
Towards High-Performance Graph Processing: From a Hardware/Software Co-Design Perspective

Liao Xiao-Fei, Zhao Wen-Ju, Jin Hai, Yao Peng-Cheng, Huang Yu, Wang Qing-Gang, Zhao Jin, Zheng Long, Zhang Yu, Shao Zhi-Yuan

View online: http://doi.org/10.1007/s11390-024-4150-0

Articles you may be interested in

A Survey on Graph Processing Accelerators: Challenges and Opportunities

Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei Liao, Hai Jin

Journal of Computer Science and Technology. 2019, 34(2): 339-371 http://doi.org/10.1007/s11390-019-1914-z

Ad Hoc File Systems for High-Performance Computing

André Brinkmann, Kathryn Mohror, Weikuan Yu, Philip Carns, Toni Cortes, Scott A. Klasky, Alberto Miranda, Franz-Josef

Pfreundt, Robert B. Ross, Marc-André Vef

Journal of Computer Science and Technology. 2020, 35(1): 4-26 http://doi.org/10.1007/s11390-020-9801-1

Interference Analysis of Co-Located Container Workloads: A Perspective from Hardware Performance Counters

Wen-Yan Chen, Ke-Jiang Ye, Cheng-Zhi Lu, Dong-Dai Zhou, Cheng-Zhong Xu

Journal of Computer Science and Technology. 2020, 35(2): 412-417 http://doi.org/10.1007/s11390-020-9707-y

FDGLib: A Communication Library for Efficient Large-Scale Graph Processing in FPGA-Accelerated Data Centers

Yu-Wei Wu, Qing-Gang Wang, Long Zheng, Xiao-Fei Liao, Hai Jin, Wen-Bin Jiang, Ran Zheng, Kan Hu

Journal of Computer Science and Technology. 2021, 36(5): 1051-1070 http://doi.org/10.1007/s11390-021-1242-y

Mochi: Composing Data Services for High-Performance Computing Environments

Robert B. Ross, George Amvrosiadis, Philip Carns, Charles D. Cranor, Matthieu Dorier, Kevin Harms, Greg Ganger, Garth Gibson,

Samuel K. Gutierrez, Robert Latham, Bob Robey, Dana Robinson, Bradley Settlemyer, Galen Shipman, Shane Snyder, Jerome

Soumagne, Qing Zheng

Journal of Computer Science and Technology. 2020, 35(1): 121-144 http://doi.org/10.1007/s11390-020-9802-0

Developer Role Evolution in Open Source Software Ecosystem: An Explanatory Study on GNOME

Can Cheng, Bing Li, Zeng-Yang Li, Yu-Qi Zhao, Feng-Ling Liao

Journal of Computer Science and Technology. 2017, 32(2): 396-414 http://doi.org/10.1007/s11390-017-1728-9

JCST Homepage: https://jcst.ict.ac.cn
SPRINGER Homepage: https://www.springer.com/journal/11390
E-mail: jcst@ict.ac.cn
Online Submission: https://mc03.manuscriptcentral.com/jcst

https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-024-4150-0
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-019-1914-z
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9801-1
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9707-y
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-021-1242-y
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-020-9802-0
https://jcst.ict.ac.cn/en/article/doi/10.1007/s11390-017-1728-9
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

JCST Official
WeChat Account

JCST WeChat
Service Account

Twitter: JCST_Journal
LinkedIn: Journal of Computer Science and Technology

Towards High-Performance Graph Processing: From a
Hardware/Software Co-Design Perspective

Xiao-Fei Liao1, 2, 3 (廖小飞), Distinguished Member, CCF, Member, IEEE
Wen-Ju Zhao1, 2, 3 (赵文举), Student Member, CCF
Hai Jin1, 2, 3, * (金　海), Fellow, CCF, IEEE, Life Member, ACM
Peng-Cheng Yao1, 2, 3, 4 (姚鹏程), Member, CCF, Yu Huang1, 2, 3, 4 (黄　禹), Member, CCF
Qing-Gang Wang1, 2, 3, 4 (王庆刚), Member, CCF, Jin Zhao1, 2, 3, 4 (赵　进), Member, CCF, ACM, IEEE
Long Zheng1, 2, 3, 4 (郑　龙), Senior Member, CCF, Member, ACM, IEEE
Yu Zhang1, 2, 3, 4 (张　宇), Senior Member, CCF, Member, ACM, IEEE
and Zhi-Yuan Shao1, 2, 3, 4 (邵志远), Member, CCF

1 National Engineering Research Center for Big Data Technology and System, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, China

2 Services Computing Technology and System Laboratory, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, China

3 Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China

4 Zhejiang Lab, Hangzhou 311121, China

E-mail: xfliao@hust.edu.cn; wjzh@hust.edu.cn; hjin@hust.edu.cn; pcyao@hust.edu.cn; yuh@hust.edu.cn; qgwang@hust.edu.cn
zjin@hust.edu.cn; longzh@hust.edu.cn; zhyu@hust.edu.cn; zyshao@hust.edu.cn

Received January 26, 2024; accepted March 3, 2024.

Abstract Graph processing has been widely used in many scenarios, from scientific computing to artificial intelligence.

Graph processing exhibits irregular computational parallelism and random memory accesses, unlike traditional workloads.

Therefore, running graph processing workloads on conventional architectures (e.g., CPUs and GPUs) often shows a signifi-

cantly low compute-memory ratio with few performance benefits, which can be, in many cases, even slower than a special-

ized single-thread graph algorithm. While domain-specific hardware designs are essential for graph processing, it is still

challenging to transform the hardware capability to performance boost without coupled software codesigns. This article

presents a graph processing ecosystem from hardware to software. We start by introducing a series of hardware accelera-

tors as the foundation of this ecosystem. Subsequently, the codesigned parallel graph systems and their distributed tech-

niques are presented to support graph applications. Finally, we introduce our efforts on novel graph applications and hard-

ware architectures. Extensive results show that various graph applications can be efficiently accelerated in this graph pro-

cessing ecosystem.

Keywords graph processing, hardware accelerator, software system, high performance, ecosystem

1 Introduction

Graphs are potent data structures capable of mod-

eling complex relationships. They have been used in

various domains, including but not limited to recom-

mendation systems, brain analysis, energy manage-

ment, and cybersecurity[1–6]. To fully exploit the rich

information inherent in graphs, many researchers are

dedicating their efforts to graph processing, which is

gaining popularity in the community.

Cover Article

This work was supported by the National Key Research and Development Program of China under Grant No. 2023YFB-
4502300.

*Corresponding Author

Liao XF, Zhao WJ, Jin H et al. Towards high-performance graph processing: From a hardware/software co-design per-

spective. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39(2): 245−266 Mar. 2024. DOI: 10.1007/s11390-

024-4150-0

©Institute of Computing Technology, Chinese Academy of Sciences 2024

https://doi.org/10.1007/s11390-024-4150-0
https://doi.org/10.1007/s11390-024-4150-0
https://doi.org/10.1007/s11390-024-4150-0
https://doi.org/10.1007/s11390-024-4150-0
https://doi.org/10.1007/s11390-024-4150-0
https://doi.org/10.1007/s11390-024-4150-0
https://doi.org/10.1007/s11390-024-4150-0

However, efficient processing of large graphs is

challenging. In particular, graphs have few connec-

tions between nodes, and the number of edges con-

nected to a node follows a power-law distribution, re-

sulting in extreme sparsity and irregularity. These

characteristics lead to challenges such as computa-

tion conflict, random memory access, and irregular

communication when processing graph workloads.

These challenges significantly diminish the efficiency

of graph processing[7–16].

We propose an integrated graph processing

ecosystem to achieve the full potential of graph pro-

cessing. As shown in Fig.1, this ecosystem provides

comprehensive solutions for graph processing, from

hardware design to software system. These solutions

are designed to achieve a high throughput, low laten-

cy, low power, and scalable graph processing architec-

ture.

In terms of hardware accelerators design, we pro-

pose a family of graph hardware accelerators based on

different memory architectures. As shown in Table 1,

we first introduce AccuGraph[9], a pioneering solution

that addresses the graph data conflict problem based

on DRAM. Furthermore, we explore graph accelera-

tors based on high-bandwidth memory (HBM) and

design ScalaBFS2[17] and ScalaGraph[13], which aim to

improve the efficiency of HBM and the scalability of

processing elements (PEs), respectively.

In terms of graph software systems, our focus lies

in optimizing the efficiency of graph processing so

that they fully utilize different hardware resources. As

shown in Table 1, our software libraries include Hot-

Graph[18]/GraphFly[19]/CGraph[20], DiGraph[21], Gra-

Su[22], and FBSGraph[23], corresponding to CPU,

GPU, FPGA, and distributed platforms, respectively.

They are dedicated to enhancing the parallelism and

locality of graph processing systems by carefully de-

signing data structures and scheduling strategies.

Furthermore, recent years have witnessed a surge

in novel graph processing workloads and architec-

tures, which pose new challenges to existing graph

processing architectures. To tackle emerging work-

loads, including graph construction, hypergraphs, and

heterogeneous graphs, we propose hardware-software

co-design solutions, such as FNNG[24], XuLin[25], and

MetaNMP[26]. To harness the potential of emerging

architectures like Processing In/Near Memory, we

propose innovative solutions based on ReRAM and

CMOS, including Spara[27], ReFlip[28], and Hetraph[29].

As shown in Table 1, these solutions enhance data

processing efficiency and parallelism, leading to a sig-

nificant improvement in graph processing efficiency.

The remaining sections provide detailed introduc-

tions. In Section 2, we detail the design of hardware

accelerators. In Section 3, we introduce graph soft-

ware systems. In Section 4, we first discuss the pro-

cessing of emerging graph workloads and then de-

scribe how we fully utilize the emerging hardware. Fi-

CPU/GPU/FPGA/ASIC/PIM SmartNIC

Graph Hardware Accelerator

Hardware HBM ...

HBM-Based Version

Graph Software System

Heterogeneous
Hardware

ReRAM

Emerging Architecture

CMOS

Emerging Graph Workloads

Graph Construction

BFS, SSSP,

PageRank, etc.

Graph Algorithms

and Applications
...Graph

Mining

Recommendation

System

AI

Application
Database

Hypergraph Processing Heterogeneous Graph Processing

Distributed Graph
Engine

FPGA-Based Graph

Engine

GPU-Based Graph

Engine

CPU-Based Graph

Engine

DRAM-Based Version

Fig.1. Graph processing ecosystem. BFS: Breath First Search; SSSP: Single Source Shortest Path.

246 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

nally, in Section 5, we conclude our work with a sum-

mary.

2 Graph Hardware Accelerator

Several efforts have been dedicated to improving

the performance of graph processing. However, be-

cause of the irregularity of graphs, general-purpose

processors (e.g., CPUs/GPUs) suffer from severe com-

putational conflicts, memory inefficiencies, and poor

scalability when running graph applications. This sec-

tion gives solutions to the above problems with differ-

ent memories.

2.1 AccuGraph: A DRAM-Based Version

In the past few years, there has been substantial
research on domain-specific accelerators to improve

memory performance for irregular graph data[30, 31].

Despite these research efforts, graph applications still

suffer from suboptimal performance due to irregular

computation patterns. When traversing the graph

topology, multiple vertices might access the same ver-

tex simultaneously, resulting in substantial data con-

flicts.

Existing graph accelerators adopt atomic struc-

tures (e.g., content addressable memory[30]) to sequen-

tialize the process of conflicting operations. While the

atomic structures ensure the correctness of execution,

they significantly degrade performance since only one

conflicting operation can be processed at a time.

From our experiment, existing graph accelerators stall

in at most 40% of the time due to atomic protection.

Fortunately, conflicting operations in typical

graph applications have two significant characteris-

tics. First, the atomic operations performed on differ-

Table 1. Graph Processing Ecosystem: From Hardware Accelerators, Software Systems to Emerging Graph Workloads and Archi-
tectures

Categorization Name Algorithm Challenge Speedup (Baseline)

Hardware
accelerator

DRAM AccuGraph[9] BFS, SSSP,
PageRank, etc.

How to design an efficient accumulator
for parallelizing the conflicting data
accesses for vertex updates

3.14x (ForeGraph)

HBM ScalaBFS2[17] BFS How to utilize HBM bandwidth
efficiently in FPGAs

1.34x–2.40x (GPU-
Gunrock)

ScalaGraph[13] BFS, SSSP,
PageRank, etc.

How to realize a distributed on-chip
memory in a graph accelerator with HBM

3.20x (GPU-
Gunrock)

Software
system

CPU HotGraph[18]

(static)
BFS, SSSP,
PageRank, etc.

How to accelerate cross-partition status
updates and convergence

5.22x (Maiter)

GraphFly[19]

(dynamic)
BFS, SSSP,
PageRank, etc.

How to reuse the data accessed through
refinement in recomputation

5.81x (KickStarter)

CGraph[20]

(concurrent)
BFS, SSSP,
PageRank, etc.

How to leverage the correlations between
CGP jobs to improve throughput

4.32x (Nxgraph)

GPU DiGraph[21] BFS, SSSP,
PageRank, etc.

How to make iterative directed graph
processing converge faster and have lower
data access costs

3.54x (Groute)

FPGA GraSu[22] BFS, SSSP,
PageRank, etc.

How to build dynamic graph accelerators
based on existing static graph
accelerators with minimal costs

34.24x (Stinger)

Distributed FBSGraph[23] BFS, SSSP,
PageRank, etc.

How to accelerate vertex state
propagation with low overhead on
distributed platforms

1.70x (Maiter)

Emerging graph
workloads and
architecture

Emerging
graph
workloads

FNNG[24] NN-Descent How to decrease the memory and
computation overhead of NN-Desent from
the architectural level

2.10x (GNND)

XuLin[25] PageRank, BC,
CC, etc.

How to minimize off-chip communication
traffic in hypergraph processing

8.77x (ChGraph)

MetaNMP[26] HGNN, GNN How to reduce the large memory
footprint and severe redundant
computation in HGNN

415.18x (GPU-
HGNN)

Emerging
architecture

Spara[27] BFS, SSSP,
PageRank, etc.

How to reduce inefficient computation in
graph processing with ReRAM-based
accelerators

8.21x (GraphR)

ReFlip[28] GCN How to use crossbar-based PIM to unify
GCN executions

15.63x (AWB-
GCN)

Hetraph[29] BFS, SSSP,
PageRank, etc.

How to efficiently use heterogeneous PIM
to accelerate graph processing tasks

1.56x (GPU-
Gunrock)

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 247

ent edges in the graph follow the commutative and

associative law. Second, the atomic operations used to

update the conflicting vertex's value are simple and

executed repeatedly. These two observations intro-

duce the opportunity to eliminate deficiency caused

by the conflict updates inside the vertex.

Based on these observations, we present Accu-

Graph, a novel graph accelerator that processes con-

flicting operations in parallel. As shown in Fig.2(a),

multiple conflicting operations are simultaneously

scheduled to improve computation efficiency. A spe-

cialized accumulator is provided to avoid potential

data hazards by merging all operations targeting the

same vertex into one operation. Note that these merg-

ing operations are not always addition. For example,

in SSSP, this accumulator performs a min operation,

while in PageRank, it performs an addition operation.

But we uniformly call it an accumulator. AccuGraph

significantly reduces pipeline stalls and achieves near-

ly fully pipelined computation by parallelizing con-

flicting vertex updates by using this accumulator.

Nevertheless, designing this efficient accumulator

to merge operations is difficult because of two chal-

lenges. First, multiple low-degree vertices are expect-

ed to process simultaneously for efficient parallelism.

However, establishing a definite mapping rule from

inputs to outputs proven to be tough because the de-

grees of vertices vary dynamically. Second, especially

for high-degree vertices with numerous edges, process-

ing multiple edges simultaneously becomes challeng-

ing due to the limited width of the accumulator.

For the first challenge, we find that the low-de-

pj =
∑

1⩽i⩽N

ai × bij 1 ⩽ j ⩽ M pj

ai i

bij ai j

gree vertex accumulation is a variation of the prefix-

sum problem. Let us assume N update values belong-

ing to M vertices must be processed at the same time.

This challenge can be described by

, , where denotes the accumulat-

ed result of vertex j. presents the update value ,

and indicates whether belongs to vertex . In

other words, the low-degree vertex accumulation

needs to compute the prefix sum of multiple vertices

at runtime.

According to the formalization, we advocate a

novel parallel accumulator shown in Fig.2(b). This ac-

cumulator is designed by using the Ladner-Fischer ac-

cumulator, an existing well-established prefix-sum ac-

cumulator, as the foundation. The number of vertices

to be scheduled is determined on-the-fly by the de-

gree-aware scheduling. After that, the source vertex

accumulator simultaneously accumulates updated val-

ues of different destination vertices. To preserve the

correctness, we complement a breakpoint recognizing

mechanism. Specifically, AccuGraph attaches each

update with the ID of its destination vertex, which is

leveraged as a signal to ensure that multiple updates

are accumulated to the same destination.

N ×MAfter that, the multiplexer delivers the

accumulated results to each destination vertex se-

quentially. To address the second challenge, we advo-

cate a destination vertex accumulator. It merges the

accumulated values with a decision to delay the write-

back of the corresponding destination vertex data.

This mechanism eliminates synchronization overhead

on the temporary vertex data and massive random

Graph Processing Elements

In
te

rc
o
n
n
e
c
ti
o
n

: Task Schedule

: Read Neighboring Vertex

: Process

: Read Active Vertex

: Read Neighboring Edge

C
o
m

p
u
ta

ti
o
n
 P

ie
li
n
e

: Update Vertex

: Write Active Vertex

A
c
c
.

Accelerator

Off-Chip O
n
-
C

h
ip

 M
e
m

o
ry

Memory

Parallel Source Accumulator

 Multiplexer

Sequential Destination Accumulator

Accumulator Architecture

Updating

Value

Updating

Value

Updating

Value
...

Degree-Aware

Scheduling

(b)(a)

Fig.2. (a) Architecture of AccuGraph and (b) detailed design of the parallel accumulator[9]. Pi denotes the i-th pipeline stage. Acc.
means accumulator.

248 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

edge accesses.

Fig.3 depicts the normalized performance of Accu-

Graph compared with ForeGraph[31]. From our experi-

mental data, AccuGraph delivers an average of 2.36

GTEPS. This performance marks a notable advan-

tage, as it outperforms ForeGraph, achieving a

speedup of up to 3.14x.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
T

W
k

L
J

A
V

G

Y
T

W
k

L
J

A
V

G

Y
T

W
k

L
J

A
V

G

BFS PR WCC

ForeGraph

Our Accelerator

N
o
rm

a
li
z
e
d
 P

e
rf

o
rm

a
n
c
e

Fig.3. AccuGraph normalized to the ForeGraph performance[9].
YT: Youtube; Wk: Wiki; LJ: LiveJournal; AVG: average; PR:
PageRank; WCC: Weakly Connected Components.

2.2 ScalaBFS2: An HBM-Based Version

With the latest advancements in 3D stacking

technology, HBM is proposed to enhance memory

bandwidth. HBM's bandwidth increase comes from

stacking multiple DRAM chips in a single module,

providing numerous memory channels for parallel ac-

cess. This advantage presents new opportunities for

enhancing the performance of graph processing accel-

erators. However, there are many challenges in effi-

ciently utilizing the high bandwidth to handle irregu-

lar memory accesses during graph processing.

Specially, each edge in the Compress Sparse Row

(CSR) format occupies only a narrow bit width (e.g.,

32-bit) to record the destination ID. This bit width is

inconsistent with HBM's 256-bit prefetch length for

each memory transaction. HBM's adoption of a 32-bit

AXI access mode results in extremely low bandwidth

utilization. Additionally, cross-channel access by the

HBM subsystem on FPGAs introduces the problem of

internal contention, further increasing the delay and

degrading the bandwidth utilization. Hence, it is im-

perative to implement efficient and economical rout-

ing among multiple HBM memory channels. This re-

quires utilizing the finite logical resources available on

FPGAs while maximizing memory bandwidth utiliza-

tion.

In this subsection, we present ScalaBFS2[17], which

is designed for BFS, the basis of the graph algorithm.

ScalaBFS2 focuses on achieving the highest perfor-

mance of BFS on a single HBM-enhanced FPGA

chip. As shown in Fig.4, ScalaBFS2 contains several

PEs that can communicate with each other through

elaborate crossbars.

HBM PC HBM PC

HBM Reader HBM Reader

Data-Relay Crossbar

...

... ...

...

PE PE
...

Inter-PE Crossbar

HBM @900 MHz

 @340 MHz-

450 MHz

@170 MHz-

225 MHz

FPGA Scheduler

LT LT

PG

PE

LT

PE

LT

PE

LT

PE

LT

Fig.4. Overall architecture of ScalaBFS2. PG: processing
group; LT: local store.

To improve the efficiency of HBM memory access,

ScalaBFS2 is committed to maximizing bandwidth

utilization by engaging as many HBM PCs as possi-

ble. By designing an independent HBM reader respon-

sible for reading data from the corresponding HBM

PC, ScalaBFS2 separates memory access circuits from

the PEs that execute the BFS algorithm. This strate-

gy addresses the mismatch between the long bit-width

of the HBM PCs and the narrow representation of

graph data while maintaining a lean design for re-

source conservation. Specifically, the HBM reader op-

erates within the frequency range of [340 MHz, 450

MHz], twice the frequency of the PEs. Moreover, it

accesses data with the same bit-width as the HBM

prefetch length (i.e., 256-bit), enabling high-speed ac-

cess to HBM. Upon receiving responses from the

HBM PCs, the HBM reader extracts valid data using

a filter and passes it to the subsequent process (i.e.,

crossbar) round-robin, ensuring a well-balanced load

for subsequent processing.

N

N 2

N

Furthermore, ScalaBFS2 proposes new crossbars

for data transfer to save resources. Assuming PEs

are constructed in ScalaBFS2, a full crossbar will con-

sume FIFOs, resulting in serious resource con-

sumption. ScalaBFS2 factorizes and constructs an

equivalent multi-layer crossbar that performs data

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 249

transfers in a pipelined manner. The number of FI-

FOs utilized internally in the multi-level crossbar is

significantly reduced compared with the full crossbar.

This approach significantly reduces resource consump-

tion while maintaining the performance of the BFS al-

gorithm.

We perform an evaluation of ScalaBFS2 on the

XCU280 chip. The experiment evidences that Scal-

aBFS2 can utilize all 32 PCs and build up to 128 PEs

on the XCU280. ScalaBFS2[17] achieves a peak perfor-

mance of 56.92 GTEPS, which is 2.52x–4.40x speedup

over the latest graph processor (i.e., ReGraph[32])

built on the same device. ScalaBFS2 has 1.34x–2.40x

speedup over Gunrock running on the A100.

2.3 ScalaGraph: Scaled to Thousands Cores

(1 024 GB/s)/(0.25 GHz ×4 B

HBM provides high memory bandwidth while exis-

ting graph accelerators fail to utilize its potential fully.

Specifically, a graph accelerator running at 250 MHz

needs at least 1 024 ())

PEs for edge computation to exhaust HBM band-

width, assuming that an edge is 4 bytes in size. How-

ever, existing work employs a centralized PE inter-

connection[33], which cannot scale to more than 256

PEs from our experimental results.

The gap between large-scale PEs and HBM re-

sults in untapped hardware potential. To address the

new bottleneck caused by HBM, it is critical to priori-

tize the scalability of memory hierarchy over the per-

formance efficiency of the individual PE. In other

words, graph processing accelerators should achieve a

better balance between the hardware overhead of in-

terconnect architectures and the communication effi-

ciency among PEs.

To achieve the above goal, we propose Scala-

Graph[13], a graph processing accelerator based on a

distributed on-chip memory hierarchy. As shown in

Fig.5, ScalaGraph consists of multiple tiles that are

interconnected through an on-chip network (NoC).

Tiles contain three key modules: Prefetcher, Dispatch-

er, and Processor. Unlike the centralized on-chip

memory hierarchy, each HBM block in ScalaGraph is

connected to one PE. A PE communicates with an-

other through NoC, which improves the scalability of

the accelerator by avoiding large-scale communica-

Tile

HBM

HBM

NOC

Tile

Tile

Tile

HBM

HBM

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

GU RU

SPD

Dispatcher

PE(1,N)PE(1,)...

PE(2,N)PE(2,)

Prefetcher Processor

...

...

VPref

EPref

VPref

EPref

VDU

EDU

VDU

EDU

VPref

EPref

VPref

EPref

Pref NPref

VDU

EDU

VDU

EDU

DU NDU PE(N,N)PE()

...

...

...

...

R
o
w

 1
R

o
w

 2
R

o
w

Fig.5. ScalaGraph architecture[13]. Pref: prefetcher, VPref: vertex prefetcher, EPref: edge prefetcher, EDU: edge dispathing unit,
DU: dispathing unit, SPD: scratchpad, RU: routing unit, GU: graph unit, and VDU: vertex dispatching unit.

250 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

tion among PEs.

While ScalaGraph improves scalability, it brings

two challenges. First, the distributed on-chip memo-

ry hierarchy significantly increases communication la-

tency and volume. Specifically, communication among

PEs may involve multiple route transmissions, which

can increase the delay of PE communication. Second,

the power-law degree distribution can lead to severe

load imbalance in a distributed environment. A few

vertices are connected to most edges, causing some

PEs to be busier than others.

For the first challenge, ScalaGraph proposes a

software-hardware co-design approach to address it.

On the software side, ScalaGraph proposes an archi-

tecture-aware data mapping mechanism called Row-

Oriented Mapping. This mechanism maps edge work-

loads to different PEs based on the source vertex's

row ID and the target vertex's column ID. By doing

so, it effectively eliminates inter-column communica-

tion among PEs and minimizes the communication la-

tency in each PE row. In hardware, ScalaGraph de-

signs a routing unit. Specifically, ScalaGraph adopts

the idea of parallel accumulation[9] and provides four

stages to minimize the communication latency in each

PE column.

For the second challenge, ScalaGraph implements

a degree-aware scheduling mechanism, which lever-

ages the observation that memory addresses of active

vertices in graph processing tend to be contiguous.

This scheduling mechanism ensures a balanced distri-

bution of workloads during the scatter phase. To en-

hance load balancing during the apply phase, Scala-

Graph adopts a novel pipelining architecture, inter-

phase pipelining, to reduce idle PEs. In this pipeline

model, the updated results in the apply phase are im-

mediately sent to the dispatcher module, allowing the

scatter phase to process without waiting for the en-

tire active vertex list to complete. This avoids load

imbalance caused by synchronization in the apply

phase and enhances processing efficiency.

We implement ScalaGraph and perform evalua-

tions and experiments on a Xilinx Alveo U280 accel-

erator card. As shown in Fig.6, our experiments on

classical datasets show that ScalaGraph supports scal-

ing beyond 1 024 PEs. Furthermore, ScalaGraph out-

performs state-of-the-art accelerators[33] by 2.2x.

3 Graph Software System

To fully explore the potential of large-scale graph

processing, we develop graph processing systems that

exploit the characteristics of different hardware archi-

tectures. Specifically, we introduce HotGraph, Graph-

Fly, and CGraph for CPU, which focus on accelerat-

ing static, dynamic, and concurrent graph processing,

respectively. Additionally, we present DiGraph, an it-

erative directed graph system designed for GPU ar-

chitectures. This system utilizes vertex dependencies

to minimize the number of graph iterations required.

Furthermore, we propose GraphSu for FPGA, which

is a library for dynamic graph processing. Lastly, we

propose FBSGraph for distributed architectures,

which enables fast convergence of asynchronous graph

processing.

3.1 Graph Processing on CPU

In this subsection, a CPU-based static, a CPU-

based dynamic, and a CPU-based concurrent graph

processing system are presented respectively.

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t

(G
T

E
P
S
)

Gunrock

GraphDyns-128 ScalaGraph-128

GraphDyns-512 ScalaGraph-512

PRCCSSSPBFS

PK TWRMORLJ PK TWRMORLJ PK TWRMORLJ PK TWRMORLJ

Fig.6. Throughput[13] of ScalaGraph vs GraphDyns and Gunrock. CC: connected components; PK: Pokec; OR: Orkut; RM:
RMAT[24]; TW: Twitter.

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 251

3.1.1 Static Graph Processing on CPU

Asynchronous graph processing is more efficient

than synchronous graph processing. Therefore, many

asynchronous processing systems[34] have emerged.

However, existing asynchronous graph processing sys-

tems ignore random state propagation between sepa-

rating partitions. This omission leads to expensive

overhead and seriously decreases the convergence

speed of graph algorithms.

We propose a graph processing system called Hot-

Graph[18], inspired by the cascade effect to tackle the

bottleneck above. This graph processing system builds

a backbone structure called Hotgraph, which compris-

es hot vertices and the paths between vertices. By

leveraging this backbone, instead of waiting for all

vertices in the local partition to complete their state

updates, vertex states can be quickly propagated to

neighboring graph partitions, thereby mitigating the

cross-graph partitioning overhead.

In particular, we present a novel algorithm for

constructing HotGraphs in large graphs. The algo-

rithm starts by partitioning the graphs into sub-

graphs using the vertex-cut graph partitioning algo-

rithm[35] and parallelly extracting a set of hot vertices

within the subgraphs. Then, we select a hot vertex as

the root and traverse all edges in the subgraphs using

a depth-first order to establish paths between the hot

vertices. Next, we build connections between sub-

graphs using hot vertices and associated paths. These

hot vertices and valid paths between them are classi-

fied as HotGraph, while the remaining vertices and

edges are classified as cold partitions. Fig.7 shows the

example of HotGraph extraction. Finally, to ensure

swift transmission of vertex state information among

subgraphs, we prioritize HotGraph with high impor-

tance.

Our experiments investigate the performance of

HotGraph compared with Maiter[34]. It shows that

HotGraph achieves an 80.8% reduction in execution

time, and the execution time decreases as the avail-

able memory size increases. These prove that Hot-

Graph accelerates vertex state transmission for asyn-

chronous graph processing in shared memory systems.

3.1.2 Dynamic Graph Processing on CPU

Dynamic graph processing is a crucial component

in analyzing dynamically changing graph data in real-

time. However, real-time updates to graphs present

difficulties for current graph processing systems. Vari-

ous systems for dynamic graph processing have been

introduced to tackle the issues caused by the swift up-

dates in graph data. Examples include KickStarter[36]

and GraphBolt[37]. These systems utilize incremental

computing techniques to perform real-time data anal-

ysis by leveraging the results of previous computa-

tions.

Incremental computation reduces response time,

but reusing previous results may lead to inaccuracies.

KickStarter[36] and GraphBolt[37] use a refinement-

computation model to ensure correctness, but the

model introduces redundancies in memory accesses.

Redundancies arise from two sources: 1) refined ver-

tex values are written to memory and then retrieved

for recomputation on affected vertices, and 2) edges of

these affected vertices are initially traversed to identi-

fy refinement effects and then reaccessed during re-

(b)(a)

Fig.7. Example illustrating how to extract a hot graph[18]. (a) Depth-first search. (b) Partitions generated.

252 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

computation to propagate computed values. In our

profiling analysis of GraphBolt, as depicted in Fig.8,

we observe that redundant memory accesses consume

an average of 68% of the runtime in both phases.

100

80

60

40

20

0
LJ UK TW TT FT LJ UK TW TT FT

R
e
d
u
n
d
a
n
c
y
 (

%
)

BFS SSSP

Fig.8. Redundant memory accesses ratio[19]. UK: UKDomin;
TT: Twitter MPI; FT: Friendster.

In this work, we propose GraphFly[19], a solution

to address the redundant memory access by bridging

the gap between refinement and recomputation dur-

ing real-time edge updates. GraphFly introduces a de-

pendency flow based approach to graph processing.

Using the dependencies among dynamic updates,

GraphFly performs refinement and recomputation

asynchronously, thus significantly reducing redun-

dant memory access. To accomplish these goals,

GraphFly includes two essential modules.

Dependency Management. This module initially

creates dependency flows using D-trees and effective-

ly organizes them in a spatio-temporal scheduling se-

quence. D-trees are based on the elimination tree the-

ory and depict the dependency connections among

vertices in a lower triangle matrix as a forest. By di-

viding these D-trees at their root vertices, we extract

dependency flows. These flows derived from the low-

er triangle matrix capture the vertex dependencies in

the structural space. To ensure correctness, these

flows must be executed in a specific order at runtime,

constrained by the upper triangle matrix. Subsequent-

ly, these commands for coordinated spatio-temporal

scheduling are provided to the processing engine for

execution.

Processing Engine. GraphFly achieves its efficien-

cy by combining expert storage management strate-

gies that focus on data locality, along with a parallel

asynchronous processing model that relies on depen-

dency flows. In cases where vertex data needs to be

accessed within these dependency flows, the data

might be distributed across various storage regions.

To enhance memory access efficiency, GraphFly intro-

duces a storage format specifically tailored for depen-

dency flows. This format allows for the efficient and

compact storage of vertex data in memory, which in

turn reduces memory access overhead and improves

overall efficiency. Furthermore, dynamic updates can

be distributed across different dependency flows.

GraphFly loads and executes dependency flows asyn-

chronously, adhering to the predefined scheduling or-

der.

Our experiments[19] show that GraphFly outper-

forms state-of-the-art systems KickStarter and Graph-

Bolt by 5.81x and 1.78x on average, respectively.

3.1.3 Concurrent Graph Processing on CPU

In recent years, the application of Concurrent It-

erative Graph Processing (CGP) jobs in social net-

work analysis, bioinformatics, and recommendation

systems has experienced significant growth. However,

deploying multiple CGP jobs on the same graph us-

ing existing systems presents several challenges. One

of the critical issues is the repetitive loading of graphs

into the cache by different jobs at different times,

leading to expensive data access and low throughput.

Furthermore, many CGP jobs exhibit strong tempo-

ral and spatial correlations, resulting in substantial

redundant data access.

Numerous researchers are striving to optimize da-

ta access and computational scheduling to improve

the throughput of CGP jobs. Certain methods have

been employed, such as exploiting high sequential

memory bandwidth, data locality, and efficient redun-

dant data processing. However, these efforts tend to

focus on specific aspects and may struggle to provide

comprehensive solutions for the numerous challenges.

We introduce CGraph[20], a system designed to

improve the throughput of CGP jobs through a data-

centric Load-Triggered Push (LTP) model. The LTP

model effectively separates the graph structure data

from the corresponding vertex state. It streams the

shared graph structure partitions in the cache and

triggers parallel processing of relevant jobs. Then,

vertex states are pushed for efficient convergence.

This method reduces data access costs by processing

multiple jobs in a common order through amortizing

access to shared subgraphs. Furthermore, the ability

to utilize the shared graph structure data for multi-

ple jobs leads to a reduction in both cache usage and

memory consumption.

The LTP model follows these steps. Firstly, the

CGP jobs load the shared graph structure partition in

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 253

a specific order. Secondly, the relevant jobs are trig-

gered for each loaded partition, allowing them to per-

form concurrent graph processing operations. Thirdly,

a state update is executed to update the vertex states

associated with that partition after each job com-

pletes its graph processing operations. Once all the

relevant jobs finish processing a partition, the updat-

ed state of the partition is pushed to ensure state syn-

chronization across vertices in different partitions.

Lastly, once all active partitions have been processed

within the current iteration, each job proceeds to ini-

tiate a new iteration. Different CGP jobs may be at

varying iterations of their graph processing. By utiliz-

ing state pushing, jobs can maintain consistency

across various iterations.

In order to optimize throughput, we introduce a

scheduling algorithm that leverages the core-sub-

graph. This algorithm strategically determines the

loading order of partitions, effectively enhancing over-

all performance. Initially, we identify a core subgraph

within the graph, comprising core vertices and the

path edges between vertices. Next, we uniformly di-

vide the graph based on the identified core subgraph.

Specifically, we group the edges of the core subgraph

into several partitions of equal size. The remaining

edges are equally allocated to other partitions. By fre-

quently loading and processing the core vertices, we

minimize the cost of loading early-converged vertices

within the same partition. This approach effectively

reduces the required bandwidth and optimizes cache

space consumption.

In contrast to other solutions, the CGraph ap-

proach provides a notable 2.31 times increase in

throughput for CGP jobs. This improved perfor-

mance is mainly due to the lower average data access

cost.

3.2 Graph Processing on GPU

Previous research has extensively studied itera-

tive directed graphs due to their broad applications in

real-world scenarios[38, 39]. However, significant chal-

lenges still exist in processing iterative directed

graphs on GPUs. Particularly, the vertices within

each directed path are concurrently processed by mul-

tiple GPU threads and update their states in each it-

eration based on the previous states of their forward

neighbors. If the dependencies of vertex updates are

unknown, the new states of active vertices must be

propagated to subsequent vertices over multiple itera-

tions. This problem affects the convergence speed and

incurs a higher cost regarding vertex state loading.

Fortunately, through numerous experiments, we

obtain two fundamental observations that reduce the

number of redundant vertex updates in the iterative-

directed graph algorithm. Firstly, when vertices are

processed asynchronously and sequentially along the

directed path in a round, the new states of the ver-

tices can be utilized to process other vertices within

the same round. Secondly, a significant number of di-

rected edges do not form loops, thereby enabling fur-

ther reduction of redundant processing.

Based on these observations, we propose an effi-

cient GPU-based iterative-directed graph processing

system called DiGraph[21]. DiGraph introduces three

innovative methods to leverage vertex dependencies

(in Fig.9). First, DiGraph decomposes a directed

graph into disjoint directed paths, treating them as

fundamental units for parallel processing. This ap-

proach facilitates the propagation of vertex states

along the directed paths, leading to improved conver-

gence speed and better data utilization. Second, Di-

Graph assigns these paths to the GPUs for parallel

processing based on the graph's topology. The sys-

tem reduces the overhead associated with reprocess-

ing by processing numerous paths only once and con-

verging them in topological order. Third, DiGraph in-

troduces a path scheduling strategy on streaming

multiprocessors to exploit the vertex dependencies be-

tween different paths fully.

However, the implementation of DiGraph faces

(a)

(b) (c)

pi
i vi i

Fig.9. Example of how to partition a directed graph into di-
rected paths and obtain a dependency graph, where denotes
the -th path and denotes the -th vertex[21]. (a) Example of
a directed graph divided into four paths. (b) Diagram of depen-
dency relationships between paths. (c) Path dependency graph.

254 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

two challenges. The first challenge is the skewness in

the lengths of the generated paths. Since GPU

threads within a warp execute instructions in lock-

step, imbalanced loading can occur if the lengths of

the paths vary significantly. To address this chal-

lenge, ensuring that each GPU thread processes an

approximately equal number of edges is essential.

Therefore, if one GPU thread is assigned a long path

for processing, other GPU threads are assigned multi-

ple shorter paths to maintain load balance. The sec-

ond challenge is the presence of dependencies be-

tween the directed paths, which causes some paths to

be reprocessed. To tackle this problem, Digraph con-

structs a directed acyclic graph (DAG) for the depen-

dency graph of the paths. According to DAG's topo-

logical order, it allows the asynchronous dispatch of

the paths to GPUs with low reprocessing costs. In de-

tail, it tries to asynchronously dispatch the paths to

GPUs for parallel processing layer by layer.

Our experiments demonstrate that DiGraph sig-

nificantly improves performance over Gunrock[38] and

Groute[39]. Specifically, DiGraph achieves perfor-

mance gains ranging from 2.25 times to 7.39 times

over Gunrock and from 1.59 times to 3.54 times over

Groute. Furthermore, when the number of GPUs is

increased from 1 to 4, DiGraph shows a significant

62.9% reduction in graph processing time. This sur-

passes Gunrock's 46.3% reduction and Groute's 56.5%

reduction, demonstrating DiGraph's superior scalabili-

ty for larger graph processing tasks.

3.3 Graph Processing Based on FPGA

Graph processing is a powerful technique for ana-

lyzing relationships in various domains. Hardware ac-

celeration has significantly enhanced graph process-

ing performance in the past decade. FPGA is a

promising candidate for graph processing among the

different hardware platforms due to its parallelism,

power consumption, and flexibility advantages. There-

fore, substantial work[9] has been proposed on FPGA

to improve graph processing performance.

Most graph accelerators based on FPGA are limit-

ed to static graphs, which do not change over time.

However, real-world graphs are often dynamic, mean-

ing they can change over time. Processing dynamic

graphs requires two fundamental processes: graph

computation and graph update. In previous work,

graph computation has been investigated well, while

the graph update has many problems to be addressed.

In actuality, graph update is as essential as graph

computation.

To bridge the gap between the two processes, we

design a graph update library[22], which could be read-

ily incorporated into accelerators for the static graph

to process the dynamic graph. There are other chal-

lenges in achieving high-efficiency graph updates. Due

to abundant real-world graph updates, PEs may

cause off-chip communication overheads for retriev-

ing off-chip edge data. We observe that the actual dy-

namic graph has spatial similarity. Thus, we apply

differential data management to transform most ran-

dom off-chip edge access into on-chip access.

While differential data management fits well with

spatial similarity, there are at least two challenges.

First, we need to precisely determine the value of

each vertex to assign its related edges to certain

memory devices. However, it is challenging to mea-

sure the vertex value precisely as it keeps changing.

Second, applying the differential memory, on-chip and

off-chip memories both have duplicates with edge da-

ta. It is challenging to ensure data location efficiently

and precisely.

To achieve these goals, we present GraSU[22], an

FPGA-based graph update library. GraSU is effec-

tive in utilizing spatial similarity. The architecture of

GraSU is shown in Fig.10. It comprises five parts: dy-

namic graph storage, incremental value measurer,

edge updates dispatcher, edge updates handling logic,

and value-aware memory manager. We offer inter-

faces of GraSU for programmers so that GraSU can

be incorporated into static graph accelerators with-

out modifying the graph algorithm code.

For the first challenge, GraSU proposes an equa-

tion to measure the vertex value. The equation dy-

namically quantifies vertex values. We overlap the

value measurement and graph computation to hide

the measurement overhead. For the second challenge,

GraSU implements value-aware memory access and a

high-value data identification mechanism. We choose

UltraRAM to store data with high value for its

coarse-grained feature. We implement a bitmap-based

approach for balancing memory access performance

and space consumption well.

We implement GraSU in Verilog and integrate it

into AccuGraph with only 11 lines of code modifica-

tion. We perform evaluations on a Xilinx Alveo U250

card[22]. Compared with two state-of-the-art CPU-

based dynamic graph systems, Stinger and Aspen, the

update throughput of GraSU is 34.24x and 4.42x

higher on average. GraSU achieves an average in-

crease of 9.80x and 3.07x in overall latency.

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 255

3.4 Distributed Graph Processing

Distributed graph processing with the asyn-

chronous (AGP) paradigm faces challenges in effi-

ciently propagating vertex states between vertices for

two reasons. First, current graph partitioning meth-

ods separate vertices along a path into different parti-

tions for load balancing. Consequently, vertices ini-

tially connected on the same path cannot complete

their processing within a single iteration. In other

words, multiple iterations are required to complete

the information propagation of all vertices on a path.

Second, the current execution modes of AGP, such as

round-robin and prioritized modes, have limitations in

efficient vertex state propagation. In the round-robin

mode, vertex states cannot propagate along the path.

On the other hand, the prioritized mode incurs a sig-

nificant amount of additional overhead for propaga-

tion.

After careful analysis, we obtain the following two

observations. First, the culprit of these problems is

that the path information of the graph is not consid-

ered when determining the order of state propagation.

Second, leveraging the cascading effect is the key to

resolving this problem. When processing the graph, if

vertices are sequentially processed along their paths,

any changes in their state will promptly impact other

vertices on the same path. This means that by updat-

ing vertices along the path, the new state of a vertice

can be rapidly propagated to subsequent vertices.

Based on these observations, we propose the For-

ward and Backward Sweeping (FBS) execution

paradigm[23] shown in Fig.11. Further, we develop an

asynchronous graph processing system named FBS-

Graph[23], specifically designed for distributed plat-

forms. In FBSGraph, we divide the graph into dis-

joint paths. Vertices along each path are processed se-

quentially in the order defined by the path, with al-

ternating forward and backward directions. This

paradigm guarantees that vertex information is prop-

agated to both forward and backward neighbors.

Forward

Δ Δ Δ

ΔΔΔΔ

Backward

hi

Fig.11. Forward and backward sweeping mode. Forward and
backward propagation follows the order of vertice in the
partition[23].

In distributed architectures, each node processes

multiple paths in the graph. However, it causes signif-

icant communication overhead due to the dependen-

cies between these paths. To minimize this overhead,

FBSGraph incorporates a local buffering mechanism

for vertex state changes targeting the same remote

node. The alterations in states are subsequently sent

to the remote node at set time intervals. When these

intervals are too brief, it results in frequent transfers

of state values, thereby increasing communication

overhead. Conversely, when the intervals are exces-

Graph Update PEs

Update-Relevant

Data Buffer

Update

Handling Logic

Differential Memory

Access Manager

U
p
d
a
te

s B
u
ffe

r

E
d
g
e
 U

p
d
a
te

s

D
isp

a
tch

e
r

High-Value Data Buffer

UltraRAM

High-Value

Data Adjuster

FPGA Chip

O
ff
-C

h
ip

 M
e
m

o
ry

C
o
n
tro

lle
r

Off-Chip Memory

Graph Data

(Stored in PMA-Based
Dynamic Graph Format)

Edge Updates
(Processed in Batches)

Batch #3

Batch #1

...

Batch #2

Fig.10. GraSU architecture[22].

256 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

sively long, the changes in the state of the current

vertex are stored for an extended period, leading to a

slower convergence. In order to strike a balance be-

tween the communication cost and convergence speed,

we have introduced the concepts of automatic time

intervals and FBS-Round time intervals, which assist

in determining the most suitable timing intervals. We

also offer a number of optimization schemes, as de-

tailed in FBSGraph[23].

When analyzing the total execution times of FBS-

Graph-SPO-1, Maiter-Pri, and Maiter-RR on a classi-

cal dataset, it is evident that FBSGraph-SPO-1 signif-

icantly outperforms Maiter-RR by reducing the execu-

tion time by 39.7%. Additionally, experiments car-

ried out on a 1 024-core cluster demonstrate the excel-

lent scalability of our approach.

4 Emerging Hardware/Software Co-Designs

and Beyond

The rapid advancements in Big Data and Artifi-

cial Intelligence have introduced new challenges for

traditional graph processing. First, the relationships

between data have become more complex, resulting in

valuable information embedded in these associations.

To extract meaningful information from complex

graph data, novel graph processing workloads have

emerged, including graph construction, hypergraph

processing, and heterogeneous graph processing. Con-

sequently, the requirements for graph processing have

become increasingly diverse and complex.

Furthermore, emerging hardware technologies, in-

cluding Processing In/Near Memory Architecture

(PIM/PNM), offer significant computing and memo-

ry resources that can alleviate the bottlenecks in

graph processing. PIM/PNM architectures can re-

duce data loading latency, making them well-suited to

address the challenges of graph processing. These

hardware advancements provide new avenues for im-

proving the efficiency and performance of graph pro-

cessing workloads. However, effectively utilizing these

hardware technologies can be a non-trivial task.

In this section, we present our contributions to

processing complex graph workloads and efficiently

utilizing emerging hardware architectures.

4.1 Emerging Graph Processing

This subsection introduces our work on emerging

graph processing in the order of graph construction,

hypergraphs, and heterogeneous graphs.

4.1.1 Graph Construction

O(dn2)

The k-nearest neighbor graph (kNNG) is widely

used in databases, large language models, and other

domains. However, constructing an exact kNNG is

time-consuming, with a time complexity of ,

where d represents the dimensionality of the feature

vectors and n denotes the total number of vertices.

When constructing large-scale kNNG, the cost be-

comes unacceptable. Fortunately, many applications

can tolerate some loss of accuracy, allowing a signifi-

cant reduction in construction cost by adopting ap-

proximate graph structures. As a result, recent re-

search has focused on efficient methods for construct-

ing approximate kNNGs. Among these methods, NN-

descent[40] has emerged as the most popular approach.

The NN-descent algorithm optimizes the construc-

tion method based on the idea that ``My neighbor's

neighbor may also be my neighbor." It starts by ran-

domly initializing neighbors for each vertex and then

iteratively refines the graph structure until conver-

gence. The iteration consists of three stages: sampling,

computation, and update. During the sampling stage,

a subset of neighbors is sampled for each vertex, effec-

tively reducing redundant computations. The compu-

tation stage begins once the sampling stage is com-

pleted for all vertices. In this phase, the algorithm

computes the similarity between the sampled neigh-

bors of each vertex. Finally, in the update phase, the

algorithm updates the neighbor lists of the corre-

sponding vertices based on the computed similarity

values.

We analyze the time distribution of the three

stages in NN-descent and find that the computation

stage is the primary bottleneck in the algorithm. This

stage involves a significant amount of high-dimension-

al vector computation. In particular, the computa-

tion stage is not efficient enough in terms of computa-

tion and memory access. First, the phase sequentially

processes the source vertices and computes the simi-

larity between the target neighbors in each source

vertex. Unfortunately, this sequential vertex schedul-

ing scheme leads to many random memory accesses

due to the low overlap between sequential vertex

neighborhoods. Moreover, many vector computations

become useless, resulting in a severe waste of compu-

tational resources.

To address the above challenges, we design a

hardware accelerator called FNNG[24], as described in

Fig.12. FNNG comprises three modules: the sampling,

computation, and update modules, which correspond

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 257

to NN-descent's three stages. Our accelerator design

is based on two observations. First, vertices in close

spatial proximity often share parts of neighborhoods.

Therefore, we introduce a block-based scheduling

method that prioritizes the processing of vertices

within a specific spatial region. This approach en-

hances data reuse and reduces off-chip memory ac-

cesses. In addition, a lot of vector computations do

not require precise results. Therefore, we propose the

Useless Computation Aborting method to terminate

unnecessary computations for certain dimensions of

feature vectors, resulting in significant time savings.

We evaluate FNNG's performance on five classic

datasets and validate it on the Xilinx Alveo U280 ac-

celerator card[25]. The experiments show that our solu-

tion achieves approximately 190x and 2.1x perfor-

mance improvements over the latest CPU and GPU

solutions, respectively, while maintaining similar

graph accuracy.

4.1.2 Hypergraph Processing

A hypergraph is a complex graph model that al-

lows edges to connect multiple vertices, making it ca-

pable of representing complex multilateral relation-

ships among numerous entities. As it is powerful to

capture intricate relationships, various fields widely

adopt hypergraphs for data analysis, which urges ef-

forts to enhance the performance of hypergraph pro-

cessing techniques.

The early research used index-ordered scheduling

to execute bipartite edge tasks. Index-ordered

scheduling processes the active hyperedges in the or-

der of indices. While the scheduling is easy to under-

stand, it typically results in a high cache miss rate.

ChGraph[41], one of the best hypergraph systems, ex-

ploits the vertex locality between two hyperedges and

takes chains to schedule the order of hyperedges.

However, ChGraph cannot exploit more complex in-

ter-chain locality. Thus, the scheduling will lead to re-

dundant access and bandwidth underutilization.

Those two issues cause memory subsystem inefficiency.

To take advantage of data locality, we present a

data-centric Load-Trigger-Reduce (LTR) execution

model, which is difficult in task-centric hyperedge

processing systems. We decompose the computation

phases into three processes: hypergraph loading, task

execution triggering, and temporary value reduction.

In a data-centric model, once vertex data is loaded,

corresponding tasks are invoked.

While LTR brings benefits in data locality, its im-

plementation still has several challenges. In the load

step, due to recurrent intersection, operations will

cause much inefficient memory access. Worse, the

static vertex data partition strategy still leads to ex-

cessive data loading. In the reduce step, heavy atom-

ic protection overhead is introduced to resolve data

conflicts due to multiple simultaneous updates to the

same data. Although the CPU can benefit from our

data-centric model, its performance is constrained by

the architecture.

The above discussions prompt us to design the

hardware accelerator, XuLin[25]. As shown in Fig.13,

XuLin consists of five parts: Loader, Translator, Trig-

H
B

M

To MC

Vertex Index Buffer

Reverse

Neighbor

Buffer

Computation Module

Sample Unit

Neighbor Reader

Sampler

Sample Unit

Neighbor Reader

Sampler

Neighbor Reader

Sampler

Prefetch Unit

Sample Reader

Vector Reader

Prefetch Unit

Sample Reader

Vector Reader

Prefetching Unit

Vector Reader

Task Scheduler
V
e
c
to

r
B

u
ffe

r

V
e
c
to

r B
u
ffe

r

Control
U

ltra
R

A
M

Computing Unit

Vector Register

Processor

Update Buffer

Update
Module

To/From
MC

Update Unit

Neighbor
Reader

Neighbor
Merger

M
e
m

o
ry

 C
o
n
tro

lle
r

Sampling Module

Sampling Unit

Sampled Neighbor
Reader

Fig.12. Architecture of FNNG[24].

258 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

ger, Processor, and Reducer. XuLin uses a key-value

table to eliminate intersection operations. XuLin also

takes adaptive data loading and chunk merging mech-

anisms to reduce data transfer. We advocate priority-

based differential data reduction hardware, which can

minimize the cost of resolving data conflicts.

We perform our evaluations and experiments on a

Xilinx Alveo U250 card and a simulator. As shown in

Fig.14, compared with Hygra and ChGraph on five

graphs with four graph algorithms, the running time

of XuLin is 20.47x and 8.77x shorter on average, re-

spectively.

4.1.3 Heterogeneous Graph Processing

Existing computer architecture research for graph

neural networks has mainly focused on homogeneous

graphs containing only one vertex and edge type.

However, in real life, heterogeneous graphs contain-

ing multiple vertex and edge types are much more

common and can better represent information than

homogeneous graphs. The field of graph neural net-

works focusing on heterogeneous graphs has many

problems that have yet to receive much attention.

This subsection presents our efforts in accelerating

metapath-based heterogeneous graph neural networks

(HGNNs).

Metapath is a critical concept in heterogeneous

graph neural networks to represent an ordered se-

quence of different types of vertices. Fig.15 depicts an

example of an academic heterogeneous graph, where

Author-Paper-Conference-Paper-Author (APCPA)

and Author-Paper-Author (APA) are the defined

metapaths expressing different semantic information,

APA expresses the two co-authors of a paper, and

APCPA indicates both authors have presented pa-

pers at the same conference. Compared with tradi-

tional graph neural networks that aggregate informa-

tion directly based on neighboring vertices, HGNNs

are more complex to aggregate information based on

metapaths.

HGNNs are effective for representing information,

but they face several performance bottlenecks. First,

the preprocessing phase of HGNNs involves metap-

Partition
Trigger

Translator

Processer

B
ip

a
rtite

 E
d
g
e
 F

IF
O

1

2

4

5

HPU HPU HPU

PR

HDRU

LDRU

AU

Reducer

Partition Tables

PRPR

Vertex Memory

Hyperedge Memory

Hyperedge

Data

Loader

3

Vertex Data

Bipartite

Edge Data

Active

Information

Off-Chip

Memory

...

Fig.13. XuLin architecture[25]. HPU: hypergraph pocessing unit, PR: private register, AU: activation unit, HDRU: high-priority da-
ta reducing unit, and LDRU: low-priority data reducing unit.

50

40

30

20

10

0N
o
rm

a
li
z
e
d
 R

u
n
n
in

g

T
im

e

TW OK LJ DU OG TW OK LJ DU OG TW OK LJ DU OG TW OK LJ DU OG AVG

PR

Hygra ChGraph XuLin-C XuLin-F XuLin

BC CC -Core

Fig.14. Running time of XuLin[25]. TW: trec-wt; OK: com-Orkut; DU: delicious-ut; OG: Orkut-group.

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 259

ath instance matching, which generates multiple in-

stances starting from a single vertex. This phase can

be time-consuming and requires significant storage

overhead. Second, vertex feature aggregation along

metapath instances involves redundant computations

due to multiple identical vertices among instances.

This results in repeated aggregations. Finally, HGNNs

encounter memory bottlenecks due to irregular memo-

ry accesses. This motivates us to leverage near-memo-

ry processing to overcome the memory bottleneck of

HGNNs, which offers high memory bandwidth, low

data access latency, and lower energy consumption[8, 10].

We propose MetaNMP[26] for HGNNs to address

the above bottlenecks. MetaNMP introduces a novel

computational paradigm called ``cartesian product-

like" to complete metapath instance matching effi-

ciently at runtime. It eliminates the need for a pre-

processing phase and avoids the overhead of storing

metapath instances. Moreover, most of the redun-

dant computations among meta-path instances are

derived from that these instances come from the same

vertex. Instead of independently aggregating each

metapath instance, MetaNMP aggregates vertex fea-

tures along the direction of metapath instance deriva-

tion, minimizing redundant computations. Finally,

MetaNMP incorporates two customized modules as

near-memory computing units to accelerate HGNNs.

The metapath instance management module, integrat-

ed at the DIMM-level, generates metapath instances

using the cartesian product and monitors redundant

computations. The feature aggregation module, inte-

grated at the rank level, handles feature aggregation

based on metapath instances.

Fig.16 displays MetaNMP's running time. Com-

pared with CPU, GPU, HyGCN, AWB-GCN, and

RecNMP, MetaNMP achieves 4 225.51x, 415.18x,

48.96x, 78.34x and 17.23x improvements, respectively.

4.2 Processing In/Near Memory

This subsection describes the design of graph anal-

ysis and graph learning on ReRAM and then de-

scribes graph processing's design on CMOS.

4.2.1 ReRAM-Based Graph Processing

Resistive Random Access Memory (ReRAM) is an

exceptionally promising non-volatile memory that

achieves data storage through resistance alteration[42].

It consists of individual cells with a metal-insulator-

metal structure and an oxide layer between

electrodes[43]. These cells are arranged in a crossbar

configuration to optimize spatial utilization, allowing

for in-situ Matrix-Vector Multiplication (MVM) oper-

(a)

Author

Paper

Conference

(b)

(c)

A-P-A

A-P-C-P-A

(d)

--

ai i pi i ci
Fig.15. Illustrative example of a heterogeneous graph[26]. (a) Vertices' three types. (b) Academic heterogeneous graph containing
three types of vertices and three types of connections, where means the -th author, means the -th paper, and means the i-
th conference. (c) Two defined metapaths (i.e., APA and APCPA). (d) Two metapath instances.

DP IB LF OM OG DP IB LF OM OG DP IB LF OM OG Average

100

101

102

103

104

S
p
e
e
d
u
p

MAGNN SHGNNHAN

RecNMP MetaNMPAWB-GCNGPU HyGCN

Fig.16. MetaNMP's running time[26]. DP: DBLP; IB: IMDB; LF: LastFM; OM: OGB-MAG; OG: OAG.

260 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

ations[43]. Specifically, once the input data vector is

loaded onto the crossbar's wordlines, the correspond-

ing output results can be computed quickly within a

single cycle using the bitlines[42].

Graph analysis applications can be viewed as

MVM computations[44], offering the opportunity for

accelerated processing using ReRAM. In this work,

Spara[27] introduces a novel graph analysis accelerator

that harnesses the advantages of ReRAM and effec-

tively utilizes parallelism among memory banks.

To exploit inter-bank parallelism, Spara employs

the Random-Wordline-Consecutive-Bitline (RWCB)

vertex mapping scheme. This approach divides edges

into separate groups and assigns each group to a spe-

cific memory bank, preventing target vertices from

overlapping within a bank. Spara introduces two

methods to support this vertex mapping: the Cross-

bar-Bounded Graph Reordering method, which opti-

mizes crossbar population, and the Wordline-Cut Re-

organization method, which handles sparsity issues

caused by vertex activation.

Within each memory bank, Spara adopts a hy-

brid vertex mapping strategy that incorporates both

RWCB and random-wordline-random-bitline

(RWRB) mappings, thereby harnessing the advan-

tages offered by both mapping schemes. To accom-

plish this, Spara designs a wordline dispatcher that

dynamically detects the density of each wordline.

Wordlines with low density are temporarily stored in

a function array during runtime and processed based

on the RWRB vertex mapping scheme. On the other

hand, dense wordlines are directly loaded into the

crossbar and aggregated using the RWCB vertex

mapping scheme, thereby striking an optimal balance

between cost and efficiency.

4.2.2 ReRAM-Based Graph Learning

Graph Convolutional Network (GCN) has rec-

ently gained considerable attention among research-

ers[45–47]. Like graph analysis, GCN's combination and

aggregation stages can be effectively regarded as

MVM computations[48], rendering it a suitable candi-

date for acceleration using ReRAM. An intuitive

strategy entails leveraging existing ReRAM-based

neural network or graph analysis techniques to accel-

erate GCN's combination and aggregation stages.

However, applying these techniques still presents

challenges. First, GCN requires simultaneous consid-

eration of dense weight matrices and sparse graph da-

ta during processing. However, directly mapping

sparse graph data onto the crossbar results in a signif-

icant number of idle cells, thereby hindering the

achievement of optimal hardware utilization. Second,

compared with traditional graph data, GCN exhibits

higher-dimensional vertex features, typically ranging

from 100 to 1 000. This characteristic further exacer-

bates the inefficiencies encountered during computa-

tions.

To tackle these challenges, a ReRAM-based GCN

accelerator named REFLIP[28] is proposed, encom-

passing three design levels. Firstly, by leveraging the

crossbar structure of ReRAM, REFLIP devises a uni-

fied hardware architecture. This architecture can ef-

fectively fulfill the computational requirements of

GCN aggregation and combination stages. Secondly,

REFLIP employs distinctive mapping strategies to

maximize efficiency. This includes utilizing a layer-

wise weight mapping strategy during the combina-

tion stage to address the limitations of crossbar re-

sources and a flipped mapping strategy during the ag-

gregation stage to reduce the proportion of inefficient

computations. Lastly, REFLIP further enhances per-

formance through software/hardware co-optimiza-

tions. On the software level, REFLIP employs a hy-

brid execution model to mitigate data movement

costs and enhance computational efficiency. On the

hardware level, REFLIP introduces specialized hard-

ware units that leverage GCN locality to minimize

the number of conversions between digital and ana-

log signals.

4.2.3 Heterogeneous PIM-Based Graph Processing

In practical scenarios, modern graph analytics

workloads often exhibit irregular patterns, with most

vertices having only a few edges. When these pat-

terns are mapped onto tightly coupled ReRAM cross-

bars, many ReRAM cells remain unutilized as they

store zero values. This results in unnecessary resis-

tance writes and analog-signal conversions, leading to

additional performance and energy costs. Unfortu-

nately, these costs cannot be easily offset by the bene-

fits gained from employing ReRAM.

Digital CMOS-based PIM is a promising solution

to the challenges posed by analog ReRAM PIM. This

technology integrates digital processing units within

3D-stacked memory's logic layer. It enables flexible

computation at a finer granularity of scalar instead of

the matrix level of the ReRAM crossbar. Additional-

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 261

ly, the frequency of the CMOS-based PIM is often

10x–100x higher than the ReRAM crossbar. However,

the parallelism of the CMOS-based PIM is limited

compared with the ReRAM crossbar, as it performs

one operation at a time.

We propose Hetraph[29], a heterogeneous process-

ing-in-memory architecture. Hetraph integrates both

ReRAM-based and CMOS-based PIM units within

the same logic layer of a 3D die-stacked memory de-

vice. This architecture aims to support energy-effi-

cient and high-performance graph processing. Howev-

er, the integration of two different types of PIM units

causes high synchronization and communication over-

head in the heterogeneous architecture. Moreover, a

key problem arises in determining which PIM unit is

best suited for executing each subgraph to achieve op-

timal efficiency. The non-deterministic nature of acti-

vation makes it challenging to identify the valid edges

associated with active vertices.

To address the challenges, Hetraph provides a

hardware heterogeneity-aware mechanism and a

workload offloading approach. The hardware hetero-

geneity-aware execution model explores an optimal

tradeoff between communication overheads and syn-

chronization. In particular, this model merges inter-

mediate results to minimize data synchronizations

and reuses data to reduce communication overhead.

Additionally, Hetraph identifies subgraphs with no

more than one valid edge, deemed inefficient for

ReRAM-based PIM. It develops a workload offload-

ing mechanism that efficiently identifies and offloads

each subgraph to the most suitable PIM to optimize

efficiency.

5 Conclusions

This paper systematically describes our work in

graph processing, focusing on three critical perspec-

tives: hardware accelerator, software engine, and nov-

el graph task/architecture.

As for the hardware accelerator design, we identi-

fied data conflicts as a significant computational bot-

tleneck in graph processing. To address this challenge,

we developed AccuGraph as a solution. We also dis-

covered that memory bandwidth limits the perfor-

mance of graph processing. To overcome this limita-

tion, we took advantage of HBM and developed Scal-

aBFS2. Finally, we found another bottleneck in exist-

ing graph processing accelerators: scalability, and pre-

sented ScalaGraph to overcome it.

As for the software engine, we designed six com-

ponents: HotGraph, GraphFly, CGraph, DiGraph,

GraSu, and FBSGraph. These components are tai-

lored for hardware platforms, including CPUs, GPUs,

FPGAs, and distributed platforms. Each component

has been carefully designed based on its hardware ar-

chitecture to optimize performance and efficiency.

Finally, we explored the domains of emerging

workloads and hardware architectures. We presented

several innovative solutions for emerging graph work-

loads, including FNNG, XuLin, and MetaNMP. These

approaches demonstrate our progress on emerging

graph processing workloads and validate their effec-

tiveness. For emerging hardware architectures, we de-

veloped Spara, ReFlip, Hetraph, and other notable

designs. These contributions demonstrate their poten-

tial for graph processing on emerging hardware archi-

tectures.

Throughout the paper, we aimed to provide a

comprehensive overview of our work and highlight our

significant contributions to hardware architecture,

software system design, and the development of nov-

el applications for graph processing.

Acknowledgments We thank the following

students for their contributions, where Ke-Xin Li and

Bing Zhu participated in the work on the graph accel-

erators design, Dan Chen, Zhao-Zeng An, Yu-Jian

Liao, Qian-Ge Shen, Dong-Hao He, Shi-Jun Li, Xin

Ning, and Zhi-Ying Huang participated in the work

on the graph software environment, and Dan Chen,

Chao-Qiang Liu, Hai-Feng Liu, Hai-Heng He, and

Zhao-Zeng An participated in the work on the emerg-

ing hardware/software co-design.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Wu S W, Sun F, Zhang W T, Xie X, Cui B. Graph neu-

ral networks in recommender systems: A survey. ACM

Computing Surveys, 2023, 55(5): Article No. 97. DOI: 10.

1145/3535101.

[1]

 Bullmore E, Sporns O. Complex brain networks: Graph

theoretical analysis of structural and functional systems.

Nature Reviews Neuroscience, 2009, 10(3): 186–198. DOI:

10.1038/NRN2575.

[2]

 Wang B Y, Dabbaghjamanesh M, Kavousi-Fard A,

Mehraeen S. Cybersecurity enhancement of power trad-

ing within the networked microgrids based on blockchain

[3]

262 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1145/3535101
https://doi.org/10.1145/3535101
https://doi.org/10.1038/NRN2575

and directed acyclic graph approach. IEEE Trans. Indus-

try Applications, 2019, 55(6): 7300–7309. DOI: 10.1109/

TIA.2019.2919820.

 Yin J, Tang M J, Cao J L, You M S, Wang H, Alazab M.

Knowledge-driven cybersecurity intelligence: Software vul-

nerability coexploitation behavior discovery. IEEE Trans.

Industrial Informatics, 2023, 19(4): 5593–5601. DOI: 10.

1109/TII.2022.3192027.

[4]

 Luo J W, He M K, Pan W K, Ming Z. BGNN: Behavior-

aware graph neural network for heterogeneous session-

based recommendation. Frontiers of Computer Science,

2023, 17(5): 175336. DOI: 10.1007/s11704-022-2100-y.

[5]

 He D L, Yuan P P, Jin H. Answering reachability queries

with ordered label constraints over labeled graphs. Fron-

tiers of Computer Science, 2024, 18(1): 181601. DOI: 10.

1007/s11704-022-2368-y.

[6]

 Gui C Y, Zheng L, He B S, Liu C, Chen X Y, Liao X F,

Jin H. A survey on graph processing accelerators: Chal-

lenges and opportunities. Journal of Computer Science

and Technology, 2019, 34(2): 339–371. DOI: 10.1007/

S11390-019-1914-Z.

[7]

 Chen D, Jin H, Zheng L, Huang Y, Yao P C, Gui C Y,

Wang Q G, Liu H F, He H H, Liao X F, Zheng R. A gen-

eral offloading approach for near-DRAM processing-in-

memory architectures. In Proc. the 2022 IEEE Interna-

tional Parallel and Distributed Processing Symposium,

May 2022, pp.246-257. DOI: 10.1109/IPDPS53621.2022.

00032.

[8]

 Yao P C, Zheng L, Liao X F, Jin H, He B S. An efficient

graph accelerator with parallel data conflict management.

In Proc. the 27th International Conference on Parallel Ar-

chitectures and Compilation Techniques, Nov. 2018, Arti-

cle No. 8. DOI: 10.1145/3243176.3243201.

[9]

 Jin H, Chen D, Zheng L, Huang Y, Yao P C, Zhao J,

Liao X F, Jiang W B. Accelerating graph convolutional

networks through a PIM-accelerated approach. IEEE

Trans. Computers, 2023, 72(9): 2628–2640. DOI: 10.1109/

TC.2023.3257514.

[10]

 Wang D W, Cui W Q. An efficient graph data compres-

sion model based on the germ quotient set structure.

Frontiers of Computer Science, 2022, 16(6): 166617. DOI:

10.1007/s11704-022-1489-7.

[11]

 Fang P, Wang F, Shi Z, Feng D, Yi Q X, Xu X H, Zhang

Y X. An efficient memory data organization strategy for

application-characteristic graph processing. Frontiers of

Computer Science, 2022, 16(1): Article No. 161607. DOI:

10.1007/s11704-020-0255-y.

[12]

 Yao P C, Zheng L, Huang Y, Wang Q G, Gui C Y, Zeng

Z, Liao X F, Jin H, Xue J L. ScalaGraph: A scalable ac-

celerator for massively parallel graph processing. In Proc.

the 2022 IEEE International Symposium on High-Perfor-

mance Computer Architecture, Apr. 2022, pp.199–212.
DOI: 10.1109/HPCA53966.2022.00023.

[13]

 Yao P C, Zheng L, Zeng Z, Huang Y, Gui C Y, Liao X F,

Jin H, Xue J L. A locality-aware energy-efficient accelera-

tor for graph mining applications. In Proc. the 53rd An-

nual IEEE/ACM International Symposium on Microarchi-

tecture, Oct. 2020, pp.895–907. DOI: 10.1109/MICRO50266.

2020.00077.

[14]

 Rahman S, Abu-Ghazaleh N, Gupta R. GraphPulse: An

event-driven hardware accelerator for asynchronous graph

processing. In Proc. the 53rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, Oct. 2020, pp.908–
921. DOI: 10.1109/MICRO50266.2020.00078.

[15]

 Jin H, Yao P C, Liao X F. Towards dataflow based graph

processing. Science China Information Sciences, 2017,

60(12): Article No. 126102. DOI: 10.1007/s11432-017-

9226-8.

[16]

 Li K X, Xu S X, Shao Z Y, Zheng R, Liao X F, Jin H.

ScalaBFS2: A high performance BFS accelerator on an

HBM-enhanced FPGA chip. ACM Trans. Reconfigurable

Technology and Systems. DOI: 10.1145/3650037. (accept-

ed)

[17]

 Zhang Y, Liao X F, Jin H, Gu L, Tan G, Zhou B B. Hot-

Graph: Efficient asynchronous processing for real-world

graphs. IEEE Trans. Computers, 2017, 66(5): 799–809.
DOI: 10.1109/TC.2016.2624289.

[18]

 Chen D, Gui C Y, Zhang Y, Jin H, Zheng L, Huang Y,

Liao X F. GraphFly: Efficient asynchronous streaming

graphs processing via dependency-flow. In Proc. the 2022

International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, Nov. 2022. DOI:

10.1109/SC41404.2022.00050.

[19]

 Zhang Y, Liao X F, Jin H, Gu L, He L G, He B S, Liu H

K. CGraph: A correlations-aware approach for efficient

concurrent iterative graph processing. In Proc. the 2018

USENIX Annual Technical Conference, Jul. 2018, pp.441–
452. https://www.usenix.org/system/files/conference/atc

18/atc18-zhang-yu.pdf, Oct. 2023.

[20]

 Zhang Y, Liao X F, Jin H, He B S, Liu H K, Gu L. Di-

Graph: An efficient path-based iterative directed graph

processing system on multiple GPUs. In Proc. the 24th

International Conference on Architectural Support for

Programming Languages and Operating Systems, Apr.

2019, pp.601–614. DOI: 10.1145/3297858.3304029.

[21]

 Wang Q G, Zheng L, Huang Y, Yao P C, Gui C Y, Liao

X F, Jin H, Jiang W B, Mao F B. GraSU: A fast graph

update library for FPGA-based dynamic graph process-

ing. In Proc. the 2021 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, Feb. 2021,

pp.149–159. DOI: 10.1145/3431920.3439288.

[22]

 Zhang Y, Liao X F, Jin H, Gu L, Zhou B B. FBSGraph:

Accelerating asynchronous graph processing via forward

and backward sweeping. IEEE Trans. Knowledge and Da-

ta Engineering, 2018, 30(5): 895–907. DOI: 10.1109/TKDE.

2017.2781241.

[23]

 Liu C Q, Liu H F, Zheng L, Huang Y, Ye X Y, Liao X F,

Jin H. FNNG: A high-performance FPGA-based accelera-

tor for K-nearest neighbor graph construction. In Proc.

the 2023 ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Feb. 2023, pp.67–77. DOI:

10.1145/3543622.3573189.

[24]

 Wang Q G, Zheng L, Hu A, Huang Y, Yao P C, Gui C Y,

Liao X F, Jin H, Xue J L. A data-centric accelerator for

high-performance hypergraph processing. In Proc. the

55th Annual IEEE/ACM International Symposium on

Microarchitecture, Oct. 2022, pp.1326–1341. DOI: 10.1109/

MICRO56248.2022.00088.

[25]

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 263

https://doi.org/10.1109/TIA.2019.2919820
https://doi.org/10.1109/TIA.2019.2919820
https://doi.org/10.1109/TII.2022.3192027
https://doi.org/10.1109/TII.2022.3192027
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2100-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/s11704-022-2368-y
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1007/S11390-019-1914-Z
https://doi.org/10.1109/IPDPS53621.2022.00032
https://doi.org/10.1109/IPDPS53621.2022.00032
https://doi.org/10.1145/3243176.3243201
https://doi.org/10.1109/TC.2023.3257514
https://doi.org/10.1109/TC.2023.3257514
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-022-1489-7
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1007/s11704-020-0255-y
https://doi.org/10.1109/HPCA53966.2022.00023
https://doi.org/10.1109/MICRO50266.2020.00077
https://doi.org/10.1109/MICRO50266.2020.00077
https://doi.org/10.1109/MICRO50266.2020.00078
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1007/s11432-017-9226-8
https://doi.org/10.1145/3650037
https://doi.org/10.1109/TC.2016.2624289
https://doi.org/10.1109/SC41404.2022.00050
https://www.usenix.org/system/files/conference/atc18/atc18-zhang-yu.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-zhang-yu.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-zhang-yu.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-zhang-yu.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-zhang-yu.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-zhang-yu.pdf
https://doi.org/10.1145/3297858.3304029
https://doi.org/10.1145/3431920.3439288
https://doi.org/10.1109/TKDE.2017.2781241
https://doi.org/10.1109/TKDE.2017.2781241
https://doi.org/10.1145/3543622.3573189
https://doi.org/10.1109/MICRO56248.2022.00088
https://doi.org/10.1109/MICRO56248.2022.00088

 Chen D, He H H, Jin H, Zheng L, Huang Y, Shen X Y,

Liao X F. MetaNMP: Leveraging Cartesian-like product

to accelerate HGNNs with near-memory processing. In

Proc. the 50th Annual International Symposium on Com-

puter Architecture, Jun. 2023, Article No. 56. DOI: 10.

1145/3579371.3589091.

[26]

 Zheng L, Zhao J S, Huang Y, Wang Q G, Zeng Z, Xue J

L, Liao X F, Jin H. Spara: An energy-efficient ReRAM-

based accelerator for sparse graph analytics applications.

In Proc. the 2020 IEEE International Parallel and Dis-

tributed Processing Symposium, May 2020, pp.696–707.
DOI: 10.1109/IPDPS47924.2020.00077.

[27]

 Huang Y, Zheng L, Yao P C, Wang Q G, Liao X F, Jin

H, Xue J L. Accelerating graph convolutional networks

using crossbar-based processing-in-memory architectures.

In Proc. the 2022 IEEE International Symposium on

High-Performance Computer Architecture, Apr. 2022,

pp.1029–1042. DOI: 10.1109/HPCA53966.2022.00079.

[28]

 Huang Y, Zheng L, Yao P C, Zhao J S, Liao X F, Jin H,

Xue J L. A heterogeneous PIM hardware-software co-de-

sign for energy-efficient graph processing. In Proc. the

2020 IEEE International Parallel and Distributed Process-

ing Symposium, May 2020, pp.684–695. DOI: 10.1109/

IPDPS47924.2020.00076.

[29]

 Ham T J, Wu L S, Sundaram N, Satish N, Martonosi M.

Graphicionado: A high-performance and energy-efficient

accelerator for graph analytics. In Proc. the 49th Annual

IEEE/ACM International Symposium on Microarchitec-

ture, Oct. 2016. DOI: 10.1109/MICRO.2016.7783759.

[30]

 Dai G H, Huang T H, Chi Y Z, Xu N Y, Wang Y, Yang

H Z. ForeGraph: Exploring large-scale graph processing

on multi-FPGA architecture. In Proc. the 2017 ACM/

SIGDA International Symposium on Field-Programmable

Gate Arrays, Feb. 2017, pp.217–226. DOI: 10.1145/

3020078.3021739.

[31]

 Chen X Y, Chen Y, Cheng F, Tan H S, He B S, Wong W

F. ReGraph: Scaling graph processing on HBM-enabled

FPGAs with heterogeneous pipelines. In Proc. the 55th

Annual IEEE/ACM International Symposium on Mi-

croarchitecture, Oct. 2022, pp.1342–1358. DOI: 10.1109/

MICRO56248.2022.00092.

[32]

 Yan M Y, Hu X, Li S C, Basak A, Li H, Ma X, Akgun I,

Feng Y J, Gu P, Deng L, Ye X C, Zhang Z M, Fan D R,

Xie Y. Alleviating irregularity in graph analytics accelera-

tion: A hardware/software co-design approach. In Proc.

the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, Oct. 2019, pp.615–628. DOI: 10.1145/

3352460.3358318.

[33]

 Zhang Y F, Gao Q X, Gao L X, Wang C R. Maiter: An

asynchronous graph processing framework for delta-based

accumulative iterative computation. IEEE Trans. Paral-

lel and Distributed Systems, 2014, 25(8): 2091–2100. DOI:

10.1109/TPDS.2013.235.

[34]

 Gonzalez J E, Low Y, Gu H J, Bickson D, Guestrin C.

PowerGraph: Distributed graph-parallel computation on

natural graphs. In Proc. the 10th USENIX Symposium on

Operating Systems Design and Implementation, Oct. 2012,

pp.17–30. https://www.usenix.org/system/files/conference/

osdi12/osdi12-final-167.pdf, Oct. 2023.

[35]

 Vora K, Gupta R, Xu G Q. KickStarter: Fast and accu-

rate computations on streaming graphs via trimmed ap-

proximations. In Proc. the 22nd International Conference

on Architectural Support for Programming Languages

and Operating Systems, Apr. 2017, pp.237–251. DOI: 10.

1145/3037697.3037748.

[36]

 Mariappan M, Vora K. GraphBolt: Dependency-driven

synchronous processing of streaming graphs. In Proc. the

14th EuroSys Conference, Mar. 2019, Article No. 25. DOI:

10.1145/3302424.3303974.

[37]

 Wang Y Z H, Davidson A, Pan Y C, Wu Y D, Riffel A,

Owens J D. Gunrock: A high-performance graph process-

ing library on the GPU. In Proc. the 21st ACM SIG-

PLAN Symposium on Principles and Practice of Parallel

Programming, Feb. 2016, Article No. 11. DOI: 10.1145/

2851141.2851145.

[38]

 Ben-Nun T, Sutton M, Pai S, Pingali K. Groute: An

asynchronous multi-GPU programming model for irregu-

lar computations. ACM SIGPLAN Notices, 2017, 52(8):

235–248. DOI: 10.1145/3155284.3018756.

[39]

 Dong W, Moses C, Li K. Efficient k-nearest neighbor

graph construction for generic similarity measures. In

Proc. the 20th International Conference on World Wide

Web, Mar. 2011, pp.577–586. DOI: 10.1145/1963405.1963

487.

[40]

 Wang Q G, Zheng L, Yuan J R, Huang Y, Yao P C, Gui

C Y, Hu A, Liao X F, Jin H. Hardware-accelerated hyper-

graph processing with chain-driven scheduling. In Proc.

the 2022 IEEE International Symposium on High-Perfor-

mance Computer Architecture, Apr. 2022, pp.184–198.
DOI: 10.1109/HPCA53966.2022.00022.

[41]

 Hu M, Strachan J P, Li Z Y, Grafals E M, Davila N,

Graves C, Lam S, Ge N, Yang J J, Williams R S. Dot-

product engine for neuromorphic computing: Program-

ming 1T1M crossbar to accelerate matrix-vector multipli-

cation. In Proc. the 53rd Annual Design Automation Con-

ference, Jun. 2016, Article No. 19. DOI: 10.1145/2897937.

2898010.

[42]

 Chi P, Li S C, Xu C, Zhang T, Zhao J S, Liu Y P, Wang

Y, Xie Y. PRIME: A novel processing-in-memory archi-

tecture for neural network computation in ReRAM-based

main memory. In Proc. the 43rd Annual International

Symposium on Computer Architecture, Jun. 2016,

pp.27–39. DOI: 10.1109/ISCA.2016.13.

[43]

 Song L H, Zhuo Y W, Qian X H, Li H, Chen Y R.

GraphR: Accelerating graph processing using ReRAM. In

Proc. the 2018 IEEE International Symposium on High

Performance Computer Architecture, Feb. 2018, pp.531–
543. DOI: 10.1109/HPCA.2018.00052.

[44]

 Kipf T N, Welling M. Semi-supervised classification with

graph convolutional networks. arXiv: 1609.02907, 2016.

https://arxiv.org/abs/1609.02907, Mar. 2024.

[45]

 Jin T S, Dai H Q, Cao L J, Zhang B C, Huang F Y, Gao

Y, Ji R R. Deepwalk-aware graph convolutional networks.

Science China Information Sciences, 2022, 65(5): 152104.

DOI: 10.1007/s11432-020-3318-5.

[46]

 Bai J Y, Guo J, Wang C C, Chen Z Y, He Z, Yang S, Yu

P P, Zhang Y, Guo Y W. Deep graph learning for spatial-

ly-varying indoor lighting prediction. Science China Infor-

[47]

264 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

https://doi.org/10.1145/3579371.3589091
https://doi.org/10.1145/3579371.3589091
https://doi.org/10.1109/IPDPS47924.2020.00077
https://doi.org/10.1109/HPCA53966.2022.00079
https://doi.org/10.1109/IPDPS47924.2020.00076
https://doi.org/10.1109/IPDPS47924.2020.00076
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1145/3020078.3021739
https://doi.org/10.1145/3020078.3021739
https://doi.org/10.1109/MICRO56248.2022.00092
https://doi.org/10.1109/MICRO56248.2022.00092
https://doi.org/10.1145/3352460.3358318
https://doi.org/10.1145/3352460.3358318
https://doi.org/10.1109/TPDS.2013.235
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/3155284.3018756
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1109/HPCA53966.2022.00022
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1145/2897937.2898010
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/HPCA.2018.00052
https://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s11432-020-3318-5
https://doi.org/10.1007/s11432-020-3318-5
https://doi.org/10.1007/s11432-020-3318-5
https://doi.org/10.1007/s11432-020-3318-5
https://doi.org/10.1007/s11432-020-3318-5
https://doi.org/10.1007/s11432-020-3318-5
https://doi.org/10.1007/s11432-020-3318-5

mation Sciences, 2023, 66(3): Article No. 132106. DOI: 10.

1007/s11432-022-3576-9.

 Fey M, Lenssen J E. Fast graph representation learning

with PyTorch geometric. arXiv: 1903.02428, 2019. https://

arxiv.org/abs/1903.02428, Mar. 2024.

[48]

Xiao-Fei Liao is a professor in the

School of Computer Science and Tech-

nology at Huazhong University of Sci-

ence and Technology (HUST), Wuhan.

He received his Ph.D. degree in com-

puter science and engineering from

HUST, Wuhan, in 2005. He was

awarded Excellent Youth Award from the National Sci-

ence Foundation of China in 2018, and CCF-IEEE CS

Young Computer Scientist Award in 2017. His research

interests are in the areas of computer architecture, sys-

tem software, and big data processing.

Wen-Ju Zhao is a Ph.D. candidate

in the School of Computer Science and

Technology at Huazhong University of

Science and Technology (HUST),

Wuhan. His research interests include

computer architecture and graph neu-

ral networks.

Hai Jin is a chair professor of com-

puter science and engineering at

Huazhong University of Science and

Technology (HUST), Wuhan. Jin re-

ceived his Ph.D. degree in computer

engineering from HUST, Wuhan, in

1994. In 1996, he was awarded a Ger-

man Academic Exchange Service Fellowship to visit the

Technical University of Chemnitz, Straβe der Nationen.

Jin worked at The University of Hong Kong, Hong

Kong, between 1998 and 2000, and as a visiting scholar

at the University of Southern California, Los Angeles,

between 1999 and 2000. He was awarded Excellent

Youth Award from the National Natural Science Foun-

dation of China in 2001. He has co-authored 22 books

and published over 900 research papers. His research in-

terests include computer architecture, virtualization

technology, distributed computing, big data processing,

network storage, and network security.

Peng-Cheng Yao received his Ph.D.

degree in computer science and tech-

nology from the Huazhong University

of Science and Technology, Wuhan, in

2022. He is now a postdoctoral fellow

at Zhejiang Lab, Hangzhou. His re-

search interests include graph process-

ing and domain specific accelerator.

Yu Huang received his Ph.D. de-

gree in computer science and technolo-

gy from the Huazhong University of

Science and Technology (HUST),

Wuhan, in 2022. He is now a postdoc-

toral fellow at Zhejiang Lab, Hangzhou.

His research focuses on computer ar-

chitecture, graph processing, and processing in memory.

Qing-Gang Wang received his

Ph.D. degree in computer science and

technology from the Huazhong Univer-

sity of Science and Technology

(HUST), Wuhan, in 2023. He is now a

postdoctoral fellow at Zhejiang Lab,

Hangzhou. His current research inter-

ests include graph processing and reconfigurable com-

puting.

Jin Zhao received his Ph.D. degree

in computer science from the

Huazhong University of Science and

Technology (HUST), Wuhan, in 2022.

He is now a postdoctoral fellow at

Zhejiang Lab, Hangzhou. His research

focuses on computer architecture, sys-

tem software, runtime optimization, programming mod-

el, and big data processing.

Xiao-Fei Liao et al.: Towards High-Performance Graph Processing: Hardware/Software Co-Design Perspective 265

https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://doi.org/10.1007/s11432-022-3576-9
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428

Long Zheng received his Ph.D. de-

gree in computer science and technolo-

gy from the Huazhong University of

Science and Technology (HUST),

Wuhan, in 2016. He is currently an as-

sociate professor with the School of

Computer Science and Technology,

HUST, Wuhan. His current research interests include

program analysis, runtime systems, and heterogeneous

computing with a particular focus on graph processing.

Yu Zhang received his Ph.D. de-

gree in computer science from the

Huazhong University of Science and

Technology (HUST), Wuhan, in 2016.

His research focuses on computer ar-

chitecture and system, runtime opti-

mization, programming model, and big

data processing.

Zhi-Yuan Shao received his Ph.D.

degree in computer science and tech-

nology from Huazhong University of

Science and Technology (HUST),

Wuhan, in 2005. He is now a profes-

sor of computer science and engineer-

ing at HUST in Wuhan. His research

interests are in the areas of graph computing, comput-

ing system, and big-data processing.

266 J. Comput. Sci. & Technol., Mar. 2024, Vol.39, No.2

	1 Introduction
	2 Graph Hardware Accelerator
	2.1 AccuGraph: A DRAM-Based Version
	2.2 ScalaBFS2: An HBM-Based Version
	2.3 ScalaGraph: Scaled to Thousands Cores

	3 Graph Software System
	3.1 Graph Processing on CPU
	3.1.1 Static Graph Processing on CPU
	3.1.2 Dynamic Graph Processing on CPU
	3.1.3 Concurrent Graph Processing on CPU

	3.2 Graph Processing on GPU
	3.3 Graph Processing Based on FPGA
	3.4 Distributed Graph Processing

	4 Emerging Hardware/Software Co-Designs and Beyond
	4.1 Emerging Graph Processing
	4.1.1 Graph Construction
	4.1.2 Hypergraph Processing
	4.1.3 Heterogeneous Graph Processing

	4.2 Processing In/Near Memory
	4.2.1 ReRAM-Based Graph Processing
	4.2.2 ReRAM-Based Graph Learning
	4.2.3 Heterogeneous PIM-Based Graph Processing

	5 Conclusions
	Acknowledgments
	Conflict of Interest
	References

