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Abstract    John McCarthy proposed the vision of utility computing in 1961. Barbara Liskov proposed a related vision of

abstraction-powered Internet Computer in 2009. This position paper outlines a distributed computing model towards real-

izing the McCarthy-Liskov vision. This “hypertasking” model aims at extending the “hypermedia” model of the World

Wide Web into a model of World Wide Computing Utility, turning an information web into a computing web. The hyper-

tasking model contains three abstractions, including global resource space, stored-computer architecture, and monadic hy-

permedia. A prototype architecture and experimental evidence are presented to support this perspective.
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1    Introduction

The  idea  of  utility  computing  was  proposed  over

60 years ago by John McCarthy[1] in his 1961 lecture

to  celebrate  MIT’s  centennial.  He  envisioned  that

“computation may someday be organized as a public

utility, just as the telephone system is a public utility …
The  computing  utility  could  become  the  basis  for  a

new and important industry”.
Today’s  cloud  computing  systems  and  applica-

tions have only partially realized McCarthy’s comput-

ing  utility  vision[1].  Cloud  computing  has  become  an

important  industry,  with  increasing  market  scale.

However, it is still far from a convenient public utili-

ty,  compared with the universal  ease offered by tele-

phony.  Using  a  cell  phone,  one  can  instantly  reach

any  other  phone  on  the  planet,  although  the  two

phones may be operated by different telecommunica-

tion service providers. In contrast, a cloud computing

user  is  tethered  to  a  specific  cloud  provider  at  any

given time.

McCarthy’s  lecture  also  offered  intellectual  in-

sights. He considered the utility computing concept as

fundamentally important as the time-sharing concept

and  the  stored-program  concept.  He  also  mentioned

three salient features of the computing utility: 1) pay-

per-use  (“each  subscriber  needs  to  pay  only  for  the

capacity he actually uses”), 2) large-computer culture

(“but  he  has  access  to  all  programming  languages

characteristic of a very large system”), and 3) private

computer (“a computer that he can have continuous-

ly at his beck”).
Almost half a century later, Barbara Liskov made

intellectual revisions to the computing utility concept.

In her 2009 Turing award lecture, Barbara Liskov en-

visioned “Internet  as  a  Computer” as  a  future  re-

search direction[2]. Liskov emphasized that this Inter-

net  Computer  should  be  abstraction  powered.  She

lamented on the status of distributed systems: “There

is  a  funny  disconnect  how  we  write  distributed  pro-

grams. You write individual modules. But then, when

you  want  to  connect  them  together,  you  are  out  of

the programming language and sort of into this other

world. Maybe we need languages that are a little bit

more  complete  now,  so  that  we  can  write  the  whole

thing in the language.”
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It  is  probably  not  a  coincidence  that  McCarthy

served as Liskov’s PhD thesis adviser. Respecting this

academic lineage, we call the joined vision of comput-

ing  utility  and  Internet  Computer  the  McCarthy-

Liskov  vision.  Such  a  computing  utility  should  have

the following salient features.

● Pay-per-Use  Services. Users  subscribe  to  com-

puting  services  of  the  utility  and  pay  only  for  re-

sources actually used.

● Planet-Scale Culture. Users have ready access to

all  computer  culture  of  one  worldwide  utility  from

anywhere at any time.

● Low-Entropy  Systems. Each  of  the  billions  of

worldwide subscribers sees a private computer, large-

ly  isolated  from  disorders  such  as  error  propagation,

workload interferences, and system jitters.

● Abstraction-Powered Programs. Developing and

running programs on the computing utility should be

powered by abstractions, especially programming lan-

guage abstractions.

Our  team  of  Information  Superbahn  research

added one more “high-goodput” performance require-

ment for computing utility[3, 4].

● High-Goodput  Utility.  The  computing  utility  is

an  efficient  system,  such  that  most  executed  tasks

show good enough user experiences.

The  World  Wide  Web  (WWW)  functions  as  an

information utility, wherein any person or agent (pro-

ducer) can put up a piece of information on the Web

as a webpage. Consequently, anyone (a consumer or a

user) in the world can instantly access and utilize it.

In  fact,  modern  cloud  computing  has  benefited  from

the  WWW  technology.  One  of  the  first  commercial

public cloud computing offerings, Amazon cloud com-

puting  services,  is  called  Amazon  Web  Services

(AWS).

The  WWW  as  an  industry  and  an  ecosystem  is

supported  by  the  concept  of  worldwide  hypermedia,

as well as abstractions like uniform resource identifier

(URI), HTTP, and HTML. Partly because the Web is

abstraction-powered,  it  has  the  following  ease  of  use

property.

● One-Click Instant Access. By a single click on a

hyperlink,  a  user  of  the  Web  can  instantly  access  a

target  webpage,  which  can  be  an  information  re-

source anywhere in the world.

This  ease-of-use  property  implies  low  runtime  la-

tency  and  low  human  effort.  Many  webpages  on  to-

day’s  Web  can  be  accessed  with  runtime  latencies

within  a  second or  even milliseconds.  A user  sees  an

information resource provided in a webpage, visible to

the  user  as  a  hyperlink  or  a  link  word.  Many invisi-

ble  details  relevant  to  the  access  are  handled by ab-

stractions and their corresponding runtime software.

However, the WWW today is not yet an Internet

Computer.  The  WWW  is  an “information” web,

rather than a “computing” web or a computing utility.

One way to realize the McCarthy-Liskov vision is

to  advance  from  the  World  Wide  Web  to  a  World

Wide  Computing  Utility.  We  need  to  stand  on  the

shoulders of giants, such as:

● McCarthy ’s computing utility concept with the

pay-per-use, large, private computer idea[1],

● Liskov ’s  idea  of  the  abstraction-powered  Inter-

net Computer[2],

● Tim Berners-Lee’s idea of hyperlinking the world

via the WWW technology[5], and

● communities efforts in grid computing[6, 7], cloud

computing[8, 9],  and  sky  computing[7, 10–13],  as  dis-

cussed in Section 4.

Innovations are needed to extend the hypermedia

model of the WWW into a hypertask model that ac-

commodates  additional  requirements  and  challenges

of the computing utility, thus turning an information

web into a computing web.

The rest of this paper is organized as follows. Sec-

tion 2 highlights  the  main  characteristics  of  the  hy-

pertasking model of  computing utility,  in contrast to

the  hypermedia  model  of  the  WWW. Section 3 pro-

vides  supporting  evidence  by  presenting  a  prototype

architecture  and  experimental  evaluation. Section 4

discusses related work. Section 5 offers concluding re-

marks. 

2    Hypertask Compared with Hypermedia

The  hypertask  concept  was  first  proposed  in  the

context of the Internet of Things (IoT) and edge com-

puting[14, 15].  In  this  section,  we  highlight  the  more

fundamental  nature  of  hypertasking  as  a  computing

model  that  aims  at  extending  the  WWW  into  a

World  Wide  Computing  Utility,  realizing  the  Mc-

Carthy-Liskov vision.

The  familiar  hypermedia  model  is  shown  in

Fig.1(a).  The  WWW  provides  a  uniform  resource

space where any resource has a URI.  A user  can ac-

cess a resource from a client device, such as a laptop

computer,  by  entering  a  URI  in  a  web  browser  and

receiving  a  webpage.  The  webpage  in Fig.1(a)  dis-

plays three types of hyperlinks to web resources, each
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accessible with just one click. The URI points to the

homepage of the UC Berkeley Sky Computing Lab①.

The  hyperlink  for  the  picture  resource  is  an  embed-

ded link, which the browser will access automatically.

The seminar event hyperlink requires a click.

Fig.1(b)  shows  the  hypertasking  computing  mod-

el  and  its  three  principles.  We  use  the  word “com-

putility”[16] as  a  shorthand  for “world  wide  comput-

ing  utility”,  and  assume  there  are  many  client  de-

vices  but  only  one  computility  when  explaining

Fig.1(b).

A  hypertask  consists  of  application  logic  (app)

code  and  systems  code,  and  is  organized  as  a  main

task and zero or more subtasks. Each task uses one or

more  resources  in  the  computility  via  one-click

monadic hyperlinks. A hypertask may also serve as a

subtask of another. The main tasks and subtasks are

also hypertasks.

Visible  to  a  client  device,  each  hypertask  is  exe-

cuted  by  a  Request-Response-Consume  (RRC)

pipeline. A process of the app on the client device is-

sues a task request by “clicking” a monadic hyperlink.

The computility handles the task request and returns

a  response,  which  is  consumed  by  the  app  process.

During consumption,  the  app process  may issue  zero

or more subtask requests to the computility.

The computility follows three principles of require-

ments  (architectural  constraints).  We  first  highlight

their  main  concepts  and  then  elaborate  on  them  in

Subsections 2.1, 2.2, and 2.3, respectively.

● Global Resource Space (GRS). The computility

has  one  global  resource  space.  Any  resource  in  the

world  is  able  to  join  this  space  unconstrained.  Any

task can only use resources in the GRS. The design of

GRS needs to strike a balance between being compat-

ible and unconstrained.

● Stored-Computer Architecture (SCA). Any task

execution  needs  data,  program,  and  computer  re-

sources. The first two types are already supported by

the stored-program concept, providing coded informa-

tion and coded algorithm capabilities. The computili-

ty needs to additionally support the coded system ca-

pability, such that a hypertask can be executed on an

elastic  cluster,  which  is  a  set  of  dynamically  con-

structed, elastic, and full-stack resources.

● Monadic  Hypermedia  (MH).  The  hyperlink  or

hypermedia  concept  in  the  WWW  is  extended  to  a

monadic hyperlink/hypermedia concept for computili-

ty, to support task composition and decoupling of sys-

tems operations from app logic code. 

2.1    Global Resource Space

The  GRS  principle  inherits  the  unconstrained,

global “information” space concept of WWW, but ex-

tends it to a global “resource” space to accommodate

all types of resources, including information resources

as well as computing resources.

When designing the resource space of computility,

there  is  a  key  tension  between  reducing  constraints

and  maintaining  compatibility  when  matching  tasks

 

Client Device

World Wide Computing Utility

Monadic Hyperlinks

Main Task

App Logic 

Subtask

App Logic

Subtask

App Logic

HCI

Submit Task Requests

Consume Task Results

Browser

World Wide Web

Hyperlinks

(b)

(a)

Fig.1.  Hypertasking versus hypertexting. (a) Hypermedia mod-
el for WWW. (b) Hypertasking model for computing utility.
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to  resources.  It  is  worth  noting  that  when  formulat-

ing and thinking about requirements of “being uncon-

strained” and “being compatible”, we should not take

them  as  a  categorical  yes/no  metric  but  as  a  spec-

trum  of  pursuits  beneficial  for  the  wellbeing  of  the

computing utility ecosystem.

The dichotomy way of thinking has its merits and

place.  For  instance, Fig.2 shows  a  clear  and  simple

classification  of  computility  designs  into  four  cases:

incompatible  and  constrained  (IC),  compatible  and

constrained  (CC),  incompatible  and  unconstrained

(IU),  and  compatible  and  unconstrained  (CU).  Ap-

parently,  we  should  avoid  the  worst  case  of  IC  and

strive for the best case of CU.
  

IU CU

IC CC

Unconstrained

Constrained

Incompatible Compatible

Fig.2.  Four cases of constraint and compatibility.
 

However, Fig.2 is not a totally correct way to cat-

egorize and think about being unconstrained and be-

ing  compatible.  Each  of  them  is  a  spectrum  and  a

continuum. There are more than four cases (IC, CC,

IU,  and  CU).  In  fact,  there  are  potentially  infinitely

many cases. One computility design can be more com-

patible or less constrained than another.

For  instance,  as  shown  in Fig.3,  one  can  argue

that when accessing files on the Internet, the WWW

design  is  less  constrained  and  more  compatible  than

the FTP technology. It is not appropriate to say that

FTP  is  incompatible  and  constrained,  while  the

WWW is compatible and unconstrained.

All  resource  spaces  in  practical  use  have  con-

straints,  some  of  which  we  have  to  oblige,  such  as

subscription  walls,  security  walls,  privacy  protection,

as well as sovereignty laws and regulations. What we

want is  to reduce artificial  constraints and complexi-

ty, via better abstractions and technologies.

To  reduce  provider-side  constraints,  the  GRS

should  allow  any  organization  or  individual  to  add

any  resource  to  the  computility  without  permission

from a third party, similar to how a website can add

a webpage to the WWW without constraints. The or-

ganization or individual is called the resource owner.

To  reduce  consumer-side  constraints,  the  GRS

should  accommodate  diverse  task-resource  matching

schemes and resolve compatibility issues. All schemes

should try to satisfy the one-click instant access prop-

erty.  Four  types  of  matching  schemes  are  discussed

below and illustrated in Fig.4.

● By Name. When a resource joins the computili-

 

FTP

Incompatible Compatible

WWW

IU CU

IC CC

Unconstrained

Constrained

Fig.3.  Perspectives of constraint and compatibility.

 

Tasks  

Named Resource  Registry  Debian  K8s  Azure  Ray 

1. B
y Name

2. By Registry

3. By AI

4. By Human

Fig.4.  Four matching schemes in the global resource space.
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ty, it is assigned a globally unique name or identifier.

The  resource  owner  has  the  rights  and responsibility

of  name assignment,  following some global  standards

such as a uniform resource name (URN), URI, or uni-

form resource locator (URL) to achieve name unique-

ness. Tasks can access a resource using its name. The

approach is also used by the WWW and is similar to

random access memory.

● By  Registry. When  a  resource  joins  the  com-

putility,  it  may  be  registered  in  a  resource  registry.

To access a resource, tasks first look up the resource

in  the  registry,  which  returns  a  handle  for  access.  A

resource does not need to provide a unique name to a

task. A consistent registry must be maintained in the

computility.  The  approach  is  similar  to  associative

memory.

● By AI. Suppose  there  is  neither  global  naming

nor registry. One can still resolve compatibility issues

assuming the existence of an oracle, which returns de-

sired resource handles  when receiving a task request.

Techniques such as search engines, targeted advertis-

ing, and large language models (LLMs) can be lever-

aged to build a matching oracle.

● By  Human. When  all  automatic  tools  fail,  hu-

man involvement is needed for resolving computabili-

ty  issues.  But  the  computility  design,  especially  the

GRS design  and abstractions,  should  try  to  help  the

user/developer minimize human efforts required.

Learning from telephony, we also need some form

of  task  switching  mechanism to  match  tasks  and  re-

sources  in  the  global  resource  space.  Early  telephone

switches  use  human operators  to  match  and  connect

the  two  parties  of  a  conversation.  Modern  telephone

switches  not  only  automatically  connect  two  parties,

but  also  try  to  provide  good  enough  quality-of-ser-

vice on an elastic virtual channel between them.

The  problem  of  task  switching  is  similar:  match

and connect  the  two parties  of  every  task  execution,

where one party is  a task with its resource specifica-

tion,  and  the  other  party  is  the  set  of  resources

matching  the  specification.  We can  imagine  the  task

switching  problem  as  a  dynamic  bipartite  graph  of

task  nodes  and  resource  nodes.  At  any  time,  there

may  be  billions  of  tasks  looking  for  billions  of  re-

sources in the computility.

Unlike  packet  switching,  task  switching  does  not

necessarily  mean  routing  a  task  to  a  resource.  The

key  point  is  the  result  of  task  switching:  a  task  is

started and executed on resources matching the task’s
resource  specification.  Similar  to  dining  options,  one

can  go  to  a  restaurant,  order  a  catering  service,  or

take out.

When  reducing  constraints,  we  should  not  forget

to  resolve  compatibility  issues  that  arise  in  task-re-

source  matching.  Compatibility  first  means  that  we

want  a  right  match:  a  task  can  start  on  a  resource.

The  probability  of “wrong  matching”,  equivalent  to

“wrong  number” in  telephony  or  404  status  code  in

the WWW, should be exceedingly low. Second, com-

patibility means that we want a good match, akin to

the QoS objective in the telephone switch: task execu-

tions  on  resources  should  exhibit  high  goodput,  low

tail latency, and low cost. Therefore, compatibility is

not  a  categorical  metric  but  a  continuum where  one

system can be more compatible than another. 

2.2    Stored-Computer Architecture

Historically,  computers  up  to  the  ENIAC  (Elec-

tronic  Numerical  Integrator  and  Computer)  followed

a  fixed-program  architecture,  shown  as  phase  1  in

Fig.5.  In  such  a  system,  information  is  coded  and

stored as data in memory, but the “program” is built

into the system hardware.
  

Data

Computer

Program

Stored

Not

Stored

Phase 1:

Fixed-Program

Architecture

Phase 2:

Stored-Program

Architecture

Phase3:

Stored-Computer

Architecture

Data

Computer

Program

Stored

Not
Stored

Data

Computer

Stored Program

Fig.5.  Three phases of computing systems evolution.
 

The  defining  concept  of  modern  computers  is

stored-program  architecture,  shown  as  phase  2  in

Fig.5.  Algorithms  are  coded  as  programs  and  stored

in  memory  as  data.  The  stored-program concept  en-

ables general-purpose computers, which fetch and exe-

cute instructions one by one. It also facilitates manip-

ulation  of  programs  in  the  same  way  that  the  com-

puter manipulates data, which enables program com-
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pilation,  operating  systems,  and  static/dynamic  li-

braries.

Any  task  execution  needs  data,  program,  and

computer  resources.  The  hypertasking  model  takes

the position of stored-computer architecture, shown as

phase 3 in Fig.5. That is, all three types of resources

(data,  program, and computer) are coded and stored

in  the  computility,  such  that  the  matched  resources

can be dynamically provisioned to suit the needs of a

task. We observe that dynamic provisioning is equiva-

lent to automatic construction of an elastic, full-stack,

virtual  cluster  for  the  task.  Automatically  construct-

ing  the  elastic  cluster  means  automatically  scaling

and  constructing  resources  at  any  abstraction  level.

The  construction  code  and  resources  are  reusable  by

any  person  with  programming  and  runtime  abstrac-

tion  support,  including  static  and  dynamic  resource

type checking.
 
 

What does “coded” mean?

    When discussing the three phases of  computing

systems evolution in Fig.5, we use phrases such as

coded  information,  coded  algorithm,  and  coded

system. For any instance of any of the three types

of  resources,  ``coded''  means  that  the  resource  is

precisely described by a computer language,  which

could be a programming language or a not Turing-

complete  language,  such  as  a  markup  language.

The  precisely  described  resource,  i.e.,  coded

resource,  is  stored,  accessed,  and  manipulated  as

data.  This  clarification  is  borrowed  from  Donald

Knuth,  who  considered  that  programs  are

algorithms expressed by a computer language.
 

With the SCA support,  when any task request is

sent to the computility, an elastic, full-stack, and vir-

tual cluster is created and dedicated to the lifecycle of

the  task  execution.  This  dedicated  computer  can  be

called the elastic cluster for the task.

Four characteristics of the dynamically construct-

ed computer are briefly discussed below.

● Cluster.  The resources are not a set of unrelat-

ed members, but form one computer system with nec-

essary  processors,  memory,  storage,  and  I/O  hard-

ware capabilities, as well as needed software and data.

This could be a sequential or parallel computer, or a

distributed system. This computer can be managed as

a single entity.

● Virtual. This is a virtual computer, comprised of

abstract  components  (coded  resources)  that  can  be

mapped  to  physical  resources,  including  data,  pro-

grams, and computers. Thus, the stored-computer ar-

chitecture can also be called stored-resource architec-

ture.

● Full-Stack.  The computer is  composed of  a full

stack of resources needed by the task. The stack could

be as shallow as a bare-metal server, or as deep as a

multi-layered  stack  consisting  of  resources  from  the

bare-metal,  OS,  middleware,  libraries,  up  to  app

framework, or even SaaS layer. Each layer could have

its  own  abstractions.  The  SCA  should  facilitate  the

users to program with high-level abstractions.

● Elastic. During a task’s lifecycle, resources need-

ed by the task may change. Therefore, the cluster or-

ganization, both virtual and physical,  may change as

well,  including  its  parallelism,  interconnection,  syn-

chrony, and heterogeneity, among other factors. 

2.3    Monadic Hypermedia

The  concept  of  stored-computer  architecture  of-

fers benefits for computility. However, it could signifi-

cantly increase programming difficulty, if the user/de-

veloper  has  to  provide  all  the  system coding  details,

in addition to information coding and algorithm cod-

ing.  We need coded abstractions to hide systems de-

tails.

We  propose  a  principle  for  such  coded  abstrac-

tions,  called  monadic  hypermedia,  shown in Fig.6.  A

program  running  on  computility  consists  of  three

types of  code:  app functions (e.g.,  parallel  quick sort

code  and  data),  non-app  functions  (e.g.,  parallelism

details),  and non-functional  code (e.g.,  access  control

and resource accounting details). Preferably, the user

only needs to provide the app functions, as shown in

Fig.6(a),  which  specifies  that  the  task  consists  of  a

quicksort function f, which maps input data a to sort-

ed  data b.  But  what  is  executed  by  computility  is

more detailed, as shown in Fig.6(b). The system actu-

ally produces mb, where m is a monad. The monadic

hypermedia  subsystem  of  computility  is  expected  to

automatically provide the purple parts of Fig.6(b), by
 





















 

(b)(a)

Fig.6.  Illustration of monadic hypermedia via a Kleisli catego-
ry. (a) App. (b) App logic and systems details
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code and data completion,  with minimal or  no input

from the user.

The monadic hypermedia works more like a deco-

rator  than a  typical  library  call  that  needs  to  be  in-

serted  into  business  logic.  In  other  words,  monadic

hypermedia adds systems details to app logic and re-

alizes its composition in a non-intrusive way.

The “monadic” in  monadic  hypermedia  tries  to

transfer the monad idea in category theory to utility

computing[17]. The computility should provide built-in

types  of  monadic  hypermedia,  to  manage  common

systems  details  related  to  naming,  accounts,  access

control,  effects,  heterogeneity,  and  exceptions.  These

call  for  careful  abstraction  and  design,  beyond  brute

force  listing  and  implementation.  Abstraction  for

built-in  monadic  hypermedia  targeting  lifecycle  man-

agement of tasks could be a good starting point. We

should also note that programming language support

may not be enough. Runtime support needs to be pro-

vided  to  ensure  the  correctness  and  compositionality

of  monadic  hypermedia[18].  Additionally,  mechanisms

should be established to allow third parties to define

their own monadic hypermedia, and add them to the

global resource space. 

3    Experiments on a Prototype of Computility

This  section  provides  initial  supporting  evidence

for the hypertasking computing model, by outlining a

prototype  architecture  and  conducting  Things-Multi-

cloud experiments.  The prototype is  called PoC as a

shorthand  for  the  Prototype  of  Computility.  It  real-

izes  the  request-response-consume  (RRC)  pipeline

(shown in Fig.7), via three abstractions of service as-

sembly, grip, and named resource (shown in Fig.8).
 
 

Prototype of

Computilty

Computer

Program

Data
Request

Create

Deploy
RespondHypertask

Match
Consume

Fig.7.  Execution of request-response-consume pipeline. 

3.1    Resource Provisioning

The  Prototype  of  Computility  (PoC)  must  have

resources to execute hypertasks. Any resource on the

Internet  can  join  the  PoC  to  become  part  of  its

named resource space (NRS) and is assigned a global-

ly  unique  name,  such  as  a  URI,  needing  no  permis-

sion  from  a  third  party.  However,  the  resource

provider needs to execute the NRS server software. A

resource collection, such as a cloud or an HPC (high-

performance computing) center, may need to run on-

ly one NRS server. This is similar to how a Web site

needs to run a Web server to enable the world to ac-

cess its resources.

As shown in Fig.9, experiments are conducted on

resources  of  four  sites,  using  six  virtual  machines

(VMs) from each of Azure Cloud②, Tencent Cloud③,

and a private cloud. Each VM of the Azure Cloud or

the Tencent Cloud is equipped with four CPU cores,

16 GB memory, and 100 Mbps public network band-

width. Each VM from the private cloud has 16 CPU

cores,  32  GB  memory,  and  a  public  network  band-

width of 100 Mbps. The round-trip time between our

Things Lab and the three clouds is as follows: 188 ms

to  Azure,  35  ms  to  Tencent,  and  42  ms  to  the  pri-

vate  cloud.  The  required  resources  are  described  in

hypertasks, as shown in Fig.10 and Fig.11.

As  shown  in Fig.12,  over  a  dozen  types  of  re-

sources on the Internet are used by the PoC and our

experiments.  They  are  named  resources.  Once  a  re-

source is in the NRS, it will be accessible worldwide.

For  instance, Fig.8 only  shows  how  the  YOLO11-

based[19] image recognition application uses the named

resources.  However,  a  matrix  multiplication  applica-

tion can also use these named resources. 

3.2    Hypertask Description

A hypertask is described by a service assembly, in

addition to the real app code. For instance, a matrix

multiplication  task  is  comprised  of  the  real  matrix

multiplication code mm.py and the associated service

assembly file mm.ht, as shown in Fig.11(d). They are

sent to the PoC as a whole in one task request.

The hypertasks used in the Things-Multicloud ex-

periments  are  shown  in Fig.8, 10,  and 11.  The  PoC

provides  four  types  of  built-in  monadic  hypermedia,

including  scheduler,  task  closure,  environment,  and

lifecycle  management.  This  enables  service  assembly

description  to  reduce  programming  complexity,  by

helping  programmers  focus  on app functions  and de-

coupling tasks from specific computing resources.

A service assembly description of a hypertask con-

tains five components, as shown in Fig.10 and Fig.11.

The Business component links to the app functions of

the  hypertask,  which  will  be  deployed  to  an  execu-
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tion environment specified by Environment. Input and

Output refer  to  the  data  required  by  the  app  func-

tions and the data it produces, respectively. The As-
sembly component  composes  existing  hypertasks  to

 

     Task Closure  

Resources from Different Organizations  

Python with Camera  

Photo Capture  

Image/Signal  

Task Closure  

YOLO11  

Object/Image  

Service Assembly  

       

      Debian  

Tencent Cloud  

PyTorch 

YOLO11  

Photo Capture  

Auto-
Created  

Partial Specification 

Grip 

Azure  Docker  

YOLO11 

Camera  

Python  

Monadic Hyperlink  
Monadic Hyperlink  

Raspberry Pi  

Named Resource  

Private Cloud  

Ray  

Analytics  

Object/Object  

Things Lab  

      Debian  

      K8s  

      Ray  

      Analytics  

Tencent Cloud  

Debian  K8s  Task Closure  Ray 

Azure  Things Lab 

Naming 

Input Output 

Fig.8.  Architecture of the Prototype of Computility (PoC).
 

Private  Cloud, Nanjing, China  

Kubernetes  

MM/IR Service  

Request  Result  Hypertask  Result 

Tencent Cloud, Beijing, China  

Kubernetes  

MM/IR Service  

Request  Result  Hypertask  Result 

Azure Cloud, East U.S.A.  

Kubernetes  

MM/IR Service  

Request  Result  Hypertask  Result 

Analytics-

Task  

Things Lab, Beijing, China  

Scheduler Monad  

Scheduler Monad  Scheduler Monad  

Same Inter-Cloud Scheduling Policy  

Fig.9.  Experiments running on resources of four sites.
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Exp-Code 

Business  

Environment
(Ray)  

Output  

Input  

Thing-Task  Image-Recognition  

Create Ray  
Log 

Results 

Object 

Trace 

Exp-Task  

Create K8s  

Image 

Deploy 

Monadic Hyperlink 

Create OS  

Hypertask Data App Functions Data Transfer 

Assembly  Analytics-  

Task  

Fig.10.  Structure of the experiment hypertask.

 

1 Name: Exp-Task 

2 Environment:  

3   type: Ray 

4 Assembly: 

5   thing1:  

6     name: Thing-Task 

7     depends_on: analytics 

8    monad: scheduler-monad 

9   thing2: # same as thing1 

13  thing3: # same as thing1 

17  thing4: # same as thing1 

21   analytics:  

22    name: Analytics-Task 

23 Business: Exp-Code 

24 Input: { "Trace":"" } 

25 Output: { "Results":"", "Log":"" } 

(a)   

1 Name: Thing-Task 

2 Environment:  

3   type: OS 

4  provider: things 

5 Business: Photo-Capture-Code 

6 Input: { "Send_Addr":"", "Trace":"" } 

7 Output: {"Hypertasks":[], "Image":"" } 

(b)    

1 Name: Image-Recognition 

2 Environment:  

3   type: Task-Closure 

4 Business: YOLO11-Code 

5 Input: { "Image":"", "Send_Addr":"" } 

6 Output: { "Object":"" } 

(c)     

1 Name: Matrix-Multiplication 

2 Environment:  

3   type: Task-Closure 

4 Business: Matrix-Multiplication-Code 

5 Input: { "Send_Addr":"" } 

6 Output: { "Object":"" } 

(d)

 

   
 

1 Name: Analytics-Task 

2 Environment:  

3   type: Ray 

4 Business: Analytics-Code 

5 Input: { "Object":"" } 

6 Output: { "Result":"", "Log":"" } 

(e)

 
  

 

Fig.11.  Five hypertasks in experiments. (a) Hypertask of the entire experiment (experiment.ht). (b) Hypertask running on IoT de-
vices (thingTask.ht). (c) Image recognition hypertask (ir.ht). (d) Matrix multiplication hypertask (mm.ht). (e) Analytics hypertask
(Analytics.ht).

 

YOLO11 Service Private Cloud Managed by Proxmox Virtual Environment (PVE)

Tencent Cloud Kubernets Cluster An Environment with Task Closure Installed

Ray Cluster OpenCV Library PyTorch Library Camera on Raspberry Pi

Virtual Machine Instance Running on x86 CPU with Debian OS and Python Installed

An Environment with Docker Raspberry Pi with ARM CPU, Debian OS, and Python

Azure Cloud An Environment with Python Installed

Fig.12.  Named resources used in the PoC and experiments.
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express a more comprehensive logic. Environment and

Assembly contain  non-app  functions  and  non-func-

tional code of the hypertask.

The  Things-Multicloud  experiments  compare  the

PoC-based  Things-Multicloud  system  with  a  Kuber-

nets-based  Things-Multicloud  system  (called  the

K8s④ system).  They  are  conducted  by  running  the

same workload consisting of an image recognition ap-

plication  and  a  matrix  multiplication  application.

This  mixed  workload  is  chosen  to  see  the  impact  of

inter-application  interferences.  In  each  test,  the  K8s

system and the PoC system use the same bare-metal

resources,  i.e.,  they  have  the  same  computing  re-

sources and network resources.

In the image recognition application, the four IoT

devices in the Things Lab, each equipped with a cam-

era,  periodically  capture  images  and  send  image

recognition (IR) tasks  to  the multicloud to recognize

and analyze. In the matrix multiplication application,

the  four  IoT  devices  in  the  Things  Lab  periodically

send matrix  multiplication (MM) tasks  to  the  multi-

cloud to compute.

The  experiments  test  burst  load  and mixed  load,

and  calculate  the  task’s  end-to-end  latency  and  the

yield  of  each  test.  Yield[4] refers  to  the  ratio  of  the

number  of  tasks  meeting  the  user's  latency  require-

ment  to  the  total  number  of  tasks.  In  the  experi-

ments,  the  latency  requirement  is  set  to  1  second.

Burst  load  tests  the  system's  elasticity,  while  mixed

load tests whether the system can reduce interference

between tasks.

In  the  burst  load  scenario,  identical  computing

tasks  (MM  or  IR)  are  repeatedly  dispatched  by  all

four  IoT  devices  at  specified  intervals,  ranging  from

62.5 ms to 1 s, for 40 seconds.

In  the  mixed  load  scenario,  the  IoT  devices  sub-

mit  both  types  of  tasks  simultaneously.  During  the

first half of the test, the ratio of MM to IR is set at

1:R.  Conversely,  in  the  second  half,  the  ratio  is  ad-

justed  to R:1.  The  experiment  assesses  two  different

cases with R values of 4 and 8, respectively. The ex-

periments test when the total number of tasks ranges

from 3 200 to 25 600 for  200  seconds,  a  period  suffi-

cient for K8s to perform multiple scaling-ups. 

3.3    Task-Resource Binding

From Fig.8 and Fig.11, we can see that gaps exist

between high-level hypertask descriptions and low-lev-

el  named  resources.  Mechanisms  are  needed  to  close

these  gaps.  The  core  need  is  to  create  and  maintain

an elastic cluster to run a hypertask.

The PoC offers a grip abstraction. It automatical-

ly  and  recursively  builds  low-level  resources,  assem-

bles  them  into  a  full-stack  resource,  and  runs  app

functions on this resource, i.e., an elastic cluster. The

PoC  system  currently  supports  the  automatic  con-

struction  of  virtual  machines,  operating  systems,

Docker⑤,  K8s,  Ray⑥ cluster,  and  task  closure.  The

last is a built-in monadic hypermedia of the PoC.

The  property  of  maintaining  an  elastic  cluster  is

validated  through  the  mixed  load  scenario  tests.  In

the  first  phase,  the  PoC  allocates  more  resources  to

IR  tasks  than  to  MM  tasks.  When  the  task  ratio

changes,  the  PoC  converts  the  resources  used  by  IR

tasks into resources for MM tasks. It obtains new re-

sources from multiple clouds on demand when the re-

sources needed by tasks are not sufficient. 

3.4    Performance Results

It appears that the PoC system provides a layer of

indirection  between  tasks  and  resources  to  support

programmability (e.g., automatic build). We must ask

1) how large the overhead is, and 2) what the overall

system performance is when executing tasks.

Table 1 shows the latencies of constructing differ-

ent types of resources in the PoC following the hyper-

tasking computing model, compared with latencies us-

ing  traditional  methods  on  existing  clouds.  The  re-

sults indicate that the overheads are within 0.31% to

6.68%. There is room for improvement, but such over-

heads are acceptable.
 
 

Table  1.    Latency in Constructing Resources at Different Ab-
straction Levels

Resource Hypertasking (s) Traditional (s)

Tencent Cloud VM 39.97 38.46

Azure Cloud VM 58.02 55.65

Private Cloud VM 46.94 44.43

Docker 70.30 65.90

K8s (3 nodes) 403.20 396.80

Ray cluster 57.84 57.66

 

Fig.13 and Fig.14 show  the  performance  of  the

PoC system and the K8s system under the burst and
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mixed loads in the environments, respectively. The re-

sults  show that  the  PoC system can significantly  re-

duce  application  latency  and  improve  application

yields.

Under the burst load, as shown in Fig.13, the PoC

system consistently demonstrates lower latencies than

the  K8s  system,  achieving  an  average  reduction  of

59% and a peak reduction of 95%. The yield has im-

proved  by  an  order  of  magnitude,  22  times  on  aver-

age.

In  the  MM  test  case  with  320  tasks,  the  PoC

demonstrates  a  slightly  higher  p99  tail  latency  com-

pared with the K8s system. This is attributed to the

queuing of tasks on the private cloud prior to the ex-

pansion  of  containers,  which  prompts  the  scheduler

monad to redistribute the load to other clouds, there-

by increasing latency. In contrast, due to HTTP time-

out setting, the K8s-based application does not sched-

ule the task to other clouds. In future work, more ac-

curate  execution  time  estimates  will  be  incorporated

into the scheduler monad. Users can improve applica-

tion performance without modifying the application's

hypertasks.

Under  the  mixed  load,  as  shown  in Fig.14,  the

PoC system reduces latencies by 72% on average and

by 97% in the best case, compared with the K8s sys-

tem. The PoC system also improves yield by orders of

magnitude at high loads. 

4    Related Work

Grid computing[6, 7] was proposed in the 1990s and

designed as  a  computing infrastructure  that  provides

on-demand computing resources  from various  organi-

zations. Various grid computing approaches were pro-

posed, implemented, and used, especially in the scien-

tific computing community. They aim to connect geo-

graphically distributed resources via the Internet and

integrate them into a large supercomputer, which pro-

vides  computing,  storage,  and  data  resources.  Multi-

ple  resource  providers  form  a  federation  or  a  virtual

organization.

Cloud  computing[8, 9] is  the  most  recent  produc-

tion-grade  development  of  computing  utility,  which

delivers computing resources such as servers, storage,

software,  and  databases  over  the  Internet,  allowing

users  to  access  these  services  on  demand  without

owning physical  infrastructure.  It  operates  on a scal-

able,  pay-as-you-go  model,  making  it  cost-efficient

and flexible for businesses and individuals. Cloud ser-

vices are typically categorized into Infrastructure as a

Service  (IaaS),  Platform  as  a  Service  (PaaS),  and

Software  as  a  Service  (SaaS).  They  can  be  deployed

via  public,  private,  and  hybrid  models.  Cloud  com-

puting does not solve problems such as platform lock-

in, API explosion, and low resource utilization.

Sky computing[7, 10–13] and joint-cloud computing[20]

are  two approaches  to  the  next  stage  of  utility  com-

puting.  Sky  computing  hopes  to  connect  multiple

cloud  vendors  to  provide  a  non-differentiated  com-

modity that forms a public utility computing service.

Through  a  compatibility  layer,  sky  computing  hides

differences in implementation between clouds and al-

lows  users  to  run  tasks  on  different  clouds  without

modification.  It  introduces  the  intercloud  layer  that

decouples users from cloud vendors and runs jobs on

the  cloud  (or  clouds)  that  meet  users’ requirements,

like  price  and  performance.  The  intercloud  layer  is

 

40

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

80 160 320

Number of Tasks

Y
ie

ld
 (

%
)

L
a
te

n
c
y
 (

s)

640 1 280 2 560

100

80

60

40

20

0

PoC-Latency
K8s-Latency
PoC-Yield
K8s-Yield

Fig.13.  Application performance on the PoC vs the K8s under
burst load in multicloud.
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implemented by an intercloud broker, which creates a

two-sided  market  between  users  and  clouds.  Joint-

cloud  computing  focuses  on  cloud  collaboration,  al-

lowing  users  to  customize  cloud  services  through  a

“software-defined” approach.  It  supports  the  ex-

change of service capabilities through the service cata-

log of the Joint-Cloud Computing Environment.

As a testbed for future cloud computing systems,

Cloudlab[21] supports  researchers  in  building  cus-

tomized  clouds  through  a  Geni  profile,  which  accu-

rately  describes  hardware  resources,  network  topolo-

gy,  and  building  scripts.  Cloudlab  provides  three

types  of  resources,  including  virtual  machines,  bare-

metal  machines,  and  containers.  FABRIC[22] is  a  na-

tional  network  research  infrastructure  that  provides

the  everywhere-programmable  capability  and  sup-

ports  access  to  supercomputing  and  cloud  platforms.

Infrastructure as Code (IaC) offers benefits for infras-

tructure automation by enabling automated, efficient,

and consistent environment creation through declara-

tive  configurations.  Terraform[23],  as  a  popular  IaC

tool,  provisions  and  manages  resources  across  differ-

ent clouds with the requirement of using provider-spe-

cific APIs.

Computing power network[24] is  an emerging con-

cept  of  connecting  distributed  and  heterogeneous

computing nodes. It focuses more on networking tech-

nology, including resource connecting, scheduling, and

compute first networking[25]. Our work aims to build a

global computing system that satisfies the six salient

features,  including  pay-per-use  services,  planet-scale

culture,  low-entropy  systems,  abstraction-powered

programs,  high-goodput  utility,  and  one-click  instant

access. 

5    Conclusions

John McCarthy and Barbara Liskov proposed the

vision  of  computing  utility  and  Internet  Computer,

respectively.  To  realize  the  McCarthy-Liskov  vision,

this  paper  outlines  a  hypertasking  computing  model

to  extend  the  World  Wide  Web  to  the  World  Wide

Computing  Utility.  The  hypertasking  model  lowers

the entry barrier for users to utilize worldwide infor-

mation and computing resources by having them send

hypertasks  to  the  computing  utility  through  a  re-

quest-response-consume  pipeline  and  adhering  to

three  architectural  constraints.  The  global  resource

space  constraint  allows  unconstrained  resource  join-

ing  and  accessing  while  supporting  compatible  task-

resource  mapping.  The  stored-computer  architecture

constraint  provides  the  ability  to  dynamically  con-

struct  and  maintain  a  virtual,  full-stack,  and  elastic

cluster dedicated to each hypertask. The monadic hy-

permedia  constraint  provides  abstractions  to  reduce

programming complexity.

We  built  a  prototype  to  validate  the  hypertask-

ing model within a Things-Multicloud scenario, using

resources from four sites across China and the United

States. During experiments, the prototype dynamical-

ly  constructed  a  full-stack  elastic  cluster  and  de-

ployed  tasks  on  the  cluster,  such  as  automatically

building a Ray cluster from bare-metal and adjusting

the CPU occupation from 24 cores to 72 cores accord-

ing to the task demand. Initial evidence from experi-

ments suggests that the prototype introduces accept-

able overhead for resource auto-building, ranging from

0.31% to 6.68%. Compared with Kubernetes, the pro-

totype shows a higher throughput for tasks that meet

users' latency requirements.

In  future  work,  new  naming  and  access  mecha-

nisms  for  global  resources  will  be  developed,  along

with  programming  and  runtime  support  for  stored-

computer  architecture.  A  variety  of  monadic  hyper-

media will be created to suit common scenarios. Addi-

tionally, larger-scale experiments are planned to thor-

oughly verify the hypertasking model,  including test-

ing applications across multiple domains, such as edu-

cation and large AI models. 
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