-text  re-

trieval,  text-text matching, and multi-label classifica-

tion tasks.  We will  first  discuss  the intra- and inter-

modality interaction module since it is adopted in im-

age-text retrieval and multi-label classification. 

3.2.1    Intra-Modality Interaction

Intuitively, when describing an image, people will

focus on some salient regions according to their pref-

erences and enrich the image with words that have no

real meaning. As shown in Fig.1, some contents such

as “buildings” and “people” in the image cannot find

the corresponding semantics in the sentence “A busy

street  with  a  bridge  and  a  clock  tower".  Also,  the

words “a” and “with” in  the  sentence  have  no  real

meaning. Obviously, these will affect the performance

of  image text  retrieval.  Therefore,  we adopt the self-

attention mechanism to strengthen meaningful words

and weaken meaningless words. At the same time, we

integrate  self-learned “external  information” into  the

self-attention mechanism to  alleviate  the  inconsisten-

cy between visual and textual information.

t

t

Q = tWq ∈ Rn×dv K = tWk ∈ Rn×dv

V = tWv ∈ Rn×dv Wq Wk

Wv

Km ∈ Rl×dv Vm ∈ Rl×dv

K V

t

Specifically, taking textual feature  as an example,

we first map the textual feature  into the query ma-

trix ,  key matrix ,

and  value  matrix ,  where , ,

and  are  learnable  parameters.  Subsequently,  we

employ Gaussian distribution to  initialize  two matri-

ces  and  as self-learned “exter-

nal  information” to  extend  and .  A  weighted

output of text feature  can be formalized as
 

hi = fsm

(
Qfcc(K,Km)

T

√
d

)
fcc(V ,Vm), (3)

fsm(·) fcc(·)

fcc(K,Km) ∈
R(n+l)×dv H d = H × dv

t
′
= fcc(h1,h2, . . . ,

hi, . . . ,hH) ∈ Rn×d

fT
intra(·)

T

where  denotes  the “softmax” function. 

means a function that performs a concatenation oper-

ation  on  the  first  dimension,  such  as 

. Finally, we adopt  ( ) substruc-

tures in (3) to ensure the diversity and robustness of

the  encoded  information,  i.e., 

.  For  simplicity,  we  utilize  the

function  to represent the intra-modality inter-

action  within  the  text ,  and  the  entire  above  pro-

cess can be rewritten as
 

t
′
= fT

intra(t,θ
T
intra), (4)

θT
intra

v
′
= f I

intra(v,θ
I
intra) ∈ Rk×d

where  is a learnable parameter. Analogously, we

can obtain visual feature  af-

ter performing the intra-modality interaction. 

3.2.2    Inter-Modality Interaction

Unlike  the  intra-modality  interaction,  the  inter-

modality interaction primarily focuses on the informa-

tion correlation between different modalities, which is

crucial  for  enhancing  the  performance  of  cross-modal

retrieval.  As  we  can  see  from Fig.1,  some  visual  re-

gions  in  the  image  can be  matched with  correspond-

ing  textual  fragments  and  vice  versa.  To  quantify

this, we adopt the dot product followed by the “soft-

max” function  to  calculate  the  correlation  scores  be-

tween different visual regions and textual words. The

process can be formalized as
 

at2i = fsm(αflr(v
′
(t

′
)T)), (5)

at2i ∈ Rk×n

α

flr(·)

where  denotes  the  correlation  score  ma-

trix between visual regions and textual words.  is a

control factor used to regulate the correlation scores.

 indicates the “LeakyRelu” activation function.

After that, we can consider this question: can tex-

tual information be converted into visual information?
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j at2i

wj

vt2i

t
′

vt2i = at2it
′ ∈ Rk×d

f t2i
inter

Actually, the -th column of the score matrix  can

be interpreted as the importance of word  to each

visual  region.  Therefore,  an approximate  approach is

to  obtain  the  transformed  features  through  matrix

multiplication. Formally, the visual feature  trans-

formed  from  textual  feature  can  be  denoted  as

.  For  convenience,  we  employ  the

function  to represent the inter-modality interac-

tion from text to image direction, and the above pro-

cess can be formalized as
 

vt2i = f t2i
inter(v

′
, t

′
, α). (6)

ti2t
v

′
ti2t =

f i2t
inter(t

′
,v

′
, α) ∈ Rn×d

Similarly,  we  can  acquire  the  textual  feature 

transformed  from  visual  feature ,  i.e., 

.  Theoretically,  the  transformed

features  retain  some  common  information  in  both

modalities,  preventing  the  model  from  focusing  on

non-important  information  and  helping  improve  the

model's performance. 

3.2.3    Image-Text Retrieval

vt2i v

M t2i = (m1,m2, . . . ,mk) ∈ Rk×dc vt2i v

As discussed earlier,  the  transformed features  are

beneficial  to  maintaining  common  information  be-

tween these two modalities. Considering this, we uti-

lize  the  transformed  and  original  features  to  explore

the correlations between images and texts. Specifical-

ly,  taking the features  and  as an example,  we

first  calculate  the  similarity  matrix  vector

 between  and 

by
 

M t2i =
|vt2i − v|2w
|||vt2i − v|2w||2

,

| · |2 w ∈ Rd×dc

|| · ||2 L2

where  denotes element-wise square.  is

a learnable parameter matrix, and  is -norm.

Mt2i

Gt2i k

Mt2i

l

l ⩾ 0

Subsequently,  we treat  as  a  fully  connected

graph  containing  nodes,  where  each  row  in

 contributes to a node. To enhance the represen-

tation of these nodes, we utilize stacked graph convo-

lutional  networks  (GCNs)  followed  by  residual  con-

nections  to  establish  the  association  between  them.

We implement the update of node features of the -th

( ) layer by
 

M l+1
t2i = fgcn(M

l
t2i,w

l
t2i,θ

l
t2i) +M l

t2i,

 

wl
t2i = (M l

t2i ·wl
1 + bl

1)(M
l
t2i ·wl

2 + bl
2)
T,

 

M 0
t2i = M t2i,

M l
t2i ∈ Rk×dc l

wl
t2i ∈ Rk×k

wl
1 ∈ Rdc×dc wl

2 ∈ Rdc×dc bl
1 ∈ Rdc×1

bl
2 ∈ Rdc×1

St2i

where  denotes the node features of the -

th  layer,  and  is  the  corresponding  edge

weight  matrix. , , ,

and  are  learnable  parameters.  Then,  two

cascaded fully connected layers are employed to infer

semantic relevance score  of image-text pairs.
 

St2i = fm((fth(M
l
t2i ·w1 + b1)) ·w2 + b2),

fm(x)

x fth(·)
w1 ∈ Rdc×dv w2 ∈ Rdv×1 b1 ∈ Rdc×1 b2 ∈ Rdv×1

Si2t

where  means averaging all elements in the ma-

trix .  indicates the “tanh” activation function.

, , , and  are

learnable parameters. Likewise, we can get .

To  optimize  image-text  retrieval,  following  previ-

ous  approaches[14, 24, 25],  we  employ  the  bidirectional

triplet loss as the optimization objective, that is
 

Lr =
∑
(I,T )

[λ1 − S(I, T ) + S(I, T−)]
+
+

[λ1 − S(I, T ) + S(I−, T )]+, (7)

λ1 I T

T− I−

T− I−

T−

B

T

I C/B + 1

I T−

C S + λ1−fdiag(S) > 0

S ∈ {St2i,Si2t} fdiag(X)

xij ∈X xij

xii λ1 + 0.01

xii

where  is  a margin.  and  are the matched im-

age-text pairs, and  and  are corresponding neg-

atives,  respectively.  Since  the  selection  processes  for

both  and  are  the  same,  for  convenience,  we

take  the  selection  of  as  an  example.  Specifically,

for  each  batch  of  training  data ,  we  consider  all

texts except  as candidate negative examples of im-

age . The top  candidates most relevant to

the  image  are  chosen  as  negative  example ,

where  indicates the number of .

Here, ,  and  means  that  for

any , the element  is replaced with the di-

agonal  element ,  followed  by  adding  to

. 

3.2.4    Text-Text Matching

T T+

I

T I

T+ I

T T+

Different  from  image-text  retrieval,  we  view  the

text-text  matching  task  as  an  auxiliary  task  to  per-

form  semantic  constraint  from  a  global  perspective.

As  shown  in Fig.1,  the  texts  and  are  the

ground-truth captions of the image . Theoretically, if

the  text  and image  exhibit  a  high degree  of  se-

mantic similarity, and text  and image  also show

a  solid  semantic  correspondence,  then  it  can  be  in-

ferred  that  there  exists  a  high  semantic  correlation

between  text  and  text .  Based  on  the  above

analysis,  we  can  improve  the  performance  of  image-

text retrieval by constraining the semantic consisten-

cy  of  these  two  texts  to  alleviate  the  semantic  bias
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that may occur during the model's training process.

K V

gT
intra(·)

T

tT, intra T

Specifically,  we first  utilize  the intra-modality in-

teraction  module  to  capture  textual  semantics  infor-

mation. It is worth noting that the intra-modality in-

teraction module here differs from (4). In (4), the ma-

trices  and  are  extended,  but  this  operation  is

not  performed  here,  constituting  the  sole  distinction

between  them.  To  avoid  duplication  and  distinguish

them, we employ the function  to represent the

intra-modal interaction here. Taking text  as an ex-

ample, the feature  of text  after intra-modali-

ty interaction can be written as
 

tT, intra = gT
intra(t,θT, intra),

tT, intra = (t1, intra, t2, intra, . . . , tn, intra) θT, intra

tg T

where  and 

is  a learnable parameter.  Then,  we obtain the global

semantic feature  of text  through a mean opera-

tion, i.e.,
 

tg =
1

n

n∑
j=1

tj, intra.

T+ t+g

tg t+g S(T, T+) = cos(tg, t+g )

Analogously,  the  global  semantic  feature  of  text

 can  be  denoted  as .  Subsequently,  we  exploit

cosine similarity to measure the correlation score be-

tween  and , that is, . Simi-

lar  to  image-text  retrieval,  we  also  employ  bidirec-

tional  triplet  loss  as  the  optimization  objective  of

text-text matching, i.e.,
 

Lm =
∑

(T, T+)

[λ2 − S(T, T+) + S(T, T̂+)]
+
+

[λ2 − S(T, T+) + S(T̂ , T+)]+, (8)

λ2 T̂ T̂+

T T+

where  is a margin.  and  are text negatives of

 and , respectively, obtained in the same manner

as described in (7) for negatives. 

3.2.5    Multi-Label Classification

Similar to the text-text matching task, the multi-

label classification is also considered an auxiliary task

for  implementing  global  semantic  constraints.  Intu-

itively, each image or text will display some semantic

information.  For  example,  the  image  and  texts  in

Fig.1 contain  significant  semantic  features  such  as

“street” and “clock  tower”.  By  constraining  the

shared  semantic  information  between  images  and

texts, it can be ensured that the matched images and

texts  always  maintain  semantic  consistency  during

the  model  training  process.  Since  existing  image-text

retrieval datasets such as Flickr30K and MSCOCO do

not contain semantic label information, a straightfor-

ward  approach  is  to  build  semantic  labels  directly

from  these  datasets.  Given  that  nouns  can  embody

the semantic information of images better than other

types  of  words,  we  adopt  nouns  to  construct  seman-

tic labels for image-text pairs.

L ∈ R1×N N

y ∈ R1×N

(I, T )

L

vt2i =

{t′

1, v, t
′

2, v, . . . , t
′

k, v} ti2t = {v
′

1, t,v
′

2, t, . . . ,v
′

n, t}

y
′ ∈ R1×N

Concretely,  we  first  employ  NLTK① to  identify

nouns  in  the  text  and  then  form  the  semantic  label

vector  by  selecting  the  top-  nouns  with

the highest frequencies. Then, a “0-1” encoded seman-

tic label  is assigned to each matched image-

text pair , where “1” indicates that the seman-

tic information at the same position in the label dic-

tionary  is  present  in  the  image-text  pair.  Subse-

quently,  we  adopt  the  transformed  features 

 and  to

perform  the  multi-classification  task.  Formally,  a

mean function and two fully connected layers are uti-

lized  to  predict  the  semantic  labels .  The

process can be formalized as
 

y
′
=(((1− β)× 1

k

k∑
r=1

t
′

r, v + β × 1

n

n∑
s=1

v
′

s, t)w11+

b11)w22 + b22, (9)

β w11 ∈ Rd×N

w22 ∈ RN×N b11 ∈ Rd×1 b22 ∈ RN×1

(I, T ) y
′
= (y

′

1,y
′

2, . . . ,y
′

u,

. . . ,y
′

N) y = (y1,y2, . . . ,yu,

. . . ,yN) N

where  is  a  balancing  factor. ,

, ,  and  are  learn-

able  parameters.  Then,  for  the  matched  image-text

pair ,  the  predicted  label 

 and  ground-truth  label 

 can  be  viewed  as  binary  classification

problems, and the optimization objective can be writ-

ten as
 

Lc = −
N∑

u=1

yu logσ(y
′

u) + (1− yu) logσ(1− y
′

u), (10)

σwhere  indicates the “Sigmoid” activation function. 

3.3    Optimization Objective

As  discussed  in Section 1,  multi-task  learning  is

beneficial  to  enhance  the  generalization  and  robust-

ness  of  the  model.  Therefore,  we  adopt  a  joint  ap-

proach to optimize these three tasks, consisting of im-
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age-text  retrieval,  text-text  matching,  and  multi-la-

bel classification. Finally, the optimization objective is

defined as
 

L = Lr + δ(γLm + (1− γ)Lc), (11)

δ

γ

where  is  a  balancing  factor  used  to  balance  the

weights  between  the  target  and  auxiliary  tasks.  is

employed  to  balance  the  weight  between  these  two

auxiliary tasks.

θ

Additionally,  it  should  be  noted  that  all  three

tasks  participate  in  the  model  training  process,  but

the  auxiliary  tasks  are  not  involved  during  the  test-

ing  stage. Algorithm 1 is  the  entire  training  process,

where  is the parameter that the proposed MVSEN

needs to train and optimize.

Algorithm 1. Model Training Process of Proposed MVSEN

(I, T ) T+

T α λ1 λ2 β δ γ
θ

Input: matched  image-text  pairs ;  positive  sample  of
; parameters: , , B, , , , ; optimized network param-

eters: ;
θOutput: 

epoch = 1, 2, . . . , E1 for  do
B2   for each batch size  do

v t t+3   Initial feature representations: , ,  via (1) and (2);
4  Perform  intra- and  inter-modality  feature  interaction
  via (3) and (6);

Lr5   Compute loss  for image-text retrieval via (7);

Lm6   Obtain loss  for text-text matching via (8);

Lc7   Calculate loss  for multi-label classification via (10);
8   end

Lr Lm Lc9   Get losses ,  and ;
L10   Compute  via (11);

θ ← L11    Backward ( )
12 end
 

4    Experiments
 

4.1    Experimental Settings

Datasets. We  evaluate  the  proposed  approach

MVSEN  and  all  baselines  on  two  publicly  available

datasets,  Flickr30K[15] and  MSCOCO[16].  Flickr30K

consists  of 31 000 images  in  total  and  each  image  is

associated  with  five  matched  textual  descriptions.

Following  the  split  protocol  in  [14],  we  adopt 29 000

images for training, 1 000 images for validation, and 1 000

images for testing. MSCOCO includes 123 287 images,

and each image is manually annotated with five sen-

tences,  where 113 287 images are employed for  train-

ing, 5 000 images for validation, and 5 000 images for

testing.  It  should  be  noted  that  the  performance  of

MSCOCO is evaluated by averaging 5-fold of 1k and

all 5k test images.

K R@K,K = 1, 5, 10

rSum R@K

Evaluation  Metrics. Following  previous  metho-

ds[23, 24], we utilize recall at  ( ) as

an  evaluation  metric  to  assess  the  performance  of

cross-modal  retrieval.  Also,  a  comprehensive  evalua-

tion  metric ,  indicating  the  sum  of  in

cross-modal retrieval,  is  also adopted to evaluate the

model's performance.

α

α = 10 λ1 λ2

β δ

Implementation  Details. The  proposed  model

MVSEN is  implemented  using  Python  3.7.0  and  Py-

Torch  1.7.0  frameworks  and  trained  on  an  NVIDIA

GeForce  RTX  3090  GPU  with  the  Adam  optimizer.

We set the training epoch to 30 with a learning rate

of 0.000 2 on  Flickr30K  and  MSCOCO,  where  the

learning rate is reduced by 10% after 10 epochs. The

batch size is set to 64. The control factor  in (5) is

10, i.e., . The margins  in (7) and  in (8)

are set to 0.2 and 0.1, respectively. The balancing fac-

tor  in (9) is set to 0.99 and  in (11) is set to 0.01.

Additionally,  some  detailed  settings  can  be  found  in

our code②. 

4.2    Quantitative Results and Analysis

rSum

R@1

Results on Flickr30K. Table 1 reports the quanti-

tative  results  on  the  Flickr30K  dataset③.  It  can  be

observed that the proposed MVSEN exceeds all base-

line  models  in  the  evaluation  metric ,  with  a

gain of 8.2%–26.2%. Compared with the state-of-the-

art  method  NAAF[19],  the  proposed  MVSEN  obtains

performance improvements of 0.4% and 2.3% on 

for text retrieval and image retrieval, respectively. Al-

so,  compared  with  baseline  models,  such  as

SGRAF[25],  MEMBER[26],  CGMN[24],  and  so  on,
 

Table  1.    Quantitative Results on Flickr30K

Method Text Retrieval Image Retrieval rSum

R@1 R@5 R@10 R@1 R@5 R@10

SGRAF2021 [25] 77.8 94.1 97.4 58.5 83.0 88.8 499.6

MEMBER2021
[29] 77.5 94.7 97.3 59.5 84.8 91.0 504.8

CGMN∗
2022

[24] 77.9 93.8 96.8 59.9 85.1 90.6 504.1

UARDA2022
[18] 77.8 95.0 97.6 57.8 82.9 89.2 500.3

NAAF∗2022
[19] 81.3 95.6 98.1 60.8 84.8 90.7 511.3

GLFN2023
[1] 75.1 93.8 97.2 54.5 82.8 89.9 493.3

RAAN2023
[21] 77.1 93.6 97.3 56.0 82.4 89.1 495.5

2023VSRN++ [37] 79.2 94.6 97.5 60.6 85.6 91.4 508.9

MVSEN (ours) 81.7 95.6 98.2 63.1 88.0 92.9 519.5
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②https://github.com/FlyCuteBird/MVSEN, Jul. 2024.
 

③“ * ” indicates that we reproduce the results using publicly available code. The same for Tables 1–4.
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R@1
MVSEN  continues  to  demonstrate  notable  perfor-

mance enhancements in terms of , exhibiting im-

provements  ranging  from  2.5%  to  6.6%  for  text  re-

trieval  and  from  2.5%  to  8.6%  for  image  retrieval,

which confirms the efficacy of MVSEN in the realm of

image-text retrieval.

R@1 = 80.5%

Results  on  MSCOCO. Tables 2 and 3 show  the

experimental  performance  on  MSCOCO  (1k)  and

MSCOCO  (5k),  respectively.  From Table 2,  we  can

observe  that  the  proposed  MVSEN  obtains  the  best

results  for  text  retrieval  and

R@1 = 64.6%

rSum rSum = 527.8%

R@5
R@10

R@1
rSum

R@5 R@10

 for  image  retrieval  compared  with  all

baseline  models.  At  the  same  time,  MVSEN  also

achieves  the best  performance in  terms of  evaluation

metric , with . However, in text

retrieval,  the  performance  of  MVSEN  is  lower  than

that of  MEMBER[29] in terms of the evaluation met-

ric  and lower than that of UARDA[18] in terms

of  the  evaluation  metric .  The  possible  reasons

are that MEMBER employs the global memory bank

to  improve  visual  features  through  relevant  textual

features,  and  UARDA  utilizes  optimized  correlation

thresholds  to  learn  discriminative  visual  features,  re-

sulting in the model's  performance being better  than

that  of  MVSEN.  In  addition,  when the  test  data  in-

creases, it can be seen from Table 3 that MVSEN still

has  advantages  in  the  evaluation  metrics  and

 compared with baseline models, which indirect-

ly shows that the proposed MVSEN can handle cross-

modal image-text retrieval under different data scales

well.  Furthermore,  we  can  observe  that  in  text  re-

trieval,  the  performance  of  MVSEN  is  worse  than

that  of  NAAF[19] in  and .  One  possible

reason  is  that  NAAF  considers  the  impact  of  mis-

aligned  segments  on  model  performance,  whereas

MVSEN does not consider this. 

4.3    Effect of Different Network Modules

R M C

To assess the influence of different modules on the

model's  performance,  we conduct  ablation  studies  on

the  Flickr30K  and  MSCOCO  datasets,  as  shown  in

Table 4, where “✓” indicates that the corresponding

module  is  adopted. , ,  and  represent  image-

text  retrieval,  text-text  matching,  and  multi-classifi-

 

Table  2.    Quantitative Results on MSCOCO (1k)

Method Text Retrieval Image Retrieval rSum

R@1 R@5 R@10 R@1 R@5 R@10

SGRAF2021 [25] 79.6 96.2 98.5 63.2 90.7 96.1 524.3

MEMBER2021
[29] 78.5 96.8 98.5 63.7 90.7 95.6 523.8

CGMN∗
2022

[24] 76.8 95.4 98.3 63.8 90.7 95.7 520.7

UARDA2022
[18] 78.6 96.5 98.9 63.9 90.7 96.2 524.8

NAAF∗2022
[19] 79.7 96.4 98.6 63.0 89.5 95.2 522.4

GLFN2023
[1] 78.4 96.0 98.5 62.6 89.6 95.4 520.5

RAAN2023
[21] 76.8 96.4 98.3 61.8 89.5 95.8 518.6

2023VSRN++ [37] 77.9 96.0 98.5 64.1 91.0 96.1 523.6

MVSEN (ours) 80.5 96.5 98.7 64.6 91.1 96.4 527.8

 

Table  3.    Quantitative Results on MSCOCO (5k)

Method Text Retrieval Image Retrieval rSum

R@1 R@5 R@10 R@1 R@5 R@10

MEMBER2021
[29] 54.5 82.3 90.1 40.9 71.0 81.8 420.6

CGMN∗
2022

[24] 53.4 81.3 89.6 41.2 71.9 82.4 419.8

UARDA2022
[18] 56.2 83.8 91.3 40.6 69.5 80.9 422.3

NAAF∗2022 [19] 58.1 85.5 92.0 42.1 70.7 80.8 429.2

2023VSRN++ [37] 54.7 82.9 90.9 42.0 72.2 82.7 425.4

MVSEN (ours) 58.7 84.0 91.7 42.5 72.0 82.7 431.6

 

Table  4.    Ablation Studies on Flcikr30K and MSCOCO (1k)

Model Setting Flickr30K Dataset MSCOCO Dataset (1k)

Text Retrieval Image Retrieval rSum Text Retrieval Image Retrieval rSum

R M C t2i i2t R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

#1 ✓ ✓ 76.9 93.5 96.9 60.6 85.7 91.6 505.2 78.0 95.8 98.2 63.0 90.5 96.0 521.5

#2 ✓ ✓ 76.7 93.0 96.9 58.6 84.5 90.6 500.3 76.1 95.7 98.6 61.3 90.1 95.8 517.6

#3 ✓ ✓ ✓ 79.1 94.5 97.9 61.7 87.4 92.4 513.0 79.1 96.2 98.5 64.4 91.2 96.4 525.8

#4 ✓ ✓ ✓ 77.1 94.2 98.0 60.4 85.2 91.5 506.4 77.8 95.5 98.3 63.0 90.5 96.0 521.1

#5 ✓ ✓ ✓ 75.5 94.2 97.6 58.6 85.1 90.7 501.7 77.5 96.0 98.5 62.3 90.5 95.8 520.6

#6 ✓ ✓ ✓ ✓ 80.2 95.5 97.9 62.2 86.9 92.6 515.3 79.7 96.3 98.6 64.3 91.5 96.5 526.9

#7 ✓ ✓ ✓ 77.2 93.2 97.1 61.4 85.8 91.8 506.5 77.8 95.3 98.4 62.1 90.7 96.1 520.4

#8 ✓ ✓ ✓ 75.4 93.5 96.9 58.9 85.2 90.8 500.7 77.1 95.7 98.5 61.4 90.2 95.9 518.8

#9 ✓ ✓ ✓ ✓ 79.7 93.9 97.8 63.6 87.4 92.7 515.1 80.0 96.3 98.5 64.4 91.3 96.5 527.0

#10 ✓ ✓ ✓ ✓ 79.5 94.6 97.7 61.2 86.6 91.7 511.3 77.5 96.0 98.3 62.7 90.3 95.8 520.6

#11 ✓ ✓ ✓ ✓ 77.8 93.3 97.2 59.2 85.0 90.5 503.0 77.7 95.8 98.5 61.6 90.3 95.9 519.8

#12 ✓ ✓ ✓ ✓ ✓ 81.7 95.6 98.2 63.1 88.0 92.9 519.5 80.5 96.5 98.7 64.6 91.1 96.4 527.8
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t2i i2t

St2i Si2t

#12

rSum

rSum = 6.5% rSum = 2.0%
#3

M C

2.3% #6 #3 2.1% #9 #3

rSum

cation tasks, respectively.  and  denote that we

employ  and  to measure the semantic correla-

tion  of  image-text  pairs,  respectively.  From Table 4,

we can see that the model  achieves the best per-

formance  in  the  evaluation  metric  when  all

auxiliary  tasks  are  employed,  with  improvements  of

 on  Flickr30K  and  on

MSCOCO compared with the baseline model . Ad-

ditionally,  when  only  one  auxiliary  task  or  is

used, the model's  performance is  still  enhanced, with

a boost of  (  vs ) and  (  vs ) in

terms  of  on  dataset  Flickr30K.  Similarly,  we

can  observe  similar  properties  on  dataset  MSCOCO,

which  indicates  that  both  text-text  matching  and

multi-label  classification  tasks  contribute  to  improv-

ing  the  performance  of  cross-modal  retrieval.  More-

over,  their  combined  use  yields  even  better  results.

Furthermore, it can be seen that the multi-label clas-

sification task contributes more to Flickr30K than to

MSCOCO. One possible reason is that Flickr30K de-

scribes  people's  daily  lives,  and  the  images  share

many  similarities.  The  multi-label  classification  task

effectively  constrains  sentences  with  high  similarity.

In  contrast,  MSCOCO  encompasses  diverse  cate-

gories, and the images exhibit more considerable vari-

ations. In this case, the role of the multi-label classifi-

cation task is relatively diminished, resulting in slight

performance improvement on dataset MSCOCO. 

4.4    Effect of Different Parameters

l γ

In  this  subsection,  we  select  two  representative

hyper-parameters,  and ,  to  explore  the  impact  of

l

γ

γ

different  parameter  settings  on  the  model's  perfor-

mance, where  indicates the number of GCN layers,

ranging from 1 to 5, and is critical for the overall per-

formance  of  image-text  retrieval.  The  hyper-parame-

ter  is  employed  to  balance  the  loss  weights  be-

tween  the  target  and  auxiliary  tasks,  facilitating  the

training of  multi-task learning.  The value of  is  set

from 0.1 to 0.9 with a step of 0.2.

l

l

R@1 R@5
l

l

l = 4 l = 5

The  influence  of  parameter  on  Flickr30K  and

MSCOCO is depicted in Fig.2. From these results, it

can be observed that increasing the parameter  from

1 to 3 can enhance the performance of image-text re-

trieval on evaluation metrics  and . The pos-

sible  reason  is  that  increasing  the  parameter  ex-

plores deep feature representation, which is beneficial

to  improve  the  model's  performance.  However,  the

performance decreases when the parameter  is larger

than 3, such as  or . One possible explana-

tion  is  that  the “over-smoothing” problem  occurs

when  the  number  of  GCN  layers  increases  to  a  cer-

tain level, resulting in performance degradation.

γ

γ(o)

o ∈ {t2i, i2t} So

γ

γ(t2i) γ(i2t)

R@1 81.7%
rSum 519.5%

Figs.3 and 4 show the impact  of  parameter  on

Flickr30K  and  MSCOCO,  respectively,  where ,

,  indicates  that  we  employ  to  mea-

sure the similarity of image-text pairs.  Clearly, when

the value of  increases from 0.1 to 0.9 (the step size

is 0.2), the experimental results also change, which in-

directly  shows that  when the weight  of  the  auxiliary

task changes, the optimization direction of the model

will  also be different,  resulting in performance differ-

ence.  When =0.5  and =0.1,  MVSEN ob-

tains  the  best  for  text  retrieval  and  the

best  for  cross-modal  retrieval  on
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lFig.2.  Effect of the number of GCN layers ( ) on datasets (a) Flickr30k and (b) MSCOCO, where I2T and T2I indicate text re-
trieval and image retrieval, respectively.
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Fig.3.  Effect of parameter  on Flickr30k, and the best result
is marked in the figure. (a) Text retrieval ( @1) on Flickr30k.
(b)  Image  retrieval  ( @1)  on  Flickr30k.  (c)  Cross-modal  re-
trieval ( ) on Flickr30k.
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Fig.4.  Effect of parameter  on MSCOCO, and the best result
is marked in the figure. (a) Text retrieval ( @1) on MSCOCO.
(b)  Image  retrieval  ( @1)  on  MSCOCO.  (c)  Cross-modal  re-
trieval ( ) on Flickr30k.
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γ(t2i) γ(i2t)

γ(t2i) γ(i2t)

γ

Flickr30K.  Analogously,  it  can  be  seen  from Fig.4

that  MVSEN  achieves  the  best  text  retrieval,

=0.3  and =0.5  and  the  best  image  re-

trieval =0.1 and =0.1, by taking different

values of .

l γ

γ

By analyzing the impact of parameters  and  on

experimental results, we can discern that different pa-

rameter  configurations  substantially  influence  the

model's  performance.  An  appropriate  parameter  is

helpful  to  improve  the  model's  efficiency.  Further-

more, it can be seen that when the model achieves the

best  performance,  the  same  parameter,  such  as  the

parameter ,  may  have  different  values  on  different

datasets due to differences in data distribution. 

4.5    Analysis of Retrieval Time

To validate that the proposed method achieves a

good balance between performance and efficiency, we

compare  the  retrieval  time  with  three  advanced  ap-

proaches,  SGRAF[25],  CGMN[24],  and  NAAF[19] based

on  the  publicly  available  codes  they  provide.  For  a

fair  comparison,  we  obtain  the  bidirectional  retrieval

time  by  averaging  the  retrieval  time  of 5 000 image-

text  pairs,  and  all  experiments  are  performed  on  an

Intel® CoreTM i9-10920X  CPU@3.50  GHz, 64  GB

memory  and  an  NVIDIA  GeForce  RTX  3090  GPU

with 24 GB memory.

Fig.5 shows that  when performing a bidirectional

retrieval,  the  proposed  approach  MVSEN  is  signifi-

cantly  lower  than  SGRAF  and  NAAF  but  higher

than  CGMN  in  the  retrieval  time.  Furthermore,  we

can  observe  that  the  retrieval  time  of  NAAF  is  the

longest among these four methods. The reason is that

NAAF employs the correlations between all visual re-

gions  and textual  words  to  assess  the  semantic  simi-

rSum

larity of the entire image and text, resulting in a sig-

nificant time overhead.  In contrast,  CGMN only uti-

lizes  cosine  to  measure  the  similarity  of  image-text

pairs, and thus the cost is minimal. Although the re-

trieval  time  of  the  proposed  MVSEN  is  higher  than

that  of  CGMN,  it  is  still  within  the  same  order  of

magnitude. Moreover, the performance of MVSEN on

the  evaluation  metric  exceeds  CGMN  by  a

large  margin,  with  15.3% on  Flickr30K and 7.1% on

MSCOCO  (1k).  Therefore,  the  proposed  approach

performs  better  in  balancing  performance  and  re-

trieval efficiency. 

4.6    Visualization and Analysis

To assess  the performance of  the proposed MVS-

EN further, we visualize the retrieval results and comp-

are MVSEN with the advanced method NAAF[19]. For

text  retrieval,  we  offer  the  ground-truth  caption

(GT),  and  the  top-ranked  text  retrieved  by  MVSEN

and NAAF. Also, we report the top-2 results for im-

age retrieval, where the correct result is marked with

a green box. For each text query, we employ MVSEN

to obtain the first two retrieval results and NAAF to

obtain the last two retrieval results.

Figs.6 and 7 are  the  results  of  text  retrieval  on

Flickr30K  and  MSCOCO  datasets,  respectively.  As

can be seen from these retrieval results, MVSEN per-

forms  better  than  NAAF.  Taking  the  third  example

on Flcikr30K as an illustration, although NAAF iden-
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Fig.5.  Comparison of bidirectional retrieval time.

 

(a)

(b)

GT: Man taking a photograph of a
well dressed group of teens.
MVSEN: Man taking a photograph of
a well dressed group of teens.
NAAF: Many men in suits waiting,
one man is on his cellphone.    

GT: Two men stand beneath a tree as
they watch the sunset over the ocean.

(c)

GT: A woman in white clothing is
holding a rope.
MVSEN: A woman in white clothing
is holding a rope.
NAAF: A blond woman holding a
white statue. 

MVSEN: Two men stand beneath a
tree as they watch the sunset over the
ocean.
NAAF: Two people silhouetted
against a lake at sunset.  

Fig.6.  Qualitative results of text retrieval on Flickr30K.
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tifies  some  vital  elements  such  as “blond  woman”,
“holding”, and “white”, it mistakes “rope” for “statue”,
leading  to  a  wrong  judgment.  In  contrast,  MVSEN

can detect these small gaps, which also verifies the ef-

fectiveness of multi-task learning in text retrieval.

Figs.8 and 9 show qualitative results of image re-

trieval  on  the  Flickr30K and MSCOCO datasets,  re-

spectively.  From  these  retrieval  results,  we  can  ob-

serve that for any given query text, all the images re-

trieved  by  NAAF and  the  proposed  MVSEN exhibit

high  similarity.  The  difference  is  that  MVSEN  can

distinguish them well and retrieve the ground-truth in

the top-ranked result. However, NAAF is confused by

these  similar  results,  leading  to “incorrect” choices.

Therefore,  it  can  be  inferred  from  these  results  that

the  proposed  MVSEN  can  make  sound  judgments

when facing high-similarity images.
 

5    Conclusions

In this paper, we proposed a multi-task visual se-

mantic  embedding  network  (MVSEN)  that  leverages

the collaboration of  different tasks to explore the se-

mantic  relevance  of  image-text  pairs,  aiming  to  im-

prove  the  performance  of  cross-modal  retrieval.  Ex-

perimental  results  on  two  publicly  available  bench-

marks, Flickr30K and MSCOCO, show that MVSEN

performs better than state-of-the-art approaches, with

rSum  improvements  of  8.2%  and  3.0%,  respectively.

Additionally, through ablation experiments, it can be

observed  that  both  text-text  matching  and  multi-la-

bel  classification  tasks  contribute  to  improving  the

performance  of  cross-modal  retrieval.  Furthermore,

qualitative results confirm the effectiveness of the pro-

posed  method.  In  fact,  the  two  auxiliary  tasks  de-

signed  for  semantic  constraints  are  more  suitable  for

handling  highly  similar  images.  The  effects  are  less

pronounced  for  images  with  significant  differences,

which  is  a  limitation  of  the  proposed  multi-task

scheme. In future work, we will explore the feasibility

and  efficacy  of  multi-task  learning  in  other  cross-

modal tasks.
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(a)

(b)

GT: A photo taken in a car looking at a
dog in the back seat.
MVSEN: A photo taken in a car looking
at a dog in the back seat.
NAAF: A blissful dog laying against a
windscreen of a car.

GT: A grey cat peers at a computer
keyboard.
MVSEN: A grey cat peers at a
computer keyboard.
NAAF: Cat sitting right next to
keyboard on laptop. 

GT: White and blue buses parked on the
side of the city road to let passengers in.

(c)

MVSEN: White and blue buses parked 
on the side of the city road to let
passengers in.

NAAF: A bus pulls into a bus stop on
the street.    

Fig.7.  Qualitative results of text retrieval on Flickr30K.

 

Query 2: Three people sit at an outdoor cafe. Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. Query 3: The girls dance to the street musicians. 

Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. 

MVSEN NAAF

Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. 

MVSEN NAAF

(a)

Query 1: A woman gives a small child a piggyback ride. Query 1: A woman gives a small child a piggyback ride. 

Query 2: Three people sit at an outdoor cafe. Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. Query 3: The girls dance to the street musicians. 

Query 1: A woman gives a small child a piggyback ride. 

Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. 

MVSEN NAAF

Query 1: A woman gives a small child a piggyback ride. 

Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. 

MVSEN NAAF

(b)

(c)

Query 1: A woman gives a small child a piggyback ride. Query 1: A woman gives a small child a piggyback ride. 

Query 2: Three people sit at an outdoor cafe. Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. Query 3: The girls dance to the street musicians. 

Query 1: A woman gives a small child a piggyback ride. 

Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. 

MVSEN NAAF

Query 1: A woman gives a small child a piggyback ride. 

Query 2: Three people sit at an outdoor cafe. 

Query 3: The girls dance to the street musicians. 

MVSEN NAAF

Fig.8.   Qualitative  results  of  image  retrieval  on  Flickr30K.
(a) Query 1: a woman gives a small child a piggyback ride. (b)
Query 2: three people sit at an outdoor cafe. (c) Query 3: the
girls dance to the street musicians.

 

Query 3: A fridge and a sink in a home kitchen. 

Query 2: A group of people play video games with controllers. Query 2: A group of people play video games with controllers. 

MVSEN NAAFMVSEN NAAF

Query 3: A fridge and a sink in a home kitchen. 

Query 2: A group of people play video games with controllers. 

MVSEN NAAF

(a)

Query 3: A fridge and a sink in a home kitchen. 

Query 1: Young boy with T-ball and bat pointing at ball. Query 1: Young boy with T-ball and bat pointing at ball. 

Query 2: A group of people play video games with controllers. Query 2: A group of people play video games with controllers. 

MVSEN NAAFMVSEN NAAF

Query 3: A fridge and a sink in a home kitchen. 

Query 1: Young boy with T-ball and bat pointing at ball. 

Query 2: A group of people play video games with controllers. 

MVSEN NAAF

(b)
Query 3: A fridge and a sink in a home kitchen. 

Query 1: Young boy with T-ball and bat pointing at ball. Query 1: Young boy with T-ball and bat pointing at ball. 

Query 2: A group of people play video games with controllers. Query 2: A group of people play video games with controllers. 

MVSEN NAAFMVSEN NAAF

Query 3: A fridge and a sink in a home kitchen. 

Query 1: Young boy with T-ball and bat pointing at ball. 

Query 2: A group of people play video games with controllers. 

MVSEN NAAF(c)

Fig.9.   Qualitative  results  of  image  retrieval  on  MSCOCO.
(a)  Query  1:  young  boy  with  T-ball  and  bat  pointing  at  ball.
(b)  Query  2:  a  group  of  people  play  video  games  with  con-
trollers. (c) Query 3: a fridge and a sink in a home kitchen.
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