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Abstract    Graph processing has been widely used in many scenarios, from scientific computing to artificial intelligence.

Graph processing exhibits irregular computational parallelism and random memory accesses, unlike traditional workloads.

Therefore, running graph processing workloads on conventional architectures (e.g., CPUs and GPUs) often shows a signifi-

cantly low compute-memory ratio with few performance benefits, which can be, in many cases, even slower than a special-

ized single-thread graph algorithm. While domain-specific  hardware designs are essential  for graph processing, it  is  still

challenging to transform the hardware capability to performance boost without coupled software codesigns. This article

presents a graph processing ecosystem from hardware to software. We start by introducing a series of hardware accelera-

tors as the foundation of this ecosystem. Subsequently, the codesigned parallel graph systems and their distributed tech-

niques are presented to support graph applications. Finally, we introduce our efforts on novel graph applications and hard-

ware architectures. Extensive results show that various graph applications can be efficiently accelerated in this graph pro-

cessing ecosystem.

Keywords    graph processing, hardware accelerator, software system, high performance, ecosystem

 
 

1    Introduction

Graphs are potent data structures capable of mod-

eling  complex  relationships.  They  have  been  used  in

various domains, including but not limited to recom-

mendation  systems,  brain  analysis,  energy  manage-

ment,  and cybersecurity[1–6].  To fully exploit  the rich

information inherent in graphs,  many researchers are

dedicating  their  efforts  to  graph  processing,  which  is

gaining popularity in the community.
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However,  efficient  processing  of  large  graphs  is

challenging.  In  particular,  graphs  have  few  connec-

tions  between  nodes,  and  the  number  of  edges  con-

nected to a node follows a power-law distribution, re-

sulting  in  extreme  sparsity  and  irregularity.  These

characteristics  lead  to  challenges  such  as  computa-

tion  conflict,  random  memory  access,  and  irregular

communication  when  processing  graph  workloads.

These  challenges  significantly  diminish  the  efficiency

of graph processing[7–16].

We  propose  an  integrated  graph  processing

ecosystem to  achieve  the  full  potential  of  graph pro-

cessing.  As  shown  in Fig.1,  this  ecosystem  provides

comprehensive  solutions  for  graph  processing,  from

hardware  design  to  software  system.  These  solutions

are designed to achieve a high throughput, low laten-

cy, low power, and scalable graph processing architec-

ture.

In terms of hardware accelerators design, we pro-

pose a family of graph hardware accelerators based on

different memory architectures. As shown in Table 1,

we first introduce AccuGraph[9], a pioneering solution

that addresses the graph data conflict problem based

on  DRAM.  Furthermore,  we  explore  graph  accelera-

tors  based  on  high-bandwidth  memory  (HBM)  and

design ScalaBFS2[17] and ScalaGraph[13], which aim to

improve the efficiency of  HBM and the scalability of

processing elements (PEs), respectively.

In terms of graph software systems, our focus lies

in  optimizing  the  efficiency  of  graph  processing  so

that they fully utilize different hardware resources. As

shown in Table 1, our software libraries include Hot-

Graph[18]/GraphFly[19]/CGraph[20],  DiGraph[21],  Gra-

Su[22],  and  FBSGraph[23],  corresponding  to  CPU,

GPU, FPGA, and distributed platforms, respectively.

They are  dedicated to enhancing the parallelism and

locality  of  graph  processing  systems  by  carefully  de-

signing data structures and scheduling strategies.

Furthermore, recent years have witnessed a surge

in  novel  graph  processing  workloads  and  architec-

tures,  which  pose  new  challenges  to  existing  graph

processing  architectures.  To  tackle  emerging  work-

loads, including graph construction, hypergraphs, and

heterogeneous  graphs,  we  propose  hardware-software

co-design  solutions,  such  as  FNNG[24],  XuLin[25],  and

MetaNMP[26].  To  harness  the  potential  of  emerging

architectures  like  Processing  In/Near  Memory,  we

propose  innovative  solutions  based  on  ReRAM  and

CMOS, including Spara[27], ReFlip[28], and Hetraph[29].

As  shown  in Table 1,  these  solutions  enhance  data

processing efficiency and parallelism, leading to a sig-

nificant improvement in graph processing efficiency.

The remaining sections provide detailed introduc-

tions.  In Section 2,  we  detail  the  design  of  hardware

accelerators.  In Section 3,  we  introduce  graph  soft-

ware  systems.  In Section 4,  we  first  discuss  the  pro-

cessing  of  emerging  graph  workloads  and  then  de-

scribe how we fully utilize the emerging hardware. Fi-
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Fig.1.  Graph processing ecosystem. BFS: Breath First Search; SSSP: Single Source Shortest Path.
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nally, in Section 5, we conclude our work with a sum-

mary. 

2    Graph Hardware Accelerator

Several  efforts  have  been  dedicated  to  improving

the  performance  of  graph  processing.  However,  be-

cause  of  the  irregularity  of  graphs,  general-purpose

processors (e.g., CPUs/GPUs) suffer from severe com-

putational  conflicts,  memory  inefficiencies,  and  poor

scalability when running graph applications. This sec-

tion gives solutions to the above problems with differ-

ent memories. 

2.1    AccuGraph: A DRAM-Based Version

In  the  past  few years,  there  has  been  substantial
research  on  domain-specific  accelerators  to  improve

memory  performance  for  irregular  graph  data[30, 31].

Despite these research efforts, graph applications still

suffer  from  suboptimal  performance  due  to  irregular

computation  patterns.  When  traversing  the  graph

topology, multiple vertices might access the same ver-

tex simultaneously, resulting in substantial data con-

flicts.

Existing  graph  accelerators  adopt  atomic  struc-

tures (e.g., content addressable memory[30]) to sequen-

tialize the process of conflicting operations. While the

atomic structures ensure the correctness of execution,

they significantly degrade performance since only one

conflicting  operation  can  be  processed  at  a  time.

From our experiment, existing graph accelerators stall

in at most 40% of the time due to atomic protection.

Fortunately,  conflicting  operations  in  typical

graph  applications  have  two  significant  characteris-

tics. First, the atomic operations performed on differ-

 

Table  1.    Graph Processing Ecosystem: From Hardware Accelerators, Software Systems to Emerging Graph Workloads and Archi-
tectures

Categorization Name Algorithm Challenge Speedup (Baseline)

Hardware
accelerator

DRAM AccuGraph[9] BFS, SSSP,
PageRank, etc.

How to design an efficient accumulator
for parallelizing the conflicting data
accesses for vertex updates

3.14x (ForeGraph)

HBM ScalaBFS2[17] BFS How to utilize HBM bandwidth
efficiently in FPGAs

1.34x–2.40x (GPU-
Gunrock)

ScalaGraph[13] BFS, SSSP,
PageRank, etc.

How to realize a distributed on-chip
memory in a graph accelerator with HBM

3.20x (GPU-
Gunrock)

Software
system

CPU HotGraph[18]

(static)
BFS, SSSP,
PageRank, etc.

How to accelerate cross-partition status
updates and convergence

5.22x (Maiter)

GraphFly[19]

(dynamic)
BFS, SSSP,
PageRank, etc.

How to reuse the data accessed through
refinement in recomputation

5.81x (KickStarter)

CGraph[20]

(concurrent)
BFS, SSSP,
PageRank, etc.

How to leverage the correlations between
CGP jobs to improve throughput

4.32x (Nxgraph)

GPU DiGraph[21] BFS, SSSP,
PageRank, etc.

How to make iterative directed graph
processing converge faster and have lower
data access costs

3.54x (Groute)

FPGA GraSu[22] BFS, SSSP,
PageRank, etc.

How to build dynamic graph accelerators
based on existing static graph
accelerators with minimal costs

34.24x (Stinger)

Distributed FBSGraph[23] BFS, SSSP,
PageRank, etc.

How to accelerate vertex state
propagation with low overhead on
distributed platforms

1.70x (Maiter)

Emerging graph
workloads and
architecture

Emerging
graph
workloads

FNNG[24] NN-Descent How to decrease the memory and
computation overhead of NN-Desent from
the architectural level

2.10x (GNND)

XuLin[25] PageRank, BC,
CC, etc.

How to minimize off-chip communication
traffic in hypergraph processing

8.77x (ChGraph)

MetaNMP[26] HGNN, GNN How to reduce the large memory
footprint and severe redundant
computation in HGNN

415.18x (GPU-
HGNN)

Emerging
architecture

Spara[27] BFS, SSSP,
PageRank, etc.

How to reduce inefficient computation in
graph processing with ReRAM-based
accelerators

8.21x (GraphR)

ReFlip[28] GCN How to use crossbar-based PIM to unify
GCN executions

15.63x (AWB-
GCN)

Hetraph[29] BFS, SSSP,
PageRank, etc.

How to efficiently use heterogeneous PIM
to accelerate graph processing tasks

1.56x (GPU-
Gunrock)
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ent  edges  in  the  graph  follow  the  commutative  and

associative law. Second, the atomic operations used to

update  the  conflicting  vertex's  value  are  simple  and

executed  repeatedly.  These  two  observations  intro-

duce  the  opportunity  to  eliminate  deficiency  caused

by the conflict updates inside the vertex.

Based  on  these  observations,  we  present  Accu-

Graph,  a  novel  graph accelerator  that  processes  con-

flicting  operations  in  parallel.  As  shown  in Fig.2(a),

multiple  conflicting  operations  are  simultaneously

scheduled  to  improve  computation  efficiency.  A  spe-

cialized  accumulator  is  provided  to  avoid  potential

data hazards by merging all  operations targeting the

same vertex into one operation. Note that these merg-

ing operations are not always addition. For example,

in SSSP, this accumulator performs a min operation,

while in PageRank, it performs an addition operation.

But we uniformly call it an accumulator. AccuGraph

significantly reduces pipeline stalls and achieves near-

ly  fully  pipelined  computation  by  parallelizing  con-

flicting vertex updates by using this accumulator.

Nevertheless,  designing  this  efficient  accumulator

to  merge  operations  is  difficult  because  of  two  chal-

lenges.  First,  multiple low-degree vertices are expect-

ed  to  process  simultaneously  for  efficient  parallelism.

However,  establishing  a  definite  mapping  rule  from

inputs to outputs proven to be tough because the de-

grees of  vertices vary dynamically.  Second, especially

for high-degree vertices with numerous edges, process-

ing  multiple  edges  simultaneously  becomes  challeng-

ing due to the limited width of the accumulator.

For  the  first  challenge,  we  find  that  the  low-de-

pj =
∑

1⩽i⩽N

ai × bij 1 ⩽ j ⩽ M pj

ai i

bij ai j

gree vertex accumulation is a variation of the prefix-

sum problem. Let us assume N update values belong-

ing to M vertices must be processed at the same time.

This  challenge  can  be  described  by 

, , where  denotes the accumulat-

ed result  of  vertex j.  presents  the update value ,

and  indicates  whether  belongs  to  vertex .  In

other  words,  the  low-degree  vertex  accumulation

needs to compute the prefix sum of multiple vertices

at runtime.

According  to  the  formalization,  we  advocate  a

novel parallel accumulator shown in Fig.2(b). This ac-

cumulator is designed by using the Ladner-Fischer ac-

cumulator, an existing well-established prefix-sum ac-

cumulator, as the foundation. The number of vertices

to  be  scheduled  is  determined  on-the-fly  by  the  de-

gree-aware  scheduling.  After  that,  the  source  vertex

accumulator simultaneously accumulates updated val-

ues  of  different  destination  vertices.  To  preserve  the

correctness,  we  complement  a  breakpoint  recognizing

mechanism.  Specifically,  AccuGraph  attaches  each

update with the ID of its destination vertex, which is

leveraged as a signal to ensure that multiple updates

are accumulated to the same destination.

N ×MAfter  that,  the  multiplexer  delivers  the

accumulated  results  to  each  destination  vertex  se-

quentially. To address the second challenge, we advo-

cate  a  destination  vertex  accumulator.  It  merges  the

accumulated values with a decision to delay the write-

back  of  the  corresponding  destination  vertex  data.

This  mechanism  eliminates  synchronization  overhead

on  the  temporary  vertex  data  and  massive  random
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edge accesses.

Fig.3 depicts the normalized performance of Accu-

Graph compared with ForeGraph[31]. From our experi-

mental  data,  AccuGraph  delivers  an  average  of  2.36

GTEPS.  This  performance  marks  a  notable  advan-

tage,  as  it  outperforms  ForeGraph,  achieving  a

speedup of up to 3.14x.
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2.2    ScalaBFS2: An HBM-Based Version

With  the  latest  advancements  in  3D  stacking

technology,  HBM  is  proposed  to  enhance  memory

bandwidth.  HBM's  bandwidth  increase  comes  from

stacking  multiple  DRAM  chips  in  a  single  module,

providing numerous memory channels for parallel ac-

cess.  This  advantage  presents  new  opportunities  for

enhancing the performance of graph processing accel-

erators.  However,  there  are  many  challenges  in  effi-

ciently utilizing the high bandwidth to handle irregu-

lar memory accesses during graph processing.

Specially, each edge in the Compress Sparse Row

(CSR) format occupies only a narrow bit width (e.g.,

32-bit) to record the destination ID. This bit width is

inconsistent  with  HBM's  256-bit  prefetch  length  for

each memory transaction. HBM's adoption of a 32-bit

AXI access mode results in extremely low bandwidth

utilization.  Additionally,  cross-channel  access  by  the

HBM subsystem on FPGAs introduces the problem of

internal  contention,  further  increasing  the  delay  and

degrading the bandwidth utilization.  Hence,  it  is  im-

perative  to  implement  efficient  and  economical  rout-

ing among multiple HBM memory channels.  This re-

quires utilizing the finite logical resources available on

FPGAs while maximizing memory bandwidth utiliza-

tion.

In this subsection, we present ScalaBFS2[17], which

is designed for BFS, the basis of the graph algorithm.

ScalaBFS2  focuses  on  achieving  the  highest  perfor-

mance  of  BFS  on  a  single  HBM-enhanced  FPGA

chip.  As  shown  in Fig.4,  ScalaBFS2  contains  several

PEs  that  can  communicate  with  each  other  through

elaborate crossbars.
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To improve the efficiency of HBM memory access,

ScalaBFS2  is  committed  to  maximizing  bandwidth

utilization  by  engaging  as  many HBM PCs as  possi-

ble. By designing an independent HBM reader respon-

sible  for  reading  data  from  the  corresponding  HBM

PC, ScalaBFS2 separates memory access circuits from

the PEs that execute the BFS algorithm. This strate-

gy addresses the mismatch between the long bit-width

of  the  HBM  PCs  and  the  narrow  representation  of

graph  data  while  maintaining  a  lean  design  for  re-

source conservation. Specifically, the HBM reader op-

erates  within  the  frequency  range  of  [340  MHz,  450

MHz],  twice  the  frequency  of  the  PEs.  Moreover,  it

accesses  data  with  the  same  bit-width  as  the  HBM

prefetch length (i.e., 256-bit), enabling high-speed ac-

cess  to  HBM.  Upon  receiving  responses  from  the

HBM PCs, the HBM reader extracts valid data using

a  filter  and  passes  it  to  the  subsequent  process  (i.e.,

crossbar)  round-robin,  ensuring  a  well-balanced  load

for subsequent processing.

N

N 2

N

Furthermore,  ScalaBFS2  proposes  new  crossbars

for data transfer to save resources. Assuming  PEs

are constructed in ScalaBFS2, a full crossbar will con-

sume  FIFOs,  resulting  in  serious  resource  con-

sumption.  ScalaBFS2 factorizes  and constructs  an

equivalent  multi-layer  crossbar  that  performs  data
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transfers  in  a  pipelined  manner.  The  number  of  FI-

FOs  utilized  internally  in  the  multi-level  crossbar  is

significantly reduced compared with the full crossbar.

This approach significantly reduces resource consump-

tion while maintaining the performance of the BFS al-

gorithm.

We  perform  an  evaluation  of  ScalaBFS2  on  the

XCU280  chip.  The  experiment  evidences  that  Scal-

aBFS2 can utilize all 32 PCs and build up to 128 PEs

on the XCU280. ScalaBFS2[17] achieves a peak perfor-

mance of 56.92 GTEPS, which is 2.52x–4.40x speedup

over  the  latest  graph  processor  (i.e.,  ReGraph[32])

built on the same device. ScalaBFS2 has 1.34x–2.40x

speedup over Gunrock running on the A100. 

2.3    ScalaGraph: Scaled to Thousands Cores

(1 024 GB/s)/(0.25 GHz ×4 B

HBM provides high memory bandwidth while exis-

ting graph accelerators fail to utilize its potential fully.

Specifically,  a graph accelerator running at 250 MHz

needs at least 1 024 (  ))

PEs  for  edge  computation  to  exhaust  HBM  band-

width, assuming that an edge is 4 bytes in size. How-

ever,  existing  work  employs  a  centralized  PE  inter-

connection[33],  which  cannot  scale  to  more  than  256

PEs from our experimental results.

The  gap  between  large-scale  PEs  and  HBM  re-

sults in untapped hardware potential. To address the

new bottleneck caused by HBM, it is critical to priori-

tize the scalability of memory hierarchy over the per-

formance  efficiency  of  the  individual  PE.  In  other

words, graph processing accelerators should achieve a

better  balance between the hardware overhead of  in-

terconnect  architectures  and  the  communication  effi-

ciency among PEs.

To  achieve  the  above  goal,  we  propose  Scala-

Graph[13],  a  graph  processing  accelerator  based  on  a

distributed  on-chip  memory  hierarchy.  As  shown  in

Fig.5,  ScalaGraph  consists  of  multiple  tiles  that  are

interconnected  through  an  on-chip  network  (NoC).

Tiles contain three key modules: Prefetcher, Dispatch-

er,  and  Processor.  Unlike  the  centralized  on-chip

memory hierarchy, each HBM block in ScalaGraph is

connected  to  one  PE.  A  PE  communicates  with  an-

other through NoC, which improves the scalability of

the  accelerator  by  avoiding  large-scale  communica-
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Fig.5.   ScalaGraph  architecture[13].  Pref:  prefetcher,  VPref:  vertex  prefetcher,  EPref:  edge  prefetcher,  EDU:  edge  dispathing  unit,
DU: dispathing unit, SPD: scratchpad, RU: routing unit, GU: graph unit, and VDU: vertex dispatching unit.
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tion among PEs.

While  ScalaGraph  improves  scalability,  it  brings

two  challenges.  First,  the  distributed  on-chip  memo-

ry hierarchy significantly increases communication la-

tency and volume. Specifically, communication among

PEs may involve multiple route transmissions, which

can increase the delay of PE communication. Second,

the  power-law  degree  distribution  can  lead  to  severe

load  imbalance  in  a  distributed  environment.  A  few

vertices  are  connected  to  most  edges,  causing  some

PEs to be busier than others.

For  the  first  challenge,  ScalaGraph  proposes  a

software-hardware  co-design  approach  to  address  it.

On the  software  side,  ScalaGraph proposes  an  archi-

tecture-aware  data  mapping  mechanism  called  Row-

Oriented Mapping. This mechanism maps edge work-

loads  to  different  PEs  based  on  the  source  vertex's

row ID and the target vertex's column ID. By doing

so,  it  effectively  eliminates  inter-column  communica-

tion among PEs and minimizes the communication la-

tency  in  each  PE  row.  In  hardware,  ScalaGraph  de-

signs  a  routing  unit.  Specifically,  ScalaGraph  adopts

the idea of  parallel  accumulation[9] and provides four

stages to minimize the communication latency in each

PE column.

For the second challenge, ScalaGraph implements

a  degree-aware  scheduling  mechanism,  which  lever-

ages the observation that memory addresses of active

vertices  in  graph  processing  tend  to  be  contiguous.

This scheduling mechanism ensures a balanced distri-

bution of workloads during the scatter phase. To en-

hance  load  balancing  during  the  apply  phase,  Scala-

Graph  adopts  a  novel  pipelining  architecture,  inter-

phase  pipelining,  to  reduce  idle  PEs.  In  this  pipeline

model, the updated results in the apply phase are im-

mediately sent to the dispatcher module, allowing the

scatter  phase  to  process  without  waiting  for  the  en-

tire  active  vertex  list  to  complete.  This  avoids  load

imbalance  caused  by  synchronization  in  the  apply

phase and enhances processing efficiency.

We  implement  ScalaGraph  and  perform  evalua-

tions and experiments on a Xilinx Alveo U280 accel-

erator  card.  As  shown  in Fig.6,  our  experiments  on

classical datasets show that ScalaGraph supports scal-

ing beyond 1 024 PEs. Furthermore, ScalaGraph out-

performs state-of-the-art accelerators[33] by 2.2x. 

3    Graph Software System

To fully explore the potential of large-scale graph

processing, we develop graph processing systems that

exploit the characteristics of different hardware archi-

tectures. Specifically, we introduce HotGraph, Graph-

Fly, and CGraph for CPU, which focus on accelerat-

ing static, dynamic, and concurrent graph processing,

respectively. Additionally, we present DiGraph, an it-

erative  directed  graph  system  designed  for  GPU  ar-

chitectures.  This  system  utilizes  vertex  dependencies

to minimize the number of graph iterations required.

Furthermore,  we  propose  GraphSu for  FPGA,  which

is a library for dynamic graph processing.  Lastly,  we

propose  FBSGraph  for  distributed  architectures,

which enables fast convergence of asynchronous graph

processing. 

3.1    Graph Processing on CPU

In  this  subsection,  a  CPU-based  static,  a  CPU-

based  dynamic,  and  a  CPU-based  concurrent  graph

processing system are presented respectively. 
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3.1.1    Static Graph Processing on CPU

Asynchronous  graph  processing  is  more  efficient

than  synchronous  graph  processing.  Therefore,  many

asynchronous  processing  systems[34] have  emerged.

However, existing asynchronous graph processing sys-

tems ignore  random state  propagation between sepa-

rating  partitions.  This  omission  leads  to  expensive

overhead  and  seriously  decreases  the  convergence

speed of graph algorithms.

We propose a graph processing system called Hot-

Graph[18], inspired by the cascade effect to tackle the

bottleneck above. This graph processing system builds

a backbone structure called Hotgraph, which compris-

es  hot  vertices  and  the  paths  between  vertices.  By

leveraging  this  backbone,  instead  of  waiting  for  all

vertices  in the local  partition to complete  their  state

updates,  vertex  states  can  be  quickly  propagated  to

neighboring  graph  partitions,  thereby  mitigating  the

cross-graph partitioning overhead.

In  particular,  we  present  a  novel  algorithm  for

constructing  HotGraphs  in  large  graphs.  The  algo-

rithm  starts  by  partitioning  the  graphs  into  sub-

graphs  using  the  vertex-cut  graph  partitioning  algo-

rithm[35] and parallelly extracting a set of hot vertices

within the subgraphs. Then, we select a hot vertex as

the root and traverse all edges in the subgraphs using

a depth-first order to establish paths between the hot

vertices.  Next,  we  build  connections  between  sub-

graphs using hot vertices and associated paths. These

hot vertices and valid paths between them are classi-

fied  as  HotGraph,  while  the  remaining  vertices  and

edges are classified as cold partitions. Fig.7 shows the

example  of  HotGraph  extraction.  Finally,  to  ensure

swift  transmission of  vertex state  information among

subgraphs,  we  prioritize  HotGraph  with  high  impor-

tance.

Our  experiments  investigate  the  performance  of

HotGraph  compared  with  Maiter[34].  It  shows  that

HotGraph  achieves  an  80.8%  reduction  in  execution

time,  and  the  execution  time  decreases  as  the  avail-

able  memory  size  increases.  These  prove  that  Hot-

Graph accelerates vertex state transmission for asyn-

chronous graph processing in shared memory systems. 

3.1.2    Dynamic Graph Processing on CPU

Dynamic graph processing is a crucial component

in analyzing dynamically changing graph data in real-

time.  However,  real-time  updates  to  graphs  present

difficulties for current graph processing systems. Vari-

ous  systems for  dynamic  graph processing  have  been

introduced to tackle the issues caused by the swift up-

dates in graph data. Examples include KickStarter[36]

and  GraphBolt[37].  These  systems  utilize  incremental

computing techniques to perform real-time data anal-

ysis  by  leveraging  the  results  of  previous  computa-

tions.

Incremental  computation  reduces  response  time,

but reusing previous results may lead to inaccuracies.

KickStarter[36] and  GraphBolt[37] use  a  refinement-

computation  model  to  ensure  correctness,  but  the

model  introduces  redundancies  in  memory  accesses.

Redundancies  arise  from two  sources:  1)  refined  ver-

tex values are written to memory and then retrieved

for recomputation on affected vertices, and 2) edges of

these affected vertices are initially traversed to identi-

fy  refinement  effects  and  then  reaccessed  during  re-
 

(b)(a)













Fig.7.  Example illustrating how to extract a hot graph[18]. (a) Depth-first search. (b) Partitions generated.
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computation  to  propagate  computed  values.  In  our

profiling  analysis  of  GraphBolt,  as  depicted  in Fig.8,

we observe that redundant memory accesses consume

an average of 68% of the runtime in both phases.
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Fig.8.   Redundant  memory  accesses  ratio[19].  UK:  UKDomin;
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In  this  work,  we  propose  GraphFly[19],  a  solution

to address the redundant memory access by bridging

the  gap  between  refinement  and  recomputation  dur-

ing real-time edge updates. GraphFly introduces a de-

pendency  flow  based  approach  to  graph  processing.

Using  the  dependencies  among  dynamic  updates,

GraphFly  performs  refinement  and  recomputation

asynchronously,  thus  significantly  reducing  redun-

dant  memory  access.  To  accomplish  these  goals,

GraphFly includes two essential modules.

Dependency  Management. This  module  initially

creates dependency flows using D-trees and effective-

ly organizes them in a spatio-temporal scheduling se-

quence. D-trees are based on the elimination tree the-

ory  and  depict  the  dependency  connections  among

vertices in a lower triangle matrix as a forest. By di-

viding these D-trees at their root vertices, we extract

dependency flows.  These flows derived from the low-

er triangle matrix capture the vertex dependencies in

the  structural  space.  To  ensure  correctness,  these

flows must be executed in a specific order at runtime,

constrained by the upper triangle matrix. Subsequent-

ly,  these  commands  for  coordinated  spatio-temporal

scheduling  are  provided  to  the  processing  engine  for

execution.

Processing Engine. GraphFly achieves its efficien-

cy  by  combining  expert  storage  management  strate-

gies that focus on data locality, along with a parallel

asynchronous  processing  model  that  relies  on  depen-

dency  flows.  In  cases  where  vertex  data  needs  to  be

accessed  within  these  dependency  flows,  the  data

might  be  distributed  across  various  storage  regions.

To enhance memory access efficiency, GraphFly intro-

duces a storage format specifically tailored for depen-

dency  flows.  This  format  allows  for  the  efficient  and

compact  storage of  vertex data in  memory,  which in

turn  reduces  memory  access  overhead  and  improves

overall  efficiency.  Furthermore,  dynamic  updates  can

be  distributed  across  different  dependency  flows.

GraphFly loads and executes dependency flows asyn-

chronously, adhering to the predefined scheduling or-

der.

Our  experiments[19] show  that  GraphFly  outper-

forms state-of-the-art systems KickStarter and Graph-

Bolt by 5.81x and 1.78x on average, respectively. 

3.1.3    Concurrent Graph Processing on CPU

In recent years,  the application of  Concurrent It-

erative  Graph  Processing  (CGP)  jobs  in  social  net-

work  analysis,  bioinformatics,  and  recommendation

systems has experienced significant growth. However,

deploying  multiple  CGP jobs  on  the  same  graph  us-

ing  existing  systems  presents  several  challenges.  One

of the critical issues is the repetitive loading of graphs

into  the  cache  by  different  jobs  at  different  times,

leading to expensive data access and low throughput.

Furthermore,  many  CGP jobs  exhibit  strong  tempo-

ral  and  spatial  correlations,  resulting  in  substantial

redundant data access.

Numerous researchers are striving to optimize da-

ta  access  and  computational  scheduling  to  improve

the  throughput  of  CGP  jobs.  Certain  methods  have

been  employed,  such  as  exploiting  high  sequential

memory bandwidth, data locality, and efficient redun-

dant  data  processing.  However,  these  efforts  tend  to

focus on specific aspects and may struggle to provide

comprehensive solutions for the numerous challenges.

We  introduce  CGraph[20],  a  system  designed  to

improve the throughput of CGP jobs through a data-

centric Load-Triggered Push (LTP) model. The LTP

model  effectively  separates  the  graph  structure  data

from  the  corresponding  vertex  state.  It  streams  the

shared  graph  structure  partitions  in  the  cache  and

triggers  parallel  processing  of  relevant  jobs.  Then,

vertex  states  are  pushed  for  efficient  convergence.

This  method reduces  data  access  costs  by  processing

multiple  jobs in a common order through amortizing

access  to  shared  subgraphs.  Furthermore,  the  ability

to  utilize  the  shared  graph  structure  data  for  multi-

ple jobs leads to a reduction in both cache usage and

memory consumption.

The  LTP  model  follows  these  steps.  Firstly,  the

CGP jobs load the shared graph structure partition in
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a specific  order.  Secondly,  the  relevant  jobs  are  trig-

gered for each loaded partition, allowing them to per-

form concurrent graph processing operations. Thirdly,

a state update is executed to update the vertex states

associated  with  that  partition  after  each  job  com-

pletes  its  graph  processing  operations.  Once  all  the

relevant jobs finish processing a partition, the updat-

ed state of the partition is pushed to ensure state syn-

chronization  across  vertices  in  different  partitions.

Lastly, once all active partitions have been processed

within the current iteration, each job proceeds to ini-

tiate  a  new iteration.  Different  CGP jobs  may be  at

varying iterations of their graph processing. By utiliz-

ing  state  pushing,  jobs  can  maintain  consistency

across various iterations.

In  order  to  optimize  throughput,  we  introduce  a

scheduling  algorithm  that  leverages  the  core-sub-

graph.  This  algorithm  strategically  determines  the

loading order of partitions, effectively enhancing over-

all performance. Initially, we identify a core subgraph

within  the  graph,  comprising  core  vertices  and  the

path  edges  between  vertices.  Next,  we  uniformly  di-

vide the graph based on the identified core subgraph.

Specifically, we group the edges of the core subgraph

into  several  partitions  of  equal  size.  The  remaining

edges are equally allocated to other partitions. By fre-

quently  loading  and  processing  the  core  vertices,  we

minimize  the  cost  of  loading early-converged vertices

within  the  same  partition.  This  approach  effectively

reduces  the  required  bandwidth  and  optimizes  cache

space consumption.

In  contrast  to  other  solutions,  the  CGraph  ap-

proach  provides  a  notable  2.31  times  increase  in

throughput  for  CGP  jobs.  This  improved  perfor-

mance is mainly due to the lower average data access

cost. 

3.2    Graph Processing on GPU

Previous  research  has  extensively  studied  itera-

tive directed graphs due to their broad applications in

real-world  scenarios[38, 39].  However,  significant  chal-

lenges  still  exist  in  processing  iterative  directed

graphs  on  GPUs.  Particularly,  the  vertices  within

each directed path are concurrently processed by mul-

tiple GPU threads and update their states in each it-

eration based on the previous states of  their  forward

neighbors.  If  the  dependencies  of  vertex  updates  are

unknown,  the  new  states  of  active  vertices  must  be

propagated to subsequent vertices over multiple itera-

tions. This problem affects the convergence speed and

incurs a higher cost regarding vertex state loading.

Fortunately,  through  numerous  experiments,  we

obtain two fundamental observations that reduce the

number of redundant vertex updates in the iterative-

directed  graph  algorithm.  Firstly,  when  vertices  are

processed  asynchronously  and  sequentially  along  the

directed  path  in  a  round,  the  new states  of  the  ver-

tices  can  be  utilized  to  process  other  vertices  within

the same round. Secondly, a significant number of di-

rected edges do not form loops, thereby enabling fur-

ther reduction of redundant processing.

Based  on  these  observations,  we  propose  an  effi-

cient  GPU-based  iterative-directed  graph  processing

system  called  DiGraph[21].  DiGraph  introduces  three

innovative  methods  to  leverage  vertex  dependencies

(in Fig.9).  First,  DiGraph  decomposes  a  directed

graph  into  disjoint  directed  paths,  treating  them  as

fundamental  units  for  parallel  processing.  This  ap-

proach  facilitates  the  propagation  of  vertex  states

along the directed paths, leading to improved conver-

gence  speed  and  better  data  utilization.  Second,  Di-

Graph  assigns  these  paths  to  the  GPUs  for  parallel

processing  based  on  the  graph's  topology.  The  sys-

tem  reduces  the  overhead  associated  with  reprocess-

ing by processing numerous paths only once and con-

verging them in topological order. Third, DiGraph in-

troduces  a  path  scheduling  strategy  on  streaming

multiprocessors to exploit the vertex dependencies be-

tween different paths fully.

However,  the  implementation  of  DiGraph  faces
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Fig.9.   Example  of  how  to  partition  a  directed  graph  into  di-
rected paths and obtain a dependency graph, where  denotes
the -th path and  denotes the -th vertex[21]. (a) Example of
a directed graph divided into four paths. (b) Diagram of depen-
dency relationships between paths. (c) Path dependency graph.
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two challenges. The first challenge is the skewness in

the  lengths  of  the  generated  paths.  Since  GPU

threads  within  a  warp  execute  instructions  in  lock-

step,  imbalanced  loading  can  occur  if  the  lengths  of

the  paths  vary  significantly.  To  address  this  chal-

lenge,  ensuring  that  each  GPU  thread  processes  an

approximately  equal  number  of  edges  is  essential.

Therefore, if one GPU thread is assigned a long path

for processing, other GPU threads are assigned multi-

ple  shorter  paths  to  maintain  load balance.  The sec-

ond  challenge  is  the  presence  of  dependencies  be-

tween the directed paths, which causes some paths to

be reprocessed. To tackle this problem, Digraph con-

structs a directed acyclic graph (DAG) for the depen-

dency graph of the paths. According to DAG's topo-

logical  order,  it  allows  the  asynchronous  dispatch  of

the paths to GPUs with low reprocessing costs. In de-

tail,  it  tries  to  asynchronously  dispatch  the  paths  to

GPUs for parallel processing layer by layer.

Our  experiments  demonstrate  that  DiGraph  sig-

nificantly improves performance over Gunrock[38] and

Groute[39].  Specifically,  DiGraph  achieves  perfor-

mance  gains  ranging  from  2.25  times  to  7.39  times

over Gunrock and from 1.59 times to 3.54 times over

Groute.  Furthermore,  when  the  number  of  GPUs  is

increased  from  1  to  4,  DiGraph  shows  a  significant

62.9%  reduction  in  graph  processing  time.  This  sur-

passes Gunrock's 46.3% reduction and Groute's 56.5%

reduction, demonstrating DiGraph's superior scalabili-

ty for larger graph processing tasks. 

3.3    Graph Processing Based on FPGA

Graph processing is a powerful technique for ana-

lyzing relationships in various domains. Hardware ac-

celeration  has  significantly  enhanced  graph  process-

ing  performance  in  the  past  decade.  FPGA  is  a

promising  candidate  for  graph  processing  among  the

different  hardware  platforms  due  to  its  parallelism,

power consumption, and flexibility advantages. There-

fore, substantial work[9] has been proposed on FPGA

to improve graph processing performance.

Most graph accelerators based on FPGA are limit-

ed  to  static  graphs,  which  do  not  change  over  time.

However, real-world graphs are often dynamic, mean-

ing  they  can  change  over  time.  Processing  dynamic

graphs  requires  two  fundamental  processes:  graph

computation  and  graph  update.  In  previous  work,

graph  computation  has  been  investigated  well,  while

the graph update has many problems to be addressed.

In  actuality,  graph  update  is  as  essential  as  graph

computation.

To bridge the gap between the two processes, we

design a graph update library[22], which could be read-

ily incorporated into accelerators for the static graph

to  process  the  dynamic  graph.  There  are  other  chal-

lenges in achieving high-efficiency graph updates. Due

to  abundant  real-world  graph  updates,  PEs  may

cause  off-chip  communication  overheads  for  retriev-

ing off-chip edge data. We observe that the actual dy-

namic  graph  has  spatial  similarity.  Thus,  we  apply

differential  data management to transform most ran-

dom off-chip edge access into on-chip access.

While differential data management fits well with

spatial  similarity,  there  are  at  least  two  challenges.

First,  we  need  to  precisely  determine  the  value  of

each  vertex  to  assign  its  related  edges  to  certain

memory  devices.  However,  it  is  challenging  to  mea-

sure  the  vertex  value  precisely  as  it  keeps  changing.

Second, applying the differential memory, on-chip and

off-chip memories both have duplicates with edge da-

ta. It is challenging to ensure data location efficiently

and precisely.

To  achieve  these  goals,  we  present  GraSU[22],  an

FPGA-based  graph  update  library.  GraSU  is  effec-

tive in utilizing spatial similarity. The architecture of

GraSU is shown in Fig.10. It comprises five parts: dy-

namic  graph  storage,  incremental  value  measurer,

edge updates dispatcher, edge updates handling logic,

and  value-aware  memory  manager.  We  offer  inter-

faces  of  GraSU  for  programmers  so  that  GraSU  can

be  incorporated  into  static  graph  accelerators  with-

out modifying the graph algorithm code.

For  the  first  challenge,  GraSU proposes  an equa-

tion  to  measure  the  vertex  value.  The  equation  dy-

namically  quantifies  vertex  values.  We  overlap  the

value  measurement  and  graph  computation  to  hide

the measurement overhead. For the second challenge,

GraSU implements value-aware memory access and a

high-value data identification mechanism.  We choose

UltraRAM  to  store  data  with  high  value  for  its

coarse-grained feature. We implement a bitmap-based

approach  for  balancing  memory  access  performance

and space consumption well.

We implement GraSU in Verilog and integrate it

into  AccuGraph with  only  11  lines  of  code  modifica-

tion. We perform evaluations on a Xilinx Alveo U250

card[22].  Compared  with  two  state-of-the-art  CPU-

based dynamic graph systems, Stinger and Aspen, the

update  throughput  of  GraSU  is  34.24x  and  4.42x

higher  on  average.  GraSU  achieves  an  average  in-

crease of 9.80x and 3.07x in overall latency. 
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3.4    Distributed Graph Processing

Distributed  graph  processing  with  the  asyn-

chronous  (AGP)  paradigm  faces  challenges  in  effi-

ciently propagating vertex states between vertices for

two  reasons.  First,  current  graph  partitioning  meth-

ods separate vertices along a path into different parti-

tions  for  load  balancing.  Consequently,  vertices  ini-

tially  connected  on  the  same  path  cannot  complete

their  processing  within  a  single  iteration.  In  other

words,  multiple  iterations  are  required  to  complete

the information propagation of all vertices on a path.

Second, the current execution modes of AGP, such as

round-robin and prioritized modes, have limitations in

efficient vertex state propagation. In the round-robin

mode, vertex states cannot propagate along the path.

On the other hand, the prioritized mode incurs a sig-

nificant  amount  of  additional  overhead  for  propaga-

tion.

After careful analysis, we obtain the following two

observations.  First,  the  culprit  of  these  problems  is

that the path information of the graph is not consid-

ered when determining the order of state propagation.

Second,  leveraging  the  cascading  effect  is  the  key  to

resolving this problem. When processing the graph, if

vertices  are  sequentially  processed  along  their  paths,

any changes in their state will promptly impact other

vertices on the same path. This means that by updat-

ing vertices along the path, the new state of a vertice

can be rapidly propagated to subsequent vertices.

Based on these observations, we propose the For-

ward  and  Backward  Sweeping  (FBS)  execution

paradigm[23] shown in Fig.11. Further, we develop an

asynchronous  graph  processing  system  named  FBS-

Graph[23],  specifically  designed  for  distributed  plat-

forms.  In  FBSGraph,  we  divide  the  graph  into  dis-

joint paths. Vertices along each path are processed se-

quentially  in  the  order  defined  by the  path,  with  al-

ternating  forward  and  backward  directions.  This

paradigm guarantees that vertex information is prop-

agated to both forward and backward neighbors.
  





   







Forward

Δ Δ Δ

ΔΔΔΔ

Backward

   

hi

Fig.11.   Forward  and  backward  sweeping  mode.  Forward  and
backward  propagation  follows  the  order  of  vertice  in  the
partition[23].
 

In  distributed  architectures,  each  node  processes

multiple paths in the graph. However, it causes signif-

icant  communication  overhead  due  to  the  dependen-

cies between these paths. To minimize this overhead,

FBSGraph  incorporates  a  local  buffering  mechanism

for  vertex  state  changes  targeting  the  same  remote

node.  The alterations in states  are  subsequently sent

to the remote node at set time intervals. When these

intervals are too brief,  it results in frequent transfers

of  state  values,  thereby  increasing  communication

overhead.  Conversely,  when  the  intervals  are  exces-
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sively  long,  the  changes  in  the  state  of  the  current

vertex are stored for an extended period, leading to a

slower  convergence.  In  order  to  strike  a  balance  be-

tween the communication cost and convergence speed,

we  have  introduced  the  concepts  of  automatic  time

intervals and FBS-Round time intervals, which assist

in determining the most suitable timing intervals. We

also  offer  a  number  of  optimization  schemes,  as  de-

tailed in FBSGraph[23].

When analyzing the total execution times of FBS-

Graph-SPO-1, Maiter-Pri, and Maiter-RR on a classi-

cal dataset, it is evident that FBSGraph-SPO-1 signif-

icantly outperforms Maiter-RR by reducing the execu-

tion  time  by  39.7%.  Additionally,  experiments  car-

ried out on a 1 024-core cluster demonstrate the excel-

lent scalability of our approach. 

4    Emerging  Hardware/Software  Co-Designs

and Beyond

The  rapid  advancements  in  Big  Data  and  Artifi-

cial  Intelligence  have  introduced  new  challenges  for

traditional  graph  processing.  First,  the  relationships

between data have become more complex, resulting in

valuable  information  embedded  in  these  associations.

To  extract  meaningful  information  from  complex

graph  data,  novel  graph  processing  workloads  have

emerged,  including  graph  construction,  hypergraph

processing, and heterogeneous graph processing. Con-

sequently, the requirements for graph processing have

become increasingly diverse and complex.

Furthermore, emerging hardware technologies,  in-

cluding  Processing  In/Near  Memory  Architecture

(PIM/PNM),  offer  significant  computing  and  memo-

ry  resources  that  can  alleviate  the  bottlenecks  in

graph  processing.  PIM/PNM  architectures  can  re-

duce data loading latency, making them well-suited to

address  the  challenges  of  graph  processing.  These

hardware advancements provide new avenues for im-

proving the efficiency and performance of  graph pro-

cessing workloads. However, effectively utilizing these

hardware technologies can be a non-trivial task.

In  this  section,  we  present  our  contributions  to

processing  complex  graph  workloads  and  efficiently

utilizing emerging hardware architectures. 

4.1    Emerging Graph Processing

This  subsection introduces  our  work on emerging

graph  processing  in  the  order  of  graph  construction,

hypergraphs, and heterogeneous graphs. 

4.1.1    Graph Construction

O(dn2)

The k-nearest  neighbor  graph  (kNNG)  is  widely

used  in  databases,  large  language  models,  and  other

domains.  However,  constructing  an  exact kNNG  is

time-consuming,  with  a  time  complexity  of ,

where d represents  the  dimensionality  of  the  feature

vectors  and n denotes  the  total  number  of  vertices.

When  constructing  large-scale kNNG,  the  cost  be-

comes  unacceptable.  Fortunately,  many  applications

can tolerate some loss of accuracy, allowing a signifi-

cant  reduction  in  construction  cost  by  adopting  ap-

proximate  graph  structures.  As  a  result,  recent  re-

search has focused on efficient methods for construct-

ing approximate kNNGs. Among these methods, NN-

descent[40] has emerged as the most popular approach.

The NN-descent algorithm optimizes the construc-

tion  method  based  on  the  idea  that  ``My  neighbor's

neighbor may also be my neighbor." It starts by ran-

domly initializing neighbors for each vertex and then

iteratively  refines  the  graph  structure  until  conver-

gence. The iteration consists of three stages: sampling,

computation, and update. During the sampling stage,

a subset of neighbors is sampled for each vertex, effec-

tively reducing redundant computations. The compu-

tation  stage  begins  once  the  sampling  stage  is  com-

pleted  for  all  vertices.  In  this  phase,  the  algorithm

computes  the  similarity  between  the  sampled  neigh-

bors of each vertex. Finally, in the update phase, the

algorithm  updates  the  neighbor  lists  of  the  corre-

sponding  vertices  based  on  the  computed  similarity

values.

We  analyze  the  time  distribution  of  the  three

stages  in  NN-descent  and  find  that  the  computation

stage is the primary bottleneck in the algorithm. This

stage involves a significant amount of high-dimension-

al  vector  computation.  In  particular,  the  computa-

tion stage is not efficient enough in terms of computa-

tion and memory access. First, the phase sequentially

processes  the  source  vertices  and  computes  the  simi-

larity  between  the  target  neighbors  in  each  source

vertex.  Unfortunately,  this  sequential  vertex schedul-

ing  scheme  leads  to  many  random  memory  accesses

due  to  the  low  overlap  between  sequential  vertex

neighborhoods.  Moreover,  many  vector  computations

become useless, resulting in a severe waste of compu-

tational resources.

To  address  the  above  challenges,  we  design  a

hardware accelerator called FNNG[24], as described in

Fig.12. FNNG comprises three modules: the sampling,

computation,  and  update  modules,  which  correspond
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to  NN-descent's  three  stages.  Our  accelerator  design

is  based  on  two  observations.  First,  vertices  in  close

spatial  proximity often share parts of  neighborhoods.

Therefore,  we  introduce  a  block-based  scheduling

method  that  prioritizes  the  processing  of  vertices

within  a  specific  spatial  region.  This  approach  en-

hances  data  reuse  and  reduces  off-chip  memory  ac-

cesses.  In  addition,  a  lot  of  vector  computations  do

not require precise results. Therefore, we propose the

Useless  Computation  Aborting  method  to  terminate

unnecessary  computations  for  certain  dimensions  of

feature vectors, resulting in significant time savings.

We  evaluate  FNNG's  performance  on  five  classic

datasets and validate it on the Xilinx Alveo U280 ac-

celerator card[25]. The experiments show that our solu-

tion  achieves  approximately  190x  and  2.1x  perfor-

mance  improvements  over  the  latest  CPU and  GPU

solutions,  respectively,  while  maintaining  similar

graph accuracy. 

4.1.2    Hypergraph Processing

A hypergraph  is  a  complex  graph  model  that  al-

lows edges to connect multiple vertices, making it ca-

pable  of  representing  complex  multilateral  relation-

ships  among  numerous  entities.  As  it  is  powerful  to

capture  intricate  relationships,  various  fields  widely

adopt  hypergraphs  for  data  analysis,  which  urges  ef-

forts  to  enhance  the  performance  of  hypergraph pro-

cessing techniques.

The  early  research  used  index-ordered  scheduling

to  execute  bipartite  edge  tasks.  Index-ordered

scheduling processes  the active  hyperedges  in  the or-

der of indices. While the scheduling is easy to under-

stand,  it  typically  results  in  a  high  cache  miss  rate.

ChGraph[41],  one of the best hypergraph systems, ex-

ploits the vertex locality between two hyperedges and

takes  chains  to  schedule  the  order  of  hyperedges.

However,  ChGraph  cannot  exploit  more  complex  in-

ter-chain locality. Thus, the scheduling will lead to re-

dundant  access  and  bandwidth  underutilization.

Those two issues cause memory subsystem inefficiency.

To take  advantage  of  data  locality,  we  present  a

data-centric  Load-Trigger-Reduce  (LTR)  execution

model,  which  is  difficult  in  task-centric  hyperedge

processing  systems.  We  decompose  the  computation

phases into three processes:  hypergraph loading, task

execution  triggering,  and  temporary  value  reduction.

In  a  data-centric  model,  once  vertex  data  is  loaded,

corresponding tasks are invoked.

While LTR brings benefits in data locality, its im-

plementation  still  has  several  challenges.  In  the  load

step,  due  to  recurrent  intersection,  operations  will

cause  much  inefficient  memory  access.  Worse,  the

static vertex data partition strategy still  leads to ex-

cessive data loading. In the reduce step, heavy atom-

ic  protection  overhead  is  introduced  to  resolve  data

conflicts due to multiple simultaneous updates to the

same  data.  Although  the  CPU  can  benefit  from  our

data-centric model,  its performance is constrained by

the architecture.

The  above  discussions  prompt  us  to  design  the

hardware  accelerator,  XuLin[25].  As  shown  in Fig.13,

XuLin consists of five parts: Loader, Translator, Trig-
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ger,  Processor,  and Reducer.  XuLin  uses  a  key-value

table to eliminate intersection operations. XuLin also

takes adaptive data loading and chunk merging mech-

anisms to reduce data transfer. We advocate priority-

based differential data reduction hardware, which can

minimize the cost of resolving data conflicts.

We perform our evaluations and experiments on a

Xilinx Alveo U250 card and a simulator. As shown in

Fig.14,  compared  with  Hygra  and  ChGraph  on  five

graphs  with four  graph algorithms,  the  running time

of  XuLin is  20.47x and 8.77x shorter  on average,  re-

spectively. 

4.1.3    Heterogeneous Graph Processing

Existing computer architecture research for graph

neural  networks  has  mainly  focused  on  homogeneous

graphs  containing  only  one  vertex  and  edge  type.

However,  in  real  life,  heterogeneous  graphs  contain-

ing  multiple  vertex  and  edge  types  are  much  more

common  and  can  better  represent  information  than

homogeneous  graphs.  The  field  of  graph  neural  net-

works  focusing  on  heterogeneous  graphs  has  many

problems  that  have  yet  to  receive  much  attention.

This  subsection  presents  our  efforts  in  accelerating

metapath-based heterogeneous graph neural networks

(HGNNs).

Metapath  is  a  critical  concept  in  heterogeneous

graph  neural  networks  to  represent  an  ordered  se-

quence of different types of vertices. Fig.15 depicts an

example  of  an  academic  heterogeneous  graph,  where

Author-Paper-Conference-Paper-Author  (APCPA)

and  Author-Paper-Author  (APA)  are  the  defined

metapaths  expressing  different  semantic  information,

APA  expresses  the  two  co-authors  of  a  paper,  and

APCPA  indicates  both  authors  have  presented  pa-

pers  at  the  same  conference.  Compared  with  tradi-

tional graph neural networks that aggregate informa-

tion  directly  based  on  neighboring  vertices,  HGNNs

are more complex to  aggregate  information based on

metapaths.

HGNNs are effective for representing information,

but  they  face  several  performance  bottlenecks.  First,

the  preprocessing  phase  of  HGNNs  involves  metap-
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ath  instance  matching,  which  generates  multiple  in-

stances starting from a single vertex. This phase can

be  time-consuming  and  requires  significant  storage

overhead.  Second,  vertex  feature  aggregation  along

metapath  instances  involves  redundant  computations

due  to  multiple  identical  vertices  among  instances.

This results in repeated aggregations. Finally, HGNNs

encounter memory bottlenecks due to irregular memo-

ry accesses. This motivates us to leverage near-memo-

ry  processing  to  overcome  the  memory  bottleneck  of

HGNNs,  which  offers  high  memory  bandwidth,  low

data access latency, and lower energy consumption[8, 10].

We  propose  MetaNMP[26] for  HGNNs  to  address

the  above  bottlenecks.  MetaNMP introduces  a  novel

computational  paradigm  called  ``cartesian  product-

like"  to  complete  metapath  instance  matching  effi-

ciently  at  runtime.  It  eliminates  the  need  for  a  pre-

processing  phase  and  avoids  the  overhead  of  storing

metapath  instances.  Moreover,  most  of  the  redun-

dant  computations  among  meta-path  instances  are

derived from that these instances come from the same

vertex.  Instead  of  independently  aggregating  each

metapath  instance,  MetaNMP aggregates  vertex  fea-

tures along the direction of metapath instance deriva-

tion,  minimizing  redundant  computations.  Finally,

MetaNMP  incorporates  two  customized  modules  as

near-memory  computing  units  to  accelerate  HGNNs.

The metapath instance management module, integrat-

ed  at  the  DIMM-level,  generates  metapath  instances

using  the  cartesian  product  and  monitors  redundant

computations.  The  feature  aggregation  module,  inte-

grated  at  the  rank  level,  handles  feature  aggregation

based on metapath instances.

Fig.16 displays  MetaNMP's  running  time.  Com-

pared  with  CPU,  GPU,  HyGCN,  AWB-GCN,  and

RecNMP,  MetaNMP  achieves 4 225.51x,  415.18x,

48.96x, 78.34x and 17.23x improvements, respectively. 

4.2    Processing In/Near Memory

This subsection describes the design of graph anal-

ysis  and  graph  learning  on  ReRAM  and  then  de-

scribes graph processing's design on CMOS. 

4.2.1    ReRAM-Based Graph Processing

Resistive Random Access Memory (ReRAM) is an

exceptionally  promising  non-volatile  memory  that

achieves data storage through resistance alteration[42].

It  consists  of  individual  cells  with  a  metal-insulator-

metal  structure  and  an  oxide  layer  between

electrodes[43].  These  cells  are  arranged  in  a  crossbar

configuration  to  optimize  spatial  utilization,  allowing

for in-situ Matrix-Vector Multiplication (MVM) oper-
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ations[43].  Specifically,  once  the  input  data  vector  is

loaded onto the crossbar's wordlines,  the correspond-

ing output results  can be computed quickly within a

single cycle using the bitlines[42].

Graph  analysis  applications  can  be  viewed  as

MVM  computations[44],  offering  the  opportunity  for

accelerated  processing  using  ReRAM.  In  this  work,

Spara[27] introduces a novel graph analysis accelerator

that  harnesses  the  advantages  of  ReRAM and  effec-

tively utilizes parallelism among memory banks.

To  exploit  inter-bank  parallelism,  Spara  employs

the  Random-Wordline-Consecutive-Bitline  (RWCB)

vertex mapping scheme.  This  approach divides  edges

into separate groups and assigns each group to a spe-

cific  memory  bank,  preventing  target  vertices  from

overlapping  within  a  bank.  Spara  introduces  two

methods  to  support  this  vertex  mapping:  the  Cross-

bar-Bounded  Graph  Reordering  method,  which  opti-

mizes crossbar population, and the Wordline-Cut Re-

organization  method,  which  handles  sparsity  issues

caused by vertex activation.

Within  each  memory  bank,  Spara  adopts  a  hy-

brid  vertex  mapping  strategy  that  incorporates  both

RWCB  and  random-wordline-random-bitline

(RWRB)  mappings,  thereby  harnessing  the  advan-

tages  offered  by  both  mapping  schemes.  To  accom-

plish  this,  Spara  designs  a  wordline  dispatcher  that

dynamically  detects  the  density  of  each  wordline.

Wordlines with low density are temporarily stored in

a function array during runtime and processed based

on the RWRB vertex mapping scheme. On the other

hand,  dense  wordlines  are  directly  loaded  into  the

crossbar  and  aggregated  using  the  RWCB  vertex

mapping scheme, thereby striking an optimal balance

between cost and efficiency. 

4.2.2    ReRAM-Based Graph Learning

Graph  Convolutional  Network  (GCN)  has  rec-

ently  gained  considerable  attention  among  research-

ers[45–47]. Like graph analysis, GCN's combination and

aggregation  stages  can  be  effectively  regarded  as

MVM computations[48],  rendering it  a  suitable  candi-

date  for  acceleration  using  ReRAM.  An  intuitive

strategy  entails  leveraging  existing  ReRAM-based

neural network or graph analysis techniques to accel-

erate GCN's combination and aggregation stages.

However,  applying  these  techniques  still  presents

challenges.  First,  GCN requires  simultaneous  consid-

eration of dense weight matrices and sparse graph da-

ta  during  processing.  However,  directly  mapping

sparse graph data onto the crossbar results in a signif-

icant  number  of  idle  cells,  thereby  hindering  the

achievement of  optimal  hardware utilization.  Second,

compared with traditional  graph data,  GCN exhibits

higher-dimensional  vertex  features,  typically  ranging

from 100 to 1 000. This characteristic  further exacer-

bates  the  inefficiencies  encountered  during  computa-

tions.

To tackle these challenges, a ReRAM-based GCN

accelerator  named  REFLIP[28] is  proposed,  encom-

passing three design levels.  Firstly,  by leveraging the

crossbar structure of ReRAM, REFLIP devises a uni-

fied  hardware  architecture.  This  architecture  can  ef-

fectively  fulfill  the  computational  requirements  of

GCN  aggregation  and  combination  stages.  Secondly,

REFLIP  employs  distinctive  mapping  strategies  to

maximize  efficiency.  This  includes  utilizing  a  layer-

wise  weight  mapping  strategy  during  the  combina-

tion  stage  to  address  the  limitations  of  crossbar  re-

sources and a flipped mapping strategy during the ag-

gregation stage to reduce the proportion of inefficient

computations.  Lastly,  REFLIP further  enhances  per-

formance  through  software/hardware  co-optimiza-

tions.  On the  software  level,  REFLIP employs  a  hy-

brid  execution  model  to  mitigate  data  movement

costs  and  enhance  computational  efficiency.  On  the

hardware  level,  REFLIP  introduces  specialized  hard-

ware  units  that  leverage  GCN  locality  to  minimize

the  number  of  conversions  between  digital  and  ana-

log signals. 

4.2.3    Heterogeneous PIM-Based Graph Processing

In  practical  scenarios,  modern  graph  analytics

workloads often exhibit irregular patterns,  with most

vertices  having  only  a  few  edges.  When  these  pat-

terns are mapped onto tightly coupled ReRAM cross-

bars,  many  ReRAM  cells  remain  unutilized  as  they

store  zero  values.  This  results  in  unnecessary  resis-

tance writes and analog-signal conversions, leading to

additional  performance  and  energy  costs.  Unfortu-

nately, these costs cannot be easily offset by the bene-

fits gained from employing ReRAM.

Digital  CMOS-based PIM is  a  promising solution

to the challenges posed by analog ReRAM PIM. This

technology  integrates  digital  processing  units  within

3D-stacked  memory's  logic  layer.  It  enables  flexible

computation at a finer granularity of scalar instead of

the matrix level of the ReRAM crossbar. Additional-
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ly,  the  frequency  of  the  CMOS-based  PIM  is  often

10x–100x higher than the ReRAM crossbar. However,

the  parallelism  of  the  CMOS-based  PIM  is  limited

compared  with  the  ReRAM  crossbar,  as  it  performs

one operation at a time.

We  propose  Hetraph[29],  a  heterogeneous  process-

ing-in-memory  architecture.  Hetraph  integrates  both

ReRAM-based  and  CMOS-based  PIM  units  within

the same logic layer of a 3D die-stacked memory de-

vice.  This  architecture  aims  to  support  energy-effi-

cient and high-performance graph processing. Howev-

er, the integration of two different types of PIM units

causes high synchronization and communication over-

head  in  the  heterogeneous  architecture.  Moreover,  a

key problem arises in determining which PIM unit is

best suited for executing each subgraph to achieve op-

timal efficiency. The non-deterministic nature of acti-

vation makes it challenging to identify the valid edges

associated with active vertices.

To  address  the  challenges,  Hetraph  provides  a

hardware  heterogeneity-aware  mechanism  and  a

workload  offloading  approach.  The  hardware  hetero-

geneity-aware  execution  model  explores  an  optimal

tradeoff  between  communication  overheads  and  syn-

chronization.  In  particular,  this  model  merges  inter-

mediate  results  to  minimize  data  synchronizations

and  reuses  data  to  reduce  communication  overhead.

Additionally,  Hetraph  identifies  subgraphs  with  no

more  than  one  valid  edge,  deemed  inefficient  for

ReRAM-based  PIM.  It  develops  a  workload  offload-

ing  mechanism that  efficiently  identifies  and  offloads

each subgraph to the most  suitable  PIM to optimize

efficiency. 

5    Conclusions

This  paper  systematically  describes  our  work  in

graph  processing,  focusing  on  three  critical  perspec-

tives: hardware accelerator, software engine, and nov-

el graph task/architecture.

As for the hardware accelerator design, we identi-

fied data conflicts as a significant computational bot-

tleneck in graph processing. To address this challenge,

we developed AccuGraph as  a  solution.  We also  dis-

covered  that  memory  bandwidth  limits  the  perfor-

mance  of  graph  processing.  To  overcome  this  limita-

tion, we took advantage of HBM and developed Scal-

aBFS2. Finally, we found another bottleneck in exist-

ing graph processing accelerators: scalability, and pre-

sented ScalaGraph to overcome it.

As  for  the  software  engine,  we  designed six  com-

ponents:  HotGraph,  GraphFly,  CGraph,  DiGraph,

GraSu,  and  FBSGraph.  These  components  are  tai-

lored for hardware platforms, including CPUs, GPUs,

FPGAs,  and  distributed  platforms.  Each  component

has been carefully designed based on its hardware ar-

chitecture to optimize performance and efficiency.

Finally,  we  explored  the  domains  of  emerging

workloads  and  hardware  architectures.  We presented

several innovative solutions for emerging graph work-

loads, including FNNG, XuLin, and MetaNMP. These

approaches  demonstrate  our  progress  on  emerging

graph  processing  workloads  and  validate  their  effec-

tiveness. For emerging hardware architectures, we de-

veloped  Spara,  ReFlip,  Hetraph,  and  other  notable

designs. These contributions demonstrate their poten-

tial for graph processing on emerging hardware archi-

tectures.

Throughout  the  paper,  we  aimed  to  provide  a

comprehensive overview of our work and highlight our

significant  contributions  to  hardware  architecture,

software system design, and the development of nov-

el applications for graph processing. 
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