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Abstract

This work is focused on presenting a split precondition approach for the modeling and proving the

correctness of distributed algorithms. Formal specification and precise analysis of Peterson’s distributed mutual
exclusion algorithm for two process has been considered. The proof of properties like, mutual exclusion, liveness,

and lockout-freedom have also been presented.
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1 Introduction

Distributed algorithms run on machines having
a collection of interconnected processors. These
processors communicate in various unpredictable
ways. This makes the environment more compli-
cated. Therefore, the issue of prime concern is the
correct execution of the distributed algorithms, ir-
respective of the order of interleaving of concurrent
processes. This problem can be taken care of by
proper modeling and thorough analysis of proper-
ties of distributed algorithms. This analysis can
be carried out statically or dynamically. The dy-
namic analysis relies on the limited number of test
runs to make observations about the behavior of
the distributed algorithm. A couple of tools—4
are available to perform this task. However, since
the dynamic techniques do not take into consid-
eration all possible executions, therefore, they are
not soundl’]. Thus, we resort to static analysis,
though it involves considerable amount of human
effort. Although a large number of techniques[®—19!
are available in the literature, the static analysis is
difficult to carry out even for a simple distributed
algorithm. If we consider a complex algorithm,
the complicacy of this task is enhanced further,
in absence of some formal and precise method for
reasoning/2%. Therefore, the objective of this work
is to present a new approach, hereafter we say split
precondition approach, which is simple to under-
stand and easy to apply, for assertional reasoning of
distributed algorithms. In order to assert this, the
proof of all properties of Peterson’s algorithm!/2!
and rigorous formalization of the proof has been

distributed algorithms, state transition rule, mutual exclusion, weakest self-precondition, weakest

presented.

Many previous researchers exhaustively ana-
lyzed the properties of Peterson’s algorithm. An
early effort, to verify it, was made by Alpern and
Schneider?? without temporal logic and based on
Buchi automatal?3l. This approach, despite not
being limited to finite state spaces, requires cre-
ativity in devising the proof instruments like, an
invariant to handle safety aspects, a variant func-
tion to handle liveness aspects, and a candidate
function. Moreover, it is not always guaranteed
to get the correct answer(®?!. Later, Shankar, in
his tutorial?¥!, tried to prove Peterson’s algorithm
with assertional reasoning. Manna and Pnuelil?%]
did it in the frame of linear time temporal logic
and Pau et al.?) applied TLA (temporal logic of
actions) for the same purpose. Although the de-
tails of their proofs are different, all approaches are
similar. They carried out proofs by formulating as-
sertions, i.e., by stating properties about all execu-
tions of the system. Each assertion in the sequence
is proved by the application of some proof rule.
The major problem of such an approach is that it
is considered “difficult” and a common complaint
about such proofs is that they are too tedious2®!
and the insight gained by explicitly considering se-
quences of events is often lost or buried among the
details of the proofl2”. The recent approach, by
Win and Ernst®!, uses dynamic and static analy-
sis as complement to each other. They have made
few case studies including verification of Peterson’s
algorithm. Their approach relies on some verifi-
cation tools like I/O automaton model(®$29], TOA
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languagel®®!, Larch Prover[®!), and the Daikon dy-
namic invariant detector!®?!, Whether the use of
these tools can be generalized more broadly, is not
yet established.

Our split precondition logic uses First Order
Predicate Logic (FOPL), which is very easy to
apply. In this approach, we write the formu-
las and prove them logically. Moreover, this ap-
proach is better than Chandi-Sanders’ approach!3?!
as in Chandi-Sanders’ approach co-operation re-
quirement is to be catered separately, whereas in
our approach, it is inbuilt. The idea, of splitting
one precondition into two entities, is borrowed from
[34] where authors used it to detect deadlock condi-
tion in a distributed system. We propose to extend
the proof technology into the realm of modeling
and reasoning about the correctness of distributed
algorithms. It has been illustrated by considering
well-known Peterson’s algorithm[?!].

Use of split precondition approach contributes
two essential ingredients to the analysis of dis-
tributed algorithms. Firstly it provides an el-
egant and rigorous notation for describing dis-
tributed algorithms. Secondly, the split precondi-
tion approach provides a framework for the sys-
tematic analysis of the correctness of distributed
algorithms.

This article is not simply about representing a
known algorithm; it also aims to demonstrate that
the split precondition logic is suitable for both mod-
eling and reasoning about a distributed algorithm.
Our hope is that the approach used here could be
applied fruitfully to other distributed algorithms.

2 Description of the Split Precondition
Logic

Like every formal language, split precondition
logic also has a well-defined syntax and semantics.
The description of the mathematical model is being
given in the following paragraphs.

A set of states P.X and a set of state transi-
tion rules P.R define a process P. On the simi-
lar lines a set of processes S.P interacting through
message transactions define a system S. The ex-
pression in(P.xz) represents that a process P is in
state P.xz. The initial state of process, which is pre-
defined, is denoted by the expression initial(P.xo)-
The collection of states of all the processes belong-
ing to set S.P is termed as state SX of the system
S.

A state transition rule represents the movement
of process from one state to another. In order to fire
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any transition rule P.r and eventual establishment
of postcondition @, there exists a corresponding
weakest precondition wp(P.r, Q). We postulate the
value of wp for a specific post condition @ and for
a specific transition P.r. Though the name, weak-
est precondition, is similar, but our wp should not
be confused with the wp used by Dijkstral®®l. He
used it to represent a predicate transformer, i.e., a
function that maps any predicate (that expresses a
required post condition) to another predicate (that
expresses the precondition for the statement to ter-
minate in a state that satisfies the post condition).
Hence, in split precondition logic, unlike Dijkstra
logic, weakest preconditions are not computed from
the program text, but rather they provide a new
model of the program, which reflects the original
semantics of the program. If the system state satis-
fies wp(P.r, Q) then execution of P.r will eventually
establish the post condition Q. However, this is not
guaranteed unless wp(P.r, Q) is true before the ex-
ecution of P.r. The “precondition” is “weakest” in
this sense only. In our logic, weakest precondition
has been split into two entities:

(i) wsp(P.r, @), termed as the weakest self pre-
condition and is related to the process P itself;

(ii) wer(Pr,Q), termed as the weakest co-
operation requirements and includes the co-
operation requirements from other processes.

Thus, the total weakest precondition will be
given by

wp(P.r,Q) = wsp(P.r,Q) A wer(P.r, Q).

This justifies the appropriateness of the name split
precondition logic. Since, the co-operation require-
ments have already been included in the wp in our
approach, separate proof of co-operation, as re-
quired in [33], is not necessary here. Any transition
rule P.ris described jointly by the weakest precon-
dition wp(P.r,Q) and the post condition . This
scheme is illustrated in the following example.

FEzample. A system S is described by the fol-
lowing informal specification:

1) there are two processes P; and P; in S;

2) a message transfer occurs from P; to P,
when:

(a) an input command with P; as source is ex-
ecuted in Ps;

(b) an output command with P, as destination
is executed in Pp;

3) a process must wait until the other process is
ready for message transaction, in other words the
input and output command must be synchronized.
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2.1 Formal System Specification

2.1.1 States of Process P;

State  Semantics
1. P;.beo state of P; before execution of the
output command;
2. Pj.rts state of P; when it is ready to send

a message. This state occurs just
after the execution of the output
command;

3. Pj.sent state of Py describing the fact that
the message transaction is over.

2.1.2 States of Process P,

State Semantics

1. P,.bei state of P, before execution of the
input command;

2. Ps.rtr state of P, when it is ready to re-
ceive a message. This state occurs
just after the execution of the in-
put command;

3. Ps.rec state of P, describing the fact that
the message transaction is over.

With reference to the above states we can de-
scribe the processes as follows.

Process Pi; identified by Pi;
States: Pi.beo, Py.rts, P;.sent;

2.1.3 Transition Rules

Py.rq o

wsp(Py.ry, in(Py.rts)) = in(Py.beo)
wer(Py.ry, in(Py.rts)) = true
end of Py.rq;

Py.rg

def b = in(Py.sent) A in(Py.rec)
wsp(Py.ra,b) = in(Py.rts)
wer(Py.re,b) = in(Pa.rtr)

end of Py.rs;

end of transition rules;

Initial state: in(P;.beo)

end of process P;.

Process P»j; identified by Ps;
States: P».bet, Pa.rtr, Pa.rec;

2.1.4 ‘'Transition Rules

Ps.rq

wsp(Pa.r1, in(Pa.7tr)) = in(Ps.bei)
wer(Po.ry, in(Pa.rtr)) = true

end of Py.rq;

Pyorg

def b = in(Py.sent) A in(Py.rec)

wsp(Py.re,b) = in(Pa.rir)

wer(Pa.ry,b) = in(Py.rts)

end of P5.19;

end of transition rules.

Initial state: in(Py.bei);

end of process Ps.

The transition rule P;.ro causes state transi-
tions for both the processes P; and P,. Hence,
a corresponding transition rule, viz., Ps.rs is also
defined in the process P,. Though message trans-
action can occur between two processes only, we
may have to include assertions about the states of
more than one processes in wer(P.r,Q). This is
necessary when P is allowed to accept a message
from P; only when P; has not invoked a send com-
mand. Implementation of such a system is possible
by using a control structure like pri-alt in Occam.

2.2 Non-Deterministic State Transition
Rule

A non-deterministic state transition rule P.r
may include a number of different sub-rules each
of which requires a definite precondition to be sat-
isfied for its execution. These preconditions will be
called guards. Execution of a sub-rule will change
the state of P as well as the state of one of the
co-operating processes whose active co-operation is
necessary for this execution. State transition in the
co-operating process will be achieved by simultane-
ous execution of a state transition rule. If the pre-
conditions for more than one sub-rule are satisfied
then one of them is selected for execution. Selec-
tion procedure is non-deterministic and therefore,
it is necessary to pass this information to the rele-
vant co-operating process to produce the required
state transition. The weakest precondition for a
non-deterministic transition rule P.r is obtained as
follows.

Let there be n number of sub-rules denoted by
Pri: i =1,...,n. On the top of these sub-rules
we assume a selector procedure, denoted by select,
which makes the required non-deterministic selec-
tion. The post condition space for this procedure
should therefore include a number of Boolean vari-
ables denoted by s;: ¢ =1,...,m. At each invoca-
tion the selector makes one such variable true. If a
sub-rule P.r* has a post condition Q; then

$; = wp(P.ri, Q).
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Let B; denote the required guard for P.r?, then the
truth of this condition should ensure the selectabil-
ity of s;, i.e.,

B; = wr(select, s;),

where wr(select, s;) is the weakest requirement that
the procedure select may produce s;. Using equa-
tions for s; and B; the rule P.r is described as fol-
lows:
P.r::
Q=di: Qj
wp(P.r,Q) = (Fk: By)A
(Vi - B; = wr(select, s;))A
(V5 - s; = wp(P.ri, Q;));
end of P.r;

2.3 Property of a System

The operational model of a system can be de-
scribed by state transition rules. These rules can
be described completely by their weakest precon-
dition, post condition pairs. However, only oper-
ational specification may not be sufficient to de-
scribe the system requirements. In order to specify
a system completely, along with the state transition
rules the system properties must also be explicitly
described. Best way to do this is to define a system
invariant, which must remain true before and after
the execution of each state transition rule. That is,
there must exist a condition @ such that

Similarly for a guarded command we have

Vi-(Bi = Q) A (B; = wp(Pr', Qi) A Qi = Q).

3 Principle of Peterson’s Two-Process
Mutual Exclusion Algorithm

Peterson(?!l gave a very simple solution to the
mutual exclusion problem involving two processes,
1 and 2. It resolves simultaneity conflicts for a
shared resource like, printer, data structure, etc.,
and if a process wishes to access the shared resource
then it will succeed eventually.

The solution uses three shared variables flag,,
flag,, and turn, readable by both processes. The
variable flag; and flag, are writable only by Pro-
cess 1 and Process 2 respectively whereas the vari-
able turn is writable by both processes. The vari-
ables flag, and flag, are binary. Their value “1”
means corresponding process is interested to enter
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its critical section and the process shows disinter-
est by setting the value “0”. In order to make a
request to enter its critical section the process sets
its flag to “1” and maintains this value until the
process comes out of its critical section. The vari-
able turn assumes values from {1,2} and is used to
resolve contention. A process can access the criti-
cal section only when the other process either does
not wish to or makes request later.

4 Algorithm

cobegin
repeat
flag,:=1
turn:=1

waitfor flag, = 0 or turn = 2
(*critical sectionx)

flag,:=0

(*non critical sectionx)

forever
l
repeat
flagy:=1
turn:=2

waitfor flag, = 0 or turn =1
(*critical sectionx)
flag,:=0
(*non critical sectionx)
forever
cobegin

In the algorithm “non critical section” refers to
the execution of some command when the process
has released the shared resource and has not re-
quested for it again.

5 Formalization of the Algorithm

Now, we formalize the above-described dis-
tributed algorithm using split precondition tech-
nique. Like in other modeling techniques, we also
make certain assumptions, which provide frame-
work for analysis of the algorithm. Each process
executes at non-zero speed but we make no as-
sumption on the relative speed of processes. Sev-
eral CPUs may be present but memory hardware
prevents simultaneous access to the same memory
location. We also make no assumption about the
order of interleaved execution. Our technique also
views the execution of the distributed algorithm in
terms of the atomic events. These events are com-
munication with the other process, that is, access
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to shared variable. Due to our assumption regard-
ing atomicity, we can formalize the distributed al-
gorithm as a state transition system with two pro-
cesses as P; and Ps.

5.1 States of Process P;

State Semantics
1. (Py.ncs) Py is in non critical section
2. (Pi.flag, = 1) P; has set local variable
flag,

3. (Py.turn = 1) P; has set shared variable
turn favorably

4. (Py.wait_for) P; is waiting for favorable
condition to enter critical

section

5. (Py.enter-cs) P has entered critical
section

6. (P1.flag, =0) P; has reset local variable
flag,

5.2 States of Process P,

State Semantics
1. (Py.ncs) P5 is in non critical section
2. (Py.flagy, = 1) P, has set local variable
flag,

3. (Py.turn = 2) P, has set shared variable
turn favorably

4. (Py.wait_for) P, is waiting for favorable
condition to enter critical

section

5. (Py.enter_cs) P, has entered critical
section

6. (P2.flagy, =0) P, has reset local variable
flag,

5.3 Transition Rules

Process P;; identified by Py

Transition rules for process Pi;

Pr.r1 2 % Set flag %

wsp(Pyr.r1, in(Py.flag, = 1)) = in(P1.ncs)
wer(Py.ry, in(Pr.flag, = 1)) = true

end of P;.rq;

Pi.rg =2 % Set turn %

wsp(Py.r2, in(Pr.trun = 1)) = in(P1.flag; = 1)
wer(Pr.re, in(Pr.turn = 1)) = true

end of P;.ra;

Pi.r3 2 % Wait %

wsp(P1.r3, in(Pr.wait_for)) = in(Pi.turn; = 1)
wer (Pr.rs, in(Pr.wait_for)) = in(Pz.flag, = 1)
end of P;.rs;

Py .14 :: % Execute critical section %

wsp (P1.r4, in(Py.enter_cs)) = in(Py.wait_for)

wer(Py.ry, in(Pr.enter_cs)) = in(Pa.flag, = 0) vV
in(Py.turn = 2)

end of P;.ra;

Pi.rs :: % Release critical section %

wsp(P1.r5, in(P1.flag; = 0)) = in(Pi.enter_cs)

wer(Py.rs, in(Pr.flag, = 0)) = true

end of P;.rs;

Py.r¢ :: % Execute non critical section %

wsp(P1.16, in(Pi.ncs)) = in(Pr.flag; = 0)

wer(Py.rs, in(Py.ncs)) = true

end of P;.rg;

Process P; identified by P>

Transition rules for process Pks;

Pa.r1 it % Set flag %

wsp(Pz.r1, in(Pe.flagy = 1)) = in(Pz.ncs)

wer(Py.ry, in(Pa.flagy = 1)) = true

end of Ps.rq;

Ps.ry i % Set turn %

wsp(Py.r2, in(Pa.trun = 2)) = in(Pa.flag, = 1)

wer(Pa.ra, in(Pa.turn = 2)) = true

end of Ps.ra;

Pr.rs 2 % Wait %

wsp(Ps.r3, in(Pa.wait_for)) = in(Ps.turn = 2)

wer(Ps.r3, in(Pa.wait_for)) = in(Py.flag, = 1)

end of Ps.rs;

Ps.ry :: % Execute critical section %

wsp(Pa.r4, in(Pz.enter_cs)) = in(Pz.wait_for)

wer(Pa.ra, in(Pa.enter_cs)) = in(Pi.flag, = 0) Vv
n(Pr.turn = 1)

end of Ps.ry;

Ps.rs :: % Release critical section %

wsp(Ps.rs5, in(Pa.flag, = 0)) = in(Ps.enter_cs)

wer(Pa.rs, in(Ps.flagy, = 0)) = true

end of Ps.rs;

Ps.rg :: % Execute non critical section %

wsp(Ps.1¢, in(Pa.ncs)) = in(Ps.flag, = 0)

wer(Pa.rg, in(Pe.ncs)) = true

end of Ps.7¢;

6 Proof of Correctness

6.1 Mutual Exclusion

Assertion. The number of processes executing

in the critical section is never more than 1.
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Proof. Assume the contrary, that is both
processes P; and P, are in their critical sec-
tions. Therefore, weakest preconditions for tran-
sition rules P;.ry and P;.ry hold together. Thus
the following condition is true.

in(Py.wait_for) A {in(Ps.flagy = 0)V
in(Py.turn = 2)} A in(Py.wait_for)A
{in(P1.flag, = 0) V in(Py.turn = 1)}
= in(Py.turn = 1) A in(Pe.turn = 2) = false.

Because turn is a variable, it can hold at most one
value at a time assigned by either process. There-
fore, the assertion must be true and mutual exclu-
sion is ensured. a

6.2 Liveness

Assertion. A process that wishes to enter the
critical section eventually does so.

Proof. We prove it by contradiction. Assume
that process P; is in non-critical section, process
P, is trying to enter its critical section and is
blocked. Therefore, weakest preconditions for tran-
sition rules P;.rg and P;.rs hold together. Thus the
following condition is true.

in(Py.flag; = 0) A {in(Ps.turn = 2)A

in(Py.flagy = 1)}
= in(Py.flag; = 0) A in(Py.flag, = 1) = false.

Because flag, is a variable local to process Pj, it
can hold at most one value at a time assigned by
process P;. Therefore, the correctness of the asser-
tion is well guarded. |

6.3 Deadlock Freeness

Assertion. Both processes are never blocked
together.

Proof. Assume the contrary. Process P; at-
tempting to enter its critical section, process Ps
attempting to enter its critical section, and both
are blocked in the wait state. Therefore, weakest
preconditions for transition rules P;.r3 and Ps.rs

hold together. Thus the following condition is true.
{in(Py.turn = 1) A in(Pa.flag, = 1)}A
{in(Pa.turn = 2) A in(Py.flag, = 1)}
= in(Py.turn = 1) A in(Pe.turn = 2) = false.
Because turn is a variable, it can hold at most one
value at a time assigned by either process. There-

fore, the assertion must be true and deadlock is not
possible in the system. O
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6.4 Bounded Waiting

If a process of the system is executing its criti-
cal section repeatedly, it is said that the process has
locked out the shared resource. Now, if the other
process of the system is also trying to enter its crit-
ical section, it has to wait indefinitely. Therefore,
the second process is starving. This situation must
not arise. There should be bounded the waiting
time for the second process to enter its critical sec-
tions. Thus the algorithm should be lockout-free.

Assertion. A single process is never allowed
to execute its critical section repeatedly, while the
other process is also waiting to enter its critical sec-
tion.

Proof. Assume the contrary, that is process P;
is starving and process P is executing its critical
section repeatedly. Let us consider the situation
when process P; is in wait state and process P»
has just released critical section. When process P;
is in wait state, we have the following condition.

{in(Py.wait_for) A in(Py.turn = 1)A
in(Py.flagy, = 1) Ain(P1.flag, = 1)} (1)

Now, if process P, comes out of the critical sec-
tion, the post condition of the transition rule
P,.r5, will become true. That is, the component
in(Ps.flagy, = 1), of (1), will change to the new
value in(Ps.flag, = 0). Thus, the condition, given
above in (1), gets modified as follows.

{in(Py.wait_for) A in(Py.turn = 1)A
in(Py.flagy, = 0) A{in(Py.flag, = 1)}, (2)

Hence, the following condition, given in (3), would
also hold being weaker than the condition given
above, in (2).

{in(Py.wait_for) A in(Py.flagy = 0)} = turn. (3)

Since we also observe that

{in(Py.wait_for) A in(Ps.flag, = 0)}
= wp(Py.r4, in(Py.enter_cs)). (4)

Therefore, process P; would enter the critical
section before process P,. This is so because the
post condition, of the transition rule P,.ry, makes
in(Py.turn = 2) = true. This condition, along with
the condition in(P;.flag, = 1) which was obtained
as the post condition of the transition rule P;.rq,
would make
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(5)
It is obvious from the above two equations (4) and
(5), process Py will not be allowed to enter critical
section before process P; does so. Therefore, the
initial assumption about the system is wrong and
the starvation freedom is also guaranteed.

wp(Py.r3, in(Py.wait_for)) = true.

7 Conclusion

The purpose of this article has been to show how
successfully one can use split precondition logic as
formal means to appropriately model and prove
the validness of distributed algorithms. In the
case study of Peterson’s two-process algorithm we
have formally proved safety and liveness proper-
ties. While reasoning, using the split precondition
logic, we reasoned backward to establish that cer-
tain states could not have been reached. The back-
ward reasoning reduces the search space. There-
fore, it is preferable being goal oriented*®!. The ap-
proach, presented in this paper, suggests how split
precondition logic can be used to handle a class
of distributed algorithms in which processes com-
municate through shared variables. Though the
strength of our modeling technique is simplicity,
accuracy has not been compromised for the sake of
simplicity. Nevertheless, our approach needs care-
ful human effort. However, in our logic, the cor-
rectness is ensured by proving assertions that are
formulas in predicate logic. These formulas must be
embedded into the system during its design phase.
Dijkstral®®! also mentioned this in connection with
the loop invariants. The proof of these formulas
requires standard predicate logic rules and also the
transition rules of the system in question. Since we
propose to specify a system by its transition rules,
this formalization is available to us. It should there-
fore be possible to develop a rule-based system to
evaluate the correctness of the assertions. One can
also think of a proof system that may be intelligent
enough to consult with the user and update its rule
base.
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