
JCST Papers

Only for Academic and Non-Commercial Use

Thanks for Reading!

Survey

Computer Architecture and Systems

Artificial Intelligence and Pattern Recognition

Computer Graphics and Multimedia

Data Management and Data Mining

Software Systems

Computer Networks and Distributed Computing

Theory and Algorithms

Emerging Areas

JCST URL: https://jcst.ict.ac.cn

SPRINGER URL: https://www.springer.com/journal/11390

E-mail: jcst@ict.ac.cn

Online Submission: https://mc03.manuscriptcentral.com/jcst

JCST WeChat

Subscription Account

Twitter: JCST_Journal

LinkedIn: Journal of Computer Science and Technology

https://jcst.ict.ac.cn/en/topic?id=79684b89-287a-47c3-9c35-6f4a15b3caa4
https://jcst.ict.ac.cn/en/topic?id=2fce0d7a-174e-4fa4-bf9b-0d14aa471c0e
https://jcst.ict.ac.cn/en/topic?id=bb373f9b-f826-46dd-a7d1-b8f591d71d51
https://jcst.ict.ac.cn/en/topic?id=90aac8ff-cc19-44f5-ba42-8f3be3fc0492
https://jcst.ict.ac.cn/en/topic?id=ff0ad243-fab9-43e4-9630-25eb75b7758d
https://jcst.ict.ac.cn/en/topic?id=637ca798-2d4b-4a87-bd30-184d64d9e882
https://jcst.ict.ac.cn/en/topic?id=29ea894f-e9b6-476d-9d42-8d9311fc9527
https://jcst.ict.ac.cn/en/topic?id=aaa047b5-d195-43b7-a34c-18e3f5fceaa5
https://jcst.ict.ac.cn/en/topic?id=9d67e5e4-0460-4a25-aca2-4c9f7523bacc
https://jcst.ict.ac.cn
https://www.springer.com/journal/11390
mailto:jcst@ict.ac.cn
https://mc03.manuscriptcentral.com/jcst

Hypertasking: From Information Web to Computing Utility

Zhi-Wei Xu (徐志伟), Fellow, CCF, Zi-Shu Yu (俞子舒), Student Member, CCF
Feng-Zhi Li (李奉治), Student Member, CCF, and Yao Zhang (张　垚), Student Member, CCF

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100149, China

E-mail: zxu@ict.ac.cn; yuzishu19s@ict.ac.cn; lifengzhi20z@ict.ac.cn; zhangyao22z@ict.ac.cn

Received December 26, 2024; accepted February 11, 2025.

Abstract John McCarthy proposed the vision of utility computing in 1961. Barbara Liskov proposed a related vision of

abstraction-powered Internet Computer in 2009. This position paper outlines a distributed computing model towards real-

izing the McCarthy-Liskov vision. This “hypertasking” model aims at extending the “hypermedia” model of the World

Wide Web into a model of World Wide Computing Utility, turning an information web into a computing web. The hyper-

tasking model contains three abstractions, including global resource space, stored-computer architecture, and monadic hy-

permedia. A prototype architecture and experimental evidence are presented to support this perspective.

Keywords cloud computing, computing utility, hypermedia, hypertask, stored-computer architecture

1 Introduction

The idea of utility computing was proposed over

60 years ago by John McCarthy[1] in his 1961 lecture

to celebrate MIT’s centennial. He envisioned that

“computation may someday be organized as a public

utility, just as the telephone system is a public utility …
The computing utility could become the basis for a

new and important industry”.
Today’s cloud computing systems and applica-

tions have only partially realized McCarthy’s comput-

ing utility vision[1]. Cloud computing has become an

important industry, with increasing market scale.

However, it is still far from a convenient public utili-

ty, compared with the universal ease offered by tele-

phony. Using a cell phone, one can instantly reach

any other phone on the planet, although the two

phones may be operated by different telecommunica-

tion service providers. In contrast, a cloud computing

user is tethered to a specific cloud provider at any

given time.

McCarthy’s lecture also offered intellectual in-

sights. He considered the utility computing concept as

fundamentally important as the time-sharing concept

and the stored-program concept. He also mentioned

three salient features of the computing utility: 1) pay-

per-use (“each subscriber needs to pay only for the

capacity he actually uses”), 2) large-computer culture

(“but he has access to all programming languages

characteristic of a very large system”), and 3) private

computer (“a computer that he can have continuous-

ly at his beck”).
Almost half a century later, Barbara Liskov made

intellectual revisions to the computing utility concept.

In her 2009 Turing award lecture, Barbara Liskov en-

visioned “Internet as a Computer” as a future re-

search direction[2]. Liskov emphasized that this Inter-

net Computer should be abstraction powered. She

lamented on the status of distributed systems: “There

is a funny disconnect how we write distributed pro-

grams. You write individual modules. But then, when

you want to connect them together, you are out of

the programming language and sort of into this other

world. Maybe we need languages that are a little bit

more complete now, so that we can write the whole

thing in the language.”

Perspective

Special Section of CCF Computility 2024

The work was supported by the National Natural Science Foundation of China under Grant Nos. 62072434 and U23B2004.

Xu ZW, Yu ZS, Li FZ et al. Hypertasking: From information web to computing utility. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY, 40(3): 607−620, May 2025. DOI: 10.1007/s11390-025-5126-4, CSTR: 32374.14.s11390-

025-5126-4

©Institute of Computing Technology, Chinese Academy of Sciences 2025

https://doi.org/10.1007/s11390-025-5126-4
https://doi.org/10.1007/s11390-025-5126-4
https://doi.org/10.1007/s11390-025-5126-4
https://doi.org/10.1007/s11390-025-5126-4
https://doi.org/10.1007/s11390-025-5126-4
https://doi.org/10.1007/s11390-025-5126-4
https://doi.org/10.1007/s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4
https://cstr.cn/32374.14.s11390-025-5126-4

It is probably not a coincidence that McCarthy

served as Liskov’s PhD thesis adviser. Respecting this

academic lineage, we call the joined vision of comput-

ing utility and Internet Computer the McCarthy-

Liskov vision. Such a computing utility should have

the following salient features.

● Pay-per-Use Services. Users subscribe to com-

puting services of the utility and pay only for re-

sources actually used.

● Planet-Scale Culture. Users have ready access to

all computer culture of one worldwide utility from

anywhere at any time.

● Low-Entropy Systems. Each of the billions of

worldwide subscribers sees a private computer, large-

ly isolated from disorders such as error propagation,

workload interferences, and system jitters.

● Abstraction-Powered Programs. Developing and

running programs on the computing utility should be

powered by abstractions, especially programming lan-

guage abstractions.

Our team of Information Superbahn research

added one more “high-goodput” performance require-

ment for computing utility[3, 4].

● High-Goodput Utility. The computing utility is

an efficient system, such that most executed tasks

show good enough user experiences.

The World Wide Web (WWW) functions as an

information utility, wherein any person or agent (pro-

ducer) can put up a piece of information on the Web

as a webpage. Consequently, anyone (a consumer or a

user) in the world can instantly access and utilize it.

In fact, modern cloud computing has benefited from

the WWW technology. One of the first commercial

public cloud computing offerings, Amazon cloud com-

puting services, is called Amazon Web Services

(AWS).

The WWW as an industry and an ecosystem is

supported by the concept of worldwide hypermedia,

as well as abstractions like uniform resource identifier

(URI), HTTP, and HTML. Partly because the Web is

abstraction-powered, it has the following ease of use

property.

● One-Click Instant Access. By a single click on a

hyperlink, a user of the Web can instantly access a

target webpage, which can be an information re-

source anywhere in the world.

This ease-of-use property implies low runtime la-

tency and low human effort. Many webpages on to-

day’s Web can be accessed with runtime latencies

within a second or even milliseconds. A user sees an

information resource provided in a webpage, visible to

the user as a hyperlink or a link word. Many invisi-

ble details relevant to the access are handled by ab-

stractions and their corresponding runtime software.

However, the WWW today is not yet an Internet

Computer. The WWW is an “information” web,

rather than a “computing” web or a computing utility.

One way to realize the McCarthy-Liskov vision is

to advance from the World Wide Web to a World

Wide Computing Utility. We need to stand on the

shoulders of giants, such as:

● McCarthy ’s computing utility concept with the

pay-per-use, large, private computer idea[1],

● Liskov ’s idea of the abstraction-powered Inter-

net Computer[2],

● Tim Berners-Lee’s idea of hyperlinking the world

via the WWW technology[5], and

● communities efforts in grid computing[6, 7], cloud

computing[8, 9], and sky computing[7, 10–13], as dis-

cussed in Section 4.

Innovations are needed to extend the hypermedia

model of the WWW into a hypertask model that ac-

commodates additional requirements and challenges

of the computing utility, thus turning an information

web into a computing web.

The rest of this paper is organized as follows. Sec-

tion 2 highlights the main characteristics of the hy-

pertasking model of computing utility, in contrast to

the hypermedia model of the WWW. Section 3 pro-

vides supporting evidence by presenting a prototype

architecture and experimental evaluation. Section 4

discusses related work. Section 5 offers concluding re-

marks.

2 Hypertask Compared with Hypermedia

The hypertask concept was first proposed in the

context of the Internet of Things (IoT) and edge com-

puting[14, 15]. In this section, we highlight the more

fundamental nature of hypertasking as a computing

model that aims at extending the WWW into a

World Wide Computing Utility, realizing the Mc-

Carthy-Liskov vision.

The familiar hypermedia model is shown in

Fig.1(a). The WWW provides a uniform resource

space where any resource has a URI. A user can ac-

cess a resource from a client device, such as a laptop

computer, by entering a URI in a web browser and

receiving a webpage. The webpage in Fig.1(a) dis-

plays three types of hyperlinks to web resources, each

608 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

accessible with just one click. The URI points to the

homepage of the UC Berkeley Sky Computing Lab①.

The hyperlink for the picture resource is an embed-

ded link, which the browser will access automatically.

The seminar event hyperlink requires a click.

Fig.1(b) shows the hypertasking computing mod-

el and its three principles. We use the word “com-

putility”[16] as a shorthand for “world wide comput-

ing utility”, and assume there are many client de-

vices but only one computility when explaining

Fig.1(b).

A hypertask consists of application logic (app)

code and systems code, and is organized as a main

task and zero or more subtasks. Each task uses one or

more resources in the computility via one-click

monadic hyperlinks. A hypertask may also serve as a

subtask of another. The main tasks and subtasks are

also hypertasks.

Visible to a client device, each hypertask is exe-

cuted by a Request-Response-Consume (RRC)

pipeline. A process of the app on the client device is-

sues a task request by “clicking” a monadic hyperlink.

The computility handles the task request and returns

a response, which is consumed by the app process.

During consumption, the app process may issue zero

or more subtask requests to the computility.

The computility follows three principles of require-

ments (architectural constraints). We first highlight

their main concepts and then elaborate on them in

Subsections 2.1, 2.2, and 2.3, respectively.

● Global Resource Space (GRS). The computility

has one global resource space. Any resource in the

world is able to join this space unconstrained. Any

task can only use resources in the GRS. The design of

GRS needs to strike a balance between being compat-

ible and unconstrained.

● Stored-Computer Architecture (SCA). Any task

execution needs data, program, and computer re-

sources. The first two types are already supported by

the stored-program concept, providing coded informa-

tion and coded algorithm capabilities. The computili-

ty needs to additionally support the coded system ca-

pability, such that a hypertask can be executed on an

elastic cluster, which is a set of dynamically con-

structed, elastic, and full-stack resources.

● Monadic Hypermedia (MH). The hyperlink or

hypermedia concept in the WWW is extended to a

monadic hyperlink/hypermedia concept for computili-

ty, to support task composition and decoupling of sys-

tems operations from app logic code.

2.1 Global Resource Space

The GRS principle inherits the unconstrained,

global “information” space concept of WWW, but ex-

tends it to a global “resource” space to accommodate

all types of resources, including information resources

as well as computing resources.

When designing the resource space of computility,

there is a key tension between reducing constraints

and maintaining compatibility when matching tasks

Client Device

World Wide Computing Utility

Monadic Hyperlinks

Main Task

App Logic

Subtask

App Logic

Subtask

App Logic

HCI

Submit Task Requests

Consume Task Results

Browser

World Wide Web

Hyperlinks

(b)

(a)

Fig.1. Hypertasking versus hypertexting. (a) Hypermedia mod-
el for WWW. (b) Hypertasking model for computing utility.

Zhi-Wei Xu et al.: Hypertasking: From Information Web to Computing Utility 609

①https://sky.cs.berkeley.edu/, Feb. 2025.

https://sky.cs.berkeley.edu/

to resources. It is worth noting that when formulat-

ing and thinking about requirements of “being uncon-

strained” and “being compatible”, we should not take

them as a categorical yes/no metric but as a spec-

trum of pursuits beneficial for the wellbeing of the

computing utility ecosystem.

The dichotomy way of thinking has its merits and

place. For instance, Fig.2 shows a clear and simple

classification of computility designs into four cases:

incompatible and constrained (IC), compatible and

constrained (CC), incompatible and unconstrained

(IU), and compatible and unconstrained (CU). Ap-

parently, we should avoid the worst case of IC and

strive for the best case of CU.

IU CU

IC CC

Unconstrained

Constrained

Incompatible Compatible

Fig.2. Four cases of constraint and compatibility.

However, Fig.2 is not a totally correct way to cat-

egorize and think about being unconstrained and be-

ing compatible. Each of them is a spectrum and a

continuum. There are more than four cases (IC, CC,

IU, and CU). In fact, there are potentially infinitely

many cases. One computility design can be more com-

patible or less constrained than another.

For instance, as shown in Fig.3, one can argue

that when accessing files on the Internet, the WWW

design is less constrained and more compatible than

the FTP technology. It is not appropriate to say that

FTP is incompatible and constrained, while the

WWW is compatible and unconstrained.

All resource spaces in practical use have con-

straints, some of which we have to oblige, such as

subscription walls, security walls, privacy protection,

as well as sovereignty laws and regulations. What we

want is to reduce artificial constraints and complexi-

ty, via better abstractions and technologies.

To reduce provider-side constraints, the GRS

should allow any organization or individual to add

any resource to the computility without permission

from a third party, similar to how a website can add

a webpage to the WWW without constraints. The or-

ganization or individual is called the resource owner.

To reduce consumer-side constraints, the GRS

should accommodate diverse task-resource matching

schemes and resolve compatibility issues. All schemes

should try to satisfy the one-click instant access prop-

erty. Four types of matching schemes are discussed

below and illustrated in Fig.4.

● By Name. When a resource joins the computili-

FTP

Incompatible Compatible

WWW

IU CU

IC CC

Unconstrained

Constrained

Fig.3. Perspectives of constraint and compatibility.

Tasks

Named Resource Registry Debian K8s Azure Ray

1. B
y Name

2. By Registry

3. By AI

4. By Human

Fig.4. Four matching schemes in the global resource space.

610 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

ty, it is assigned a globally unique name or identifier.

The resource owner has the rights and responsibility

of name assignment, following some global standards

such as a uniform resource name (URN), URI, or uni-

form resource locator (URL) to achieve name unique-

ness. Tasks can access a resource using its name. The

approach is also used by the WWW and is similar to

random access memory.

● By Registry. When a resource joins the com-

putility, it may be registered in a resource registry.

To access a resource, tasks first look up the resource

in the registry, which returns a handle for access. A

resource does not need to provide a unique name to a

task. A consistent registry must be maintained in the

computility. The approach is similar to associative

memory.

● By AI. Suppose there is neither global naming

nor registry. One can still resolve compatibility issues

assuming the existence of an oracle, which returns de-

sired resource handles when receiving a task request.

Techniques such as search engines, targeted advertis-

ing, and large language models (LLMs) can be lever-

aged to build a matching oracle.

● By Human. When all automatic tools fail, hu-

man involvement is needed for resolving computabili-

ty issues. But the computility design, especially the

GRS design and abstractions, should try to help the

user/developer minimize human efforts required.

Learning from telephony, we also need some form

of task switching mechanism to match tasks and re-

sources in the global resource space. Early telephone

switches use human operators to match and connect

the two parties of a conversation. Modern telephone

switches not only automatically connect two parties,

but also try to provide good enough quality-of-ser-

vice on an elastic virtual channel between them.

The problem of task switching is similar: match

and connect the two parties of every task execution,

where one party is a task with its resource specifica-

tion, and the other party is the set of resources

matching the specification. We can imagine the task

switching problem as a dynamic bipartite graph of

task nodes and resource nodes. At any time, there

may be billions of tasks looking for billions of re-

sources in the computility.

Unlike packet switching, task switching does not

necessarily mean routing a task to a resource. The

key point is the result of task switching: a task is

started and executed on resources matching the task’s
resource specification. Similar to dining options, one

can go to a restaurant, order a catering service, or

take out.

When reducing constraints, we should not forget

to resolve compatibility issues that arise in task-re-

source matching. Compatibility first means that we

want a right match: a task can start on a resource.

The probability of “wrong matching”, equivalent to

“wrong number” in telephony or 404 status code in

the WWW, should be exceedingly low. Second, com-

patibility means that we want a good match, akin to

the QoS objective in the telephone switch: task execu-

tions on resources should exhibit high goodput, low

tail latency, and low cost. Therefore, compatibility is

not a categorical metric but a continuum where one

system can be more compatible than another.

2.2 Stored-Computer Architecture

Historically, computers up to the ENIAC (Elec-

tronic Numerical Integrator and Computer) followed

a fixed-program architecture, shown as phase 1 in

Fig.5. In such a system, information is coded and

stored as data in memory, but the “program” is built

into the system hardware.

Data

Computer

Program

Stored

Not

Stored

Phase 1:

Fixed-Program

Architecture

Phase 2:

Stored-Program

Architecture

Phase3:

Stored-Computer

Architecture

Data

Computer

Program

Stored

Not
Stored

Data

Computer

Stored Program

Fig.5. Three phases of computing systems evolution.

The defining concept of modern computers is

stored-program architecture, shown as phase 2 in

Fig.5. Algorithms are coded as programs and stored

in memory as data. The stored-program concept en-

ables general-purpose computers, which fetch and exe-

cute instructions one by one. It also facilitates manip-

ulation of programs in the same way that the com-

puter manipulates data, which enables program com-

Zhi-Wei Xu et al.: Hypertasking: From Information Web to Computing Utility 611

pilation, operating systems, and static/dynamic li-

braries.

Any task execution needs data, program, and

computer resources. The hypertasking model takes

the position of stored-computer architecture, shown as

phase 3 in Fig.5. That is, all three types of resources

(data, program, and computer) are coded and stored

in the computility, such that the matched resources

can be dynamically provisioned to suit the needs of a

task. We observe that dynamic provisioning is equiva-

lent to automatic construction of an elastic, full-stack,

virtual cluster for the task. Automatically construct-

ing the elastic cluster means automatically scaling

and constructing resources at any abstraction level.

The construction code and resources are reusable by

any person with programming and runtime abstrac-

tion support, including static and dynamic resource

type checking.

What does “coded” mean?

 When discussing the three phases of computing

systems evolution in Fig.5, we use phrases such as

coded information, coded algorithm, and coded

system. For any instance of any of the three types

of resources, ``coded'' means that the resource is

precisely described by a computer language, which

could be a programming language or a not Turing-

complete language, such as a markup language.

The precisely described resource, i.e., coded

resource, is stored, accessed, and manipulated as

data. This clarification is borrowed from Donald

Knuth, who considered that programs are

algorithms expressed by a computer language.

With the SCA support, when any task request is

sent to the computility, an elastic, full-stack, and vir-

tual cluster is created and dedicated to the lifecycle of

the task execution. This dedicated computer can be

called the elastic cluster for the task.

Four characteristics of the dynamically construct-

ed computer are briefly discussed below.

● Cluster. The resources are not a set of unrelat-

ed members, but form one computer system with nec-

essary processors, memory, storage, and I/O hard-

ware capabilities, as well as needed software and data.

This could be a sequential or parallel computer, or a

distributed system. This computer can be managed as

a single entity.

● Virtual. This is a virtual computer, comprised of

abstract components (coded resources) that can be

mapped to physical resources, including data, pro-

grams, and computers. Thus, the stored-computer ar-

chitecture can also be called stored-resource architec-

ture.

● Full-Stack. The computer is composed of a full

stack of resources needed by the task. The stack could

be as shallow as a bare-metal server, or as deep as a

multi-layered stack consisting of resources from the

bare-metal, OS, middleware, libraries, up to app

framework, or even SaaS layer. Each layer could have

its own abstractions. The SCA should facilitate the

users to program with high-level abstractions.

● Elastic. During a task’s lifecycle, resources need-

ed by the task may change. Therefore, the cluster or-

ganization, both virtual and physical, may change as

well, including its parallelism, interconnection, syn-

chrony, and heterogeneity, among other factors.

2.3 Monadic Hypermedia

The concept of stored-computer architecture of-

fers benefits for computility. However, it could signifi-

cantly increase programming difficulty, if the user/de-

veloper has to provide all the system coding details,

in addition to information coding and algorithm cod-

ing. We need coded abstractions to hide systems de-

tails.

We propose a principle for such coded abstrac-

tions, called monadic hypermedia, shown in Fig.6. A

program running on computility consists of three

types of code: app functions (e.g., parallel quick sort

code and data), non-app functions (e.g., parallelism

details), and non-functional code (e.g., access control

and resource accounting details). Preferably, the user

only needs to provide the app functions, as shown in

Fig.6(a), which specifies that the task consists of a

quicksort function f, which maps input data a to sort-

ed data b. But what is executed by computility is

more detailed, as shown in Fig.6(b). The system actu-

ally produces mb, where m is a monad. The monadic

hypermedia subsystem of computility is expected to

automatically provide the purple parts of Fig.6(b), by

(b)(a)

Fig.6. Illustration of monadic hypermedia via a Kleisli catego-
ry. (a) App. (b) App logic and systems details

612 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

code and data completion, with minimal or no input

from the user.

The monadic hypermedia works more like a deco-

rator than a typical library call that needs to be in-

serted into business logic. In other words, monadic

hypermedia adds systems details to app logic and re-

alizes its composition in a non-intrusive way.

The “monadic” in monadic hypermedia tries to

transfer the monad idea in category theory to utility

computing[17]. The computility should provide built-in

types of monadic hypermedia, to manage common

systems details related to naming, accounts, access

control, effects, heterogeneity, and exceptions. These

call for careful abstraction and design, beyond brute

force listing and implementation. Abstraction for

built-in monadic hypermedia targeting lifecycle man-

agement of tasks could be a good starting point. We

should also note that programming language support

may not be enough. Runtime support needs to be pro-

vided to ensure the correctness and compositionality

of monadic hypermedia[18]. Additionally, mechanisms

should be established to allow third parties to define

their own monadic hypermedia, and add them to the

global resource space.

3 Experiments on a Prototype of Computility

This section provides initial supporting evidence

for the hypertasking computing model, by outlining a

prototype architecture and conducting Things-Multi-

cloud experiments. The prototype is called PoC as a

shorthand for the Prototype of Computility. It real-

izes the request-response-consume (RRC) pipeline

(shown in Fig.7), via three abstractions of service as-

sembly, grip, and named resource (shown in Fig.8).

Prototype of

Computilty

Computer

Program

Data
Request

Create

Deploy
RespondHypertask

Match
Consume

Fig.7. Execution of request-response-consume pipeline.

3.1 Resource Provisioning

The Prototype of Computility (PoC) must have

resources to execute hypertasks. Any resource on the

Internet can join the PoC to become part of its

named resource space (NRS) and is assigned a global-

ly unique name, such as a URI, needing no permis-

sion from a third party. However, the resource

provider needs to execute the NRS server software. A

resource collection, such as a cloud or an HPC (high-

performance computing) center, may need to run on-

ly one NRS server. This is similar to how a Web site

needs to run a Web server to enable the world to ac-

cess its resources.

As shown in Fig.9, experiments are conducted on

resources of four sites, using six virtual machines

(VMs) from each of Azure Cloud②, Tencent Cloud③,

and a private cloud. Each VM of the Azure Cloud or

the Tencent Cloud is equipped with four CPU cores,

16 GB memory, and 100 Mbps public network band-

width. Each VM from the private cloud has 16 CPU

cores, 32 GB memory, and a public network band-

width of 100 Mbps. The round-trip time between our

Things Lab and the three clouds is as follows: 188 ms

to Azure, 35 ms to Tencent, and 42 ms to the pri-

vate cloud. The required resources are described in

hypertasks, as shown in Fig.10 and Fig.11.

As shown in Fig.12, over a dozen types of re-

sources on the Internet are used by the PoC and our

experiments. They are named resources. Once a re-

source is in the NRS, it will be accessible worldwide.

For instance, Fig.8 only shows how the YOLO11-

based[19] image recognition application uses the named

resources. However, a matrix multiplication applica-

tion can also use these named resources.

3.2 Hypertask Description

A hypertask is described by a service assembly, in

addition to the real app code. For instance, a matrix

multiplication task is comprised of the real matrix

multiplication code mm.py and the associated service

assembly file mm.ht, as shown in Fig.11(d). They are

sent to the PoC as a whole in one task request.

The hypertasks used in the Things-Multicloud ex-

periments are shown in Fig.8, 10, and 11. The PoC

provides four types of built-in monadic hypermedia,

including scheduler, task closure, environment, and

lifecycle management. This enables service assembly

description to reduce programming complexity, by

helping programmers focus on app functions and de-

coupling tasks from specific computing resources.

A service assembly description of a hypertask con-

tains five components, as shown in Fig.10 and Fig.11.

The Business component links to the app functions of

the hypertask, which will be deployed to an execu-

Zhi-Wei Xu et al.: Hypertasking: From Information Web to Computing Utility 613

②Azure Cloud. https://azure.microsoft.com/, Feb. 2025.

③Tencent Cloud. https://cloud.tencent.com/, Feb. 2025.

https://azure.microsoft.com/
https://cloud.tencent.com/

tion environment specified by Environment. Input and

Output refer to the data required by the app func-

tions and the data it produces, respectively. The As-
sembly component composes existing hypertasks to

 Task Closure

Resources from Different Organizations

Python with Camera

Photo Capture

Image/Signal

Task Closure

YOLO11

Object/Image

Service Assembly

 Debian

Tencent Cloud

PyTorch

YOLO11

Photo Capture

Auto-
Created

Partial Specification

Grip

Azure Docker

YOLO11

Camera

Python

Monadic Hyperlink
Monadic Hyperlink

Raspberry Pi

Named Resource

Private Cloud

Ray

Analytics

Object/Object

Things Lab

 Debian

 K8s

 Ray

 Analytics

Tencent Cloud

Debian K8s Task Closure Ray

Azure Things Lab

Naming

Input Output

Fig.8. Architecture of the Prototype of Computility (PoC).

Private Cloud, Nanjing, China

Kubernetes

MM/IR Service

Request Result Hypertask Result

Tencent Cloud, Beijing, China

Kubernetes

MM/IR Service

Request Result Hypertask Result

Azure Cloud, East U.S.A.

Kubernetes

MM/IR Service

Request Result Hypertask Result

Analytics-

Task

Things Lab, Beijing, China

Scheduler Monad

Scheduler Monad Scheduler Monad

Same Inter-Cloud Scheduling Policy

Fig.9. Experiments running on resources of four sites.

614 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

Exp-Code

Business

Environment
(Ray)

Output

Input

Thing-Task Image-Recognition

Create Ray
Log

Results

Object

Trace

Exp-Task

Create K8s

Image

Deploy

Monadic Hyperlink

Create OS

Hypertask Data App Functions Data Transfer

Assembly Analytics-

Task

Fig.10. Structure of the experiment hypertask.

1 Name: Exp-Task

2 Environment:

3 type: Ray

4 Assembly:

5 thing1:

6 name: Thing-Task

7 depends_on: analytics

8 monad: scheduler-monad

9 thing2: # same as thing1

13 thing3: # same as thing1

17 thing4: # same as thing1

21 analytics:

22 name: Analytics-Task

23 Business: Exp-Code

24 Input: { "Trace":"" }

25 Output: { "Results":"", "Log":"" }

(a)

1 Name: Thing-Task

2 Environment:

3 type: OS

4 provider: things

5 Business: Photo-Capture-Code

6 Input: { "Send_Addr":"", "Trace":"" }

7 Output: {"Hypertasks":[], "Image":"" }

(b)

1 Name: Image-Recognition

2 Environment:

3 type: Task-Closure

4 Business: YOLO11-Code

5 Input: { "Image":"", "Send_Addr":"" }

6 Output: { "Object":"" }

(c)

1 Name: Matrix-Multiplication

2 Environment:

3 type: Task-Closure

4 Business: Matrix-Multiplication-Code

5 Input: { "Send_Addr":"" }

6 Output: { "Object":"" }

(d)

1 Name: Analytics-Task

2 Environment:

3 type: Ray

4 Business: Analytics-Code

5 Input: { "Object":"" }

6 Output: { "Result":"", "Log":"" }

(e)

Fig.11. Five hypertasks in experiments. (a) Hypertask of the entire experiment (experiment.ht). (b) Hypertask running on IoT de-
vices (thingTask.ht). (c) Image recognition hypertask (ir.ht). (d) Matrix multiplication hypertask (mm.ht). (e) Analytics hypertask
(Analytics.ht).

YOLO11 Service Private Cloud Managed by Proxmox Virtual Environment (PVE)

Tencent Cloud Kubernets Cluster An Environment with Task Closure Installed

Ray Cluster OpenCV Library PyTorch Library Camera on Raspberry Pi

Virtual Machine Instance Running on x86 CPU with Debian OS and Python Installed

An Environment with Docker Raspberry Pi with ARM CPU, Debian OS, and Python

Azure Cloud An Environment with Python Installed

Fig.12. Named resources used in the PoC and experiments.

Zhi-Wei Xu et al.: Hypertasking: From Information Web to Computing Utility 615

express a more comprehensive logic. Environment and

Assembly contain non-app functions and non-func-

tional code of the hypertask.

The Things-Multicloud experiments compare the

PoC-based Things-Multicloud system with a Kuber-

nets-based Things-Multicloud system (called the

K8s④ system). They are conducted by running the

same workload consisting of an image recognition ap-

plication and a matrix multiplication application.

This mixed workload is chosen to see the impact of

inter-application interferences. In each test, the K8s

system and the PoC system use the same bare-metal

resources, i.e., they have the same computing re-

sources and network resources.

In the image recognition application, the four IoT

devices in the Things Lab, each equipped with a cam-

era, periodically capture images and send image

recognition (IR) tasks to the multicloud to recognize

and analyze. In the matrix multiplication application,

the four IoT devices in the Things Lab periodically

send matrix multiplication (MM) tasks to the multi-

cloud to compute.

The experiments test burst load and mixed load,

and calculate the task’s end-to-end latency and the

yield of each test. Yield[4] refers to the ratio of the

number of tasks meeting the user's latency require-

ment to the total number of tasks. In the experi-

ments, the latency requirement is set to 1 second.

Burst load tests the system's elasticity, while mixed

load tests whether the system can reduce interference

between tasks.

In the burst load scenario, identical computing

tasks (MM or IR) are repeatedly dispatched by all

four IoT devices at specified intervals, ranging from

62.5 ms to 1 s, for 40 seconds.

In the mixed load scenario, the IoT devices sub-

mit both types of tasks simultaneously. During the

first half of the test, the ratio of MM to IR is set at

1:R. Conversely, in the second half, the ratio is ad-

justed to R:1. The experiment assesses two different

cases with R values of 4 and 8, respectively. The ex-

periments test when the total number of tasks ranges

from 3 200 to 25 600 for 200 seconds, a period suffi-

cient for K8s to perform multiple scaling-ups.

3.3 Task-Resource Binding

From Fig.8 and Fig.11, we can see that gaps exist

between high-level hypertask descriptions and low-lev-

el named resources. Mechanisms are needed to close

these gaps. The core need is to create and maintain

an elastic cluster to run a hypertask.

The PoC offers a grip abstraction. It automatical-

ly and recursively builds low-level resources, assem-

bles them into a full-stack resource, and runs app

functions on this resource, i.e., an elastic cluster. The

PoC system currently supports the automatic con-

struction of virtual machines, operating systems,

Docker⑤, K8s, Ray⑥ cluster, and task closure. The

last is a built-in monadic hypermedia of the PoC.

The property of maintaining an elastic cluster is

validated through the mixed load scenario tests. In

the first phase, the PoC allocates more resources to

IR tasks than to MM tasks. When the task ratio

changes, the PoC converts the resources used by IR

tasks into resources for MM tasks. It obtains new re-

sources from multiple clouds on demand when the re-

sources needed by tasks are not sufficient.

3.4 Performance Results

It appears that the PoC system provides a layer of

indirection between tasks and resources to support

programmability (e.g., automatic build). We must ask

1) how large the overhead is, and 2) what the overall

system performance is when executing tasks.

Table 1 shows the latencies of constructing differ-

ent types of resources in the PoC following the hyper-

tasking computing model, compared with latencies us-

ing traditional methods on existing clouds. The re-

sults indicate that the overheads are within 0.31% to

6.68%. There is room for improvement, but such over-

heads are acceptable.

Table 1. Latency in Constructing Resources at Different Ab-
straction Levels

Resource Hypertasking (s) Traditional (s)

Tencent Cloud VM 39.97 38.46

Azure Cloud VM 58.02 55.65

Private Cloud VM 46.94 44.43

Docker 70.30 65.90

K8s (3 nodes) 403.20 396.80

Ray cluster 57.84 57.66

Fig.13 and Fig.14 show the performance of the

PoC system and the K8s system under the burst and

616 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

④Kubernetes. https://kubernetes.io/, Feb 2025.

⑤Docker. https://www.docker.com/, Feb 2025.

⑥Ray. https://docs.ray.io/, Feb 2025.

https://kubernetes.io/
https://www.docker.com/
https://docs.ray.io/

mixed loads in the environments, respectively. The re-

sults show that the PoC system can significantly re-

duce application latency and improve application

yields.

Under the burst load, as shown in Fig.13, the PoC

system consistently demonstrates lower latencies than

the K8s system, achieving an average reduction of

59% and a peak reduction of 95%. The yield has im-

proved by an order of magnitude, 22 times on aver-

age.

In the MM test case with 320 tasks, the PoC

demonstrates a slightly higher p99 tail latency com-

pared with the K8s system. This is attributed to the

queuing of tasks on the private cloud prior to the ex-

pansion of containers, which prompts the scheduler

monad to redistribute the load to other clouds, there-

by increasing latency. In contrast, due to HTTP time-

out setting, the K8s-based application does not sched-

ule the task to other clouds. In future work, more ac-

curate execution time estimates will be incorporated

into the scheduler monad. Users can improve applica-

tion performance without modifying the application's

hypertasks.

Under the mixed load, as shown in Fig.14, the

PoC system reduces latencies by 72% on average and

by 97% in the best case, compared with the K8s sys-

tem. The PoC system also improves yield by orders of

magnitude at high loads.

4 Related Work

Grid computing[6, 7] was proposed in the 1990s and

designed as a computing infrastructure that provides

on-demand computing resources from various organi-

zations. Various grid computing approaches were pro-

posed, implemented, and used, especially in the scien-

tific computing community. They aim to connect geo-

graphically distributed resources via the Internet and

integrate them into a large supercomputer, which pro-

vides computing, storage, and data resources. Multi-

ple resource providers form a federation or a virtual

organization.

Cloud computing[8, 9] is the most recent produc-

tion-grade development of computing utility, which

delivers computing resources such as servers, storage,

software, and databases over the Internet, allowing

users to access these services on demand without

owning physical infrastructure. It operates on a scal-

able, pay-as-you-go model, making it cost-efficient

and flexible for businesses and individuals. Cloud ser-

vices are typically categorized into Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS). They can be deployed

via public, private, and hybrid models. Cloud com-

puting does not solve problems such as platform lock-

in, API explosion, and low resource utilization.

Sky computing[7, 10–13] and joint-cloud computing[20]

are two approaches to the next stage of utility com-

puting. Sky computing hopes to connect multiple

cloud vendors to provide a non-differentiated com-

modity that forms a public utility computing service.

Through a compatibility layer, sky computing hides

differences in implementation between clouds and al-

lows users to run tasks on different clouds without

modification. It introduces the intercloud layer that

decouples users from cloud vendors and runs jobs on

the cloud (or clouds) that meet users’ requirements,

like price and performance. The intercloud layer is

40

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

80 160 320

Number of Tasks

Y
ie

ld
 (

%
)

L
a
te

n
c
y
 (

s)

640 1 280 2 560

100

80

60

40

20

0

PoC-Latency
K8s-Latency
PoC-Yield
K8s-Yield

Fig.13. Application performance on the PoC vs the K8s under
burst load in multicloud.

PoC-Latency
K8s-Latency
PoC-Yield
K8s-Yield

32

40

30

20

10

0

64 128 256

Number of Tasks (102)

Y
ie

ld
 (

%
)

L
a
te

n
c
y
 (

s)

100

80

60

40

20

0

Fig.14. Application performance on the PoC vs the K8s under
mixed load in multicloud.

Zhi-Wei Xu et al.: Hypertasking: From Information Web to Computing Utility 617

implemented by an intercloud broker, which creates a

two-sided market between users and clouds. Joint-

cloud computing focuses on cloud collaboration, al-

lowing users to customize cloud services through a

“software-defined” approach. It supports the ex-

change of service capabilities through the service cata-

log of the Joint-Cloud Computing Environment.

As a testbed for future cloud computing systems,

Cloudlab[21] supports researchers in building cus-

tomized clouds through a Geni profile, which accu-

rately describes hardware resources, network topolo-

gy, and building scripts. Cloudlab provides three

types of resources, including virtual machines, bare-

metal machines, and containers. FABRIC[22] is a na-

tional network research infrastructure that provides

the everywhere-programmable capability and sup-

ports access to supercomputing and cloud platforms.

Infrastructure as Code (IaC) offers benefits for infras-

tructure automation by enabling automated, efficient,

and consistent environment creation through declara-

tive configurations. Terraform[23], as a popular IaC

tool, provisions and manages resources across differ-

ent clouds with the requirement of using provider-spe-

cific APIs.

Computing power network[24] is an emerging con-

cept of connecting distributed and heterogeneous

computing nodes. It focuses more on networking tech-

nology, including resource connecting, scheduling, and

compute first networking[25]. Our work aims to build a

global computing system that satisfies the six salient

features, including pay-per-use services, planet-scale

culture, low-entropy systems, abstraction-powered

programs, high-goodput utility, and one-click instant

access.

5 Conclusions

John McCarthy and Barbara Liskov proposed the

vision of computing utility and Internet Computer,

respectively. To realize the McCarthy-Liskov vision,

this paper outlines a hypertasking computing model

to extend the World Wide Web to the World Wide

Computing Utility. The hypertasking model lowers

the entry barrier for users to utilize worldwide infor-

mation and computing resources by having them send

hypertasks to the computing utility through a re-

quest-response-consume pipeline and adhering to

three architectural constraints. The global resource

space constraint allows unconstrained resource join-

ing and accessing while supporting compatible task-

resource mapping. The stored-computer architecture

constraint provides the ability to dynamically con-

struct and maintain a virtual, full-stack, and elastic

cluster dedicated to each hypertask. The monadic hy-

permedia constraint provides abstractions to reduce

programming complexity.

We built a prototype to validate the hypertask-

ing model within a Things-Multicloud scenario, using

resources from four sites across China and the United

States. During experiments, the prototype dynamical-

ly constructed a full-stack elastic cluster and de-

ployed tasks on the cluster, such as automatically

building a Ray cluster from bare-metal and adjusting

the CPU occupation from 24 cores to 72 cores accord-

ing to the task demand. Initial evidence from experi-

ments suggests that the prototype introduces accept-

able overhead for resource auto-building, ranging from

0.31% to 6.68%. Compared with Kubernetes, the pro-

totype shows a higher throughput for tasks that meet

users' latency requirements.

In future work, new naming and access mecha-

nisms for global resources will be developed, along

with programming and runtime support for stored-

computer architecture. A variety of monadic hyper-

media will be created to suit common scenarios. Addi-

tionally, larger-scale experiments are planned to thor-

oughly verify the hypertasking model, including test-

ing applications across multiple domains, such as edu-

cation and large AI models.

Conflict of Interest Zhi-Wei Xu is the Edi-

tor-in-Chief for Journal of Computer Science and

Technology and was not involved in the editorial re-

view of this article. The authors declare that there are

no other competing interests.

References

 McCarthy J. Time sharing computer systems. In Manage-

ment and the Computer of the Future, Greenberger M

(ed.), MIT Press, 1962, pp.221–236.

[1]

 Liskov B. The power of abstraction. In ACM Turing

Award Lectures, Association for Computing Machinery,

2011, p.2008. DOI: 10.1145/1283920.1962421.

[2]

 Xu Z, Li G, Sun N. Information superbahn: Towards new

type of cyberinfrastructure. Bulletin of Chinese Academy

of Sciences, 2022, 37(1): 46–52. DOI: 10.16418/j.issn.1000-

3045.20211117008. (in Chinese)

[3]

 Xu ZW, Li ZY, Yu ZS, Li FZ. Information superbahn:

Towards a planet-scale, low-entropy and high-goodput

[4]

618 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

https://doi.org/10.1145/1283920.1962421
https://doi.org/10.16418/j.issn.1000-3045.20211117008
https://doi.org/10.16418/j.issn.1000-3045.20211117008
https://doi.org/10.16418/j.issn.1000-3045.20211117008

computing utility. Journal of Computer Science and

Technology, 2023, 38(1): 103–114. DOI: 10.1007/s11390-

022-2898-7.

 Berners-Lee T. Weaving the Web: The Original Design

and Ultimate Destiny of the World Wide Web by Its In-

ventor. Harper Business, 2000.

[5]

 Foster I, Kesselman C. The Grid 2: Blueprint for a New

Computing Infrastructure (2nd edition). Morgan Kauf-

mann, 2003. https://dl.acm.org/doi/book/10.5555/

996313.

[6]

 Keahey K, Tsugawa M, Matsunaga A, Fortes J. Sky com-

puting. IEEE Internet Computing, 2009, 13(5): 43–51.

DOI: 10.1109/MIC.2009.94.

[7]

 Comer D. The Cloud Computing Book: The Future of

Computing Explained. Chapman and Hall/CRC, 2021.

[8]

 Jonas E, Schleier-Smith J, Sreekanti V, Tsai C C, Khan-

delwal A, Pu Q, Shankar V, Carreira J, Krauth K, Yad-

wadkar N, Gonzalez J E, Popa R A, Stoica I, Patterson D

A. Cloud programming simplified: A Berkeley view on

serverless computing. arXiv: 1902.03383, 2019. https://

arxiv.org/abs/1902.03383, Feb. 2025.

[9]

 Fortes J A B. Sky computing: When multiple clouds be-

come one. In Proc. the 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, May

2010, p.4. DOI: 10.1109/CCGRID.2010.136.

[10]

 Stoica I, Shenker S. From cloud computing to sky com-

puting. In Proc. the 2021 Workshop on Hot Topics in Op-

erating Systems, Jun. 2021, pp.26–32. DOI: 10.1145/

3458336.3465301.

[11]

 Yang Z, Wu Z, Luo M, Chiang W L, Bhardwaj R, Kwon

W, Zhuang S, Luan F S, Mittal G, Shenker S, Stoica I.

SkyPilot: An intercloud broker for sky computing. In

Proc. the 20th USENIX Symposium on Networked Sys-

tems Design and Implementation, Apr. 2023, pp.437–455.

[12]

 Stoica I. Sky computing: Opportunities and challenges. In

Decision Making and Decision Support in the Informa-

tion Era, Balas V E, Dzemyda G, Belciug S, Kacprzyk J

(eds.), Springer, 2024, pp.15–27. DOI: 10.1007/978-3-031-

62158-1_2.

[13]

 Xu Z, Chao L, Peng X. T-REST: An open-enabled archi-

tectural style for the Internet of Things. IEEE Internet of

Things Journal, 2019, 6(3): 4019–4034. DOI: 10.1109/

JIOT.2018.2875912.

[14]

 Chao L, Peng X, Xu Z, Zhang L. Ecosystem of things:

Hardware, software, and architecture. Proceedings of the

IEEE, 2019, 107(8): 1563–1583. DOI: 10.1109/JPROC.

2019.2925526.

[15]

 Sun NH, Zhang YQ, Zhang FB. How to translate 算力

(Suanli) into English? Communications of the CCF, 2022,

18(9): 87. (in Chinese)

[16]

 Milewski B. Category Theory for Programmers. Blurb,

2019.

[17]

 Ma H, Qiao Y, Liu S, Yu S, Ni Y, Lu Q, Wu J, Zhang Y,

Kim M, Xu H. DRust: Language-guided distributed

shared memory with fine granularity, full transparency,

and ultra efficiency. In Proc. the 18th USENIX Sympo-

[18]

sium on Operating Systems Design and Implementation,

Jul. 2024, pp.97–115.

 Khanam R, Hussain M. YOLOv11: An overview of the

key architectural enhancements. arXiv: 2410.17725, 2024.

https://arxiv.org/abs/2410.17725, Feb. 2025.

[19]

 Wang H, Shi P, Zhang Y. JointCloud: A cross-cloud co-

operation architecture for integrated Internet service cus-

tomization. In Proc. the 37th IEEE International Confer-

ence on Distributed Computing Systems, Jun. 2017,

pp.1846–1855. DOI: 10.1109/ICDCS.2017.237.

[20]

 Duplyakin D, Ricci R, Maricq A, Wong G, Duerig J, Ei-

de E, Stoller L, Hibler M, Johnson D, Webb K, Akella A,

Wang K, Ricart G, Landweber L, Elliott C, Zink M, Cec-

chet E, Kar S, Mishra P. The design and operation of

CloudLab. In Proc. the 2019 USENIX Annual Technical

Conference, Jul. 2019, pp.1–14.

[21]

 Baldin I, Nikolich A, Griffioen J, Monga I I S, Wang K C,

Lehman T, Ruth P. FABRIC: A national-scale pro-

grammable experimental network infrastructure. IEEE In-

ternet Computing, 2019, 23(6): 38–47. DOI: 10.1109/MIC.

2019.2958545.

[22]

 Brikman Y. Terraform: Up and Running: Writing Infras-

tructure as Code (3rd edition). O'Reilly Media, 2022.

[23]

 ITU-T. Computing power network—Framework and ar-

chitecture. ITU-T-Y. 2501. International Telecommunica-

tion Union, 2021. https://standards.globalspec.com/std/

14474111/y-2501, Feb. 2025.

[24]

 Gong X, Bai C, Ren S, Wang J, Wang C. A survey of

compute first networking. In Proc. the 23rd IEEE Inter-

national Conference on Communication Technology, Oct.

2023, pp.688–695. DOI: 10.1109/ICCT59356.2023.

10419572.

[25]

Zhi-Wei Xu received his Ph.D. de-

gree from the University of Southern

California, Los Angeles. He is a profes-

sor of the Institute of Computing

Technology, Chinese Academy of Sci-

ences, Beijing. His research areas in-

clude high-performance computer ar-

chitecture and distributed systems.

Zi-Shu Yu is a Ph.D. candidate of

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing.

He received his B.E. degree in comput-

er science and technology from Univer-

sity of Chinese Academy of Sciences,

Beijing, in 2019. His current research

interests include distributed systems and runtime man-

agement.

Zhi-Wei Xu et al.: Hypertasking: From Information Web to Computing Utility 619

https://doi.org/10.1007/s11390-022-2898-7
https://doi.org/10.1007/s11390-022-2898-7
https://doi.org/10.1007/s11390-022-2898-7
https://doi.org/10.1007/s11390-022-2898-7
https://doi.org/10.1007/s11390-022-2898-7
https://doi.org/10.1007/s11390-022-2898-7
https://doi.org/10.1007/s11390-022-2898-7
https://dl.acm.org/doi/book/10.5555/996313
https://dl.acm.org/doi/book/10.5555/996313
https://doi.org/10.1109/MIC.2009.94
https://arxiv.org/abs/1902.03383
https://arxiv.org/abs/1902.03383
https://doi.org/10.1109/CCGRID.2010.136
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1007/978-3-031-62158-1_2
https://doi.org/10.1109/JIOT.2018.2875912
https://doi.org/10.1109/JIOT.2018.2875912
https://doi.org/10.1109/JPROC.2019.2925526
https://doi.org/10.1109/JPROC.2019.2925526
https://arxiv.org/abs/2410.17725
https://doi.org/10.1109/ICDCS.2017.237
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1109/MIC.2019.2958545
https://standards.globalspec.com/std/14474111/y-2501
https://standards.globalspec.com/std/14474111/y-2501
https://standards.globalspec.com/std/14474111/y-2501
https://standards.globalspec.com/std/14474111/y-2501
https://doi.org/10.1109/ICCT59356.2023.10419572
https://doi.org/10.1109/ICCT59356.2023.10419572

Feng-Zhi Li is a Ph.D. candidate of

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing.

He received his B.E. degree in comput-

er science and technology from Univer-

sity of Chinese Academy of Sciences,

Beijing, in 2020. His current research

interests include distributed systems and application

packaging.

Yao Zhang is a Ph.D. candidate of

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing.

He received his B.E. degree in comput-

er science and technology from Peking

University, Beijing, in 2022. His cur-

rent research interests include dis-

tributed systems and resource management.

620 J. Comput. Sci. & Technol., May 2025, Vol.40, No.3

	1 Introduction
	2 Hypertask Compared with Hypermedia
	2.1 Global Resource Space
	2.2 Stored-Computer Architecture
	2.3 Monadic Hypermedia

	3 Experiments on a Prototype of Computility
	3.1 Resource Provisioning
	3.2 Hypertask Description
	3.3 Task-Resource Binding
	3.4 Performance Results

	4 Related Work
	5 Conclusions
	Conflict of Interest
	References

