Nov. 2004, Vol.19, No.6, pp.876-884 J. Comput. Sci. & Technol.

Efficient Incremental Maintenance of Frequent Patterns
with FP-Tree

Xiu-Li Ma!2, Yun-Hai Tong!:?, Shi-Wei Tang!:?, and Dong-Qing Yang!

1 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, P.R. China
2 National Laboratory on Machine Perception, Peking University, Beijing 100871, P.R. China

E-mail: {xlma, yhtong, ydq}@db.pku.edu.cn; tsw@pku.edu.cn

Received March 26, 2003; revised September 22, 2004.

Abstract However, little work
has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic
scenarios, efficient maintenance of the discovered patterns is crucial. Most existing methods need to scan the
In this paper, an efficient incremental mining

Mining frequent patterns has been studied popularly in data mining area.

entire database repeatedly, which is an obvious disadvantage.
algorithm, Incremental-Mining (IM), is proposed for maintenance of the frequent patterns when new incremental
data come. Based on the frequent pattern tree (FP-tree) structure, IM gives a way to make the most of the things
from the previous mining process, and requires scanning the original data once at most. Furthermore, IM can
identify directly the differential set of frequent patterns, which may be more informative to users. Moreover, IM
can deal with changing thresholds as well as changing data, thus provide a full maintenance scheme. IM has been
implemented and the performance study shows it outperforms three other incremental algorithms: FUP, DB-tree

and re-running frequent pattern growth (FP-growth).
Keywords

1 Introduction

Since the introduction to association min-
ing in [1], there have been many studies on
efficient and scalable frequent pattern mining
algorithms(2~%, of which two typical methods
are: candidate-generation-and-test Apriorilt!, and
divide-and-conquer frequent pattern growth (FP-
growth)[!,

However, most of the works have assumed that
the database being mined is static. In fact, there
are more and more domains where the datasets
tend to be constantly updated with fresh data, such
as e-commerce, web-based or data stream domains.
Response time is crucial in such an environment
because lengthy time delay can disturb the flow of
human perception and formation of insight. Sim-
ply re-executing mining from scratch on the whole
updated database can result in an explosion in the
computational and I/O resources required. What
is needed is a way to process the data incrementally
and update the discovered patterns.

To address this problem, Cheung and Lee first
proposed FUPSl, FUP,![™ and DELIB!. However,
these algorithms are all Apriori-like, mostly need
to generate a large number of candidate itemsets at
each level, scan the entire database several times.

data mining, association rule mining, frequent pattern mining, incremental mining

To tackle this difficulty, two incremental mining
algorithms are presented in [9]. One is the DB-tree
algorithm, which stores all the database informa-
tion in a frequent pattern tree (FP-tree) and re-
quires no re-scan of the original database. How-
ever, it neglects that the tree would be too large to
fit in the main memory. The other is the PotFP-
tree algorithm, which stores items either “frequent
at present” or “infrequent but potential” in an FP-
tree, controlled by a tolerance value t. However,
the choice of t is very hard. Furthermore, once ¢t
is broken, the tree needs to be re-constructed. In
fact, it ignores the already discovered knowledge,
duplicating the work already done.

Moreover, all the above incremental mining al-
gorithms assume the minimum support threshold
would not change, what if the users decide to
change the threshold while the new data come?

To tackle all these challenges, we propose an ef-
ficient maintenance approach, Incremental-Mining
(IM).

First, the maintenance task is based on FP-tree,
from which we exploit many useful properties suit-
able for incremental maintenance. Its most excit-
ing feature is the adaptiveness to incremental data
and changing thresholds. In an FP-tree, the new
part resulting from new data and new threshold
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can be clearly cut from the old part. This means
we can re-use the old information to the utmost ex-
tent, which will be much faster than constructing
all things from scratch, especially when encounter-
ing big trees resulting from prolific or long patterns
in very large databases. This is a really improve-
ment especially when continuous increments come.

Second, we can identify the differential set of
patterns directly, such as who are winners (those
become frequent), or losers (those turn to infre-
quent). Otherwise, mining from scratch cannot
tell differences and trends directly. In general, the
changes to the patterns set may be more informa-
tive in dynamic environment.

Third, our approach can integrate incremental
mining with re-mining. Re-mining is to find the
set of frequent patterns for the same database un-
der different thresholds!'®. Some work!%!1 has
been done on this problem. However, they all as-
sume the database remains unchanged. On the
other hand, almost all the methods on incremental
mining have focused on changing databases with
unchanging threshold. In fact, incremental mining
and re-mining should be the double sides of one
whole maintenance problem, needing an integra-
tion algorithm. Our approach can deal with both
at the same time. An integrated approach is pro-
posed in [12], however, it is in the framework of
candidate generation and test, whose inherent in-
efficiency has been analyzed above.

Fourth, we examine the general essence of IM
with the lattice-theoretic guidance. According to
its homogeneity with lattice partitioning, our idea
can be generalized when other mining algorithms
are used at first.

These features combined together form the con-
tribution of our new algorithm, IM. A performance
study has been conducted to compare IM with
FUP, DB-tree, and re-running FP-growth. IM is
found to outperform the other three methods.

The remaining of this paper is organized as fol-
lows. Section 2 gives a more precise description of
the problem, and briefly goes through FP-tree and
FP-growth on which our algorithm is based. Sec-
tion 3 exploits the properties of FP-tree and the
methods to extend an FP-tree. Section 4 develops
the IM algorithm. Section 5 analyzes the essence
of incremental mining under lattice guidance. Sec-
tion 6 presents our experimental study. Section 7
summarizes our study.

2 Problem Definitions
2.1 Mining of Frequent Patterns!’]

Let I = {a1,as,...,a,} be a set of items, and

a transaction database DB = (T1,T>,...,T,),
where T; (¢ € [1,...,n]) is a transaction which con-
tains a set of items in I. The support of a pattern
A, which is a set of items, is the number of transac-
tions containing A in DB. The support of A in DB
is denoted to be spp(A). A is a frequent pattern if
A’s support is no less than a predefined minimum
support threshold (or threshold in short), &.

Given a transaction database DB and a thresh-
old &, the problem of finding the complete set of fre-
quent patterns is called the frequent pattern mining
problem.

Notice that support is defined as absolute oc-
currence frequency. Sometimes, users may prede-
fine minimum support threshold in percentage form
(percentage threshold in short) o. Then, a pat-
tern A is frequent in DB if its support satisfies:
spB(A) 2 o x |DB|. In fact, threshold and percent-
age threshold have the same nature.

2.2 Incremental Mining of Frequent
Patterns

Let DB be the original database and o the per-
centage threshold. Let FPB be the set of frequent
patterns in DB. Assume an increment db of new
transactions is added to DB. Let U = DB U db
be the whole database. With respect to the same
percentage threshold o, a pattern A is frequent in
the updated database U if the support of A in U
satisfies: sy(A) = o x |U].

Incremental mining of frequent patterns is to
find FY, the set of frequent patterns in the updated
database U with respect to the same percentage
threshold o.

Note that, for the same o, as the database
changes, a frequent pattern in DB may not be fre-
quent in U, defined as a loser; on the other hand,
a pattern not frequent in DB, may become a fre-
quent pattern in U, defined as a winner; if a fre-
quent pattern in DB remains frequent in U, it is
called a retainer.

2.3 Re-Mining of Frequent Patterns

After having found some frequent patterns in
DB, users may be unsatisfied with the results and
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want to tune the percentage thresholds, such as
from ¢ to o’. Re-mining is to find the set FPB
of frequent patterns in DB under o’.

2.4 FP-Tree and FP-Growth

Let us briefly go through FP-tree structure and
FP-growth algorithm in [3], on which we will base.
The problem of frequent pattern mining with FP-
tree can be decomposed into two sub-problems:
first, constructing an FP-tree, which needs two
scans of the database; then, the FP-growth algo-
rithm is executed to mine recursively.

An FP-tree is a highly compact data structure
for storing crucial information about frequent pat-
terns. Only frequent length-1 items have nodes in
the tree, and the tree nodes are arranged in such
a way that more frequently occurring nodes have
better chance of sharing nodes than less frequently
occurring ones. For space limit, we refer the read-
ers to [3]. Fig.1(a) illustrates the FP-tree for DB
in Table 2 under threshold 3.
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Fig.1. Comparison of FP-tree for DB and for U. (a) FP-tree
for DB under threshold 3. (b) FP-tree for U under threshold
5 (by extension).

FP-growth is a divide-and-conquer process of
recursive mining of each frequent item in a fre-
quency ascending order. For each frequent item
a;, FP-growth first derives a frequent pattern a;,
with support equal to a;’s count in the header ta-
ble, then generates a conditional pattern-base Ba;
(the sub-pattern base under the condition of a;’s
existence) and constructs a conditional FP-tree FP-
tree|a;, on which FP-growth is then recursively per-
formed. The patterns resulting from mining FP-
tree|a; must be concatenated with a;.
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3 Extending FP-Tree with New Data

When new data come, re-construction of an FP-
tree represents a nontrivial overhead. It could be
beneficial to extend an existing FP-tree. In this
section, we focus on how to extend an existing FP-
tree when new data come (and the threshold may
also change). Table 1 summarizes the notations
used in this paper. Let us first consider what will
happen to an FP-tree when an increment comes.

Table 1. List of Notations
DB The original database
db The increment database
U The whole database (U = DB U db)
o The percentage threshold
o The new percentage threshold after db comes
T The FP-tree constructed for DB under o
T The FP-tree constructed for U under o’

FEzxzample 1. Table 2 shows the example trans-
action database (borrowed from [3]). The trans-
actions with TID 100 to 500 compose the original
database DB, while those from 600 to 800 compose
the increment db. Let the percentage threshold be
60%. Thus the absolute threshold is 5 x 60% = 3 in
DB, and 8 x60% = 5 in U. For ease of explanation,
the original frequent-item projections of DB and U
are respectively shown in the third and fourth col-
umn of Table 2. Figs.1(a) and 1(b) respectively
illustrate the FP-tree for DB under threshold 3 and
U under 5. At the first time mining, the complete
set of frequent items are {f : 4,c¢ : 4,a : 3,b :
3,m : 3,p : 3}; After db comes, the set will be
{f:5,a:6,b:6,m:6,p:6,l:5,0:5}.

Table 2. Example Transaction Database
DB (TID: 100-500), db (TID: 600-800)

Items (Ordered) frequent Frequent
Tip bought items (DB, 3) items (U, 5)
100 facdgimp fcamp famp
200 abcflmo fcabm fabmlo
300 bfhjo fb fbo
400 bcksp cbp bp
500 afcelpmn fcamp fampl
600 fabmplo fabmplo
700 abmplo abmplo
800 abmplo abmplo

Property 1. Any fized ordering of frequent
items in F'P-tree should not affect the completeness
of the result set of FP-growth.

Proof. According to a fixed order, the complete
set of frequent patterns in FP-growth will be di-
vided into n subsets without overlap, where n is
the total number of frequent items. In fact, the
support-descending order in FP-tree is just for the
purpose of high compactness. O
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Ezample 2. Consider the incremental mining
problem in Example 1. Pay attention to the order-
ings and the two trees. If we do not remove the
loser item c, the original FP-tree T is completely
contained in the new tree T without any variance.
Although this ordering may not result in a tree as
compact as in support descending order, the orig-
inal FP-tree T' can be re-used to the maximal ex-
tent.

Lemma 1. Given DB, db, U, o, o', T, T' as
meant in Table 1. When db comes, we can impose
an order for the list of the frequent items in T': the
original list of frequent items in DB appended with
the new winner items in U. T' constructed in such
an order contains the complete information of U in
relevance to frequent pattern mining.

Proof. This lemma is based directly on Prop-
erty 1. a

It is now obvious that we can get T’ by extend-
ing T. We do not remove the loser items. Just a
flag is needed to identify a loser item. Moreover, it
is really easy to deal with changing threshold. That
will just be involving more or less new winner items
inT'.

To prepare for extension, we give some adapta-
tions to mining on DB as follows.

1) Once created, an FP-tree is stored into a set.

2) As all items’ supports have been computed,
store them in support descending order in header
table. A tail value, which points to the last element
in the list of frequent items of the header table, is
also stored with the FP-tree, such as p in the header
table of Fig.1(a), and o in Fig.1(b).

3) A seed is attached to each FP-tree. It is the
pattern fragment to be concatenated with the pat-
terns from the tree.

4) In order to extend an FP-tree, its correspond-
ing conditional base, header table, tail, and seed
are all needed. When the first-time mining ends,
for each FP-tree (some are conditional FP-trees),
we integrate the above things into an object and
materialize it. For the whole tree, we save null as
its base, because materializing the whole database
will be unfair for other algorithms.

Based on the above analysis, we have the follow-
ing algorithm for extending an FP-tree. Two main
parts are included: one is appending the new win-
ner items in DB onto the FP-tree, called “FP-tree
Tuning”, which is the same as “FP-tree extension”
in [11]. The other is, extending the transactions
in db onto the FP-tree, which will not cause any
problem since adding those new records is equiva-
lent to scanning additional transactions in the FP-

tree construction. We call it “FP-tree Construct-
Delta”. Note that, we need at most one scan of the
original database in order to find back new winner
items.

Algorithm 1. FP-Tree Extension

Input: An integrated object of FP-tree T for DB
under o, and new incremental data db, new
threshold o.

Output: The FP-tree T", for U(= DB U db) under

!
g .

Method:

(1) € = |DB| x o;

(2) Compute the new support threshold ¢ =

U| x o

(3) T' = FP-tree Tuning(T, DB, ¢,¢');

(4) Call FP-tree Construct-Delta(T", db, £’);

Procedure FP-tree Tuning(T, DB, &, ¢')

{(1) Sort the items after the old tail in the header
table according to support descending order;

(2) Identify the new tail, which is the index of the
entry in header table (along the direction “down” from
the old tail) with the smallest support no less than ¢';

(3) For each transaction Trans in DB, select those
items in Trans satisfying &' < item.support < £, and
append into the corresponding branch;}

Procedure FP-tree Construct-Delta(T", db, ¢’)
{(1) For each transaction Trans in db, select those
items in Trans within the range 0 and the new tail ac-

cording to the order of header table, and append them
into the FP-tree T';}

4 Incremental Mining

Obtaining an FP-tree through extension ensures
that the previous FP-tree can be re-used. However,
this does not guarantee an efficient maintenance if
we simply execute FP-growth on this FP-tree, since
one still needs to recursively construct conditional
bases and FP-trees. In this section, we will study
how to re-use everything of the previous mining
process.

Ezample 3. Let us examine the incremental pro-
cess for DB in Table 2 when db comes. As FP-
growth is a partition-based method, we can split
the set of items before the tail in U under thresh-
old 5 into two parts: 1) each item after the old tail,
(a new winner item), such as ! and o, has never
been considered; 2) each item before the old tail,
such as f, ¢, a, b, m, p, has been considered in DB,
not in U yet.

It is easier for us to deal with the items of the
first type, just construct conditional pattern base
and FP-tree and execute FP-growth as in [3].
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Let us concentrate on the second type of items.
Let a; be such an item. With db coming, the change
of a;’s support can be further classified into three
cases: I) spp (a;) > 3, and sy(a;) < 5, such as
f, a, b, m, p, thus put a; into the set of retainers;
1) spp(a;) > 3, and sy(a;) > 5, such as ¢, thus
put a; into the set of losers; III) spp(a;) < 3, and
su(a;) = 5, thus put a; into the set of winners. (A
continuous process with multiple increments may
result in this kind of items.) For each loser, set its
flag “IsLoser”. When the item turns frequent later,
clear the flag.

After identifying the change of all the items be-
fore the tail, let us have a look at such an item’s
conditional base.

With db coming, a;’s conditional base changes.
According to the ordering in header table, one can
get the a;-projection sub-incremental of db as: Scan
db and project the set of frequent items (except
a;) of a transaction Trans into the a;-projection
database as a transaction, where a; is in Trans and
no other item in Trans ordered after a;, accord-
ing to the same ordering in the whole header table.
For the transaction with TID 600, i.e., “f-a-b-m-p-I-
0", we should put “f” into a-conditional base, put
“f-a” into b-conditional base, etc. We can think
the a;-projection from db as an increment to a;’s
conditional base. With this increment coming, the
incremental mining problem for a; turns into the
same problem as that of the global FP-tree.

Note that db will be distributed level-by-level.
So we must organize all the original integrated ob-
jects in a hierarchical way, i.e., for an FP-tree, its
direct conditional trees are its children. All the
FP-trees are organized level by level. We call this
a Hyper-Tree, formed during the FP-growth pro-
cess for DB under o. Based on the above analy-
sis, we can find the incremental mining problem is
a procedure of incremental mining all the existing
FP-trees in a hierarchical way: staring from the
global FP-tree, find out the new atoms and mine
them; classifying the existing items into retainers,
losers and winners; distribute the increment into its
children’s increment. Thus we have the following
algorithm for incremental mining.

Algorithm 2. IM

Input: Given DB, U, db, o, 0’ as meant in Table 1;
the HyperTree for DB under o; FPE, the complete set
of frequent patterns in DB under o.

Output: FY, the complete set of frequent patterns
in U under ¢’; and Winners, Losers, and Retainers.

Method:

(1) & =o' x|U];
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(2) Call FptreelncMining(db, ¢', HyperTree);
(3) Fy = FppU Winners—Losers;

Procedure FptreeIncMining(increment, &', current)
{(1) if (current != NULL){
(2) IncrementalMining(increment, £, current);
(3) FptreelncMining(increment, &', current —
Child);
(4) FptreeIncMining(increment, ¢', current — Sib-
ling); }
(5) else return; }

Procedure IncrementalMining(increment, &', cur-
rent)

{(1) Scan the increment once. Accumulate the sup-
port of the items into their original count in header
table. Identify the new tail in header table;

(2) if (the new tail > the old tail)

(3) { FP-tree Tuning (current, £');

(4) Extending-Growth(current, £, oldTail,
current, null);} // mining new winners as in [11]

(5) IdentifyWLR (current, ¢, Winners, Losers,
Retainers);

(6) FP-tree Construct-Delta (current, increment)

(7) if (Child '= NULL) Distribute(current, incre-
ment);

(8) Append increment into the corresponding
conditional base;

(9) clear the increment; }

Procedure IdentifyWLR (current, £, Winners,
Losers, Retainers)
{(1) for each item a; before the old tail of current’s
header table do {
(2) generate pattern 8 = a;U seed with support
= a;.support,
(3) if (a;.count > &)
(4) { if (a;.IsLoser) {Append ( into Winners;
clear a;.IsLoser;}
(5) else Append 3 into Retainers; }
(6) else
(7) if (laj.IsLoser) { Set a;.IsLoser; Append (3
into Losers;} } }

Procedure Distribute(current, increment)
{ (1) for each transaction in increment do {
(2) Select and Sort the items before the tail ac-
cording to the order in current’s header table into Tran;
(3) for each item a; in Tran do {
(4) project the set of items before a; (except a;)
into the a;-projection database as a transaction; } }
(5) for each item a; do {append a;j-projection
database into a;’s increment; } }

Analysis. We traverse the whole space in a root-
first order.

If it is the whole tree, increment is db; otherwise,
it is the distributed increment. On each FP-tree,
call IncrementalMining to extend the tree, mine the
new winners (Extending-Growth) and classify the
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original items (IdentifyWLR). The FP-trees gener-
ated in this process should be organized into Hyper-
Tree as current’s children.

In the procedure Distribute, current’s incre-
ment is distributed (projected) into its children’s
increment. Note IM assumes that the first time
FP-growth has not adopted the SinglePath branch
tuning in [3].

As we have distributed the incremental data,
for a nested FP-tree, we can get the right new ex-
tension from its own new data, not from its parent
tree. Thus we separate the calling of FP-tree tun-
ing and the FP-tree Construct-Delta.

5 Lattice-Based Analysis of Incremental
Mining
In this section, we will analyze the essence of in-
cremental mining under lattice guidance®!3!, We

will include, without proof, some conclusions in [2].
We call them corollaries here.

5.1 Lattice-Theoretic Approach

Corollary 1. For set S, the ordered set P(S),
the power set of S, is a complete lattice in which
join and meet are given by union and intersection.

Define a prefix-based equivalence relation 6 on
the lattice P(I), so that two itemsets are in the
same class if they share a common k length prefix.

Ezample 4. Fig.2 shows the power-set lattice
P(I) of the set of items I = {m,b,a,c, f}. It also
shows the lattice induced by the equivalent relation
0, on P(I), where all itemsets with a common 1
length prefix are collapsed into an equivalent class.
The resulting set or lattice of equivalent classes is
{[m], [b], [a], [c], [f]}. In fact, recursive class decom-
position can be applied.

From the above, we can find an analogy between
lattice decomposition and FP-growth.

5.2 Analogy Between FP-Growth and
Lattice-Theoretic Approach

Lemma 2. The divide-and-conquer method-
ology in FP-growth ts homogeneous with the de-
composition in lattice according to the prefiz-based
equivalent relation.

Proof. According to FP-growth, for each fre-
quent item a;, a;’s conditional pattern base con-
tains only the items before a;, according to the list
of frequent items. The patterns resulting from the
recursive mining on FP-tree|a; must be concate-

nated with a;. Thus, given the same order among

frequent items, the frequent patterns resulting from
a; in FP-growth are just the same set of frequent
patterns in [a;], the prefix-based equivalent class of
a; in lattice P(I). O

Next, let us examine the incremental mining
process based on the lattice essence.

mbacf

\

'mbac lmbaf mbcf macf bacf
—
mac| \maf||mcf| |bac||baf || bef || acf
mf| ba || be || bf || ac || af || cf
m b a c T
{}

Fig.2. Complete power-set lattice P(I), also, the equivalent
classes of P(I) induced by 61.

5.3 Lattice-Based Analysis of Incremental
Mining

Lemma 3. Given DB, db, U as meant in Table
1. When db comes, in the lattice P(I) constructed
with the frequent items as atoms, items should be
considered this way: for a winner item a;, its prefiz-
based equivalence class should be constructed and
searched. For a loser item aj, all patterns in its
prefiz-based equivalence class should be losers. For
a retained item ay, its sub-lattice should be exam-
ined as the whole lattice has been.

The proof is cut for space limit. Actually, the
lattice-theoretic partitioning is the essence of IM.
We can implement the idea in IM through other
data structures, such as H-treel*, or FPL!, which
have the same nature as FP-tree.

6 Experimental Evaluation and
Performance Study

In this section, we present a performance com-
parison of IM with FUP, DB-tree and re-executing
FP-growth when increment comes.

All the experiments are performed on a
1400MHz Pentium PC with 512MB main memory.
All the programs are written in Microsoft/Visual
C++.Net 6.0. We implement the algorithms of [3,
6, 9] in our environment.

The synthetic data sets that we used in our ex-
periments were generated using the procedure de-



882

scribed in [1]. In the following, we use the notation
TalyDmdn to denote a database in which |D| = m
thousands, |d| = n thousands, |T| = z, |I| = y.
In order to do comparison on a database of size
|D| with an increment of size |d|, a database of size
(ID] + |d]) is first generated and then the first |D|
transactions are stored in the database DB and the
remaining |d| transactions in the increment db.
We report experimental results on four data
sets. The first one, denoted as D1, is T1014D99d1.
D2 is T15110D9d1. D3 is T25120D99d1. D4 is
T25115D9d1. For each setting of synthetic data,
such as D1, we generate 20 datasets with different
random seeds. Then, the mean runtime is com-
puted to be the final score. In this way, the ac-
curacy and reliability of our experiments can be
improved. The runtime of IM and the other two
algorithms (FP for rerunning FP-growth in short,
and FUP) for D1 and D2 are plotted in Fig.3, while

T1014D99d1

- 80

5 60

E ——FP
5] —a— IM
é 20 ; —e— FUP

0
0.1 0.2 0.3 0.4 0.5 0.60.75
Minimum support (%)

— 150 T15110D9d1

n

o a —— P
£ 100 \ —a— IM
£ 50 —e—FUP
et

0
0.15 0.2 0.3 0.4 0.5 0.6 0.75
Minimum support (%)

Fig.3. Scalability with threshold for D1 and D2.

T25120D99d1
150
R
© 100 —e— P
E —a— 1M
g 50 —e—FUP
m 0 L L L
03 04 05 0.6 0.75
Minimum support (%)
T25115D9d1
150
= \
2 100 ——FP
= —a— M
E 50 b —e—FUP
=
0 1 1 1

0.3 04 0.5 0.6 0.75
Minimum support (%)

Fig.4. Scalability with threshold for D3 and D4.
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for D3 and D4 in Fig.4. In Fig.5, performance ra-
tio of IM to FP and FUP for D1 and D2, D3 and
D4 are plotted.

For DB-tree, as a DB-tree can be seen as an
FP-tree with a minimum support of 0, the tree is
too huge to fit in memory. The system just re-
spond “virtual memory minimum too low”, so the
DB-tree method is infeasible. We do not plot its
runtime.

—_
)
~N N~

—-— D1
—— D2
—A— D1
—— D2

FP/IM)
FP/IM)
FUP/IM)
FUP/IM)

Speed-up ratio

(=

0.1 0.2 0.3 0.4 0.5 0.6 0.75
Minimum support (%)

o

Pt
- rd

e

0.3 04 05 0.6 0.75
Minimum support (%)

—e— D3 (FP/IM)
—a— D4 (FP/IM)
—a— D3 (FUP/IM)
—e— D4 (FUP/IM)

Speed-up ratio
O N WER IO

Fig.5. Speed-up ratio with threshold.

6.1 IM Versus FP-Growth, FUP

We start the mining each time by using our
adapted FP-growth, and then IM. In Fig.3 and
Fig.4, as we see, for both datasets, IM wins the
other two. When the threshold is very low, the
speedup ratio of IM to FUP is much higher. The
main reason is that, generally speaking, the FP-
tree constructed under a lower threshold is taller
than that under a higher threshold. Hence, exten-
sion and incremental mining of a bigger FP-tree can
save much more time than re-construction and re-
executing mining from scratch. Whereas for FUP,
in situations with prolific patterns, or quite low
threshold, FUP suffers much from generation of a
huge number of candidates and repeated scan of
databases.

6.2 Performance of IM with Large
Increment

A database T10I4D50dx with updates of 0.5K,
1K, 2K, 5K, 10K, 20K and 30K are generated, and
different updates with different supports are done
by IM and FP. For the same support, the speed-
up ratio decreases when increment size increases.
Fig.6 plots the performance ratio for D1 and D4
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when the threshold is 0.75%. In the same setting of
T10I4D50dx, we increase the increment size x from
0.5K gradually to 50K for comparison. The fact
that IM still exhibits performance gain when the in-
crement is almost as large as the original database
shows that it is efficient.

— T1014D50dx

; 12

= KX
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2 e

gy \

jo

: \ﬁ_
el

% 0 L L L L L L L
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0
0.05 0.1 0.2 0.5 1 2 3
Increment size (K)

Fig.6. Speed-up ratio vs. increment size.

6.3 Small Overhead of IM

Our last experiment is to analyze the overhead
incurred by IM. In general, if the time to compute
FY from an updated database U is added to the
time to compute the original set FP8 from DB by
a mining algorithm, the sum would be larger than
that if the same mining algorithm was applied di-
rectly on U to compute FU. The difference (Diff)
of these two runtime values is a measurement of the
overhead of the update. If the overhead is small,
then it indicates that the update is done very effi-
ciently. The overhead percentage (Diff/FP) is plot-

T1014D50dx
&
@30 7—#
=
g~
Sk 20y
S
"O —
g8 10
=]
3
> 0 L L L L L L L L
o 0.5 1 2 5 10 20 30 50

Increment size (K)

Fig.7. Overhead percentage vs. increment size.
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ted in Fig.7. IM works well even in the case of large
increment.

7 Conclusion

We have proposed an efficient method for incre-
mental mining frequent patterns when increment
comes. Based on re-using materialized by-products
of previous mining, incremental mining becomes a
procedure of process the increment in a hierarchi-
cal way. As the minimum support threshold can be
changed when extending an FP-tree, our approach
is an integrated solution to incremental mining and
re-mining. Moreover, the difference can be directly
identified, which is more important and can be used
to observe the changing trend each time. As FP-
tree can extend continuously, IM is most suitable
for continuous increments. We give out the nature
of incremental mining in the framework of lattice,
thus the idea in this paper is feasible even if we
mine through H-Mine or FPL at the first time.

There are a lot of interesting issues related to
incremental mining, such as incremental mining of
maximal patterns, closed patterns. We also take
efforts towards changing trend mining.
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